1
|
Páez-Watson T, Tomás-Martínez S, de Wit R, Keisham S, Tateno H, van Loosdrecht MCM, Lin Y. Sweet Secrets: Exploring Novel Glycans and Glycoconjugates in the Extracellular Polymeric Substances of " Candidatus Accumulibacter". ACS ES&T WATER 2024; 4:3391-3399. [PMID: 39144681 PMCID: PMC11320575 DOI: 10.1021/acsestwater.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Biological wastewater treatment relies on microorganisms that grow as flocs, biofilms, or granules for efficient separation of biomass from cleaned water. This biofilm structure emerges from the interactions between microbes that produce, and are embedded in, extracellular polymeric substances (EPS). The true composition and structure of the EPS responsible for dense biofilm formation are still obscure. We conducted a bottom-up approach utilizing advanced glycomic techniques to explore the glycan diversity in the EPS from a highly enriched "Candidatus Accumulibacter" granular sludge. Rare novel sugar monomers such as N-Acetylquinovosamine (QuiNAc) and 2-O-Methylrhamnose (2-OMe-Rha) were identified to be present in the EPS of both enrichments. Further, a high diversity in the glycoprotein structures of said EPS was identified by means of lectin based microarrays. We explored the genetic potential of "Ca. Accumulibacter" high quality metagenome assembled genomes (MAGs) to showcase the shortcoming of top-down bioinformatics based approaches at predicting EPS composition and structure, especially when dealing with glycans and glycoconjugates. This work suggests that more bottom-up research is necessary to understand the composition and complex structure of EPS in biofilms since genome based inference cannot directly predict glycan structures and glycoconjugate diversity.
Collapse
Affiliation(s)
- Timothy Páez-Watson
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sergio Tomás-Martínez
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Roeland de Wit
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Sunanda Keisham
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroaki Tateno
- Cellular
and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology
(AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Mark C. M. van Loosdrecht
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Yuemei Lin
- Department
of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
2
|
Basile LA, Lepek VC. Legume-rhizobium dance: an agricultural tool that could be improved? Microb Biotechnol 2021; 14:1897-1917. [PMID: 34318611 PMCID: PMC8449669 DOI: 10.1111/1751-7915.13906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/29/2022] Open
Abstract
The specific interaction between rhizobia and legume roots leads to the development of a highly regulated process called nodulation, by which the atmospheric nitrogen is converted into an assimilable plant nutrient. This capacity is the basis for the use of bacterial inoculants for field crop cultivation. Legume plants have acquired tools that allow the entry of compatible bacteria. Likewise, plants can impose sanctions against the maintenance of nodules occupied by rhizobia with low nitrogen-fixing capacity. At the same time, bacteria must overcome different obstacles posed first by the environment and then by the legume. The present review describes the mechanisms involved in the regulation of the entire legume-rhizobium symbiotic process and the strategies and tools of bacteria for reaching the nitrogen-fixing state inside the nodule. Also, we revised different approaches to improve the nodulation process for a better crop yield.
Collapse
Affiliation(s)
- Laura A. Basile
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| | - Viviana C. Lepek
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”Universidad Nacional de San Martín (IIB‐UNSAM‐CONICET)Av. 25 de Mayo y Francia, Gral. San Martín, Provincia de Buenos AiresBuenos AiresB1650HMPArgentina
| |
Collapse
|
3
|
Di Lorenzo F, Speciale I, Silipo A, Alías-Villegas C, Acosta-Jurado S, Rodríguez-Carvajal MÁ, Dardanelli MS, Palmigiano A, Garozzo D, Ruiz-Sainz JE, Molinaro A, Vinardell JM. Structure of the unusual Sinorhizobium fredii HH103 lipopolysaccharide and its role in symbiosis. J Biol Chem 2020; 295:10969-10987. [PMID: 32546484 PMCID: PMC7415993 DOI: 10.1074/jbc.ra120.013393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/11/2020] [Indexed: 11/06/2022] Open
Abstract
Rhizobia are soil bacteria that form important symbiotic associations with legumes, and rhizobial surface polysaccharides, such as K-antigen polysaccharide (KPS) and lipopolysaccharide (LPS), might be important for symbiosis. Previously, we obtained a mutant of Sinorhizobium fredii HH103, rkpA, that does not produce KPS, a homopolysaccharide of a pseudaminic acid derivative, but whose LPS electrophoretic profile was indistinguishable from that of the WT strain. We also previously demonstrated that the HH103 rkpLMNOPQ operon is responsible for 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-l-glycero-l-manno-nonulosonic acid [Pse5NAc7(3OHBu)] production and is involved in HH103 KPS and LPS biosynthesis and that an HH103 rkpM mutant cannot produce KPS and displays an altered LPS structure. Here, we analyzed the LPS structure of HH103 rkpA, focusing on the carbohydrate portion, and found that it contains a highly heterogeneous lipid A and a peculiar core oligosaccharide composed of an unusually high number of hexuronic acids containing β-configured Pse5NAc7(3OHBu). This pseudaminic acid derivative, in its α-configuration, was the only structural component of the S. fredii HH103 KPS and, to the best of our knowledge, has never been reported from any other rhizobial LPS. We also show that Pse5NAc7(3OHBu) is the complete or partial epitope for a mAb, NB6-228.22, that can recognize the HH103 LPS, but not those of most of the S. fredii strains tested here. We also show that the LPS from HH103 rkpM is identical to that of HH103 rkpA but devoid of any Pse5NAc7(3OHBu) residues. Notably, this rkpM mutant was severely impaired in symbiosis with its host, Macroptilium atropurpureum.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Immacolata Speciale
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | | | | | | | - Marta S Dardanelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto-INBIAS, CONICET, Córdoba, Argentina
| | - Angelo Palmigiano
- Istituto per i Polimeri, Compositi e Biomateriali IPCB, Consiglio Nazionale delle Ricerche, Catania, Italy
| | - Domenico Garozzo
- Istituto per i Polimeri, Compositi e Biomateriali IPCB, Consiglio Nazionale delle Ricerche, Catania, Italy
| | | | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - José-María Vinardell
- Department of Microbiology, Faculty of Biology, University of Seville, Sevilla, Spain
| |
Collapse
|
4
|
A Mutation in the Mesorhizobium loti oatB Gene Alters the Physicochemical Properties of the Bacterial Cell Wall and Reduces Survival inside Acanthamoeba castellanii. Int J Mol Sci 2018; 19:ijms19113510. [PMID: 30413017 PMCID: PMC6274867 DOI: 10.3390/ijms19113510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/15/2022] Open
Abstract
In our previous report, we had shown that the free-living amoeba Acanthamoeba castellanii influenced the abundance, competiveness, and virulence of Mesorhizobium loti NZP2213, the microsymbiont of agriculturally important plants of the genus Lotus. The molecular basis of this phenomenon; however, had not been explored. In the present study, we demonstrated that oatB, the O-acetyltransferase encoding gene located in the lipopolysaccharide (LPS) synthesis cluster of M. loti, was responsible for maintaining the protective capacity of the bacterial cell envelope, necessary for the bacteria to fight environmental stress and survive inside amoeba cells. Using co-culture assays combined with fluorescence and electron microscopy, we showed that an oatB mutant, unlike the parental strain, was efficiently destroyed after rapid internalization by amoebae. Sensitivity and permeability studies of the oatB mutant, together with topography and nanomechanical investigations with the use of atomic force microscopy (AFM), indicated that the incomplete substitution of lipid A-core moieties with O-polysaccharide (O-PS) residues rendered the mutant more sensitive to hydrophobic compounds. Likewise, the truncated LPS moieties, rather than the lack of O-acetyl groups, made the oatB mutant susceptible to the bactericidal mechanisms (nitrosative stress and the action of lytic enzymes) of A. castellanii.
Collapse
|
5
|
Li T, Noel KD. Synthesis of N-acetyl-d-quinovosamine in Rhizobium etli CE3 is completed after its 4-keto-precursor is linked to a carrier lipid. MICROBIOLOGY-SGM 2017; 163:1890-1901. [PMID: 29165235 DOI: 10.1099/mic.0.000576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial O-antigens are synthesized on lipid carriers before being transferred to lipopolysaccharide core structures. Rhizobium etli CE3 lipopolysaccharide is a model for understanding O-antigen biological function. CE3 O-antigen structure and genetics are known. However, proposed enzymology for CE3 O-antigen synthesis has been examined very little in vitro, and even the sugar added to begin the synthesis is uncertain. A model based on mutagenesis studies predicts that 2-acetamido-2,6-dideoxy-d-glucose (QuiNAc) is the first O-antigen sugar and that genes wreV, wreQ and wreU direct QuiNAc synthesis and O-antigen initiation. Previously, synthesis of UDP-QuiNAc was shown to occur in vitro with a WreV orthologue (4,6-hexose dehydratase) and WreQ (4-reductase), but the WreQ catalysis in this conventional deoxyhexose-synthesis pathway was very slow. This seeming deficiency was explained in the present study after WreU transferase activity was examined in vitro. Results fit the prediction that WreU transfers sugar-1-phosphate to bactoprenyl phosphate (BpP) to initiate O-antigen synthesis. Interestingly, WreU demonstrated much higher activity using the product of the WreV catalysis [UDP-4-keto-6-deoxy-GlcNAc (UDP-KdgNAc)] as the sugar-phosphate donor than using UDP-QuiNAc. Furthermore, the WreQ catalysis with WreU-generated BpPP-KdgNAc as the substrate was orders of magnitude faster than with UDP-KdgNAc. The inferred product BpPP-QuiNAc reacted as an acceptor substrate in an in vitro assay for addition of the second O-antigen sugar, mannose. These results imply a novel pathway for 6-deoxyhexose synthesis that may be commonly utilized by bacteria when QuiNAc is the first sugar of a polysaccharide or oligosaccharide repeat unit: UDP-GlcNAc → UDP-KdgNAc → BpPP-KdgNAc → BpPP-QuiNAc.
Collapse
Affiliation(s)
- Tiezheng Li
- Present address: Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.,Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - K Dale Noel
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| |
Collapse
|
6
|
Di Lorenzo F, Palmigiano A, Duda KA, Pallach M, Busset N, Sturiale L, Giraud E, Garozzo D, Molinaro A, Silipo A. Structure of the Lipopolysaccharide from the Bradyrhizobium sp. ORS285 rfaL Mutant Strain. ChemistryOpen 2017; 6:541-553. [PMID: 28794950 PMCID: PMC5542761 DOI: 10.1002/open.201700074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
The importance of the outer membrane and of its main constituent, lipopolysaccharide, in the symbiosis between rhizobia and leguminous host plants has been well studied. Here, the first complete structural characterization of the entire lipopolysaccharide from an O‐chain‐deficient Bradyrhizobium ORS285 rfaL mutant is achieved by a combination of chemical analysis, NMR spectroscopy, MALDI MS and MS/MS. The lipid A structure is shown to be consistent with previously reported Bradyrhizobium lipid A, that is, a heterogeneous blend of penta‐ to hepta‐acylated species carrying a nonstoichiometric hopanoid unit and possessing very‐long‐chain fatty acids ranging from 26:0(25‐OH) to 32:0(31‐OH). The structure of the core oligosaccharide region, fully characterized for the first time here, is revealed to be a nonphosphorylated linear chain with methylated sugar residues, with a heptose residue exclusively present in the outer core region, and with the presence of two singly substituted 3‐deoxy‐d‐manno‐oct‐2‐ulosonic acid (Kdo) residues, one of which is located in the outer core region. The lipid A moiety is linked to the core moiety through an uncommon 4‐substituted Kdo unit.
Collapse
Affiliation(s)
- Flaviana Di Lorenzo
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Angelo Palmigiano
- CNR-Istituto per i Polimeri Compositi e Biomateriali IPCB-Unità di CataniaVia Gaifami 18 95126 Catania Italy
| | - Katarzyna A Duda
- Junior Group of Allergobiochemistry, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Airway Research Center North (ARCN) German Center for Lung Research 23845 Borstel Germany
| | - Mateusz Pallach
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Nicolas Busset
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J34398 Montpellier Cedex 5 France
| | - Luisa Sturiale
- CNR-Istituto per i Polimeri Compositi e Biomateriali IPCB-Unità di CataniaVia Gaifami 18 95126 Catania Italy
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J34398 Montpellier Cedex 5 France
| | - Domenico Garozzo
- CNR-Istituto per i Polimeri Compositi e Biomateriali IPCB-Unità di CataniaVia Gaifami 18 95126 Catania Italy
| | - Antonio Molinaro
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alba Silipo
- Department of Chemical Sciences University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| |
Collapse
|
7
|
Hashimoto M, Mizukami M, Osuki KI, Fujiwara N, Suda Y, Uchiumi T. Characterization of O-antigen polysaccharide backbone derived from nitric oxide-inducing Mesorhizobium loti MAFF 303099 lipopolysaccharide. Carbohydr Res 2017; 445:44-50. [PMID: 28399430 DOI: 10.1016/j.carres.2017.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/01/2017] [Accepted: 04/02/2017] [Indexed: 11/25/2022]
Abstract
Mesorhizobium loti is a member of rhizobia and establishes nitrogen-fixing symbioses with several Lotus species. Recently, we reported that M. loti MAFF 303099 bacterial cells and their lipopolysaccharide (LPS) preparations are involved in the beginning of the symbiotic process by inducing transient nitric oxide (NO) production in the roots of L. japonicus. We subsequently found that both the polysaccharide (PS) part and the lipid A moiety in LPS are responsible for the NO induction. In this study, we elucidated the chemical structure of M. loti O-polysaccharide (OPS) in PS. PS was prepared by mild acid hydrolysis of M. loti LPS followed by gel filtration chromatography. OPS was subjected to hydrazine treatment to obtain deacylated PS (dPS). Chemical composition analysis, ethylation analysis, and NMR spectra revealed the chemical structure of the M. loti OPS backbone in dPS to be →2)-α-l-6dTalp-(1 → 3)-α-l-6dTalp-(1 → 2)-α-l-Rhap-(1 → 2)-α-l-6dTalp-(1 → 3)-α-l-6dTalp-(1 → 3)-α-l-Rhap-(1→.
Collapse
Affiliation(s)
- Masahito Hashimoto
- Department of Chemistry, Biotechnology, and Chemical Engineering, Kagoshima University, Korimoto 1-21-40, Kagoshima, 890-0065, Japan.
| | - Masato Mizukami
- Department of Chemistry, Biotechnology, and Chemical Engineering, Kagoshima University, Korimoto 1-21-40, Kagoshima, 890-0065, Japan
| | - Ken-Ichi Osuki
- Department of Chemistry and Bioscience, Kagoshima University, Korimoto 1-21-35, Kagoshima, 890-0065, Japan
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, 3-1-3, Gakuenminami, Nara, 631-8585, Japan
| | - Yasuo Suda
- Department of Chemistry, Biotechnology, and Chemical Engineering, Kagoshima University, Korimoto 1-21-40, Kagoshima, 890-0065, Japan
| | - Toshiki Uchiumi
- Department of Chemistry and Bioscience, Kagoshima University, Korimoto 1-21-35, Kagoshima, 890-0065, Japan
| |
Collapse
|
8
|
Vinnitskiy DZ, Ustyuzhanina NE, Nifantiev NE. Natural bacterial and plant biomolecules bearing α-d-glucuronic acid residues. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1010-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Busset N, De Felice A, Chaintreuil C, Gully D, Fardoux J, Romdhane S, Molinaro A, Silipo A, Giraud E. The LPS O-Antigen in Photosynthetic Bradyrhizobium Strains Is Dispensable for the Establishment of a Successful Symbiosis with Aeschynomene Legumes. PLoS One 2016; 11:e0148884. [PMID: 26849805 PMCID: PMC4743980 DOI: 10.1371/journal.pone.0148884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
The photosynthetic bradyrhizobia are able to use a Nod-factor independent process to induce nitrogen-fixing nodules on some semi-aquatic Aeschynomene species. These bacteria display a unique LPS O-antigen composed of a new sugar, the bradyrhizose that is regarded as a key symbiotic factor due to its non-immunogenic character. In this study, to check this hypothesis, we isolated mutants affected in the O-antigen synthesis by screening a transposon mutant library of the ORS285 strain for clones altered in colony morphology. Over the 10,000 mutants screened, five were selected and found to be mutated in two genes, rfaL, encoding for a putative O-antigen ligase and gdh encoding for a putative dTDP-glucose 4,6-dehydratase. Biochemical analysis confirmed that the LPS of these mutants completely lack the O-antigen region. However, no effect of the mutations could be detected on the symbiotic properties of the mutants indicating that the O-antigen region of photosynthetic Bradyrhizobium strains is not required for the establishment of symbiosis with Aeschynomene.
Collapse
Affiliation(s)
- Nicolas Busset
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Antonia De Felice
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Clémence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Joël Fardoux
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Sana Romdhane
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, Campus International de Baillarguet, TA A-82/J, 34398 Montpellier Cedex 5, France
- * E-mail:
| |
Collapse
|
10
|
Turska-Szewczuk A, Russa R, Karaś MA, Danikiewicz W, Spólnik G. Structural elucidation of the outer core tetrasaccharide isolated from the LPS of Rhizobium leguminosarum bv. trifolii strain 24. Carbohydr Res 2015; 409:1-8. [PMID: 25880336 DOI: 10.1016/j.carres.2015.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022]
Abstract
The outer core oligosaccharide (OS) was isolated from the lipopolysaccharide (LPS) of Rhizobium leguminosarum bv. trifolii strain 24 after Smith degradation and then studied by sugar and methylation analyses along with NMR and mass spectrometry methods. Negative-ion electrospray (ESI-MS) mass spectrum showed two molecular ions at m/z 686.3 and 728.3, which corresponded to the core OS having the composition Rha2QuiNAcKdh. The mass difference between both ions indicated that the higher molecule mass represented the mono O-acetylated variant of the OS. The sequence of the oligosaccharide was reflected in CID MS/MS spectra. In turn, NMR spectroscopy confirmed the composition and glycosylation pattern of the core OS and provided additional evidence on its structure. 2D NMR experiments revealed that the terminal Rhap is acetylated at position O-2. Moreover, 3-deoxyheptulosonic acid (Kdh), which was detected at the reducing terminus of the OS, was evidently derived from the Kdo as a result of Smith degradation. In addition, the higher intensity of signals for a six-membered pyranose ring of Kdhp over 2,7-anh-Kdhf seemed to indicate prevalence of this form of the sugar in the OS-derived species. Based on the data obtained, the following structure of the outer core tetrasaccharide, which probably links the O-chain polysaccharide to the inner core in the LPS of R. leguminosarum bv. trifolii strain 24, was established: α-L-Rhap-2-OAc*-(1-->3)-α-L-Rhap-(1-->3)-β-D-QuipNAc-(1-->4)-Kdo * ~ 50%. .
Collapse
Affiliation(s)
- Anna Turska-Szewczuk
- Department of Genetics and Microbiology, M. Curie-Sklodowska University, 19, Akademicka St., 20-033 Lublin, Poland.
| | - Ryszard Russa
- Department of Genetics and Microbiology, M. Curie-Sklodowska University, 19, Akademicka St., 20-033 Lublin, Poland
| | - Magdalena A Karaś
- Department of Genetics and Microbiology, M. Curie-Sklodowska University, 19, Akademicka St., 20-033 Lublin, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52, Kasprzaka St., 01-224 Warsaw, Poland
| | - Grzegorz Spólnik
- Institute of Organic Chemistry, Polish Academy of Sciences, 44/52, Kasprzaka St., 01-224 Warsaw, Poland
| |
Collapse
|
11
|
Lipopolysaccharide O-chain core region required for cellular cohesion and compaction of in vitro and root biofilms developed by Rhizobium leguminosarum. Appl Environ Microbiol 2014; 81:1013-23. [PMID: 25416773 DOI: 10.1128/aem.03175-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The formation of biofilms is an important survival strategy allowing rhizobia to live on soil particles and plant roots. Within the microcolonies of the biofilm developed by Rhizobium leguminosarum, rhizobial cells interact tightly through lateral and polar connections, forming organized and compact cell aggregates. These microcolonies are embedded in a biofilm matrix, whose main component is the acidic exopolysaccharide (EPS). Our work shows that the O-chain core region of the R. leguminosarum lipopolysaccharide (LPS) (which stretches out of the cell surface) strongly influences bacterial adhesive properties and cell-cell cohesion. Mutants defective in the O chain or O-chain core moiety developed premature microcolonies in which lateral bacterial contacts were greatly reduced. Furthermore, cell-cell interactions within the microcolonies of the LPS mutants were mediated mostly through their poles, resulting in a biofilm with an altered three-dimensional structure and increased thickness. In addition, on the root epidermis and on root hairs, O-antigen core-defective strains showed altered biofilm patterns with the typical microcolony compaction impaired. Taken together, these results indicate that the surface-exposed moiety of the LPS is crucial for proper cell-to-cell interactions and for the formation of robust biofilms on different surfaces.
Collapse
|
12
|
Serrato RV. Lipopolysaccharides in diazotrophic bacteria. Front Cell Infect Microbiol 2014; 4:119. [PMID: 25232535 PMCID: PMC4153317 DOI: 10.3389/fcimb.2014.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/14/2014] [Indexed: 01/21/2023] Open
Abstract
Biological nitrogen fixation (BNF) is a process in which the atmospheric nitrogen (N2) is transformed into ammonia (NH3) by a select group of nitrogen-fixing organisms, or diazotrophic bacteria. In order to furnish the biologically useful nitrogen to plants, these bacteria must be in constant molecular communication with their host plants. Some of these molecular plant-microbe interactions are very specific, resulting in a symbiotic relationship between the diazotroph and the host. Others are found between associative diazotrophs and plants, resulting in plant infection and colonization of internal tissues. Independent of the type of ecological interaction, glycans, and glycoconjugates produced by these bacteria play an important role in the molecular communication prior and during colonization. Even though exopolysaccharides (EPS) and lipochitooligosaccharides (LCO) produced by diazotrophic bacteria and released onto the environment have their importance in the microbe-plant interaction, it is the lipopolysaccharides (LPS), anchored on the external membrane of these bacteria, that mediates the direct contact of the diazotroph with the host cells. These molecules are extremely variable among the several species of nitrogen fixing-bacteria, and there are evidences of the mechanisms of infection being closely related to their structure.
Collapse
|
13
|
Li T, Simonds L, Kovrigin EL, Noel KD. In vitro biosynthesis and chemical identification of UDP-N-acetyl-d-quinovosamine (UDP-d-QuiNAc). J Biol Chem 2014; 289:18110-20. [PMID: 24817117 DOI: 10.1074/jbc.m114.555862] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-acetyl-d-quinovosamine (2-acetamido-2,6-dideoxy-d-glucose, QuiNAc) occurs in the polysaccharide structures of many Gram-negative bacteria. In the biosynthesis of QuiNAc-containing polysaccharides, UDP-QuiNAc is the hypothetical donor of the QuiNAc residue. Biosynthesis of UDP-QuiNAc has been proposed to occur by 4,6-dehydration of UDP-N-acetyl-d-glucosamine (UDP-GlcNAc) to UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose followed by reduction of this 4-keto intermediate to UDP-QuiNAc. Several specific dehydratases are known to catalyze the first proposed step. A specific reductase for the last step has not been demonstrated in vitro, but previous mutant analysis suggested that Rhizobium etli gene wreQ might encode this reductase. Therefore, this gene was cloned and expressed in Escherichia coli, and the resulting His6-tagged WreQ protein was purified. It was tested for 4-reductase activity by adding it and NAD(P)H to reaction mixtures in which 4,6-dehydratase WbpM had acted on the precursor substrate UDP-GlcNAc. Thin layer chromatography of the nucleotide sugars in the mixture at various stages of the reaction showed that WbpM converted UDP-GlcNAc completely to what was shown to be its 4-keto-6-deoxy derivative by NMR and that addition of WreQ and NADH led to formation of a third compound. Combined gas chromatography-mass spectrometry analysis of acid hydrolysates of the final reaction mixture showed that a quinovosamine moiety had been synthesized after WreQ addition. The two-step reaction progress also was monitored in real time by NMR. The final UDP-sugar product after WreQ addition was purified and determined to be UDP-d-QuiNAc by one-dimensional and two-dimensional NMR experiments. These results confirmed that WreQ has UDP-2-acetamido-2,6-dideoxy-d-xylo-4-hexulose 4-reductase activity, completing a pathway for UDP-d-QuiNAc synthesis in vitro.
Collapse
Affiliation(s)
- Tiezheng Li
- From the Departments of Biological Sciences and
| | | | | | - K Dale Noel
- From the Departments of Biological Sciences and
| |
Collapse
|
14
|
Pérez-Giménez J, Lodeiro AR. Two effects of combined nitrogen on the adhesion of Rhizobium etli to bean roots. Symbiosis 2013. [DOI: 10.1007/s13199-013-0229-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Serrato RV, Balsanelli E, Sassaki GL, Carlson RW, Muszynski A, Monteiro RA, Pedrosa FO, Souza EM, Iacomini M. Structural analysis of Herbaspirillum seropedicae lipid-A and of two mutants defective to colonize maize roots. Int J Biol Macromol 2012; 51:384-91. [DOI: 10.1016/j.ijbiomac.2012.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/16/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
16
|
Kutkowska J, Turska-Szewczuk A, Janczarek M, Paduch R, Kamińska T, Urbanik-Sypniewska T. Biological activity of (lipo)polysaccharides of the exopolysaccharide-deficient mutant Rt120 derived from Rhizobium leguminosarum bv. trifolii strain TA1. BIOCHEMISTRY (MOSCOW) 2012; 76:840-50. [PMID: 21999546 DOI: 10.1134/s0006297911070157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lipopolysaccharides (LPS) from Rhizobium leguminosarum biovar trifolii TA1 (RtTA1) and its mutant Rt120 in the pssBpssA intergenic region as well as degraded polysaccharides (DPS) derived from the LPS were elucidated in terms of their chemical composition and biological activities. The polysaccharide portions were examined by methylation analysis, MALDI-TOF mass spectrometry, and (1)H NMR spectroscopy. A high molecular mass carbohydrate fraction obtained from Rt120 DPS by Sephadex G-50 gel chromatography was composed mainly of L-rhamnose, 6-deoxy-L-talose, D-galactose, and D-galacturonic acid, whereas that from RtTA1 DPS contained L-fucose, 2-acetamido-2,6-dideoxy-D-glucose, D-galacturonic acid, 3-deoxy-3-methylaminofucose, D-glucose, D-glucuronic acid, and heptose. Relative intensities of the major (1)H NMR signals for O-acetyl and N-acetyl groups were 1 : 0.8 and 1 : 1.24 in DPS of Rt120 and RtTA1, respectively. The intact mutant LPS exhibited a twice higher lethal toxicity than the wild type LPS. A higher in vivo production of TNFα and IL-6 after induction of mice with Rt120 LPS correlated with the toxicity, although the mutant LPS induced the secretion of IL-1β and IFNγ more weakly than RtTA1 LPS. A polysaccharide obtained by gel chromatography on Bio-Gel P-4 of the high molecular mass material from Rt120 had a toxic effect on tumor HeLa cells but was inactive against the normal human skin fibroblast cell line. The polysaccharide from RtTA1 was inactive against either cell line. The potent inhibitory effect of the mutant DPS on tumor HeLa cells seems to be related with the differences in sugar composition.
Collapse
Affiliation(s)
- J Kutkowska
- Department of Genetics and Microbiology, M. Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | | | |
Collapse
|
17
|
Role for Rhizobium rhizogenes K84 cell envelope polysaccharides in surface interactions. Appl Environ Microbiol 2011; 78:1644-51. [PMID: 22210213 DOI: 10.1128/aem.07117-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rhizobium rhizogenes strain K84 is a commercial biocontrol agent used worldwide to control crown gall disease. The organism binds tightly to polypropylene substrate and efficiently colonizes root surfaces as complex, multilayered biofilms. A genetic screen identified two mutants in which these surface interactions were affected. One of these mutants failed to attach and form biofilms on the abiotic surface although, interestingly, it exhibited normal biofilm formation on the biological root tip surface. This mutant is disrupted in a wcbD ortholog gene, which is part of a large locus predicted to encode functions for the biosynthesis and export of a group II capsular polysaccharide (CPS). Expression of a functional copy of wcbD in the mutant background restored the ability of the bacteria to attach and form normal biofilms on the abiotic surface. The second identified mutant attached and formed visibly denser biofilms on both abiotic and root tip surfaces. This mutant is disrupted in the rkpK gene, which is predicted to encode a UDP-glucose 6-dehydrogenase required for O-antigen lipopolysaccharide (LPS) and K-antigen capsular polysaccharide (KPS) biosynthesis in rhizobia. The rkpK mutant from strain K84 was deficient in O-antigen synthesis and exclusively produced rough LPS. We also show that strain K84 does not synthesize the KPS typical of some other rhizobia strains. In addition, we identified a putative type II CPS, distinct from KPS, that mediates cell-surface interactions, and we show that O antigen of strain K84 is necessary for normal cell-cell interactions in the biofilms.
Collapse
|
18
|
Ardissone S, Noel KD, Klement M, Broughton WJ, Deakin WJ. Synthesis of the flavonoid-induced lipopolysaccharide of Rhizobium Sp. strain NGR234 requires rhamnosyl transferases encoded by genes rgpF and wbgA. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1513-1521. [PMID: 22066901 DOI: 10.1094/mpmi-05-11-0143] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In the presence of flavonoids, Rhizobium sp. strain NGR234 synthesizes a new lipopolysaccharide (LPS), characterized by a rhamnan O-antigen. The presence of this rhamnose-rich LPS is important for the establishment of competent symbiotic interactions between NGR234 and many species of leguminous plants. Two putative rhamnosyl transferases are encoded in a cluster of genes previously shown to be necessary for the synthesis of the rhamnose-rich LPS. These two genes, wbgA and rgpF, were mutated. The resulting mutant strains synthesized truncated rough LPS species rather than the wild-type rhamnose-rich LPS when grown with flavonoids. Based on the compositions of these purified mutant LPS species, we inferred that RgpF is responsible for adding the first one to three rhamnose residues to the flavonoid-induced LPS, whereas WbgA is necessary for the synthesis of the rest of the rhamnan O-antigen. The NGR234 homologue of lpsB, which, in other bacteria, encodes a glycosyl transferase acting early in synthesis of the core portion of LPS, was identified and also mutated. LpsB was required for all the LPS species produced by NGR234, in the presence or absence of flavonoids. Mutants (i.e., of lpsB and rgpF) that lacked any portion of the rhamnan O-antigen of the induced LPS were severely affected in their symbiotic interaction with Vigna unguiculata, whereas the NGR?wbgA mutant, although having very few rhamnose residues in its LPS, was able to elicit functional nodules.
Collapse
|
19
|
Kucho KI, Hay AE, Normand P. The determinants of the actinorhizal symbiosis. Microbes Environ 2011; 25:241-52. [PMID: 21576879 DOI: 10.1264/jsme2.me10143] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The actinorhizal symbiosis is a major contributor to the global nitrogen budget, playing a dominant role in ecological successions following disturbances. The mechanisms involved are still poorly known but there emerges the vision that on the plant side, the kinases that transmit the symbiotic signal are conserved with those involved in the transmission of the Rhizobium Nod signal in legumes. However, on the microbial side, complementation with Frankia DNA of Rhizobium nod mutants failed to permit identification of symbiotic genes. Furthermore, analysis of three Frankia genomes failed to permit identification of canonical nod genes and revealed symbiosis-associated genes such as nif, hup, suf and shc to be spread around the genomes. The present review explores some recently published approaches aimed at identifying bacterial symbiotic determinants.
Collapse
Affiliation(s)
- Ken-Ichi Kucho
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima UniversityKorimoto1–21–35, Kagoshima 890–0065, Japan
| | | | | |
Collapse
|
20
|
Murakami EI, Nagata M, Shimoda Y, Kucho KI, Higashi S, Abe M, Hashimoto M, Uchiumi T. Nitric oxide production induced in roots of Lotus japonicus by lipopolysaccharide from Mesorhizobium loti. PLANT & CELL PHYSIOLOGY 2011; 52:610-7. [PMID: 21330297 DOI: 10.1093/pcp/pcr020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lipopolysaccharide (LPS) is a bacterial molecule that induces nitric oxide (NO) production and triggers defense systems in plant-pathogen interactions. NO production is induced in the roots of Lotus japonicus after inoculation of the roots with its microsymbiont Mesorhizobium loti. However, the rhizobial molecule that induces NO production has not yet been identified. We investigated NO production in the roots of L. japonicus by treatment with LPS of M. loti. LPS was prepared by phenol-hot water extraction and separated into several fractions: polysaccharide, lipooligosaccharide, oligosaccharide and lipid A. In the roots of L. japonicus, NO production was observed with an NO-specific fluorescent dye 4, 10 and 24 h after treatment with each fraction of LPS. NO production was detected 4 h after treatment with all fractions. NO production was also detectable 24 h after treatment, except after treatment with the polysaccharide and oligosaccharide fractions. Expression of a class 1 hemoglobin gene and application of an NO scavenger showed that the treatment with LPS and LOS induced a similar response to inoculation with M. loti. These data suggest that LPS of M. loti induces NO production after inoculation with M. loti.
Collapse
Affiliation(s)
- Ei-ichi Murakami
- Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Box J, Noel KD. Controlling the expression of rhizobial genes during nodule development with elements and an inducer of the lac operon. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:478-486. [PMID: 21375387 DOI: 10.1094/mpmi-07-10-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A simple strategy was tested for imposing artificial regulation of rhizobial genes during nodule development. Isopropyl-β-d-1-thiogalactoside (IPTG) was added to liquid root media to sustain expression of rhizobial genes controlled by Escherichia coli lac promoter/operators and repressor gene lacI. Conversely, a rinsing protocol was devised to remove IPTG sufficiently that genes could be repressed after having been induced. gusA under this control exhibited clearly delineated expression and repression in both the determinate Rhizobium etli-Phaseolus vulgaris and the indeterminate Sinorhizobium meliloti-Medicago sativa symbioses. Apparently, IPTG was taken up in sufficiently undegraded concentrations that gene expression was derepressed even in interior portions of the nodule. Moreover, the rinsing protocol led to obvious repression of gusA. Importantly, no deleterious effects of IPTG on nodule development, infection, or nitrogen fixation were observed. An R. etli CE3 gene required for lipopolysaccharide O antigen and infection on bean was put under this control by means of a two-plasmid construct. When this construct was added to a strain with a null mutation in this gene, infection, nodule development, and nitrogenase activity all depended on the length of time before IPTG was rinsed from the roots after inoculation.
Collapse
Affiliation(s)
- Jodie Box
- Department of Biological Sciences, Marquette University, PO Box 1881, Milwaukee, WI 53201, USA
| | | |
Collapse
|
22
|
Janczarek M, Kutkowska J, Piersiak T, Skorupska A. Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment. BMC Microbiol 2010; 10:284. [PMID: 21070666 PMCID: PMC2996380 DOI: 10.1186/1471-2180-10-284] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 11/11/2010] [Indexed: 12/02/2022] Open
Abstract
Background Rhizobium leguminosarum bv. trifolii is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Trifolium spp. Bacterial surface polysaccharides are crucial for establishment of a successful symbiosis with legumes that form indeterminate-type nodules, such as Trifolium, Pisum, Vicia, and Medicago spp. and aid the bacterium in withstanding osmotic and other environmental stresses. Recently, the R. leguminosarum bv. trifolii RosR regulatory protein which controls exopolysaccharide production has been identified and characterized. Results In this work, we extend our earlier studies to the characterization of rosR mutants which exhibit pleiotropic phenotypes. The mutants produce three times less exopolysaccharide than the wild type, and the low-molecular-weight fraction in that polymer is greatly reduced. Mutation in rosR also results in quantitative alterations in the polysaccharide constituent of lipopolysaccharide. The rosR mutants are more sensitive to surface-active detergents, antibiotics of the beta-lactam group and some osmolytes, indicating changes in the bacterial membranes. In addition, the rosR mutants exhibit significant decrease in motility and form a biofilm on plastic surfaces, which differs significantly in depth, architecture, and bacterial viability from that of the wild type. The most striking effect of rosR mutation is the considerably decreased attachment and colonization of root hairs, indicating that the mutation affects the first stage of the invasion process. Infection threads initiate at a drastically reduced rate and frequently abort before they reach the base of root hairs. Although these mutants form nodules on clover, they are unable to fix nitrogen and are outcompeted by the wild type in mixed inoculations, demonstrating that functional rosR is important for competitive nodulation. Conclusions This report demonstrates the significant role RosR regulatory protein plays in bacterial stress adaptation and in the symbiotic relationship between clover and R. leguminosarum bv. trifolii 24.2.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Genetics and Microbiology, University of M Curie-Skłodowska, Lublin, Poland.
| | | | | | | |
Collapse
|
23
|
Muszynski A, Laus M, Kijne JW, Carlson RW. Structures of the lipopolysaccharides from Rhizobium leguminosarum RBL5523 and its UDP-glucose dehydrogenase mutant (exo5). Glycobiology 2010; 21:55-68. [PMID: 20817634 DOI: 10.1093/glycob/cwq131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rhizobial lipopolysaccharide (LPS) is required to establish an effective symbiosis with its host plant. An exo5 mutant of Rhizobium leguminosarum RBL5523, strain RBL5808, is defective in UDP-glucose (Glc) dehydrogenase that converts UDP-Glc to UDP-glucuronic acid (GlcA). This mutant is unable to synthesize either UDP-GlcA or UDP-galacturonic acid (GalA) and is unable to synthesize extracellular and capsular polysaccharides, lacks GalA in its LPS and is defective in symbiosis (Laus MC, Logman TJ, van Brussel AAN, Carlson RW, Azadi P, Gao MY, Kijne JW. 2004. Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra. J Bacteriol. 186:6617-6625). Here, we determined and compared the structures of the RBL5523 parent and RBL5808 mutant LPSs. The parent LPS core oligosaccharide (OS), as with other R. leguminosarum and Rhizobium etli strains, is a Gal(1)Man(1)GalA(3)Kdo(3) octasaccharide in, which each of the GalA residues is terminally linked. The core OS from the mutant lacks all three GalA residues. Also, the parent lipid A consists of a fatty acylated GlcNGlcNonate or GlcNGlcN disaccharide that has a GalA residue at the 4'-position, typical of other R. leguminosarum and R. etli lipids A. The mutant lipid A lacks the 4'-GalA residue, and the proximal glycosyl residue was only present as GlcNonate. In spite of these alterations to the lipid A and core OSs, the mutant was still able to synthesize an LPS containing a normal O-chain polysaccharide (OPS), but at reduced levels. The structure of the OPS of the mutant LPS was identical to that of the parent and consists of an O-acetylated →4)-α-d-Glcp-(1→3)-α-d-QuipNAc-(1→ repeating unit.
Collapse
Affiliation(s)
- Artur Muszynski
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
24
|
Serrato RV, Sassaki GL, Cruz LM, Carlson RW, Muszyński A, Monteiro RA, Pedrosa FO, Souza EM, Iacomini M. Chemical composition of lipopolysaccharides isolated from various endophytic nitrogen-fixing bacteria of the genus Herbaspirillum. Can J Microbiol 2010; 56:342-7. [PMID: 20453901 DOI: 10.1139/w10-011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria from the genus Herbaspirillum are endophytes responsible for nitrogen fixation in gramineous plants of economic importance such as maize, sugarcane, sorghum, rice, and wheat. Some species are known to produce plant growth substances. In contrast, Herbaspirillum rubrisubalbicans strains are known to be mild plant pathogens. The molecular communication between the plant and the microbes might involve lipopolysaccharides present in the outer membrane of these gram-negative bacteria. Phenol-water extraction was used to obtain lipopolysaccharides from 7 strains of Herbaspirillum seropedicae (SmR1, Z67, Z78, ZA95, and M2) and H. rubrisubalbicans (M1 and M4). The electrophoretic profiles and chemical composition of the lipopolysaccharides obtained in the phenol and aqueous extracts were shown herein.
Collapse
Affiliation(s)
- R V Serrato
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
H. Arafat H, Tanaka K, Sawada H, Suzuki K. Variation of Lipopolysaccharide among the Three Major Agrobacterium Species and the Effect of Environmental Stress on the Lipopolysaccharide Profile. PLANT PATHOLOGY JOURNAL 2009; 8:1-8. [DOI: 10.3923/ppj.2009.1.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
|
26
|
Genetic basis for Rhizobium etli CE3 O-antigen O-methylated residues that vary according to growth conditions. J Bacteriol 2009; 192:679-90. [PMID: 19948805 DOI: 10.1128/jb.01154-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rhizobium etli CE3 O antigen is a fixed-length heteropolymer with O methylation being the predominant type of sugar modification. There are two O-methylated residues that occur, on average, once per complete O antigen: a multiply O-methylated terminal fucose and 2-O methylation of a fucose residue within a repeating unit. The amount of the methylated terminal fucose decreases and the amount of 2-O-methylfucose increases when bacteria are grown in the presence of the host plant, Phaseolus vulgaris, or its seed exudates. Insertion mutagenesis was used to identify open reading frames required for the presence of these O-methylated residues. The presence of the methylated terminal fucose required genes wreA, wreB, wreC, wreD, and wreF, whereas 2-O methylation of internal fucoses required the methyltransferase domain of bifunctional gene wreM. Mutants lacking only the methylated terminal fucose, lacking only 2-O methylation, or lacking both the methylated terminal fucose and 2-O methylation exhibited no other lipopolysaccharide structural defects. Thus, neither of these decorations is required for normal O-antigen length, transport, or assembly into the final lipopolysaccharide. This is in contrast to certain enteric bacteria in which the absence of a terminal decoration severely affects O-antigen length and transport. R. etli mutants lacking only the methylated terminal fucose were not altered in symbiosis with host Phaseolus vulgaris, whereas mutants lacking only 2-O-methylfucose exhibited a delay in nodule development during symbiosis. These results support previous conclusions that the methylated terminal fucose is dispensable for symbiosis, whereas 2-O methylation of internal fucoses somehow facilitates early events in symbiosis.
Collapse
|
27
|
Deakin WJ, Broughton WJ. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 2009. [PMID: 19270720 DOI: 10.1038/nrmicro.2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Rhizobia - a diverse group of soil bacteria - induce the formation of nitrogen-fixing nodules on the roots of legumes. Nodulation begins when the roots initiate a molecular dialogue with compatible rhizobia in the soil. Most rhizobia reply by secreting lipochitooligosaccharidic nodulation factors that enable entry into the legume. A molecular exchange continues, which, in compatible interactions, permits rhizobia to invade root cortical cells, differentiate into bacteroids and fix nitrogen. Rhizobia also use additional molecular signals, such as secreted proteins or surface polysaccharides. One group of proteins secreted by rhizobia have homologues in bacterial pathogens and may have been co-opted by rhizobia for symbiotic purposes.
Collapse
Affiliation(s)
- William J Deakin
- LBMPS, University of Geneva, 30, quai Ernest-Ansermet - Sciences III, CH-1211 Genève 4, Geneva, Switzerland.
| | | |
Collapse
|
28
|
Abstract
Rhizobia - a diverse group of soil bacteria - induce the formation of nitrogen-fixing nodules on the roots of legumes. Nodulation begins when the roots initiate a molecular dialogue with compatible rhizobia in the soil. Most rhizobia reply by secreting lipochitooligosaccharidic nodulation factors that enable entry into the legume. A molecular exchange continues, which, in compatible interactions, permits rhizobia to invade root cortical cells, differentiate into bacteroids and fix nitrogen. Rhizobia also use additional molecular signals, such as secreted proteins or surface polysaccharides. One group of proteins secreted by rhizobia have homologues in bacterial pathogens and may have been co-opted by rhizobia for symbiotic purposes.
Collapse
|
29
|
Turska-Szewczuk A, Lotocka B, Kutkowska J, Król J, Urbanik-Sypniewska T, Russa R. The incomplete substitution of lipopolysaccharide with O-chain prevents the establishment of effective symbiosis between Mesorhizobium loti NZP2213.1 and Lotus corniculatus. Microbiol Res 2009; 164:163-73. [PMID: 17321732 DOI: 10.1016/j.micres.2006.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 07/06/2006] [Accepted: 11/14/2006] [Indexed: 11/21/2022]
Abstract
Mesorhizobium loti NZP2213.1 mutant obtained after random Tn5 mutagenesis of M. loti NZP2213 was inefficient in nitrogen fixation on Lotus corniculatus. The transposon insertion was located within an ORF with a sequence similarity to a putative glycosyl transferase from Caulobacter crescentus. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the mutant produced LPS of the same O-chain length but only half of the entire smooth LPS, compared to that of the parental strain. A greater diversity of the anomeric region as determined by NMR spectroscopy, reflected structural differences in the mutant repeating units represented by 6-deoxytalose, 2-OAc-6-deoxytalose, and 2-OMe-6-deoxytalose. In contrast to the completely O-acetylated 6-deoxytalose in wild-type OPS only partial O-acetylation was found in the mutant. The decrease of the LPS species with O-chains seems to be correlated with 6-deoxytalose deficiency. Microscopic examination of the nodules induced by the mutant revealed disturbances in infection thread development and premature senescence of symbiosomes. The impairment of mutant-induced symbiosomes to sustain latter stages of symbiosis could be a consequence of the decreased ratio of the hydrophobic to the hydrophilic LPSs.
Collapse
Affiliation(s)
- Anna Turska-Szewczuk
- Department of General Microbiology, M. Curie-Skłodowska University, Akademicka, Lublin, Poland
| | | | | | | | | | | |
Collapse
|
30
|
Forsberg LS, Carlson RW. Structural characterization of the primary O-antigenic polysaccharide of the Rhizobium leguminosarum 3841 lipopolysaccharide and identification of a new 3-acetimidoylamino-3-deoxyhexuronic acid glycosyl component: a unique O-methylated glycan of uniform size, containing 6-deoxy-3-O-methyl-D-talose, n-acetylquinovosamine, and rhizoaminuronic acid (3-acetimidoylamino-3-deoxy-D-gluco-hexuronic acid). J Biol Chem 2008; 283:16037-50. [PMID: 18387959 DOI: 10.1074/jbc.m709615200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhizobium are Gram-negative bacteria that survive intracellularly, within host membrane-derived plant cell compartments called symbiosomes. Within the symbiosomes the bacteria differentiate to bacteroids, the active form that carries out nitrogen fixation. The progression from free-living bacteria to bacteroid is characterized by physiological and morphological changes at the bacterial surface, a phase shift with an altered array of cell surface glycoconjugates. Lipopolysaccharides undergo structural changes upon differentiation from the free living to the bacteroid (intracellular) form. The array of carbohydrate structures carried on lipopolysaccharides confer resistance to plant defense mechanisms and may serve as signals that trigger the plant to allow the infection to proceed. We have determined the structure of the major O-polysaccharide (OPS) isolated from free living Rhizobium leguminosarum 3841, a symbiont of Pisum sativum, using chemical methods, mass spectrometry, and NMR spectroscopy analysis. The OPS is composed of several unusual glycosyl residues, including 6-deoxy-3-O-methyl-d-talose and 2-acetamido-2deoxy-l-quinovosamine. In addition, a new glycosyl residue, 3-acetimidoylamino-3-deoxy-d-gluco-hexuronic acid was identified and characterized, a novel hexosaminuronic acid that does not have an amino group at the 2-position. The OPS is composed of three to four tetrasaccharide repeating units of -->4)-beta-dGlcp3NAmA-(1-->4)-[2-O-Ac-3-O-Me-alpha-d-6dTalp-(1-->3)]-alpha-l-Fucp-(1-->3)-alpha-l-QuipNAc-(1-->. The unique 3-amino hexuronate residue, rhizoaminuronic acid, is an attractive candidate for selective inhibition of OPS synthesis.
Collapse
Affiliation(s)
- L Scott Forsberg
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30605, USA
| | | |
Collapse
|
31
|
Werner D. Molecular Biology and Ecology of the Rhizobia–Legume Symbiosis. THE RHIZOSPHERE 2007. [DOI: 10.1201/9781420005585.ch9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
32
|
D'Haeze W, Leoff C, Freshour G, Noel KD, Carlson RW. Rhizobium etli CE3 bacteroid lipopolysaccharides are structurally similar but not identical to those produced by cultured CE3 bacteria. J Biol Chem 2007; 282:17101-13. [PMID: 17420254 DOI: 10.1074/jbc.m611669200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhizobium etli CE3 bacteroids were isolated from Phaseolus vulgaris root nodules. The lipopolysaccharide (LPS) from the bacteroids was purified and compared with the LPS from laboratory-cultured R. etli CE3 and from cultures grown in the presence of anthocyanin. Comparisons were made of the O-chain polysaccharide, the core oligosaccharide, and the lipid A. Although LPS from CE3 bacteria and bacteroids are structurally similar, it was found that bacteroid LPS had specific modifications to both the O-chain polysaccharide and lipid A portions of their LPS. Cultures grown with anthocyanin contained modifications only to the O-chain polysaccharide. The changes to the O-chain polysaccharide consisted of the addition of a single methyl group to the 2-position of a fucosyl residue in one of the five O-chain trisaccharide repeat units. This same change occurred for bacteria grown in the presence of anthocyanin. This methylation change correlated with the inability of bacteroid LPS and LPS from anthocyanin-containing cultures to bind the monoclonal antibody JIM28. The core oligosaccharide region of bacteroid LPS and from anthocyanin-grown cultures was identical to that of LPS from normal laboratory-cultured CE3. The lipid A from bacteroids consisted exclusively of a tetraacylated species compared with the presence of both tetra- and pentaacylated lipid A from laboratory cultures. Growth in the presence of anthocyanin did not affect the lipid A structure. Purified bacteroids that could resume growth were also found to be more sensitive to the cationic peptides, poly-l-lysine, polymyxin-B, and melittin.
Collapse
Affiliation(s)
- Wim D'Haeze
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
33
|
Barb AW, McClerren AL, Snehelatha K, Reynolds CM, Zhou P, Raetz CR. Inhibition of lipid A biosynthesis as the primary mechanism of CHIR-090 antibiotic activity in Escherichia coli. Biochemistry 2007; 46:3793-802. [PMID: 17335290 PMCID: PMC2709454 DOI: 10.1021/bi6025165] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The deacetylation of UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine (UDP-3-O-acyl-GlcNAc) by LpxC is the committed reaction of lipid A biosynthesis. CHIR-090, a novel N-aroyl-l-threonine hydroxamic acid, is a potent, slow, tight-binding inhibitor of the LpxC deacetylase from the hyperthermophile Aquifex aeolicus, and it has excellent antibiotic activity against Pseudomonas aeruginosa and Escherichia coli, as judged by disk diffusion assays. We now report that CHIR-090 is also a two-step slow, tight-binding inhibitor of E. coli LpxC with Ki = 4.0 nM, Ki* = 0.5 nM, k5 = 1.9 min-1, and k6 = 0.18 min-1. CHIR-090 at low nanomolar levels inhibits LpxC orthologues from diverse Gram-negative pathogens, including P. aeruginosa, Neisseria meningitidis, and Helicobacter pylori. In contrast, CHIR-090 is a relatively weak competitive and conventional inhibitor (lacking slow, tight-binding kinetics) of LpxC from Rhizobium leguminosarum (Ki = 340 nM), a Gram-negative plant endosymbiont that is resistant to this compound. The KM (4.8 microM) and the kcat (1.7 s-1) of R. leguminosarum LpxC with UDP-3-O-[(R)-3-hydroxymyristoyl]-N-acetylglucosamine as the substrate are similar to values reported for E. coli LpxC. R. leguminosarum LpxC therefore provides a useful control for validating LpxC as the primary target of CHIR-090 in vivo. An E. coli construct in which the chromosomal lpxC gene is replaced by R. leguminosarum lpxC is resistant to CHIR-090 up to 100 microg/mL, or 400 times above the minimal inhibitory concentration for wild-type E. coli. Given its relatively broad spectrum and potency against diverse Gram-negative pathogens, CHIR-090 is an excellent lead for the further development of new antibiotics targeting the lipid A pathway.
Collapse
Affiliation(s)
- Adam W. Barb
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Amanda L. McClerren
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Karnem Snehelatha
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - C. Michael Reynolds
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
| | - Christian R.H. Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- Author to whom correspondence should be addressed: C. R. H. Raetz at (919) 684-5326; Fax (919) 684-8885;
| |
Collapse
|
34
|
Reuhs BL, Relić B, Forsberg LS, Marie C, Ojanen-Reuhs T, Stephens SB, Wong CH, Jabbouri S, Broughton WJ. Structural characterization of a flavonoid-inducible Pseudomonas aeruginosa A-band-like O antigen of Rhizobium sp. strain NGR234, required for the formation of nitrogen-fixing nodules. J Bacteriol 2005; 187:6479-87. [PMID: 16159781 PMCID: PMC1236632 DOI: 10.1128/jb.187.18.6479-6487.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium (Sinorhizobium) sp. strain NGR234 contains three replicons, the smallest of which (pNGR234a) carries most symbiotic genes, including those required for nodulation and lipo-chito-oligosaccharide (Nod factor) biosynthesis. Activation of nod gene expression depends on plant-derived flavonoids, NodD transcriptional activators, and nod box promoter elements. Nod boxes NB6 and NB7 delimit six different types of genes, one of which (fixF) is essential for the formation of effective nodules on Vigna unguiculata. In vegetative culture, wild-type NGR234 produces a distinct, flavonoid-inducible lipopolysaccharide (LPS) that is not produced by the mutant (NGRomegafixF); this LPS is also found in nitrogen-fixing bacteroids isolated from V. unguiculata infected with NGR234. Electron microscopy showed that peribacteroid membrane formation is perturbed in nodule cells infected by the fixF mutant. LPSs were purified from free-living NGR234 cultured in the presence of apigenin. Structural analyses showed that the polysaccharide portions of these LPSs are specialized, rhamnose-containing O antigens attached to a modified core-lipid A carrier. The primary sequence of the O antigen is [-3)-alpha-L-Rhap-(1,3)-alpha-L-Rhap-(1,2)-alpha-L-Rhap-(1-]n, and the LPS core region lacks the acidic sugars commonly associated with the antigenic outer core of LPS from noninduced cells. This rhamnan O antigen, which is absent from noninduced cells, has the same primary sequence as the A-band O antigen of Pseudomonas aeruginosa, except that it is composed of L-rhamnose rather than the D-rhamnose characteristic of the latter. It is noteworthy that A-band LPS is selectively maintained on the P. aeruginosa cell surface during chronic cystic fibrosis lung infection, where it is associated with an increased duration of infection.
Collapse
Affiliation(s)
- Bradley L Reuhs
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, Indiana 47907-1160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Becker A, Fraysse N, Sharypova L. Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:899-905. [PMID: 16167760 DOI: 10.1094/mpmi-18-0899] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Exopolysaccharides (EPSs) and K polysaccharides (K-antigens, capsular polysaccharides, or KPSs) are important for the recognition of the symbiotic partner and the infection process, whereas lipopolysaccharides (LPSs) may function at a later stage of symbiosis. Recently, considerable progress has been made in the structural investigation of rhizobial K-antigens and LPSs. This structural data, together with the availability of more and more mutant data, allows new insights into the structure-function relationships of surface polysaccharides and the mode of their action on host cells. This review focuses on rhizobial LPSs and K-antigens. It gives a condensed overview of the recent developments in analysis of their structures and roles during symbiosis.
Collapse
Affiliation(s)
- Anke Becker
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.
| | | | | |
Collapse
|
36
|
D'Antuono AL, Casabuono A, Couto A, Ugalde RA, Lepek VC. Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:446-57. [PMID: 15915643 DOI: 10.1094/mpmi-18-0446] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The role of Mesorhizobium loti surface polysaccharides on the nodulation process is not yet fully understood. In this article, we describe the nodulation phenotype of mutants affected in the synthesis of lipopolysaccharide (LPS) and beta(1,2) cyclic glucan. M. loti lpsbeta2 mutant produces LPS with reduced amount of O-antigen, whereas M. loti lpsbeta1 mutant produces LPS totally devoid of O-antigen. Both genes are clustered in the chromosome. Based on amino acid sequence homology, LPS sugar composition, and enzymatic activity, we concluded that lpsbeta2 codes for an enzyme involved in the transformation of dTDP-glucose into dTDP-rhamnose, the sugar donor of rhamnose for the synthesis of O-antigen. On the other hand, lpsbeta1 codes for a glucosyltransferase involved in the biosynthesis of the O-antigen. Although LPS mutants elicited normal nodules, both show reduced competitiveness compared with the wild type. M. loti beta(1-2) cyclic glucan synthase (cgs) mutant induces white, empty, ineffective pseudonodules in Lotus tenuis. Cgs mutant induces normal root hair curling but is unable to induce the formation of infection threads. M. loti cgs mutant was more sensitive to deoxycholate and displayed motility impairment compared with the wild-type strain. This pleiotropic effect depends on calcium concentration and temperature.
Collapse
Affiliation(s)
- Alejandra L D'Antuono
- Instituto de Investigaciones Biotecnológicas, INTECH, Universidad Nacional de General San Martin, CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
37
|
Noel KD, Box JM, Bonne VJ. 2-O-methylation of fucosyl residues of a rhizobial lipopolysaccharide is increased in response to host exudate and is eliminated in a symbiotically defective mutant. Appl Environ Microbiol 2004; 70:1537-44. [PMID: 15006776 PMCID: PMC368319 DOI: 10.1128/aem.70.3.1537-1544.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When Rhizobium etli CE3 was grown in the presence of Phaseolus vulgaris seed extracts containing anthocyanins, its lipopolysaccharide (LPS) sugar composition was changed in two ways: greatly decreased content of what is normally the terminal residue of the LPS, di-O-methylfucose, and a doubling of the 2-O-methylation of other fucose residues in the LPS O antigen. R. etli strain CE395 was isolated after Tn5 mutagenesis of strain CE3 by screening for mutant colonies that did not change antigenically in the presence of seed extract. The LPS of this strain completely lacked 2-O-methylfucose, regardless of whether anthocyanins were present during growth. The mutant gave only pseudonodules in association with P. vulgaris. Interpretation of this phenotype was complicated by a second LPS defect exhibited by the mutant: its LPS population had only about 50% of the normal amount of O-antigen-containing LPS (LPS I). The latter defect could be suppressed genetically such that the resulting strain (CE395 alpha 395) synthesized the normal amount of an LPS I that still lacked 2-O-methylfucose residues. Strain CE395 alpha 395 did not elicit pseudonodules but resulted in significantly slower nodule development, fewer nodules, and less nitrogenase activity than lps(+) strains. The relative symbiotic deficiency was more severe when seeds were planted and inoculated with bacteria before they germinated. These results support previous conclusions that the relative amount of LPS I on the bacterial surface is crucial in symbiosis, but LPS structural features, such as 2-O-methylation of fucose, also may facilitate symbiotic interactions.
Collapse
Affiliation(s)
- K Dale Noel
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, USA.
| | | | | |
Collapse
|
38
|
Lerouge I, Verreth C, Michiels J, Carlson RW, Datta A, Gao MY, Vanderleyden J. Three genes encoding for putative methyl- and acetyltransferases map adjacent to the wzm and wzt genes and are essential for O-antigen biosynthesis in Rhizobium etli CE3. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:1085-1093. [PMID: 14651342 DOI: 10.1094/mpmi.2003.16.12.1085] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The elucidation of the structure of the O-antigen of Rhizobium etli CE3 predicts that the R. etli CE3 genome must contain genes encoding acetyl- and methyltransferases to confer the corresponding modifications to the O-antigen. We identified three open reading frames (ORFs) upstream of wzm, encoding the membrane component of the O-antigen transporter and located in the lps alpha-region of R. etli CE3. The ORFs encode two putative acetyltransferases with similarity to the CysE-LacA-LpxA-NodL family of acetyltransferases and one putative methyltransferase with sequence motifs common to a wide range of S-adenosyl-L-methionine-dependent methyltransferases. Mutational analysis of the ORFs encoding the putative acetyltransferases and methyltransferase revealed that the acetyl and methyl decorations mediated by these specific enzymes are essential for O-antigen synthesis. Composition analysis and high performance anion exchange chromatography analysis of the lipopolysaccharides (LPSs) of the mutants show that all of these LPSs contain an intact core region and lack the O-antigen polysaccharide. The possible role of these transferases in the decoration of the O-antigen of R. etli is discussed.
Collapse
|
39
|
Forsberg LS, Noel KD, Box J, Carlson RW. Genetic locus and structural characterization of the biochemical defect in the O-antigenic polysaccharide of the symbiotically deficient Rhizobium etli mutant, CE166. Replacement of N-acetylquinovosamine with its hexosyl-4-ulose precursor. J Biol Chem 2003; 278:51347-59. [PMID: 14551189 DOI: 10.1074/jbc.m309016200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The O-antigen polysaccharide (OPS) of Rhizobium etli CE3 lipopolysaccharide (LPS) is linked to the core oligosaccharide via an N-acetylquinovosaminosyl (QuiNAc) residue. A mutant of CE3, CE166, produces LPS with reduced amounts of OPS, and a suppressed mutant, CE166 alpha, produces LPS with nearly normal OPS levels. Both mutants are deficient in QuiNAc production. Characterization of OPS from CE166 and CE166 alpha showed that QuiNAc was replaced by its 4-keto derivative, 2-acetamido-2,6-dideoxyhexosyl-4-ulose. The identity of this residue was determined by NMR and mass spectrometry, and by gas chromatography-mass spectrometry analysis of its 2-acetamido-4-deutero-2,6-dideoxyhexosyl derivatives produced by reduction of the 4-keto group using borodeuteride. Mass spectrometric and methylation analyses showed that the 2-acetamido-2,6-dideoxyhexosyl-4-ulosyl residue was 3-linked and attached to the core-region external Kdo III residue of the LPS, the same position as that of QuiNAc in the CE3 LPS. DNA sequencing revealed that the transposon insertion in strain CE166 was located in an open reading frame whose predicted translation product, LpsQ, falls within a large family of predicted open reading frames, which includes biochemically characterized members that are sugar epimerases and/or reductases. A hypothesis to be tested in future work is that lpsQ encodes UDP-2-acetamido-2,6-dideoxyhexosyl-4-ulose reductase, the second step in the synthesis of UDP-QuiNAc from UDP-GlcNAc.
Collapse
Affiliation(s)
- L Scott Forsberg
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
40
|
Que-Gewirth NLS, Lin S, Cotter RJ, Raetz CRH. An outer membrane enzyme that generates the 2-amino-2-deoxy-gluconate moiety of Rhizobium leguminosarum lipid A. J Biol Chem 2003; 278:12109-19. [PMID: 12531907 PMCID: PMC2745892 DOI: 10.1074/jbc.m300378200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structures of Rhizobium leguminosarum and Rhizobium etli lipid A are distinct from those found in other Gram-negative bacteria. Whereas the more typical Escherichia coli lipid A is a hexa-acylated disaccharide of glucosamine that is phosphorylated at positions 1 and 4', R. etli and R. leguminosarum lipid A consists of a mixture of structurally related species (designated A-E) that lack phosphate. A conserved distal unit, comprised of a diacylated glucosamine moiety with galacturonic acid residue at position 4' and a secondary 27-hydroxyoctacosanoyl (27-OH-C28) as part of a 2' acyloxyacyl moiety, is present in all five components. The proximal end is heterogeneous, differing in the number and lengths of acyl chains and in the identity of the sugar itself. A proximal glucosamine unit is present in B and C, but an unusual 2-amino-2-deoxy-gluconate moiety is found in D-1 and E. We now demonstrate that membranes of R. leguminosarum and R. etli can convert B to D-1 in a reaction that requires added detergent and is inhibited by EDTA. Membranes of Sinorhizobium meliloti and E. coli lack this activity. Mass spectrometry demonstrates that B is oxidized in vitro to a substance that is 16 atomic mass units larger, consistent with the formation of D-1. The oxidation of the lipid A proximal unit is also demonstrated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry in the positive and negative modes using the model substrate, 1-dephospho-lipid IV(A). With this material, an additional intermediate (or by product) is detected that is tentatively identified as a lactone derivative of 1-dephospho-lipid IV(A). The enzyme, presumed to be an oxidase, is located exclusively in the outer membrane of R. leguminosarum as judged by sucrose gradient analysis. To our knowledge, an oxidase associated with the outer membranes of Gram-negative bacteria has not been reported previously.
Collapse
Affiliation(s)
| | - Shanhua Lin
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Robert J. Cotter
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Christian R. H. Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- To whom correspondence should be addressed. Tel.: 919-684-5326; Fax: 919-684-8885; E-mail:
| |
Collapse
|
41
|
Fraysse N, Couderc F, Poinsot V. Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1365-80. [PMID: 12653992 DOI: 10.1046/j.1432-1033.2003.03492.x] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When the rhizosphere is nitrogen-starved, legumes and rhizobia (soil bacteria) enter into a symbiosis that enables the fixation of atmospheric dinitrogen. This implies a complex chemical dialogue between partners and drastic changes on both plant roots and bacteria. Several recent works pointed out the importance of rhizobial surface polysaccharides in the establishing of the highly specific symbiosis between symbionts. Exopolysaccharides appear to be essential for the early infection process. Lipopolysaccharides exhibit specific roles in the later stages of the nodulation processes such as the penetration of the infection thread into the cortical cells or the setting up of the nitrogen-fixing phenotype. More generally, even if active at different steps of the establishing of the symbiosis, all the polysaccharide classes seem to be involved in complex processes of plant defense inhibition that allow plant root invasion. Their chemistry is important for structural recognition as well as for physico-chemical properties.
Collapse
Affiliation(s)
- Nicolas Fraysse
- Laboratoire des IMRCP, UMR5623 UPS/CNRS, 118 route de Narbonne, F-31062 Toulouse, France
| | | | | |
Collapse
|
42
|
Vedam V, Kannenberg EL, Haynes JG, Sherrier DJ, Datta A, Carlson RW. A Rhizobium leguminosarum AcpXL mutant produces lipopolysaccharide lacking 27-hydroxyoctacosanoic acid. J Bacteriol 2003; 185:1841-50. [PMID: 12618448 PMCID: PMC150140 DOI: 10.1128/jb.185.6.1841-1850.2003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Accepted: 12/16/2002] [Indexed: 11/20/2022] Open
Abstract
The structure of the lipid A from Rhizobium etli and Rhizobium leguminosarum lipopolysaccharides (LPSs) lacks phosphate and contains a galacturonosyl residue at its 4' position, an acylated 2-aminogluconate in place of the proximal glucosamine, and a very long chain omega-1 hydroxy fatty acid, 27-hydroxyoctacosanoic acid (27OHC28:0). The 27OHC28:0 moiety is common in lipid A's among members of the Rhizobiaceae and also among a number of the facultative intracellular pathogens that form chronic infections, e.g., Brucella abortus, Bartonella henselae, and Legionella pneumophila. In this paper, a mutant of R. leguminosarum was created by placing a kanamycin resistance cassette within acpXL, the gene which encodes the acyl carrier protein for 27OHC28:0. The result was an LPS containing a tetraacylated lipid A lacking 27OHC28:0. A small amount of the mutant lipid A may contain an added palmitic acid residue. The mutant is sensitive to changes in osmolarity and an increase in acidity, growth conditions that likely occur in the nodule microenvironment. In spite of the probably hostile microenvironment of the nodule, the acpXL mutant is still able to form nitrogen-fixing root nodules even though the appearance and development of nodules are delayed. Therefore, it is possible that the acpXL mutant has a host-inducible mechanism which enables it to adapt to these physiological changes.
Collapse
Affiliation(s)
- Vinata Vedam
- Carbohydrate Research Center, University of Georgia Complex, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
43
|
Gudlavalleti SK, Forsberg LS. Structural characterization of the lipid A component of Sinorhizobium sp. NGR234 rough and smooth form lipopolysaccharide. Demonstration that the distal amide-linked acyloxyacyl residue containing the long chain fatty acid is conserved in rhizobium and Sinorhizobium sp. J Biol Chem 2003; 278:3957-68. [PMID: 12456672 DOI: 10.1074/jbc.m210491200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A broad-host-range endosymbiont, Sinorhizobium sp. NGR234 is a component of several legume-symbiont model systems; however, there is little structural information on the cell surface glycoconjugates. NGR234 cells in free-living culture produce a major rough lipopolysaccharide (LPS, lacking O-chain) and a minor smooth LPS (containing O-chain), and the structure of the lipid A components was investigated by chemical analyses, mass spectrometry, and NMR spectroscopy of the underivatized lipids A. The lipid A from rough LPS is heterogeneous and consists of six major bisphosphorylated species that differ in acylation. Pentaacyl species (52%) are acylated at positions 2, 3, 2', and 3', and tetraacyl species (46%) lack an acyl group at C-3 of the proximal glucosamine. In contrast to Rhizobium etli and Rhizobium leguminosarum, the NGR234 lipid A contains a bisphosphorylated beta-(1' --> 6)-glucosamine disaccharide, typical of enterobacterial lipid A. However, NGR234 lipid A retains the unusual acylation pattern of R. etli lipid A, including the presence of a distal, amide-linked acyloxyacyl residue containing a long chain fatty acid (LCFA) (e.g. 29-hydroxytriacontanoate) attached as the secondary fatty acid. As in R. etli, a 4-carbon fatty acid, beta-hydroxybutyrate, is esterified to (omega - 1) of the LCFA forming an acyloxyacyl residue at that location. The NGR234 lipid A lacks all other ester-linked acyloxyacyl residues and shows extensive heterogeneity of the amide-linked fatty acids. The N-acyl heterogeneity, including unsaturation, is localized mainly to the proximal glucosamine. The lipid A from smooth LPS contains unique triacyl species (20%) that lack ester-linked fatty acids but retain bisphosphorylation and the LCFA-acyloxyacyl moiety. The unusual structural features shared with R. etli/R. leguminosarum lipid A may be essential for symbiosis.
Collapse
|
44
|
Lepek VC, D'Antuono AL, Tomatis PE, Ugalde JE, Giambiagi S, Ugalde RA. Analysis of Mesorhizobium loti glycogen operon: effect of phosphoglucomutase (pgm) and glycogen synthase (g/gA) null mutants on nodulation of Lotus tenuis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:368-375. [PMID: 12026175 DOI: 10.1094/mpmi.2002.15.4.368] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phosphoglucomutase (pgm) gene codes for a key enzyme required for the formation of UDP-glucose and ADP-glucose, the sugar donors for the biosynthesis of glucose containing polysaccharides. A Mesorhizobium loti pgm null mutant obtained in this study contains an altered form of lipopolysaccharide (LPS), lacks exopolysaccharide (EPS), beta cyclic glucan, and glycogen and is unable to nodulate Lotus tenuis. The nonnodulating phenotype of the pgm mutant was not due to the absence of glycogen, since a glycogen synthase (glgA) null mutant effectively nodulates this legume. In M. loti, pgm is part of the glycogen metabolism gene cluster formed by GlgP (glycogen phosphorylase), glgB (glycogen branching), glgC (ADP-glucose pyrophosphorylase), glgA, pgm, and glgX (glycogen debranching). The genes are transcribed as a single transcript from glgP to at least pgm under the control of a strong promoter (promoter I) upstream of glgP. An alternative promoter (promoter II), mapping in a 154-bp DNA fragment spanning 85 bp upstream of the glgA start codon and the first 69 bp of the glgA coding region, controls the expression of glgA and pgm, independently of the rest of the upstream genes. Primer extension experiments showed that transcription starts 19 bp upstream of the glgA start codon.
Collapse
Affiliation(s)
- Viviana C Lepek
- Instituto de Investigaciones Biotecnológicas, INTECH, Universidad Nacional de General San Martín, CONICET, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
45
|
Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 2002; 26:17-47. [PMID: 12007641 DOI: 10.1111/j.1574-6976.2002.tb00597.x] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Current data from bacterial pathogens of animals and from bacterial symbionts of plants support some of the more general proposed functions for lipopolysaccharides (LPS) and underline the importance of LPS structural versatility and adaptability. Most of the structural heterogeneity of LPS molecules is found in the O-antigen polysaccharide. In this review, the role and mechanisms of this striking flexibility in molecular structure of the O-antigen in bacterial pathogens and symbionts are illustrated by some recent findings. The variation in O-antigen that gives rise to an enormous structural diversity of O-antigens lies in the sugar composition and the linkages between monosaccharides. The chemical composition and structure of the O-antigen is strain-specific (interstrain LPS heterogeneity) but can also vary within one bacterial strain (intrastrain LPS heterogeneity). Both LPS heterogeneities can be achieved through variations at different levels. First of all, O-polysaccharides can be modified non-stoichiometrically with sugar moieties, such as glucosyl and fucosyl residues. The addition of non-carbohydrate substituents, i.e. acetyl or methyl groups, to the O-antigen can also occur with regularity, but in most cases these modifications are again non-stoichiometric. Understanding LPS structural variation in bacterial pathogens is important because several studies have indicated that the composition or size of the O-antigen might be a reliable indicator of virulence potential and that these important features often differ within the same bacterial strain. In general, O-antigen modifications seem to play an important role at several (at least two) stages of the infection process, including the colonization (adherence) step and the ability to bypass or overcome host defense mechanisms. There are many reports of modifications of O-antigen in bacterial pathogens, resulting either from altered gene expression, from lysogenic conversion or from lateral gene transfer followed by recombination. In most cases, the mechanisms underlying these changes have not been resolved. However, in recent studies some progress in understanding has been made. Changes in O-antigen structure mediated by lateral gene transfer, O-antigen conversion and phase variation, including fucosylation, glucosylation, acetylation and changes in O-antigen size, will be discussed. In addition to the observed LPS heterogeneity in bacterial pathogens, the structure of LPS is also altered in bacterial symbionts in response to signals from the plant during symbiosis. It appears to be part of a molecular communication between bacterium and host plant. Experiments ex planta suggest that the bacterium in the rhizosphere prepares its LPS for its roles in symbiosis by refining the LPS structure in response to seed and root compounds and the lower pH at the root surface. Moreover, modifications in LPS induced by conditions associated with infection are another indication that specific structures are important. Also during the differentiation from bacterium to bacteroid, the LPS of Rhizobium undergoes changes in the composition of the O-antigen, presumably in response to the change of environment. Recent findings suggest that, during symbiotic bacteroid development, reduced oxygen tension induces structural modifications in LPS that cause a switch from predominantly hydrophilic to predominantly hydrophobic molecular forms. However, the genetic mechanisms by which the LPS epitope changes are regulated remain unclear. Finally, the possible roles of O-antigen variations in symbiosis will be discussed.
Collapse
Affiliation(s)
- Inge Lerouge
- Centre of Microbial and Plant Genetics, Katholieke Universtiteit Leuven, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | | |
Collapse
|
46
|
Duelli DM, Tobin A, Box JM, Kolli VS, Carlson RW, Noel KD. Genetic locus required for antigenic maturation of Rhizobium etli CE3 lipopolysaccharide. J Bacteriol 2001; 183:6054-64. [PMID: 11567006 PMCID: PMC99685 DOI: 10.1128/jb.183.20.6054-6064.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium etli modifies lipopolysaccharide (LPS) structure in response to environmental signals, such as low pH and anthocyanins. These LPS modifications result in the loss of reactivity with certain monoclonal antibodies. The same antibodies fail to recognize previously isolated R. etli mutant strain CE367, even in the absence of such environmental cues. Chemical analysis of the LPS in strain CE367 demonstrated that it lacked the terminal sugar of the wild-type O antigen, 2,3,4-tri-O-methylfucose. A 3-kb stretch of DNA, designated as lpe3, restored wild-type antigenicity when transferred into CE367. From the sequence of this DNA, five open reading frames were postulated. Site-directed mutagenesis and complementation analysis suggested that the genes were organized in at least two transcriptional units, both of which were required for the production of LPS reactive with the diagnostic antibodies. Growth in anthocyanins or at low pH did not alter the specific expression of gusA from the transposon insertion of mutant CE367, nor did the presence of multiple copies of lpe3 situated behind a strong, constitutive promoter prevent epitope changes induced by these environmental cues. Mutations of the lpe genes did not prevent normal nodule development on Phaseolus vulgaris and had very little effect on the occupation of nodules in competition with the wild-type strain.
Collapse
Affiliation(s)
- D M Duelli
- Department of Biology, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lerouge I, Laeremans T, Verreth C, Vanderleyden J, Van Soom C, Tobin A, Carlson RW. Identification of an ATP-binding cassette transporter for export of the O-antigen across the inner membrane in Rhizobium etli based on the genetic, functional, and structural analysis of an lps mutant deficient in O-antigen. J Biol Chem 2001; 276:17190-8. [PMID: 11279176 DOI: 10.1074/jbc.m101129200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For O-antigen lipopolysaccharide (LPS) synthesis in bacteria, transmembrane migration of undecaprenyl pyrophosphate-bound O-antigen oligosaccharide subunits or polysaccharide occurs before ligation to the core region of the LPS molecule. In this study, we identified by mutagenesis an ATP-binding cassette transporter in Rhizobium etli CE3 that is likely responsible for the translocation of the O-antigen across the inner plasma membrane. Mutant FAJ1200 LPS lacks largely the O-antigen, as shown by SDS-polyacrylamide gel electrophoresis and confirmed by immunoblot analysis. Furthermore, LPS isolated from FAJ1200 is totally devoid of any O-chain glycosyl residues and contains only those glycosyl residues that can be expected for the inner core region. The membrane component and the cytoplasmic ATP-binding component of the ATP-binding cassette transporter are encoded by wzm and wzt, respectively. The Tn5 transposon in mutant FAJ1200 is inserted in the wzm gene. This mutation resulted in an Inf- phenotype in bean plants.
Collapse
Affiliation(s)
- I Lerouge
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Kasteelpark Arenberg 20, Heverlee B-3001, Belgium
| | | | | | | | | | | | | |
Collapse
|