1
|
Sorn S, Matsuura N, Honda R. Metagenome-Assembled Genomes and Metatranscriptome Analysis of Perfluorooctane Sulfonate-Reducing Bacteria Enriched From Activated Sludge. Environ Microbiol 2025; 27:e70087. [PMID: 40170341 PMCID: PMC11962240 DOI: 10.1111/1462-2920.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) exhibit a widespread distribution across diverse global ecosystems throughout their lifecycle, posing substantial risks to human health. The persistence of PFAS makes biodegradation a challenging yet environmentally friendly solution for their treatment. In the authors' previous study, a bacterial consortium capable of reducing perfluorooctane sulfonate (PFOS) was successfully enriched from activated sludge. This study aimed to investigate the array of genes associated with PFOS reduction via biosorption and biotransformation to elucidate the metabolic pathways. Two metagenome-assembled genomes (MAGs) based on 16S rRNA sequences that share 99.86% and 97.88% similarity with Hyphomicrobium denitrificans and Paracoccus yeei, respectively were obtained. They were found to contain several genes encoding enzymes that potentially regulate biofilm formation of biosorption and facilitate the desulfonation and defluorination processes of biotransformation. Transcriptomic analysis demonstrated the high expression levels of these genes, including alkanesulfonate monooxygenase, catechol dioxygenase, (S)-2-haloacid dehalogenase and putative cytochrome P450, suggesting their involvement in PFOS biotransformation. The expression of these genes supports the presence of candidate metabolites of PFOS biotransformation detected in the previous study. These findings emphasise the significant potential of bacterial consortia and the crucial role played by genes encoding enzymes in facilitating the remediation of PFOS contaminants.
Collapse
Affiliation(s)
- Sovannlaksmy Sorn
- Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaIshikawaJapan
- Faculty of Agricultural and Marine SciencesKochi UniversityNankokuKochiJapan
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil EngineeringKanazawa UniversityKanazawaIshikawaJapan
| | - Ryo Honda
- Faculty of Geosciences and Civil EngineeringKanazawa UniversityKanazawaIshikawaJapan
| |
Collapse
|
2
|
Rojas-Vargas J, Rebollar EA, Sanchez-Flores A, Pardo-López L. A comparative genomic study of a hydrocarbon-degrading marine bacterial consortium. PLoS One 2024; 19:e0303363. [PMID: 39116055 PMCID: PMC11309472 DOI: 10.1371/journal.pone.0303363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/23/2024] [Indexed: 08/10/2024] Open
Abstract
Ocean oil pollution has a large impact on the environment and the health of living organisms. Bioremediation cleaning strategies are promising eco-friendly alternatives for tackling this problem. Previously, we designed and reported a hydrocarbon (HC) degrading microbial consortium of four marine strains belonging to the species Alloalcanivorax xenomutans, Halopseudomonas aestusnigri, Paenarthrobacter sp., and Pseudomonas aeruginosa. However, the knowledge about the metabolic potential of this bacterial consortium for HC bioremediation is not yet well understood. Here, we analyzed the complete genomes of these marine bacterial strains accompanied by a phylogenetic reconstruction along with 138 bacterial strains. Synteny between complete genomes of the same species or genus, revealed high conservation among strains of the same species, covering over 91% of their genomic sequences. Functional predictions highlighted a high abundance of genes related to HC degradation, which may result in functional redundancy within the consortium; however, unique and complete gene clusters linked to aromatic degradation were found in the four genomes, suggesting substrate specialization. Pangenome gain and loss analysis of genes involved in HC degradation provided insights into the evolutionary history of these capabilities, shedding light on the acquisition and loss of relevant genes related to alkane and aromatic degradation. Our work, including comparative genomic analyses, identification of secondary metabolites, and prediction of HC-degrading genes, enhances our understanding of the functional diversity and ecological roles of these marine bacteria in crude oil-contaminated marine environments and contributes to the applied knowledge of bioremediation.
Collapse
Affiliation(s)
- Jorge Rojas-Vargas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Eria A. Rebollar
- Programa de Microbiología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alejandro Sanchez-Flores
- Instituto de Biotecnología, Unidad Universitaria de Secuenciación Masiva y Bioinformática, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
3
|
Liew JJM, Wicht DK, Gonzalez R, Dowling DP, Ellis HR. Current understanding of enzyme structure and function in bacterial two-component flavin-dependent desulfonases: Cleaving C-S bonds of organosulfur compounds. Arch Biochem Biophys 2024; 758:110048. [PMID: 38848996 DOI: 10.1016/j.abb.2024.110048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The inherent structural properties of enzymes are critical in defining catalytic function. Often, studies to evaluate the relationship between structure and function are limited to only one defined structural element. The two-component flavin-dependent desulfonase family of enzymes involved in bacterial sulfur acquisition utilize a comprehensive range of structural features to carry out the desulfonation of organosulfur compounds. These metabolically essential two-component FMN-dependent desulfonase systems have been proposed to utilize oligomeric changes, protein-protein interactions for flavin transfer, and common mechanistic steps for carbon-sulfur bond cleavage. This review is focused on our current functional and structural understanding of two-component FMN-dependent desulfonase systems from multiple bacterial sources. Mechanistic and structural comparisons from recent independent studies provide fresh insights into the overall functional properties of these systems and note areas in need of further investigation. The review acknowledges current studies focused on evaluating the structural properties of these enzymes in relationship to their distinct catalytic function. The role of these enzymes in maintaining adequate sulfur levels, coupled with the conserved nature of these enzymes in diverse bacteria, underscore the importance in understanding the functional and structural nuances of these systems.
Collapse
Affiliation(s)
- Jeremy J M Liew
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Denyce K Wicht
- Department of Biochemistry, Chemistry, Environment, and Physics, Suffolk University, Boston, MA, 02108, USA
| | - Reyaz Gonzalez
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Daniel P Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Holly R Ellis
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
4
|
Islam MM, Jana SK, Sengupta S, Mandal S. Impact of Rhizospheric Microbiome on Rice Cultivation. Curr Microbiol 2024; 81:188. [PMID: 38780806 DOI: 10.1007/s00284-024-03703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/13/2024] [Indexed: 05/25/2024]
Abstract
The rhizosphere niche is extremely important for the overall growth and development of plants. Evidently, it is necessary to understand the complete mechanism of plant microbe interactions of the rhizosphere for sustainable and low input productivity. To meet the increasing global food demand, rice (Oryza sativa L.) agriculture seeks optimal conditions. The unique oxic-anoxic interface of rice-growing soil has invited divergent microbes with dynamic biogeochemical cycles. This review provides the systematic analysis of microbes associated with the major biogeochemical cycles with the aim to generate better management strategies of rhizospheric microbiome in the field of rice agriculture. For instance, several methanogenic and methanotrophic bacteria in the rice rhizosphere make an equilibrium for methane concentration in the environment. The carbon sequestration in paddy soil is again done through many rhizospheric microorganisms that can directly assimilate CO2 with their photoautotrophic mode of nutrition. Also the phosphate solubilizing microbes remain to be the most important keys for the PGPR activity of the paddy ecosystem. In addition, rhizospheric microbiome remain crucial in degradation and solubilization of organo-sulfur and insoluble inorganic sulfides which can be taken by the plants. Further, this review elucidates on the advantages of using metagenomic and metaproteomic approaches as an alternative of traditional approaches to understand the overall metabolic pathways operational in paddy-field. These knowledges are expected to open new possibilities for designing the balanced microbiome used as inoculum for intensive farming and will eventually lead to exert positive impacts on rice cultivation.
Collapse
Affiliation(s)
- Md Majharul Islam
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Santosh Kumar Jana
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Subhadipa Sengupta
- Post Graduate Department of Botany, Bidhannagar College, EB -2, Sector 1, Salt Lake, Kolkata, 700064, India.
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
5
|
Jacobtorweihen J, Hartmann A, Hofer S, Spiegler V. Antibacterial Activities of the Algal Bromophenol Methylrhodomelol Against Pseudomonas aeruginosa. PLANTA MEDICA 2024; 90:469-481. [PMID: 38580306 DOI: 10.1055/a-2289-2423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Methylrhodomelol (1: ) is a bromophenol from the red alga Vertebrata lanosa that has been associated with antimicrobial properties. The aim of the current study was, therefore, to assess the antimicrobial potential of this compound in more detail against the gram-negative pathogen Pseudomonas aeruginosa. 1: exerted weak bacteriostatic activity against different strains when grown in minimal medium, whereas other phenolics were inactive. In addition, 1: (35 and 10 µg/mL) markedly enhanced the susceptibility of multidrug-resistant P. aeruginosa toward the aminoglycoside gentamicin, while it did not affect the viability of Vero kidney cells up to 100 µM. Finally, pyoverdine release was reduced in bacteria treated at sub-inhibitory concentration, but no effect on other virulence factors was observed. Transcriptome analysis of treated versus untreated P. aeruginosa indicated an interference of 1: with bacterial carbon and energy metabolism, which was corroborated by RT-qPCR and decreased ATP-levels in treated bacteria. In summary, the current study characterized the antibacterial properties of methylrhodomelol, revealed its potential as an adjuvant to standard antibiotics, and generated a hypothesis on its mode of action.
Collapse
Affiliation(s)
- Joshua Jacobtorweihen
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Germany
| | - Anja Hartmann
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Austria
| | - Stefanie Hofer
- Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Austria
| | - Verena Spiegler
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Germany
| |
Collapse
|
6
|
Sharifian Gh. M, Norouzi F, Sorci M, Zaid TS, Pier GB, Achimovich A, Ongwae GM, Liang B, Ryan M, Lemke M, Belfort G, Gadjeva M, Gahlmann A, Pires MM, Venter H, Harris TE, Laurie GW. Targeting Iron - Respiratory Reciprocity Promotes Bacterial Death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582947. [PMID: 38464199 PMCID: PMC10925246 DOI: 10.1101/2024.03.01.582947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Discovering new bacterial signaling pathways offers unique antibiotic strategies. Here, through an unbiased resistance screen of 3,884 gene knockout strains, we uncovered a previously unknown non-lytic bactericidal mechanism that sequentially couples three transporters and downstream transcription to lethally suppress respiration of the highly virulent P. aeruginosa strain PA14 - one of three species on the WHO's 'Priority 1: Critical' list. By targeting outer membrane YaiW, cationic lacritin peptide 'N-104' translocates into the periplasm where it ligates outer loops 4 and 2 of the inner membrane transporters FeoB and PotH, respectively, to suppress both ferrous iron and polyamine uptake. This broadly shuts down transcription of many biofilm-associated genes, including ferrous iron-dependent TauD and ExbB1. The mechanism is innate to the surface of the eye and is enhanced by synergistic coupling with thrombin peptide GKY20. This is the first example of an inhibitor of multiple bacterial transporters.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
| | - Mirco Sorci
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY, USA
| | - Tanweer S Zaid
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Gerald B. Pier
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Alecia Achimovich
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - George M. Ongwae
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA, USA
| | - Margaret Ryan
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
| | - Michael Lemke
- Department of Pharmacology, University of Virginia, Charlottesville VA, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY, USA
| | - Mihaela Gadjeva
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Henrietta Venter
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia, Charlottesville VA, USA
| | - Gordon W. Laurie
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville VA, USA
- Contact author: Gordon Laurie
| |
Collapse
|
7
|
Sarat N, Salim A, Pal S, Subhash S, Prasad M, Nair BG, Madhavan A. Mitigation of biogenic methanethiol using bacteriophages in synthetic wastewater augmented with Pseudomonas putida. Sci Rep 2023; 13:19480. [PMID: 37945592 PMCID: PMC10636157 DOI: 10.1038/s41598-023-46938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Wastewater malodour is the proverbial 'elephant in the room' notwithstanding its severe implications on sanitation, health, and hygiene. The predominant malodorous compounds associated with wastewater treatment plants and toilets are volatile organic compounds, such as hydrogen sulphide, ammonia, methanethiol, and organic acids. Among them, methanethiol warrants more attention owing to its relatively low olfactory threshold and associated cytotoxicity. This requires an efficient odour-abatement method since conventional techniques are either cost-prohibitive or leave recalcitrant byproducts. Bacteriophage-based methodology holds promise, and the described work explores the potential. In this study, a non-lysogenous Pseudomonas putida strain is used as a model organism that produces methanethiol in the presence of methionine. Two double-stranded DNA phages of genome sizes > 10 Kb were isolated from sewage. ɸPh_PP01 and ɸPh_PP02 were stable at suboptimal pH, temperature, and at 10% chloroform. Moreover, they showed adsorption efficiencies of 53% and 89% in 12 min and burst sizes of 507 ± 187 and 105 ± 7 virions per cell, respectively. In augmented synthetic wastewater, ɸPh_PP01 and ɸPh_PP02 reduced methanethiol production by 52% and 47%, respectively, with the concomitant reduction in P. putida by 3 logs in 6 h. On extension of the study in P. putida spiked-sewage sample, maximum reduction in methanethiol production was achieved in 3 h, with 49% and 48% for ɸPh_PP01 and ɸPh_PP02, respectively. But at 6 h, efficiency reduced to 36% with both the phages. The study clearly demonstrates the potential of phages as biocontrol agents in the reduction of malodour in wastewater.
Collapse
Affiliation(s)
- Niti Sarat
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India
| | - Amrita Salim
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India.
| | - Suja Subhash
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India
| | - Megha Prasad
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India
| | - Ajith Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana, Kerala, 690525, India.
| |
Collapse
|
8
|
Aloh CH, Zeczycki TN, Ellis HR. Oligomeric Changes Regulate Flavin Transfer in Two-Component FMN Reductases Involved in Sulfur Metabolism. Biochemistry 2023; 62:2751-2762. [PMID: 37651343 DOI: 10.1021/acs.biochem.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The FMN reductases (SsuE and MsuE of the alkanesulfonate monooxygenase systems) supply reduced flavin to their partner monooxygenases for the desulfonation of alkanesulfonates. Flavin reductases that comprise two-component systems must be able to regulate both flavin reduction and transfer. One mechanism to control these distinct processes is through changes in the oligomeric state of the enzymes. Despite their similar overall structures, SsuE and MsuE showed clear differences in their oligomeric states in the presence of substrates. The oligomeric state of SsuE was converted from a tetramer to a dimer/tetramer equilibrium in the presence of FMN or NADPH in analytical ultracentrifugation studies. Conversely, MsuE shifted from a dimer to a single tetrameric state with FMN, and the NADPH substrate did not induce a similar oligomeric shift. There was a fast tetramer to dimer equilibrium shift occurring at the dimer/dimer interface in H/D-X investigations with apo SsuE. Formation of the SsuE/FMN complex slowed the tetramer/dimer conversion, leading to a slower exchange along the dimer/dimer interface. The oligomeric shift of the MsuE/FMN complex from a dimer to a distinct tetramer showed a decrease in H/D-X in the region around the π-helices at the dimer/dimer interface. Both SsuE and MsuE showed a comparable and significant increase in the melting temperature with the addition of FMN, indicating the conformers formed by each FMN-bound enzyme had increased stability. A mechanism that supports the different structural shifts is rationalized by the different roles these enzymes play in providing reduced flavin to single or multiple monooxygenase enzymes.
Collapse
Affiliation(s)
- Chioma H Aloh
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| | - Holly R Ellis
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina 27834, United States
| |
Collapse
|
9
|
Pormohammad A, Firrincieli A, Salazar-Alemán DA, Mohammadi M, Hansen D, Cappelletti M, Zannoni D, Zarei M, Turner RJ. Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0062823. [PMID: 37409940 PMCID: PMC10433965 DOI: 10.1128/spectrum.00628-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
The constant, ever-increasing antibiotic resistance crisis leads to the announcement of "urgent, novel antibiotics needed" by the World Health Organization. Our previous works showed a promising synergistic antibacterial activity of silver nitrate with potassium tellurite out of thousands of other metal/metalloid-based antibacterial combinations. The silver-tellurite combined treatment not only is more effective than common antibiotics but also prevents bacterial recovery, decreases the risk of future resistance chance, and decreases the effective concentrations. We demonstrate that the silver-tellurite combination is effective against clinical isolates. Further, this study was conducted to address knowledge gaps in the available data on the antibacterial mechanism of both silver and tellurite, as well as to give insight into how the mixture provides synergism as a combination. Here, we defined the differentially expressed gene profile of Pseudomonas aeruginosa under silver, tellurite, and silver-tellurite combination stress using an RNA sequencing approach to examine the global transcriptional changes in the challenged cultures grown in simulated wound fluid. The study was complemented with metabolomics and biochemistry assays. Both metal ions mainly affected four cellular processes, including sulfur homeostasis, reactive oxygen species response, energy pathways, and the bacterial cell membrane (for silver). Using a Caenorhabditis elegans animal model we showed silver-tellurite has reduced toxicity over individual metal/metalloid salts and provides increased antioxidant properties to the host. This work demonstrates that the addition of tellurite would improve the efficacy of silver in biomedical applications. IMPORTANCE Metals and/or metalloids could represent antimicrobial alternatives for industrial and clinical applications (e.g., surface coatings, livestock, and topical infection control) because of their great properties, such as good stability and long half-life. Silver is the most common antimicrobial metal, but resistance prevalence is high, and it can be toxic to the host above a certain concentration. We found that a silver-tellurite composition has antibacterial synergistic effect and that the combination is beneficial to the host. So, the efficacy and application of silver could increase by adding tellurite in the recommended concentration(s). We used different methods to evaluate the mechanism for how this combination can be so incredibly synergistic, leading to efficacy against antibiotic- and silver-resistant isolates. Our two main findings are that (i) both silver and tellurite mostly target the same pathways and (ii) the coapplication of silver with tellurite tends not to target new pathways but targets the same pathways with an amplified change.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- CCrest Laboratories, Inc., Montreal, Quebec, Canada
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo, Italy
| | - Daniel A. Salazar-Alemán
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mohammadi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Thompson J, Barr C, Babcock-Adams L, Bird L, La Cava E, Garber A, Hongoh Y, Liu M, Nealson KH, Okamoto A, Repeta D, Suzuki S, Tacto C, Tashjian M, Merino N. Insights into the physiological and genomic characterization of three bacterial isolates from a highly alkaline, terrestrial serpentinizing system. Front Microbiol 2023; 14:1179857. [PMID: 37520355 PMCID: PMC10373932 DOI: 10.3389/fmicb.2023.1179857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/23/2023] [Indexed: 08/01/2023] Open
Abstract
The terrestrial serpentinite-hosted ecosystem known as "The Cedars" is home to a diverse microbial community persisting under highly alkaline (pH ~ 12) and reducing (Eh < -550 mV) conditions. This extreme environment presents particular difficulties for microbial life, and efforts to isolate microorganisms from The Cedars over the past decade have remained challenging. Herein, we report the initial physiological assessment and/or full genomic characterization of three isolates: Paenibacillus sp. Cedars ('Paeni-Cedars'), Alishewanella sp. BS5-314 ('Ali-BS5-314'), and Anaerobacillus sp. CMMVII ('Anaero-CMMVII'). Paeni-Cedars is a Gram-positive, rod-shaped, mesophilic facultative anaerobe that grows between pH 7-10 (minimum pH tested was 7), temperatures 20-40°C, and 0-3% NaCl concentration. The addition of 10-20 mM CaCl2 enhanced growth, and iron reduction was observed in the following order, 2-line ferrihydrite > magnetite > serpentinite ~ chromite ~ hematite. Genome analysis identified genes for flavin-mediated iron reduction and synthesis of a bacillibactin-like, catechol-type siderophore. Ali-BS5-314 is a Gram-negative, rod-shaped, mesophilic, facultative anaerobic alkaliphile that grows between pH 10-12 and temperatures 10-40°C, with limited growth observed 1-5% NaCl. Nitrate is used as a terminal electron acceptor under anaerobic conditions, which was corroborated by genome analysis. The Ali-BS5-314 genome also includes genes for benzoate-like compound metabolism. Anaero-CMMVII remained difficult to cultivate for physiological studies; however, growth was observed between pH 9-12, with the addition of 0.01-1% yeast extract. Anaero-CMMVII is a probable oxygen-tolerant anaerobic alkaliphile with hydrogenotrophic respiration coupled with nitrate reduction, as determined by genome analysis. Based on single-copy genes, ANI, AAI and dDDH analyses, Paeni-Cedars and Ali-BS5-314 are related to other species (P. glucanolyticus and A. aestuarii, respectively), and Anaero-CMMVII represents a new species. The characterization of these three isolates demonstrate the range of ecophysiological adaptations and metabolisms present in serpentinite-hosted ecosystems, including mineral reduction, alkaliphily, and siderophore production.
Collapse
Affiliation(s)
- Jaclyn Thompson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Casey Barr
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Lydia Babcock-Adams
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Lina Bird
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, United States
| | - Eugenio La Cava
- National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Arkadiy Garber
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, United States
| | - Yuichi Hongoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Mark Liu
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Kenneth H. Nealson
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Akihiro Okamoto
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Daniel Repeta
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, United States
| | - Shino Suzuki
- Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Sagamihara, Kanagawa, Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, Japan
| | - Clarissa Tacto
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michelle Tashjian
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
11
|
Peng C, Shi Y, Wang S, Zhang J, Wan X, Yin Y, Wang D, Wang W. Genetic and functional characterization of multiple thermophilic organosulfur-removal systems reveals desulfurization potentials for waste residue oil cleaning. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130706. [PMID: 36603426 DOI: 10.1016/j.jhazmat.2022.130706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/09/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Heavy oil and petroleum refining residues usually contain high concentrations of recalcitrant hazardous organosulfur compounds, causing long-term serious global environmental pollution during leakage and combustion. Research conducted here identified a unique thermophilic bacterium Parageobacillus thermoglucosidasius W-36 with the notable ability of waste residue oil desulfurization, utilization and tolerance of multiplex hazardous organosulfur pollutants. Genome information mining revealed multiple desulfurization systems in three organosulfur-utilizing gene clusters. Enzymatic characterization, phylogenetic relationships, transcriptional performance and structural prediction indicated four novel key monooxygenases for diverse organosulfur removal. Importantly, all monooxygenases shared obvious commonalities in the predicted tertiary structure backbone and catalytic characteristics of C-S bond cleavage, implying the potential of genetic engineering for broad-spectrum hazardous organosulfur removal. Therefore, this work demonstrated the important application potential of thermophilic bacteria as a promising alternative biodesulfurization way for waste residue oil cleaning.
Collapse
Affiliation(s)
- Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yukun Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Shuo Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jingjing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Xuehua Wan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yalin Yin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Dongxu Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
12
|
Otur Ç, Okay S, Kurt-Kızıldoğan A. Whole genome analysis of Flavobacterium aziz-sancarii sp. nov., isolated from Ardley Island (Antarctica), revealed a rich resistome and bioremediation potential. CHEMOSPHERE 2023; 313:137511. [PMID: 36509185 DOI: 10.1016/j.chemosphere.2022.137511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Despite being one of the most isolated regions in the world, Antarctica is at risk of increased contamination with potentially toxic elements and other toxic chemicals through anthropogenic interventions. In this study, a psychrotolerant bacterium was isolated using the lake water collected from Ardley Island (Antarctica), which can grow at temperatures between 4 and 30 °C and pH values between 6.0 and 9.0. The isolate, named AC, had protease, amylase, and lipase activities with no NaCl tolerance and could degrade 1-5% diesel fuel. Multilocus sequence analysis (MLSA) using 16S rRNA, gyrB, tuf, and rpoD genes resulted in 92.91-98.6% sequence similarities between the isolate AC and other Flavobacterium spp. Whole genome analysis indicated that the genome length of Flavobacterium sp. AC is 5.8 Mbp with a GC content of 34.04% and 1274 genes predicted. The strain AC branched independently from other Flavobacterium spp. in the phylogenetic and phylogenomic trees and ranked a new species named Flavobacterium aziz-sancarii. Genome mining identified several cold-inducible genes, including stress-associated genes such as cold-shock proteins, chaperones, carotenoid biosynthetic genes, or oxidative-stress response genes. In addition, virulence, gliding motility, and biofilm-related genes were determined. Its genome contains 35 and 88 open-reading frames related to potentially toxic element and antibiotic resistance, respectively. F. aziz-sancarii showed a remarkable tolerance of Cr and Ni, with minimal inhibitory concentration values of 2.88 and 2.81 mM, respectively. Pb, Cu, and Zn exposure resulted in moderate toxicity (2.14-2.41 mM), while Cd showed the highest inhibitory effect in bacterial growth (0.74 mM). Antibiotic susceptibility testing indicated multidrug-resistant phenotype in correlation to in silico prediction of antibiotic resistance genes. Overall, our results contribute to biodiversity of Antarctica and provide new insights into resistome profile of Antarctic microorganisms. Additionally, the diesel degradation feature of F. aziz-sancarii offers potential use for the bioremediation of hydrocarbon-contaminated polar ecosystems.
Collapse
Affiliation(s)
- Çiğdem Otur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, 06230, Ankara, Turkey
| | - Aslıhan Kurt-Kızıldoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, 55139, Samsun, Turkey.
| |
Collapse
|
13
|
Gahan J, O’Sullivan O, Cotter PD, Schmalenberger A. Arbuscular Mycorrhiza Support Plant Sulfur Supply through Organosulfur Mobilizing Bacteria in the Hypho- and Rhizosphere. PLANTS (BASEL, SWITZERLAND) 2022; 11:3050. [PMID: 36432779 PMCID: PMC9694294 DOI: 10.3390/plants11223050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to elucidate the role of bacteria colonising mycorrhizal hyphae in organically bound sulfur mobilisation, the dominant soil sulfur source that is not directly plant available. The effect of an intact mycorrhizal symbiosis with access to stable isotope organo-34S enriched soils encased in 35 µm mesh cores was tested in microcosms with Agrostis stolonifera and Plantago lanceolata. Hyphae and associated soil were sampled from static mesh cores with mycorrhizal ingrowth and rotating mesh cores that exclude mycorrhizal ingrowth as well as corresponding rhizosphere soil, while plant shoots were analysed for 34S uptake. Static cores increased uptake of 34S at early stages of plant growth when sulfur demand appeared to be high and harboured significantly larger populations of sulfonate mobilising bacteria. Bacterial and fungal communities were significantly different in the hyphospheres of static cores when compared to rotating cores, not associated with plant hosts. Shifts in bacterial and fungal communities occurred not only in rotated cores but also in the rhizosphere. Arylsulfatase activity was significantly higher in the rhizosphere when cores stayed static, while atsA and asfA gene diversity was distinct in the microcosms with static and rotating cores. This study demonstrated that AM symbioses can promote organo-S mobilization and plant uptake through interactions with hyphospheric bacteria, enabling AM fungal ingrowth into static cores creating a positive feedback-loop, detectable in the microbial rhizosphere communities.
Collapse
Affiliation(s)
- Jacinta Gahan
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| | - Orla O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Ireland, P61 C996 Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, and APC Microbiome Ireland, P61 C996 Cork, Ireland
| | - Achim Schmalenberger
- Department of Biological Sciences, School of Natural Sciences, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
14
|
Bottos EM, Al-Shabib EY, Shaw DMJ, McAmmond BM, Sharma A, Suchan DM, Cameron ADS, Van Hamme JD. Transcriptomic response of Gordonia sp. strain NB4-1Y when provided with 6:2 fluorotelomer sulfonamidoalkyl betaine or 6:2 fluorotelomer sulfonate as sole sulfur source. Biodegradation 2020; 31:407-422. [PMID: 33150552 PMCID: PMC7661421 DOI: 10.1007/s10532-020-09917-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
Abstract Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern. We previously described biodegradation of two PFAS that represent components and transformation products of aqueous film-forming foams (AFFF), 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) and 6:2 fluorotelomer sulfonate (6:2 FTSA), by Gordonia sp. strain NB4-1Y. To identify genes involved in the breakdown of these compounds, the transcriptomic response of NB4-1Y was examined when grown on 6:2 FTAB, 6:2 FTSA, a non-fluorinated analog of 6:2 FTSA (1-octanesulfonate), or MgSO4, as sole sulfur source. Differentially expressed genes were identified as those with ± 1.5 log2-fold-differences (± 1.5 log2FD) in transcript abundances in pairwise comparisons. Transcriptomes of cells grown on 6:2 FTAB and 6:2 FTSA were most similar (7.9% of genes expressed ± 1.5 log2FD); however, several genes that were expressed in greater abundance in 6:2 FTAB treated cells compared to 6:2 FTSA treated cells were noted for their potential role in carbon–nitrogen bond cleavage in 6:2 FTAB. Responses to sulfur limitation were observed in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments, as 20 genes relating to global sulfate stress response were more highly expressed under these conditions compared to the MgSO4 treatment. More highly expressed oxygenase genes in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments were found to code for proteins with lower percent sulfur-containing amino acids compared to both the total proteome and to oxygenases showing decreased expression. This work identifies genetic targets for further characterization and will inform studies aimed at evaluating the biodegradation potential of environmental samples through applied genomics. Graphic Abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s10532-020-09917-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric M Bottos
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Ebtihal Y Al-Shabib
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
- Faculty of Science, Institute for Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Dayton M J Shaw
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Breanne M McAmmond
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Aditi Sharma
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
- Faculty of Science, Institute for Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Danae M Suchan
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
- Faculty of Science, Institute for Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, SK, S4S 0A2, Canada
- Faculty of Science, Institute for Microbial Systems and Society, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada.
| |
Collapse
|
15
|
Peng C, Huang D, Shi Y, Zhang B, Sun L, Li M, Deng X, Wang W. Comparative transcriptomic analysis revealed the key pathways responsible for organic sulfur removal by thermophilic bacterium Geobacillus thermoglucosidasius W-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:639-650. [PMID: 31051369 DOI: 10.1016/j.scitotenv.2019.04.328] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
Biodesulfurization is a promising method to desulfurize sulfur-containing compounds in oil with its unique advantages, such as environment-friendly treatments and moderate reaction conditions. In this study, a thermophilic bacterium Geobacillus thermoglucosidasius W-2 was reported to show nearly 40% and 55% desulfurization rates on heavy oil with 2.81% and 0.46% initial total sulfur content, respectively. Subsequently, comparative transcriptome analysis indicated that several possible key desulfurization-related genes of this strain were found to be differentially up-regulated induced by benzothiophene and dibenzothiophene, respectively. These desulfurization-related genes were considered to conduct key step to convert organic sulfur to inorganic sulfur. Moreover, the characterization of thermophilic alkanesulfonate monooxygenase systems SsuD1/SsuE1 and SsuD2/SsuE2 revealed that the enzymes exhibit considerable thermal and pH stability and wide substrates applicability. These enzymes probably endowed the strain W-2 with the ability to desulfurize oil and eliminate the sulfur-containing surfactants. Thus, this study provides novel alkanesulfonate monooxygenase systems that have the application potential for heavy oil biodesulfurization, oil demulsification and other biocatalytic processes.
Collapse
Affiliation(s)
- Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yukun Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Bingling Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Linbo Sun
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
16
|
Lipus D, Vikram A, Gulliver D, Bibby K. Upregulation of peroxide scavenging enzymes and multidrug efflux proteins highlight an active sodium hypochlorite response in Pseudomonas fluorescens biofilms. BIOFOULING 2019; 35:329-339. [PMID: 31066290 DOI: 10.1080/08927014.2019.1605357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The oxidative biocide sodium hypochlorite is among the most commonly used antimicrobial agents in the control of surface-attached microbial communities (biofilms). Clarifying the genetic response of microorganisms in biofilms to hypochlorite may contribute to improved biofilm control strategies. Here, RNA-seq was used to investigate the differential gene expression response of industrially relevant Pseudomonas fluorescens biofilms to sub-lethal concentrations of sodium hypochlorite. Pseudomonas biofilms responded to hypochlorite exposure with increased transcription of genes encoding peroxide scavenging enzymes (e.g., alkyl hydroperoxide reductase (Ahp) and hydroperoxide resistance protein (Ohr)), oxidative stress repair enzymes (e.g., the periplasmic sulfoxide reductase YedYZ complex), and multidrug efflux (e.g., MexEF pumps). In addition, genes involved in amino acid synthesis and energy metabolism were down-regulated following hypochlorite exposure. This work improves the current understanding of genetic response mechanisms to biocides and contributes to the optimization of biocides and application strategies.
Collapse
Affiliation(s)
- Daniel Lipus
- a National Energy Technology Laboratory (NETL) , Pittsburgh , Pennsylvania , USA
- b Oak Ridge Institute for Science and Education , Oak Ridge , Tennessee , USA
- c Department of Civil and Environmental Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
| | - Amit Vikram
- d US Department of Agriculture , Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center , Nebraska
| | - Djuna Gulliver
- a National Energy Technology Laboratory (NETL) , Pittsburgh , Pennsylvania , USA
| | - Kyle Bibby
- b Oak Ridge Institute for Science and Education , Oak Ridge , Tennessee , USA
- c Department of Civil and Environmental Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania , USA
- e Department of Civil & Environmental Engineering & Earth Sciences , University of Notre Dame , South Bend , Indiana , USA
| |
Collapse
|
17
|
SfnR2 Regulates Dimethyl Sulfide-Related Utilization in Pseudomonas aeruginosa PAO1. J Bacteriol 2019; 201:JB.00606-18. [PMID: 30478084 DOI: 10.1128/jb.00606-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/20/2018] [Indexed: 12/14/2022] Open
Abstract
Dimethyl sulfide (DMS) is a volatile sulfur compound produced mainly from the degradation of dimethylsulfoniopropionate (DMSP) in marine environments. DMS undergoes oxidation to form dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO2), and methanesulfonate (MSA), all of which occur in terrestrial environments and are accessible for consumption by various microorganisms. The purpose of the present study was to determine how the enhancer-binding proteins SfnR1 and SfnR2 contribute to the utilization of DMS and its derivatives in Pseudomonas aeruginosa PAO1. First, results from cell growth experiments showed that deletion of either sfnR2 or sfnG, a gene encoding a DMSO2-monooxygenase, significantly inhibits the ability of P. aeruginosa PAO1 to use DMSP, DMS, DMSO, and DMSO2 as sulfur sources. Deletion of the sfnR1 or msuEDC genes, which encode a MSA desulfurization pathway, did not abolish the growth of P. aeruginosa PAO1 on any sulfur compound tested. Second, data collected from β-galactosidase assays revealed that the msuEDC-sfnR1 operon and the sfnG gene are induced in response to sulfur limitation or nonpreferred sulfur sources, such as DMSP, DMS, and DMSO, etc. Importantly, SfnR2 (and not SfnR1) is essential for this induction. Expression of sfnR2 is induced under sulfur limitation but independently of SfnR1 or SfnR2. Finally, the results of this study suggest that the main function of SfnR2 is to direct the initial activation of the msuEDC-sfnR1 operon in response to sulfur limitation or nonpreferred sulfur sources. Once expressed, SfnR1 contributes to the expression of msuEDC-sfnR1, sfnG, and other target genes involved in DMS-related metabolism in P. aeruginosa PAO1.IMPORTANCE Dimethyl sulfide (DMS) is an important environmental source of sulfur, carbon, and/or energy for microorganisms. For various bacteria, including Pseudomonas, Xanthomonas, and Azotobacter, DMS utilization is thought to be controlled by the transcriptional regulator SfnR. Adding more complexity, some bacteria, such as Acinetobacter baumannii, Enterobacter cloacae, and Pseudomonas aeruginosa, possess two, nonidentical SfnR proteins. In this study, we demonstrate that SfnR2 and not SfnR1 is the principal regulator of DMS metabolism in P. aeruginosa PAO1. Results suggest that SfnR1 has a supportive but nonessential role in the positive regulation of genes required for DMS utilization. This study not only enhances our understanding of SfnR regulation but, importantly, also provides a framework for addressing gene regulation through dual SfnR proteins in other bacteria.
Collapse
|
18
|
Gu H, Shi K, Liao Z, Qi H, Chen S, Wang H, Li S, Ma Y, Wang J. Time-resolved transcriptome analysis of Clostridium difficile R20291 response to cysteine. Microbiol Res 2018; 215:114-125. [PMID: 30172297 DOI: 10.1016/j.micres.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/21/2018] [Accepted: 07/07/2018] [Indexed: 01/05/2023]
Abstract
The incidence of Clostridium difficile infection has been steadily rising over the past decade. The increase in the rate of incidence is associated with the specific NAP1/BI/027 strains which are "hypervirulent" and have led to several large outbreaks since their emergence. However, the relation between these outbreaks and virulence regulation mechanisms remains unclear. It has been reported that the major virulence factor TcdA and TcdB in C. difficile could be repressed by cysteine. Here, we investigated the functional and virulence-associated regulation of C. difficile R20291 response to cysteine by using a time-resolved genome-wide transcriptome analysis. Dramatic changes of gene expression in C. difficile revealed functional processes related to transport, metabolism, and regulators in the presence of cysteine during different phases of growth. Flagellar and ribosomal genes were significantly down-regulated in long-term response to cysteine. Many NAP1/BI/027- specific genes were also modulated by cysteine. In addition, cdsB inactivation in C. difficile R20291 could remove the repression of toxin synthesis but could not remove the repression of butyrate production in the presence of cysteine. This suggests that toxin synthesis and butyrate production might have different regulatory controls in response to cysteine. Altogether, our research provides important insights into the regulatory mechanisms of C. difficile response to cysteine.
Collapse
Affiliation(s)
- Huawei Gu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Kan Shi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhengping Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Haonan Qi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuyi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Haiying Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
19
|
Mortimer M, Devarajan N, Li D, Holden PA. Multiwall Carbon Nanotubes Induce More Pronounced Transcriptomic Responses in Pseudomonas aeruginosa PG201 than Graphene, Exfoliated Boron Nitride, or Carbon Black. ACS NANO 2018; 12:2728-2740. [PMID: 29455524 DOI: 10.1021/acsnano.7b08977] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Carbonaceous and boron nitride (BN) nanomaterials have similar applications and hydrophobic properties suggesting common release pathways and exposure to bacteria. While high nanomaterial concentrations can be bactericidal or growth-inhibitory, little is known regarding bacterial transcriptional responses to non-growth-inhibitory nanomaterial concentrations. Here, using one strain of Pseudomonas aeruginosa-a clinically and environmentally important bacterial taxon-we analyzed the comparative transcriptomic response to carbonaceous or BN nanomaterials. We show that, at non-growth-inhibitory, equal mass concentrations (10 mg/L), multiwall carbon nanotubes (MWCNTs) induced differential regulation of 111 genes in P. aeruginosa, while graphene, BN, and carbon black caused differential regulation of 44, 26, and 25 genes, respectively. MWCNTs caused the upregulation of genes encoding general stress response (9 genes), sulfur metabolism (15), and transport of small molecules (7) and downregulation of genes encoding flagellar basal-body rod proteins and other virulence-related factors (6), nitrogen metabolism (7), and membrane proteins (12), including a two-component regulatory system CzcS/R. Because two-component systems are associated with antibiotic resistance, the antibiotic susceptibility of P. aeruginosa was tested following MWCNT exposure. In MWCNT-treated cultures, the minimal inhibitory concentrations (MICs) of meropenem and imipenem decreased from 0.06 to 0.03 μg/mL and from 0.25 to 0.125 μg/mL, respectively. Taken together, whole genome analysis indicated that, in the absence of growth inhibition, nanomaterials can alter bacterial physiology and metabolism. For MWCNTs, such alterations may include downregulation of antibiotic resistance pathways, suggesting that pre-exposure to MWCNTs could potentially render bacteria more susceptible to carbapenems which are often the last resort for the globally concerning, highly antibiotic resistant P. aeruginosa.
Collapse
|
20
|
Goeppert N, Dror I, Berkowitz B. Fate and transport of free and conjugated estrogens during soil passage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:80-7. [PMID: 26142754 DOI: 10.1016/j.envpol.2015.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals, such as the free estrogens 17β-estradiol (E2), estrone (E1) and the conjugated estrogen estrone-sulfate (E1-3S) are found at low concentration levels in the environment. This is somehow contradictory to the strong sorption and high degradation potentials found in laboratory experiments. In particular, the fate and transport behavior of conjugated estrogens is poorly understood, and the importance of enzymes triggering the transformation pathways has received little attention. To address these deficiencies, the present research uses packed laboratory soil columns with pulse injections of free estrogens, either E2 or E1, or E1-3S, to provide sound evidence of the transformation pathways. It is further shown that (i) transport of free estrogens is subject to strong retardation and degradation, (ii) the transport of conjugated estrogens is less retarded and only to a minor degree affected by degradation, and (iii) arylsulfotransferase is the enzyme triggering the transformation reaction.
Collapse
Affiliation(s)
- Nadine Goeppert
- Institute of Applied Geosciences (AGW), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.
| | - Ishai Dror
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Brian Berkowitz
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
21
|
Proteomic responses to a methyl viologen-induced oxidative stress in the wild type and FerB mutant strains of Paracoccus denitrificans. J Proteomics 2015; 125:68-75. [DOI: 10.1016/j.jprot.2015.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/24/2015] [Accepted: 05/01/2015] [Indexed: 01/17/2023]
|
22
|
Gahan J, Schmalenberger A. The role of bacteria and mycorrhiza in plant sulfur supply. FRONTIERS IN PLANT SCIENCE 2014; 5:723. [PMID: 25566295 PMCID: PMC4267179 DOI: 10.3389/fpls.2014.00723] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/01/2014] [Indexed: 05/23/2023]
Abstract
Plant growth is highly dependent on bacteria, saprophytic, and mycorrhizal fungi which facilitate the cycling and mobilization of nutrients. Over 95% of the sulfur (S) in soil is present in an organic form. Sulfate-esters and sulfonates, the major forms of organo-S in soils, arise through deposition of biological material and are transformed through subsequent humification. Fungi and bacteria release S from sulfate-esters using sulfatases, however, release of S from sulfonates is catalyzed by a bacterial multi-component mono-oxygenase system. The asfA gene is used as a key marker in this desulfonation process to study sulfonatase activity in soil bacteria identified as Variovorax, Polaromonas, Acidovorax, and Rhodococcus. The rhizosphere is regarded as a hot spot for microbial activity and recent studies indicate that this is also the case for the mycorrhizosphere where bacteria may attach to the fungal hyphae capable of mobilizing organo-S. While current evidence is not showing sulfatase and sulfonatase activity in arbuscular mycorrhiza, their effect on the expression of plant host sulfate transporters is documented. A revision of the role of bacteria, fungi and the interactions between soil bacteria and mycorrhiza in plant S supply was conducted.
Collapse
|
23
|
Driggers CM, Dayal PV, Ellis HR, Karplus PA. Crystal Structure of Escherichia coli SsuE: Defining a General Catalytic Cycle for FMN Reductases of the Flavodoxin-like Superfamily. Biochemistry 2014; 53:3509-19. [DOI: 10.1021/bi500314f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camden M. Driggers
- Department
of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural
and Life Sciences Building, Corvallis, Oregon 97331, United States
| | - Paritosh V. Dayal
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Holly R. Ellis
- Department
of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - P. Andrew Karplus
- Department
of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural
and Life Sciences Building, Corvallis, Oregon 97331, United States
| |
Collapse
|
24
|
Singh M, Singh DK. Endosulfan induced alteration in bacterial protein profile and RNA yield of Klebsiella sp. M3, Achromobacter sp. M6, and Rhodococcus sp. M2. JOURNAL OF HAZARDOUS MATERIALS 2014; 265:233-241. [PMID: 24365874 DOI: 10.1016/j.jhazmat.2013.11.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 06/03/2023]
Abstract
Three bacterial strains identified as Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2 were isolated by soil enrichment with endosulfan followed by shake flask enrichment technique. They were efficiently degrading endosulfan in the NSM (non sulfur medium) broth. Degradation of endosulfan was faster with the cell free extract of bacterial cells grown in the sulfur deficient medium (NSM) supplemented with endosulfan than that of nutrient rich medium (Luria Bertani). In the cell free extract of NSM supplemented with endosulfan as sole sulfur source, a unique band was visualized on SDS-PAGE but not with magnesium sulfate as the sole sulfur source in NSM and LB with endosulfan. Expression of a unique polypeptide band was speculated to be induced by endosulfan under sulfur starved condition. These unique polypeptide bands were identified as OmpK35 protein, sulfate binding protein and outer membrane porin protein, respectively, in Klebsiella sp. M3, Achromobacter sp. M6 and Rhodococcus sp. M2. Endosulfan showed dose dependent negative effect on total RNA yield of bacterial strains in nutrient rich medium. Absence of plasmid DNA indicated the presence of endosulfan metabolizing gene on genomic DNA.
Collapse
Affiliation(s)
- Madhu Singh
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | | |
Collapse
|
25
|
Structural and physiological analyses of the alkanesulphonate-binding protein (SsuA) of the citrus pathogen Xanthomonas citri. PLoS One 2013; 8:e80083. [PMID: 24282519 PMCID: PMC3839906 DOI: 10.1371/journal.pone.0080083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022] Open
Abstract
Background The uptake of sulphur-containing compounds plays a pivotal role in the physiology of bacteria that live in aerobic soils where organosulfur compounds such as sulphonates and sulphate esters represent more than 95% of the available sulphur. Until now, no information has been available on the uptake of sulphonates by bacterial plant pathogens, particularly those of the Xanthomonas genus, which encompasses several pathogenic species. In the present study, we characterised the alkanesulphonate uptake system (Ssu) of Xanthomonas axonopodis pv. citri 306 strain (X. citri), the etiological agent of citrus canker. Methodology/Principal Findings A single operon-like gene cluster (ssuEDACB) that encodes both the sulphur uptake system and enzymes involved in desulphurisation was detected in the genomes of X. citri and of the closely related species. We characterised X. citri SsuA protein, a periplasmic alkanesulphonate-binding protein that, together with SsuC and SsuB, defines the alkanesulphonate uptake system. The crystal structure of SsuA bound to MOPS, MES and HEPES, which is herein described for the first time, provides evidence for the importance of a conserved dipole in sulphate group coordination, identifies specific amino acids interacting with the sulphate group and shows the presence of a rather large binding pocket that explains the rather wide range of molecules recognised by the protein. Isolation of an isogenic ssuA-knockout derivative of the X. citri 306 strain showed that disruption of alkanesulphonate uptake affects both xanthan gum production and generation of canker lesions in sweet orange leaves. Conclusions/Significance The present study unravels unique structural and functional features of the X. citri SsuA protein and provides the first experimental evidence that an ABC uptake system affects the virulence of this phytopathogen.
Collapse
|
26
|
Van Hamme JD, Bottos EM, Bilbey NJ, Brewer SE. Genomic and proteomic characterization of Gordonia sp. NB4-1Y in relation to 6 : 2 fluorotelomer sulfonate biodegradation. Microbiology (Reading) 2013; 159:1618-1628. [DOI: 10.1099/mic.0.068932-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jonathan D. Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0C8
| | - Eric M. Bottos
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0C8
| | - Nicholas J. Bilbey
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0C8
| | - Sharon E. Brewer
- Department of Chemical and Physical Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0C8
| |
Collapse
|
27
|
Abstract
Here we present a whole-genome shotgun sequence of Rhodococcus species strain JVH1, an organism capable of degrading a variety of organosulfur compounds. In particular, JVH1 is able to selectively cleave carbon-sulfur bonds within alkyl chains. A large number of oxygenases were identified, consistent with other members of the genus.
Collapse
|
28
|
Ferrario V, Braiuca P, Tessaro P, Knapic L, Gruber C, Pleiss J, Ebert C, Eichhorn E, Gardossi L. Elucidating the structural and conformational factors responsible for the activity and substrate specificity of alkanesulfonate monooxygenase. J Biomol Struct Dyn 2012; 30:74-88. [PMID: 22571434 DOI: 10.1080/07391102.2012.674268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The mechanism and substrate specificity of alkanesulfonate monooxygenase (SsuD) was investigated by combining molecular dynamics simulations, docking, and a comprehensive quantitative structure activity relationships (QSAR) analysis. The FMNH(2) dependent monooxygenase undergoes a dynamic conformational change of the active site, passing from a closed to an open state. As a consequence, substrates have access to the active site and the cofactor is then regenerated by the associated oxidoreductase FMN reductase SsuE.. Computational analysis of the interaction of SsuD with FMNH(2) based on molecular docking and multiple 20 ns molecular dynamics simulations pointed out that the conformational change is mainly driven by salt bridge formation between Arg297 and Glu20 or Asp111. A set of substrates accepted by SsuD were described by means of ALMOND chemical descriptors and a partial least square (PLS) mathematical model was constructed. The PLS model correlates the structure of substrates and enzyme activity, namely kinetic properties (k (cat)/K (M)). Therefore, information coming from the PLS analysis goes beyond the simple ability of the enzyme to recognize the substrate, but includes the factors that affect the capacity of the enzyme to reduce the activation energy of the rate determining step of the reaction. The two principal components of the model are able to describe both steric and electronic factors and, more importantly, their interactions. Indeed, interactions of factors appear to affect significantly the ability of SsuD of transforming efficiently a substrate.
Collapse
Affiliation(s)
- V Ferrario
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, P.le Europa 1, 34127, Trieste, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ellis HR. Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system. Bioorg Chem 2011; 39:178-84. [DOI: 10.1016/j.bioorg.2011.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/01/2011] [Accepted: 08/03/2011] [Indexed: 11/28/2022]
|
30
|
Hua X, Wang H, Wang C, Tian B, Hua Y. Global effect of an RNA polymerase β-subunit mutation on gene expression in the radiation-resistant bacterium Deinococcus radiodurans. SCIENCE CHINA-LIFE SCIENCES 2011; 54:854-62. [PMID: 21809039 DOI: 10.1007/s11427-011-4209-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
Abstract
The β-subunit of RNA polymerase, which is involved in rifampin binding, is highly conserved among prokaryotes, and Rifr mutants detected in many bacteria are the result of amino acid changes. Spontaneous rifampin resistance mutations resulting in amino acid replacement (L420R) and deletion (1258-66 9 bp deletion) have been previously isolated in the rpoB gene of Deinococcus radiodurans. In this study, a β-subunit mutation in D. radiodurans resulted in a unique effect on growth rate. We used DNA microarrays and biochemical assays to investigate how the Rifr mutation in the β-subunit led to changes in growth rate via altered regulation of multiple genes. The expression of genes with predicted functions in metabolism, cellular processes and signaling, and information storage and processing were significantly altered in the 9 bp-deletion rpoB mutant. The consensus promoter sequence of up-regulated genes in the 9 bp-deletion rpoB mutant was identified as an AT-rich sequence. Greater levels of reactive oxygen species accumulated in the L420R and 9 bp-deletion rpoB mutants compared with wild type. These results provide insight into the molecular mechanism of how the β-subunit Rifr mutation alters the regulation of multiple genes.
Collapse
Affiliation(s)
- Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| | | | | | | | | |
Collapse
|
31
|
Sugawara M, Shah GR, Sadowsky MJ, Paliy O, Speck J, Vail AW, Gyaneshwar P. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:451-7. [PMID: 21190435 DOI: 10.1094/mpmi-08-10-0184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Strains of Bradyrhizobium spp. form nitrogen-fixing symbioses with many legumes, including soybean. Although inorganic sulfur is preferred by bacteria in laboratory conditions, sulfur in agricultural soil is mainly present as sulfonates and sulfur esters. Here, we show that Bradyrhizobium japonicum and B. elkanii strains were able to utilize sulfate, cysteine, sulfonates, and sulfur-ester compounds as sole sulfur sources for growth. Expression and functional analysis revealed that two sets of gene clusters (bll6449 to bll6455 or bll7007 to bll7011) are important for utilization of sulfonates sulfur source. The bll6451 or bll7010 genes are also expressed in the symbiotic nodules. However, B. japonicum mutants defective in either of the sulfonate utilization operons were not affected for symbiosis with soybean, indicating the functional redundancy or availability of other sulfur sources in planta. In accordance, B. japonicum bacteroids possessed significant sulfatase activity. These results indicate that strains of Bradyrhizobium spp. likely use organosulfur compounds for growth and survival in soils, as well as for legume nodulation and nitrogen fixation.
Collapse
Affiliation(s)
- Masayuki Sugawara
- Department of Soil Water and Climate, University of Minnesota, St. Paul, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
González-Ballester D, Casero D, Cokus S, Pellegrini M, Merchant SS, Grossman AR. RNA-seq analysis of sulfur-deprived Chlamydomonas cells reveals aspects of acclimation critical for cell survival. THE PLANT CELL 2010; 22:2058-84. [PMID: 20587772 PMCID: PMC2910963 DOI: 10.1105/tpc.109.071167] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 04/01/2010] [Accepted: 05/18/2010] [Indexed: 05/18/2023]
Abstract
The Chlamydomonas reinhardtii transcriptome was characterized from nutrient-replete and sulfur-depleted wild-type and snrk2.1 mutant cells. This mutant is null for the regulatory Ser-Thr kinase SNRK2.1, which is required for acclimation of the alga to sulfur deprivation. The transcriptome analyses used microarray hybridization and RNA-seq technology. Quantitative RT-PCR evaluation of the results obtained by these techniques showed that RNA-seq reports a larger dynamic range of expression levels than do microarray hybridizations. Transcripts responsive to sulfur deprivation included those encoding proteins involved in sulfur acquisition and assimilation, synthesis of sulfur-containing metabolites, Cys degradation, and sulfur recycling. Furthermore, we noted potential modifications of cellular structures during sulfur deprivation, including the cell wall and complexes associated with the photosynthetic apparatus. Moreover, the data suggest that sulfur-deprived cells accumulate proteins with fewer sulfur-containing amino acids. Most of the sulfur deprivation responses are controlled by the SNRK2.1 protein kinase. The snrk2.1 mutant exhibits a set of unique responses during both sulfur-replete and sulfur-depleted conditions that are not observed in wild-type cells; the inability of this mutant to acclimate to S deprivation probably leads to elevated levels of singlet oxygen and severe oxidative stress, which ultimately causes cell death. The transcriptome results for wild-type and mutant cells strongly suggest the occurrence of massive changes in cellular physiology and metabolism as cells become depleted for sulfur and reveal aspects of acclimation that are likely critical for cell survival.
Collapse
|
33
|
Microbial conversion of 5-sulfoisophthalic acid into 5-hydroxyisophthalic acid by Ochrobactrum anthropi S9. Biotechnol Lett 2009; 32:445-50. [PMID: 19941033 DOI: 10.1007/s10529-009-0171-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 11/06/2009] [Accepted: 11/08/2009] [Indexed: 11/27/2022]
Abstract
5-Hydroxyisophthalic acid-producing microorganisms were isolated from enrichment cultures using 5-sulfoisophthalic acid as a sulfur source. One bacterium, Ochrobactrum anthropi S9, had the highest 5-sulfoisophthalic acid-degrading activity, and stoichiometrically formed 5-hydroxyisophthalic acid, a raw material for polymer synthesis. Under optimum culture conditions, 1.3 mM 5-hydroxyisophthalic acid accumulated in the medium by 60 h. The addition of Na(2)SO(4), L: -methionine or L: -cysteine at 2 mM inhibited the conversion of 5-sulfoisophthalic acid. O. anthropi S9 cells converted 5-sulfoisophthalic acid, benzenesulfonic acid, 3-sulfobenzoic acid, 4-aminobenzenesulfonic acid, naphthalene-1-sulfonic acid and naphthalene-2-sulfonic acid into the corresponding hydroxylated compounds.
Collapse
|
34
|
|
35
|
Rocco F, De Gregorio E, Colonna B, Di Nocera PP. Stenotrophomonas maltophilia genomes: a start-up comparison. Int J Med Microbiol 2009; 299:535-46. [PMID: 19574092 DOI: 10.1016/j.ijmm.2009.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 05/06/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022] Open
Abstract
The whole DNA sequences of 2 Stenotrophomonas maltophilia strains isolated from the blood of a cancer patient (K279a) and the poplar Populus trichocarpa (R551-3) have been compared. The 2 chromosomes exhibit extensive synteny, but each is punctuated by about 40 genomic islands (GEIs), which vary in size from 3 to 70kb, and may encode up to about 50 proteins. A large set of smaller DNA sequences, encoding strain-specific 'solo' orfs, contributes to genetic heterogeneity in a significant manner. S. maltophilia GEIs potentially encode several proteins mediating interactions with the environment such as transmembrane proteins, haemagglutinins, components of type I and IV secretion systems, and efflux proteins having a role in metal and/or drug resistance. The presence of specific GEIs in the S. maltophilia population was monitored by PCR and slot-blot analyses. Data suggest that some islands are present at sites different from those identified in K279a and that alternative islands may be integrated at mapped sites.
Collapse
Affiliation(s)
- Francesco Rocco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, 80131 Napoli, Italy
| | | | | | | |
Collapse
|
36
|
Comparative genome-wide transcriptional profiling of Azorhizobium caulinodans ORS571 grown under free-living and symbiotic conditions. Appl Environ Microbiol 2009; 75:5037-46. [PMID: 19542345 DOI: 10.1128/aem.00398-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The whole-genome sequence of the endosymbiotic bacterium Azorhizobium caulinodans ORS571, which forms nitrogen-fixing nodules on the stems and roots of Sesbania rostrata, was recently determined. The sizes of the genome and symbiosis island are 5.4 Mb and 86.7 kb, respectively, and these sizes are the smallest among the sequenced rhizobia. In the present study, a whole-genome microarray of A. caulinodans was constructed, and transcriptomic analyses were performed on free-living cells grown in rich and minimal media and in bacteroids isolated from stem nodules. Transcriptional profiling showed that the genes involved in sulfur uptake and metabolism, acetone metabolism, and the biosynthesis of exopolysaccharide were highly expressed in bacteroids compared to the expression levels in free-living cells. Some mutants having Tn5 transposons within these genes with increased expression were obtained as nodule-deficient mutants in our previous study. A transcriptomic analysis was also performed on free-living cells grown in minimal medium supplemented with a flavonoid, naringenin, which is one of the most efficient inducers of A. caulinodans nod genes. Only 18 genes exhibited increased expression by the addition of naringenin, suggesting that the regulatory mechanism responding to the flavonoid could be simple in A. caulinodans. The combination of our genome-wide transcriptional profiling and our previous genome-wide mutagenesis study has revealed new aspects of nodule formation and maintenance.
Collapse
|
37
|
Li J, Feng J, Li Q, Ma C, Yu B, Gao C, Wu G, Xu P. Both FMNH2 and FADH2 can be utilized by the dibenzothiophene monooxygenase from a desulfurizing bacterium Mycobacterium goodii X7B. BIORESOURCE TECHNOLOGY 2009; 100:2594-2599. [PMID: 19144512 DOI: 10.1016/j.biortech.2008.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 05/27/2023]
Abstract
To investigate the flavin utilization by dibenzothiophene monooxygenase (DszC), DszC of a desulfurizing bacterium Mycobacterium goodii X7B was purified from the recombinant Escherichia coli. It was shown to be able to utilize either FMNH(2) or FADH(2) when coupled with a flavin reductase that reduces either FMN or FAD. Sequence analysis indicated that DszC was similar to the C(2) component of p-hydroxyphenylacetate hydroxylase from Acinetobacter baumannii, which can use both FADH(2) and FMNH(2) as substrates. Both flavins at high concentrations could inhibit the activity of DszC due to autocatalytic oxidation of reduced flavins. The results suggest that DszC should be reclassified as an FMNH(2) and FADH(2) both-utilizing monooxygenase component and the flavins should be controlled at properly reduced levels to obtain optimal biodesulfurization results.
Collapse
Affiliation(s)
- Jingchen Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Viti C, Decorosi F, Mini A, Tatti E, Giovannetti L. Involvement of the oscA gene in the sulphur starvation response and in Cr(VI) resistance in Pseudomonas corrugata 28. Microbiology (Reading) 2009; 155:95-105. [DOI: 10.1099/mic.0.021873-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas corrugata28 is a Cr(VI)-hyper-resistant bacterium. A Cr(VI)-sensitive mutant was obtained by insertional mutagenesis using EZ-Tn5<R6Kγori/KAN-2>Tnp. The mutant strain was impaired in a gene, here namedoscA(organosulphurcompounds), which encoded a hypothetical small protein of unknown function. The gene was located upstream of a gene cluster that encodes the components of the sulphate ABC transporter, and it formed a transcriptional unit withsbp, which encoded the periplasmic binding protein of the transporter. TheoscA–sbptranscriptional unit was strongly and quickly overexpressed after chromate exposure, suggesting the involvement ofoscAin chromate resistance, which was further confirmed by means of a complementation experiment. Phenotype MicroArray (PM) analysis made it possible to assay 1536 phenotypes and also indicated that theoscAgene was involved in the utilization of organosulphur compounds as a sole source of sulphur. This is believed to be the first evidence thatoscAplays a role in activating a sulphur starvation response, which is required to cope with oxidative stress induced by chromate.
Collapse
Affiliation(s)
- Carlo Viti
- Dipartimento di Biotecnologie Agrarie, Sez. Microbiologia, Università degli Studi di Firenze, Piazzale delle Cascine 24, 50144 Firenze, Italy
| | - Francesca Decorosi
- Dipartimento di Biotecnologie Agrarie, Sez. Microbiologia, Università degli Studi di Firenze, Piazzale delle Cascine 24, 50144 Firenze, Italy
| | - Annalisa Mini
- Dipartimento di Biotecnologie Agrarie, Sez. Microbiologia, Università degli Studi di Firenze, Piazzale delle Cascine 24, 50144 Firenze, Italy
| | - Enrico Tatti
- Dipartimento di Biotecnologie Agrarie, Sez. Microbiologia, Università degli Studi di Firenze, Piazzale delle Cascine 24, 50144 Firenze, Italy
| | - Luciana Giovannetti
- Dipartimento di Biotecnologie Agrarie, Sez. Microbiologia, Università degli Studi di Firenze, Piazzale delle Cascine 24, 50144 Firenze, Italy
| |
Collapse
|
39
|
Lee J, Attila C, Cirillo SLG, Cirillo JD, Wood TK. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb Biotechnol 2008; 2:75-90. [PMID: 21261883 PMCID: PMC3815423 DOI: 10.1111/j.1751-7915.2008.00061.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Indole is an extracellular biofilm signal for Escherichia coli, and many bacterial oxygenases readily convert indole to various oxidized compounds including 7‐hydroxyindole (7HI). Here we investigate the impact of indole and 7HI on Pseudomonas aeruginosa PAO1 virulence and quorum sensing (QS)‐regulated phenotypes; this strain does not synthesize these compounds but degrades them rapidly. Indole and 7HI both altered extensively gene expression in a manner opposite that of acylhomoserine lactones; the most repressed genes encode the mexGHI‐opmD multidrug efflux pump and genes involved in the synthesis of QS‐regulated virulence factors including pyocyanin (phz operon), 2‐heptyl‐3‐hydroxy‐4(1H)‐quinolone (PQS) signal (pqs operon), pyochelin (pch operon) and pyoverdine (pvd operon). Corroborating these microarray results, indole and 7HI decreased production of pyocyanin, rhamnolipid, PQS and pyoverdine and enhanced antibiotic resistance. In addition, indole affected the utilization of carbon, nitrogen and phosphorus, and 7HI abolished swarming motility. Furthermore, 7HI reduced pulmonary colonization of P. aeruginosa in guinea pigs and increased clearance in lungs. Hence, indole‐related compounds have potential as a novel antivirulence approach for the recalcitrant pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Jintae Lee
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | | | | | |
Collapse
|
40
|
Nissen MS, Youn B, Knowles BD, Ballinger JW, Jun SY, Belchik SM, Xun L, Kang C. Crystal structures of NADH:FMN oxidoreductase (EmoB) at different stages of catalysis. J Biol Chem 2008; 283:28710-20. [PMID: 18701448 DOI: 10.1074/jbc.m804535200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EDTA has become a major organic pollutant in the environment because of its extreme usage and resistance to biodegradation. Recently, two critical enzymes, EDTA monooxygenase (EmoA) and NADH:FMN oxidoreductase (EmoB), belonging to the newly established two-component flavin-diffusible monooxygenase family, were identified in the EDTA degradation pathway in Mesorhizobium sp. BNC1. EmoA is an FMNH2-dependent enzyme that requires EmoB to provide FMNH2 for the conversion of EDTA to ethylenediaminediacetate. To understand the molecular basis of this FMN-mediated reaction, the crystal structures of the apo-form, FMN.FMN complex, and FMN.NADH complex of EmoB were determined at 2.5 angstroms resolution. The structure of EmoB is a homotetramer consisting of four alpha/beta-single-domain monomers of five parallel beta-strands flanked by five alpha-helices, which is quite different from those of other known two-component flavin-diffusible monooxygenase family members, such as PheA2 and HpaC, in terms of both tertiary and quaternary structures. For the first time, the crystal structures of both the FMN.FMN and FMN.NADH complexes of an NADH:FMN oxidoreductase were determined. Two stacked isoalloxazine rings and nicotinamide/isoalloxazine rings were at a proper distance for hydride transfer. The structures indicated a ping-pong reaction mechanism, which was confirmed by activity assays. Thus, the structural data offer detailed mechanistic information for hydride transfer between NADH to an enzyme-bound FMN and between the bound FMNH2 and a diffusible FMN.
Collapse
Affiliation(s)
- Mark S Nissen
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-4660, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Krejcík Z, Denger K, Weinitschke S, Hollemeyer K, Paces V, Cook AM, Smits THM. Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol 2008; 190:159-68. [PMID: 18506422 DOI: 10.1007/s00203-008-0386-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/28/2008] [Accepted: 05/05/2008] [Indexed: 11/25/2022]
Abstract
Taurine (2-aminoethanesulfonate) is a widespread natural product whose nitrogen moiety was recently shown to be assimilated by bacteria, usually with excretion of an organosulfonate via undefined novel pathways; other data involve transcriptional regulator TauR in taurine metabolism. A screen of genome sequences for TauR with the BLAST algorithm allowed the hypothesis that the marine gammaproteobacterium Neptuniibacter caesariensis MED92 would inducibly assimilate taurine-nitrogen and excrete sulfoacetate. The pathway involved an ABC transporter (TauABC), taurine:pyruvate aminotransferase (Tpa), a novel sulfoacetaldehyde dehydrogenase (SafD) and exporter(s) of sulfoacetate (SafE) (DUF81). Ten candidate genes in two clusters involved three sets of paralogues (for TauR, Tpa and SafE). Inducible Tpa and SafD were detected in cell extracts. SafD was purified 600-fold to homogeneity in two steps. The monomer had a molecular mass of 50 kDa (SDS-PAGE); data from gel filtration chromatography indicated a tetrameric native protein. SafD was specific for sulfoacetaldehyde with a K (m)-value of 0.12 mM. The N-terminal amino acid sequence of SafD confirmed the identity of the safD gene. The eight pathway genes were transcribed inducibly, which indicated expression of the whole hypothetical pathway. We presume that this pathway is one source of sulfoacetate in nature, where this compound is dissimilated by many bacteria.
Collapse
Affiliation(s)
- Zdenĕk Krejcík
- Department of Biology, The University, 78457, Constance, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Kertesz MA, Fellows E, Schmalenberger A. Rhizobacteria and plant sulfur supply. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:235-68. [PMID: 17869607 DOI: 10.1016/s0065-2164(07)62008-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Michael A Kertesz
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
43
|
Habe H, Kouzuma A, Endoh T, Omori T, Yamane H, Nojiri H. Transcriptional regulation of the sulfate-starvation-induced gene sfnA by a sigma54-dependent activator of Pseudomonas putida. MICROBIOLOGY-SGM 2007; 153:3091-3098. [PMID: 17768252 DOI: 10.1099/mic.0.2007/008151-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The sigma(54)-dependent transcriptional regulator SfnR is essential for the use of dimethyl sulfone (DMSO(2)) as a sulfur source by Pseudomonas putida DS1. SfnR binds three SfnR-binding sites (sites 1, 2 and 3) within an intergenic region of the divergently transcribed sfnAB and sfnFG gene clusters. The site 1 region, proximal to the sfnF gene, is indispensable for the expression of the sfnFG operon, which encodes components of DMSO(2) monooxygenase. We investigated the transcriptional regulation of the sfnAB operon and possible functions of the sfnA gene. RT-PCR analysis revealed that the sfnAB gene cluster, which is similar to homologues of the acyl-CoA dehydrogenase family, was transcribed as an operon, and its expression was regulated by SfnR under conditions of sulfate starvation. Deletion analyses using lacZ as a reporter demonstrated that the region up to at least -138 bp from the transcription start point of sfnA (containing sites 2 and 3) was necessary for the expression of the sfnAB operon. A growth test of the sfnA-disrupted mutant revealed the possibility that sfnA may be involved in the use of methanethiol as a sulfur source.
Collapse
Affiliation(s)
- Hiroshi Habe
- Research Institute for Innovations in Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Kouzuma
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Endoh
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Toshio Omori
- Department of Industrial Chemistry, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
| | - Hisakazu Yamane
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
44
|
Schmalenberger A, Kertesz MA. Desulfurization of aromatic sulfonates by rhizosphere bacteria: high diversity of the asfA gene. Environ Microbiol 2007; 9:535-45. [PMID: 17222151 DOI: 10.1111/j.1462-2920.2006.01172.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The plant growth-promoting effect of Pseudomonas putida S-313 is associated with its ability to desulfurize arylsulfonates. To understand this further, other plant-associated bacteria able to desulfurize a range of arylsulfonates were isolated from the rhizospheres of winter and spring barley. The isolates belonged to the beta-proteobacteria, including bacteria from the Variovorax paradoxus group and from the Acidovorax genus. They desulfurized toluenesulfonate to p-cresol, and were found to contain orthologues of the P. putida S-313 asfA gene (> 70% sequence identity to AsfA), which is required for aryldesulfonation in this species. Further putative asfA orthologues were identified in several bacteria and cyanobacteria whose genomes have been sequenced, but of these only Cupriavidus (Ralstonia) metallidurans was able to utilize arylsulfonates as sulfur source. Cultivation of V. paradoxus, C. metallidurans or P. putida S-313 with toluenesulfonate as sulfur source led to a 100-fold increase in expression of the asfA homologues, which was largely repressed when sulfate was added. Polymerase chain reaction with degenerate primers was used to generate asfAB clone libraries from spring- and winter-barley rhizosphere DNA. Cluster analysis of 76 sequenced AsfA fragments revealed a broad diversity, with the majority of the sequences clustered together with AsfA from bacteria that are able to utilize toluenesulfonate as sulfur source. The diversity of asfA in barley rhizosphere underlines the importance of the desulfonation process for bacteria that inhabit the plant rhizosphere.
Collapse
Affiliation(s)
- Achim Schmalenberger
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
45
|
Scott C, Hilton ME, Coppin CW, Russell RJ, Oakeshott JG, Sutherland TD. A global response to sulfur starvation in Pseudomonas putida and its relationship to the expression of low-sulfur-content proteins. FEMS Microbiol Lett 2006; 267:184-93. [PMID: 17187657 DOI: 10.1111/j.1574-6968.2006.00575.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Sulfur is essential for life on Earth, but its availability is limited in many environments. Here the sulfur-starvation response of the model soil bacterium Pseudomonas putida KT2440 is shown to be associated with an approximately fivefold reduction in the total soluble thiol content of the cell. A bioinformatic survey of the P. putida KT2440 genome identified 646 genes encoding proteins with a significantly lower than average sulfur content (low sulfur-content proteins, LSPs), the expression of which may have a role in the global reduction of cellular thiol content during sulfur starvation. Analysis of the genetic organization of the LSP-encoding genes showed that 31% were potentially transcriptionally associated with at least one other gene encoding a protein defined as an LSP. In particular, 55 LSP genes were located in three large clusters, termed low-sulfur islands (LSIs) here. The predicted identities of the proteins encoded by the LSIs strongly suggest that the LSIs have a role in acquiring sulfur from organic sulfur sources during sulfur starvation. This hypothesis was supported by transcription fusion studies on a limited number of LSP promoters under low-sulfur conditions. In a wider survey of bacterial species, LSIs were found to be more prevalent in free-living, Gram-negative bacteria than in Gram-positive or obligately intracellular bacteria.
Collapse
Affiliation(s)
- Colin Scott
- CSIRO, Entomology, Canberra, ACT, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Decolorization of sulfonated azo dyes with two photosynthetic bacterial strains and a genetically engineered Escherichia coli strain. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9316-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Galvão TC, de Lorenzo V, Cánovas D. Uncoupling of choline-O-sulphate utilization from osmoprotection in Pseudomonas putida. Mol Microbiol 2006; 62:1643-54. [PMID: 17116241 DOI: 10.1111/j.1365-2958.2006.05488.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genomic context of the recognized bet genes for choline-O-sulphate (COS) utilization in Pseudomonas putida KT2440 is such that betC (choline sulphatase) lies adjacent to an ATP-binding cassette transporter and a LysR type regulator, but well away from betBA, encoding enzymes for transformation of choline into glycine betaine. The consequences of such genetic layout of the functions for COS metabolism have been examined with a suite of genetic and biochemical approaches. An early clue of the utilities of the betencoded products was exposed by the phenotypes of a betC deletion. This mutant still accumulated intact COS but failed to use this compound as carbon or nitrogen source. Furthermore, betC expression was downregulated at high salt concentrations, showing that the principal role of this gene lied in COS metabolism, not in osmoprotection. In contrast, the betBA genes were required for choline transformation into the highly effective compatible solute glycine betaine (and the concomitant endurance to high salt) and also for its utilization as carbon or nitrogen source. Thus, unlike in the cases of Bacillus subtilis and Sinorhizobium meliloti, betC is unrelated to osmoprotection in Pseudomonas putida while the betBA genes are required for both betaine synthesis and tolerance to high osmotic pressure.
Collapse
Affiliation(s)
- Teca Calcagno Galvão
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Darwin 3, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | |
Collapse
|
48
|
Iwanicka-Nowicka R, Zielak A, Cook AM, Thomas MS, Hryniewicz MM. Regulation of sulfur assimilation pathways in Burkholderia cenocepacia: identification of transcription factors CysB and SsuR and their role in control of target genes. J Bacteriol 2006; 189:1675-88. [PMID: 16997956 PMCID: PMC1855706 DOI: 10.1128/jb.00592-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two genes encoding transcriptional regulators involved in sulfur assimilation pathways in Burkholderia cenocepacia strain 715j have been identified and characterized functionally. Knockout mutations in each of the B. cenocepacia genes were constructed and introduced into the genome of 715j by allelic replacement. Studies on the utilization of various sulfur sources by 715j and the obtained mutants demonstrated that one of the B. cenocepacia regulators, designated CysB, is preferentially involved in the control of sulfate transport and reduction, while the other, designated SsuR, is required for aliphatic sulfonate utilization. Using transcriptional promoter-lacZ fusions and DNA-binding experiments, we identified several target promoters for positive control by CysB and/or SsuR--sbpp (preceding the sbp cysT cysW cysA ssuR cluster), cysIp (preceding the cysI cysD1 cysN cysH cysG cluster), cysD2p (preceding a separate cluster, cysD2 cysNC), and ssuDp (located upstream of the ssuDCB operon)--and we demonstrated overlapping functions of CysB and SsuR at particular promoters. We also demonstrated that the cysB gene is negatively controlled by both CysB and SsuR but the ssuR gene itself is not significantly regulated as a separate transcription unit. The function of B. cenocepacia CysB (in vivo and in vitro) appeared to be independent of the presence of acetylserine, the indispensable coinducer of the CysB regulators of Escherichia coli and Salmonella. The phylogenetic relationships among members of the "CysB family" in the gamma and beta subphyla are presented.
Collapse
Affiliation(s)
- Roksana Iwanicka-Nowicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | | | | | | | | |
Collapse
|
49
|
Abstract
In most bacteria, inorganic sulfur is assimilated into cysteine, which provides sulfur for methionine biosynthesis via transsulfurylation. Here, cysteine is transferred to the terminal carbon of homoserine via its sulfhydryl group to form cystathionine, which is cleaved to yield homocysteine. In the enteric bacteria Escherichia coli and Salmonella enterica, these reactions are catalyzed by irreversible cystathionine-gamma-synthase and cystathionine-beta-lyase enzymes. Alternatively, yeast and some bacteria assimilate sulfur into homocysteine, which serves as a sulfhydryl group donor in the synthesis of cysteine by reverse transsulfurylation with a cystathionine-beta-synthase and cystathionine-gamma-lyase. Herein we report that the related enteric bacterium Klebsiella pneumoniae encodes genes for both transsulfurylation pathways; genetic and biochemical analyses show that they are coordinately regulated to prevent futile cycling. Klebsiella uses reverse transsulfurylation to recycle methionine to cysteine during periods of sulfate starvation. This methionine-to-cysteine (mtc) transsulfurylation pathway is activated by cysteine starvation via the CysB protein, by adenosyl-phosphosulfate starvation via the Cbl protein, and by methionine excess via the MetJ protein. While mtc mutants cannot use methionine as a sulfur source on solid medium, they will utilize methionine in liquid medium via a sulfide intermediate, suggesting that an additional nontranssulfurylation methionine-to-cysteine recycling pathway(s) operates under these conditions.
Collapse
Affiliation(s)
- Thomas A Seiflein
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
50
|
Mirleau P, Wogelius R, Smith A, Kertesz MA. Importance of organosulfur utilization for survival of Pseudomonas putida in soil and rhizosphere. Appl Environ Microbiol 2005; 71:6571-7. [PMID: 16269683 PMCID: PMC1287748 DOI: 10.1128/aem.71.11.6571-6577.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 06/22/2005] [Indexed: 11/20/2022] Open
Abstract
The sulfur present in both agricultural and uncultivated soils is largely in the form of sulfonates and sulfate esters and not as free, bioavailable inorganic sulfate. Desulfurization of the former compounds in vitro has previously been studied in Pseudomonas putida, a common rhizosphere inhabitant. Survival of P. putida strains was now investigated in three sulfur-deficient Danish soils which were found to contain 60 to 70% of their sulfur in sulfonate or sulfate ester form, as determined by X-ray near-edge spectroscopy. The soil fitness of P. putida S-313 was compared with that of isogenic strains with mutations in the sftR and asfA genes (required for in vitro desulfurization of sulfate esters and arylsulfonates, respectively) and in the ssu locus (required in vitro for the desulfurization of both sulfonates and sulfate esters). asfA or sftR mutants showed significantly reduced survival compared to the parent strain in bulk soil that had been enriched with carbon and nitrogen to mimic rhizosphere conditions, but this reduced survival was not observed in the absence of these additives. In a tomato rhizosphere grown in compost, survival of sftR and ssu mutants was reduced relative to the parent strain. The results demonstrate that the ability to desulfurize sulfonates and sulfate esters is critical for survival of bacteria in the rhizosphere but less so in bulk soils outside the influence of plant roots, where carbon is the limiting nutrient for growth.
Collapse
Affiliation(s)
- Pascal Mirleau
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, England
| | | | | | | |
Collapse
|