1
|
Abstract
Genomic DNA is chemically reactive and therefore susceptible to damage by many exogenous and endogenous sources. Lesions produced from these damaging events can have various mutagenic and genotoxic consequences. This Perspective follows the journey of one particular lesion, 1,N6-ethenoadenine (εA), from its formation to replication and repair, and its role in cancerous tissues and inflammatory diseases. εA is generated by the reaction of adenine (A) with vinyl chloride or lipid peroxidation products. We present the miscoding properties of εA with an emphasis on how bacterial and mammalian cells can process lesions differently, leading to varied mutational spectra. But with information from these assays, we can better understand how the miscoding properties of εA lead to biological consequences and how genomic stability can be maintained via DNA repair mechanisms. We discuss how base excision repair (BER) and direct reversal repair (DRR) can minimize the biological consequences of εA lesions. Kinetic parameters of glycosylases and AlkB family enzymes are described, along with a discussion of the relative contributions of the BER and DRR pathways in the repair of εA. Because eukaryotic DNA is packaged in chromatin, we also discuss the impact of this packaging on BER and DRR, specifically in regards to repair of εA. Studying DNA lesions like εA in this context, from origin to biological implications, can provide crucial information to better understand prevention of mutagenesis and cancer.
Collapse
Affiliation(s)
- Katelyn L Rioux
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
2
|
Strand with mutagenic lesion is preferentially used as a template in the region of a bi-stranded clustered DNA damage site in Escherichia coli. Sci Rep 2020; 10:9737. [PMID: 32546758 PMCID: PMC7297740 DOI: 10.1038/s41598-020-66651-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/20/2020] [Indexed: 11/08/2022] Open
Abstract
The damaging potential of ionizing radiation arises largely from the generation of clustered DNA damage sites within cells. Previous studies using synthetic DNA lesions have demonstrated that models of clustered DNA damage exhibit enhanced mutagenic potential of the comprising lesions. However, little is known regarding the processes that lead to mutations in these sites, apart from the fact that base excision repair of lesions within the cluster is compromised. Unique features of the mutation frequencies within bi-stranded clusters have led researchers to speculate that the strand containing the mutagenic lesion is preferentially used as the template for DNA synthesis. To gain further insights into the processing of clustered DNA damage sites, we used a plasmid-based assay in E. coli cells. Our findings revealed that the strand containing a mutagenic lesion within a bi-stranded clustered DNA damage site is frequently used as the template. This suggests the presence of an, as yet unknown, strand synthesis process that is unrelated to base excision repair, and that this process plays an important role in mutagenesis. The length of the region of strand preference was found to be determined by DNA polymerase I.
Collapse
|
3
|
Takahashi M, Akamatsu K, Shikazono N. A polymerization-based method to construct a plasmid containing clustered DNA damage and a mismatch. Anal Biochem 2016; 510:129-135. [PMID: 27449134 DOI: 10.1016/j.ab.2016.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
Exposure of biological materials to ionizing radiation often induces clustered DNA damage. The mutagenicity of clustered DNA damage can be analyzed with plasmids carrying a clustered DNA damage site, in which the strand bias of a replicating plasmid (i.e., the degree to which each of the two strands of the plasmid are used as the template for replication of the plasmid) can help to clarify how clustered DNA damage enhances the mutagenic potential of comprising lesions. Placement of a mismatch near a clustered DNA damage site can help to determine the strand bias, but present plasmid-based methods do not allow insertion of a mismatch at a given site in the plasmid. Here, we describe a polymerization-based method for constructing a plasmid containing clustered DNA lesions and a mismatch. The presence of a DNA lesion and a mismatch in the plasmid was verified by enzymatic treatment and by determining the relative abundance of the progeny plasmids derived from each of the two strands of the plasmid.
Collapse
Affiliation(s)
- Momoko Takahashi
- Quantum Beam Science Research Directorate, National Institutes of Quantum and Radiological Science and Technology, Japan
| | - Ken Akamatsu
- Quantum Beam Science Research Directorate, National Institutes of Quantum and Radiological Science and Technology, Japan
| | - Naoya Shikazono
- Quantum Beam Science Research Directorate, National Institutes of Quantum and Radiological Science and Technology, Japan.
| |
Collapse
|
4
|
Laureti L, Demol J, Fuchs RP, Pagès V. Bacterial Proliferation: Keep Dividing and Don't Mind the Gap. PLoS Genet 2015; 11:e1005757. [PMID: 26713761 PMCID: PMC4699847 DOI: 10.1371/journal.pgen.1005757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022] Open
Abstract
DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication and challenge genome integrity. Previous in vitro studies showed that the bacterial replicase is able to re-prime downstream of a DNA lesion, leaving behind a single-stranded DNA gap. The question remains of what happens to this gap in vivo. Following the insertion of a single lesion in the chromosome of a living cell, we showed that this gap is mostly filled in by Homology Directed Gap Repair in a RecA dependent manner. When cells fail to repair this gap, or when homologous recombination is impaired, cells are still able to divide, leading to the loss of the damaged chromatid, suggesting that bacteria lack a stringent cell division checkpoint mechanism. Hence, at the expense of losing one chromatid, cell survival and proliferation are ensured. DNA Damage Tolerance (DDT) mechanisms help dealing with unrepaired DNA lesions that block replication, thus challenging genome integrity. Two DDT mechanisms have previously been described: error prone Translesion Synthesis operated by specialized DNA polymerases and error free bypass that uses the information of the sister chromatid to bypass the lesion. In this work, we set up a novel genetic system that allows to insert a single DNA blocking lesion in the chromosome of a living cell and to visualize the exchange of genetic information between the undamaged and the damaged strand. Using this system, we showed in vivo that the replication fork is able to re-prime downstream of the lesion, leaving a gap. This gap is mostly filled in by the error free pathway through the RecA homologous recombination mechanism. We show that when the gap is left unrepaired, cells are still able to divide by losing the damaged chromatid, which evidences the lack of a stringent cell division checkpoint system.
Collapse
Affiliation(s)
- Luisa Laureti
- Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
| | - Julien Demol
- Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
| | - Robert P. Fuchs
- Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
- * E-mail: (RPF); (VP)
| | - Vincent Pagès
- Cancer Research Center of Marseille, Team DNA Damage Tolerance, CNRS, UMR7258; Inserm, U1068; Institut Paoli-Calmettes; Aix-Marseille University, Marseille, France
- * E-mail: (RPF); (VP)
| |
Collapse
|
5
|
Shrivastav N, Li D, Essigmann JM. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. Carcinogenesis 2009; 31:59-70. [PMID: 19875697 DOI: 10.1093/carcin/bgp262] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The reaction of DNA-damaging agents with the genome results in a plethora of lesions, commonly referred to as adducts. Adducts may cause DNA to mutate, they may represent the chemical precursors of lethal events and they can disrupt expression of genes. Determination of which adduct is responsible for each of these biological endpoints is difficult, but this task has been accomplished for some carcinogenic DNA-damaging agents. Here, we describe the respective contributions of specific DNA lesions to the biological effects of low molecular weight alkylating agents.
Collapse
Affiliation(s)
- Nidhi Shrivastav
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
6
|
Izhar L, Goldsmith M, Dahan R, Geacintov N, Lloyd RG, Livneh Z. Analysis of strand transfer and template switching mechanisms of DNA gap repair by homologous recombination in Escherichia coli: predominance of strand transfer. J Mol Biol 2008; 381:803-9. [PMID: 18585391 PMCID: PMC4193903 DOI: 10.1016/j.jmb.2008.06.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 06/04/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
Daughter strand gaps formed upon interruption of replication at DNA lesions in Escherichia coli can be repaired by either translesion DNA synthesis or homologous recombination (HR) repair. Using a plasmid-based assay system that enables discrimination between strand transfer and template switching (information copying) modes of HR gap repair, we found that approximately 80% of strand gaps were repaired by physical strand transfer from the donor, whereas approximately 20% appear to be repaired by template switching. HR gap repair operated on both small and bulky lesions and largely depended on RecA and RecF but not on the RecBCD nuclease. In addition, we found that HR was mildly reduced in cells lacking the RuvABC and RecG proteins involved in resolution of Holliday junctions. These results, obtained for the first time under conditions that detect the two HR gap repair mechanisms, provide in vivo high-resolution molecular evidence for the predominance of the strand transfer mechanism in HR gap repair. A small but significant portion of HR gap repair appears to occur via a template switching mechanism.
Collapse
Affiliation(s)
- Lior Izhar
- Dept. of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Goldsmith
- Dept. of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronny Dahan
- Dept. of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nicholas Geacintov
- Chemistry Department, New York University, New York, New York 10003-5180, USA
| | - Robert G. Lloyd
- Institute of Genetics, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, United Kingdom
| | - Zvi Livneh
- Dept. of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
7
|
Delaney JC, Essigmann JM. Biological properties of single chemical-DNA adducts: a twenty year perspective. Chem Res Toxicol 2008; 21:232-52. [PMID: 18072751 PMCID: PMC2821157 DOI: 10.1021/tx700292a] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The genome and its nucleotide precursor pool are under sustained attack by radiation, reactive oxygen and nitrogen species, chemical carcinogens, hydrolytic reactions, and certain drugs. As a result, a large and heterogeneous population of damaged nucleotides forms in all cells. Some of the lesions are repaired, but for those that remain, there can be serious biological consequences. For example, lesions that form in DNA can lead to altered gene expression, mutation, and death. This perspective examines systems developed over the past 20 years to study the biological properties of single DNA lesions.
Collapse
Affiliation(s)
- James C. Delaney
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - John M. Essigmann
- Departments of Chemistry and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
8
|
Sanchez H, Carrasco B, Cozar MC, Alonso JC. Bacillus subtilis RecG branch migration translocase is required for DNA repair and chromosomal segregation. Mol Microbiol 2007; 65:920-35. [PMID: 17640277 DOI: 10.1111/j.1365-2958.2007.05835.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The absence of Bacillus subtilis RecG branch migration translocase causes a defect in cell proliferation, renders cells very sensitive to DNA-damaging agents and increases approximately 150-fold the amount of non-partitioned chromosomes. Inactivation of recF, addA, recH, recV or recU increases both the sensitivity to DNA-damaging agents and the chromosomal segregation defect of recG mutants. Deletion of recS or recN gene partially suppresses cell proliferation, DNA repair and segregation defects of DeltarecG cells, whereas deletion of recA only partially suppresses the segregation defect of DeltarecG cells. Deletion of recG and ripX render cells with very poor viability, extremely sensitive to DNA-damaging agents, and with a drastic segregation defect. After exposure to mitomycin C recG or ripX cells show a drastic defect in chromosome partitioning (approximately 40% of the cells), and this defect is even larger (approximately 60% of the cells) in recG ripX cells. Taken together, these data indicate that: (i) RecG defines a new epistatic group (eta), (ii) RecG is required for proper chromosomal segregation even in the presence of other proteins that process and resolve Holliday junctions, and (iii) different avenues could process Holliday junctions.
Collapse
Affiliation(s)
- Humberto Sanchez
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, E-28049 Spain
| | | | | | | |
Collapse
|
9
|
Shikazono N, Pearson C, O'Neill P, Thacker J. The roles of specific glycosylases in determining the mutagenic consequences of clustered DNA base damage. Nucleic Acids Res 2006; 34:3722-30. [PMID: 16893955 PMCID: PMC1557791 DOI: 10.1093/nar/gkl503] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/06/2006] [Accepted: 07/03/2006] [Indexed: 11/14/2022] Open
Abstract
The potential for genetic change arising from specific single types of DNA lesion has been thoroughly explored, but much less is known about the mutagenic effects of DNA lesions present in clustered damage sites. Localized clustering of damage is a hallmark of certain DNA-damaging agents, particularly ionizing radiation. We have investigated the potential of a non-mutagenic DNA base lesion, 5,6-dihydrothymine (DHT), to influence the mutagenicity of 8-oxo-7,8-dihydroguanine (8-oxoG) when the two lesions are closely opposed. Using a bacterial plasmid-based assay we present the first report of a significantly higher mutation frequency for the clustered DHT and 8-oxoG lesions than for single 8-oxoG in wild-type and in glycosylase-deficient strains. We propose that endonuclease III has an important role in the initial stages of processing DHT/8-oxoG clusters, removing DHT to give an intermediate with an abasic site or single-strand break opposing 8-oxoG. We suggest that this mutagenic intermediate is common to several different combinations of base lesions forming clustered DNA damage sites. The MutY glycosylase, acting post-replication, is most important for reducing mutation formation. Recovered plasmids commonly gave rise to both wild-type and mutant progeny, suggesting that there is differential replication of the two DNA strands carrying specific forms of base damage.
Collapse
Affiliation(s)
- Naoya Shikazono
- Research Group for Radiation Damage to DNA, Advanced Science Research Centre, Japan Atomic Energy Research InstituteShirakata-Shirane 2-4, Tokai-mura, Ibaraki 319-1195, Japan
- Medical Research Council, Radiation and Genome Stability UnitHarwell, Oxfordshire OX11 0RD, UK
| | - Colin Pearson
- Medical Research Council, Radiation and Genome Stability UnitHarwell, Oxfordshire OX11 0RD, UK
| | - Peter O'Neill
- Medical Research Council, Radiation and Genome Stability UnitHarwell, Oxfordshire OX11 0RD, UK
| | - John Thacker
- Medical Research Council, Radiation and Genome Stability UnitHarwell, Oxfordshire OX11 0RD, UK
| |
Collapse
|
10
|
Delaney JC, Smeester L, Wong C, Frick LE, Taghizadeh K, Wishnok JS, Drennan CL, Samson LD, Essigmann JM. AlkB reverses etheno DNA lesions caused by lipid oxidation in vitro and in vivo. Nat Struct Mol Biol 2005; 12:855-60. [PMID: 16200073 DOI: 10.1038/nsmb996] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 08/31/2005] [Indexed: 02/08/2023]
Abstract
Oxidative stress converts lipids into DNA-damaging agents. The genomic lesions formed include 1,N(6)-ethenoadenine (epsilonA) and 3,N(4)-ethenocytosine (epsilonC), in which two carbons of the lipid alkyl chain form an exocyclic adduct with a DNA base. Here we show that the newly characterized enzyme AlkB repairs epsilonA and epsilonC. The potent toxicity and mutagenicity of epsilonA in Escherichia coli lacking AlkB was reversed in AlkB(+) cells; AlkB also mitigated the effects of epsilonC. In vitro, AlkB cleaved the lipid-derived alkyl chain from DNA, causing epsilonA and epsilonC to revert to adenine and cytosine, respectively. Biochemically, epsilonA is epoxidized at the etheno bond. The epoxide is putatively hydrolyzed to a glycol, and the glycol moiety is released as glyoxal. These reactions show a previously unrecognized chemical versatility of AlkB. In mammals, the corresponding AlkB homologs may defend against aging, cancer and oxidative stress.
Collapse
Affiliation(s)
- James C Delaney
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang IY, Miller H, Wang Z, Frank EG, Ohmori H, Hanaoka F, Moriya M. Mammalian translesion DNA synthesis across an acrolein-derived deoxyguanosine adduct. Participation of DNA polymerase eta in error-prone synthesis in human cells. J Biol Chem 2003; 278:13989-94. [PMID: 12584190 DOI: 10.1074/jbc.m212535200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-OH-PdG, an acrolein-derived deoxyguanosine adduct, inhibits DNA synthesis and miscodes significantly in human cells. To probe the cellular mechanism underlying the error-free and error-prone translesion DNA syntheses, in vitro primer extension experiments using purified DNA polymerases and site-specific alpha-OH-PdG were conducted. The results suggest the involvement of pol eta in the cellular error-prone translesion synthesis. Experiments with xeroderma pigmentosum variant cells, which lack pol eta, confirmed this hypothesis. The in vitro results also suggested the involvement of pol iota and/or REV1 in inserting correct dCMP opposite alpha-OH-PdG during error-free synthesis. However, none of translesion-specialized DNA polymerases catalyzed significant extension from a dC terminus when paired opposite alpha-OH-PdG. Thus, our results indicate the following. (i) Multiple DNA polymerases are involved in the bypass of alpha-OH-PdG in human cells. (ii) The accurate and inaccurate syntheses are catalyzed by different polymerases. (iii) A modification of the current eukaryotic bypass model is necessary to account for the accurate bypass synthesis in human cells.
Collapse
Affiliation(s)
- In-Young Yang
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-8651, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Yang IY, Chan G, Miller H, Huang Y, Torres MC, Johnson F, Moriya M. Mutagenesis by acrolein-derived propanodeoxyguanosine adducts in human cells. Biochemistry 2002; 41:13826-32. [PMID: 12427046 DOI: 10.1021/bi0264723] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acrolein, which is widely spread in the environment and is produced by lipid peroxidation in cells, reacts with DNA to form two exocyclic 1,N2-propanodeoxyguanosine (PdG) adducts. To establish their relative contribution to the acrolein mutagenicity, the genotoxic properties of alpha-OH-PdG and gamma-OH-PdG together with their model DNA adduct, PdG, were studied in human cells. DNA adducts were incorporated site-specifically into a SV40/BK virus origin-based shuttle vector and replicated in xeroderma pigmentosum complementation group A (XPA) cells. Analysis of progeny plasmid revealed that alpha-OH-PdG and PdG strongly block DNA synthesis and that both adducts induced base substitutions with G --> T transversions predominating. Primer extension studies, catalyzed by the 3'-->5' exonuclease-deficient Klenow fragment of Escherichia coli pol I, revealed limited extension from the 3' primer termini opposite these two adducts. In contrast, gamma-OH-PdG did not strongly block DNA synthesis or miscode in XPA cells. Primer extension from a dC terminus opposite gamma-OH-PdG was much more efficient than that opposite alpha-OH-PdG or PdG. These results indicate that the minor alpha-OH-PdG adduct is more genotoxic than the major gamma-OH-PdG. Furthermore, experiments using a HeLa whole cell extract indicate that all three DNA adducts are not efficiently removed from DNA by base excision repair.
Collapse
Affiliation(s)
- In-Young Yang
- Laboratory of Chemical Biology, State University of New York, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Lovett ST, Hurley RL, Sutera VA, Aubuchon RH, Lebedeva MA. Crossing over between regions of limited homology in Escherichia coli. RecA-dependent and RecA-independent pathways. Genetics 2002; 160:851-9. [PMID: 11901106 PMCID: PMC1462031 DOI: 10.1093/genetics/160.3.851] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed an assay for intermolecular crossing over between circular plasmids carrying variable amounts of homology. Screens of Escherichia coli mutants demonstrated that known recombination functions can only partially account for the observed recombination. Recombination rates increased three to four orders of magnitude as homology rose from 25 to 411 bp. Loss of recA blocked most recombination; however, RecA-independent crossing over predominated at 25 bp and could be detected at all homology lengths. Products of recA-independent recombination were reciprocal in nature. This suggests that RecA-independent recombination may involve a true break-and-join mechanism, but the genetic basis for this mechanism remains unknown. RecA-dependent crossing over occurred primarily by the RecF pathway but considerable recombination occurred independent of both RecF and RecBCD. In many respects, the genetic dependence of RecA-dependent crossing over resembled that reported for single-strand gap repair. Surprisingly, ruvC mutants, in both recA(+) and recA mutant backgrounds, scored as hyperrecombinational. This may occur because RuvC preferentially resolves Holliday junction intermediates, critical to both RecA-dependent and RecA-independent mechanisms, to the noncrossover configuration. Levels of crossing over were increased by defects in DnaB helicase and by oxidative damage, showing that damaged DNA or stalled replication can initiate genetic recombination.
Collapse
Affiliation(s)
- Susan T Lovett
- Rosenstiel Basic Medical Sciences Research Center and the Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | | | | | | | |
Collapse
|
14
|
Yang IY, Johnson F, Grollman AP, Moriya M. Genotoxic mechanism for the major acrolein-derived deoxyguanosine adduct in human cells. Chem Res Toxicol 2002; 15:160-4. [PMID: 11849041 DOI: 10.1021/tx010123c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acrolein, widely distributed in the environment and also produced endogenously, forms deoxyguanosine adducts in DNA. The genotoxicity of the major acrolein-dG adduct, 8alpha and 8beta isomers of 3H-8-hydroxy-3-(beta-D-2'-deoxyribofuranosyl)-5,6,7,8-tetrahydropyrido[3,2-a]purine-9-one (gamma-OH-PdG), and the model adduct, PdG, which lacks the hydroxy group of gamma-OH-PdG, was investigated in human cells. The adducts were site-specifically incorporated into a SV40/BK origin-based shuttle vector. Estimated efficiencies of translesion DNA synthesis were 73% for gamma-OH-PdG and 25% for PdG when compared with dG control. Gamma-OH-PdG was marginally miscoding (<or=1%), inducing G-->T and G-->A base substitutions in HeLa and xeroderma pigmentosum complementation group A (XP-A) and variant (XP-V) cells. There was no significant difference in the miscoding frequency when the adduct was inserted in the leading or lagging strand. PdG was more miscoding than gamma-OH-PdG by inducing targeted base substitutions (G-->T, A, or C) at a frequency of 7.5% in XP-A cells. Thus, the authentic major adduct, gamma-OH-PdG, is less blocking to DNA synthesis and less miscoding than the model adduct, PdG.
Collapse
Affiliation(s)
- In-Young Yang
- Laboratory of Chemical Biology, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | | | |
Collapse
|
15
|
Yeager CM, Bottomley PJ, Arp DJ. Requirement of DNA repair mechanisms for survival of Burkholderia cepacia G4 upon degradation of trichloroethylene. Appl Environ Microbiol 2001; 67:5384-91. [PMID: 11722883 PMCID: PMC93320 DOI: 10.1128/aem.67.12.5384-5391.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Tn5-based mutagenesis strategy was used to generate a collection of trichloroethylene (TCE)-sensitive (TCS) mutants in order to identify repair systems or protective mechanisms that shield Burkholderia cepacia G4 from the toxic effects associated with TCE oxidation. Single Tn5 insertion sites were mapped within open reading frames putatively encoding enzymes involved in DNA repair (UvrB, RuvB, RecA, and RecG) in 7 of the 11 TCS strains obtained (4 of the TCS strains had a single Tn5 insertion within a uvrB homolog). The data revealed that the uvrB-disrupted strains were exceptionally susceptible to killing by TCE oxidation, followed by the recA strain, while the ruvB and recG strains were just slightly more sensitive to TCE than the wild type. The uvrB and recA strains were also extremely sensitive to UV light and, to a lesser extent, to exposure to mitomycin C and H(2)O(2). The data from this study establishes that there is a link between DNA repair and the ability of B. cepacia G4 cells to survive following TCE transformation. A possible role for nucleotide excision repair and recombination repair activities in TCE-damaged cells is discussed.
Collapse
Affiliation(s)
- C M Yeager
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon 97331-2902, USA
| | | | | |
Collapse
|
16
|
Yang IY, Hossain M, Miller H, Khullar S, Johnson F, Grollman A, Moriya M. Responses to the major acrolein-derived deoxyguanosine adduct in Escherichia coli. J Biol Chem 2001; 276:9071-6. [PMID: 11124950 DOI: 10.1074/jbc.m008918200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acrolein, a reactive alpha,beta-unsaturated aldehyde found ubiquitously in the environment and formed endogenously in mammalian cells, reacts with DNA to form an exocyclic DNA adduct, 3H-8-hydroxy-3-(beta-D-2'-deoxyribofuranosyl)-5,6,7,8-tetrahydropyrido[3,2-a]purine-9-one (gamma-OH-PdG). The cellular processing and mutagenic potential of gamma-OH-PdG have been examined, using a site-specific approach in which a single adduct is embedded in double-strand plasmid DNA. Analysis of progeny plasmid reveals that this adduct is excised by nucleotide excision repair. The apparent level of inhibition of DNA synthesis is approximately 70% in Escherichia coli DeltarecA, uvrA. The block to DNA synthesis can be overcome partially by recA-dependent recombination repair. Targeted G --> T transversions were observed at a frequency of 7 x 10(-4)/translesion synthesis. Inactivation of polB, dinB, and umuD,C genes coding for "SOS" DNA polymerases did not affect significantly the efficiency or fidelity of translesion synthesis. In vitro primer extension experiments revealed that the Klenow fragment of polymerase I catalyzes error-prone synthesis, preferentially incorporating dAMP and dGMP opposite gamma-OH-PdG. We conclude from this study that DNA polymerase III catalyzes translesion synthesis across gamma-OH-PdG in an error-free manner. Nucleotide excision repair, recombination repair, and highly accurate translesion synthesis combine to protect E. coli from the potential genotoxicity of this DNA adduct.
Collapse
Affiliation(s)
- I Y Yang
- Laboratory of Chemical Biology, Department of Pharmacological Sciences, State University of New York at Stony Brook, Stony Brook, New York 11794-8651, USA
| | | | | | | | | | | | | |
Collapse
|