1
|
Fonseca DR, Day LA, Crone KK, Costa KC. An Extracellular, Ca 2+-Activated Nuclease (EcnA) Mediates Transformation in a Naturally Competent Archaeon. Mol Microbiol 2024; 122:477-490. [PMID: 39214865 DOI: 10.1111/mmi.15311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Transformation, the uptake of DNA directly from the environment, is a major driver of gene flow in microbial populations. In bacteria, DNA uptake requires a nuclease that processes dsDNA to ssDNA, which is subsequently transferred into the cell and incorporated into the genome. However, the process of DNA uptake in archaea is still unknown. Previously, we cataloged genes essential to natural transformation in Methanococcus maripaludis, but few homologs of bacterial transformation-associated genes were identified. Here, we characterize one gene, MMJJ_16440 (named here as ecnA), to be an extracellular nuclease. We show that EcnA is Ca2+-activated, present on the cell surface, and essential for transformation. While EcnA can degrade several forms of DNA, the highest activity was observed with ssDNA as a substrate. Activity was also observed with circular dsDNA, suggesting that EcnA is an endonuclease. This is the first biochemical characterization of a transformation-associated protein in a member of the archaeal domain and suggests that both archaeal and bacterial transformation initiate in an analogous fashion.
Collapse
Affiliation(s)
- Dallas R Fonseca
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Leslie A Day
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kathryn K Crone
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kyle C Costa
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
2
|
Förster M, Rathmann I, Yüksel M, Power JJ, Maier B. Genome-wide transformation reveals extensive exchange across closely related Bacillus species. Nucleic Acids Res 2023; 51:12352-12366. [PMID: 37971327 PMCID: PMC10711437 DOI: 10.1093/nar/gkad1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial transformation is an important mode of horizontal gene transfer that helps spread genetic material across species boundaries. Yet, the factors that pose barriers to genome-wide cross-species gene transfer are poorly characterized. Here, we develop a replacement accumulation assay to study the effects of genomic distance on transfer dynamics. Using Bacillus subtilis as recipient and various species of the genus Bacillus as donors, we find that the rate of orthologous replacement decreases exponentially with the divergence of their core genomes. We reveal that at least 96% of the B. subtilis core genes are accessible to replacement by alleles from Bacillus spizizenii. For the more distantly related Bacillus atrophaeus, gene replacement events cluster at genomic locations with high sequence identity and preferentially replace ribosomal genes. Orthologous replacement also creates mosaic patterns between donor and recipient genomes, rearranges the genome architecture, and governs gain and loss of accessory genes. We conclude that cross-species gene transfer is dominated by orthologous replacement of core genes which occurs nearly unrestricted between closely related species. At a lower rate, the exchange of accessory genes gives rise to more complex genome dynamics.
Collapse
Affiliation(s)
- Mona Förster
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Isabel Rathmann
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Melih Yüksel
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Jeffrey J Power
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Zülpicherstr. 47a, 50674 Köln, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Vesel N, Iseli C, Guex N, Lemopoulos A, Blokesch M. DNA modifications impact natural transformation of Acinetobacter baumannii. Nucleic Acids Res 2023; 51:5661-5677. [PMID: 37178001 PMCID: PMC10287943 DOI: 10.1093/nar/gkad377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Acinetobacter baumannii is a dangerous nosocomial pathogen, especially due to its ability to rapidly acquire new genetic traits, including antibiotic resistance genes (ARG). In A. baumannii, natural competence for transformation, one of the primary modes of horizontal gene transfer (HGT), is thought to contribute to ARG acquisition and has therefore been intensively studied. However, knowledge regarding the potential role of epigenetic DNA modification(s) on this process remains lacking. Here, we demonstrate that the methylome pattern of diverse A. baumannii strains differs substantially and that these epigenetic marks influence the fate of transforming DNA. Specifically, we describe a methylome-dependent phenomenon that impacts intra- and inter-species DNA exchange by the competent A. baumannii strain A118. We go on to identify and characterize an A118-specific restriction-modification (RM) system that impairs transformation when the incoming DNA lacks a specific methylation signature. Collectively, our work contributes towards a more holistic understanding of HGT in this organism and may also aid future endeavors towards tackling the spread of novel ARGs. In particular, our results suggest that DNA exchanges between bacteria that share similar epigenomes are favored and could therefore guide future research into identifying the reservoir(s) of dangerous genetic traits for this multi-drug resistant pathogen.
Collapse
Affiliation(s)
- Nina Vesel
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christian Iseli
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Murakami H, Sano K, Motomura K, Kuroda A, Hirota R. Assessment of horizontal gene transfer-mediated destabilization of Synechococcus elongatus PCC 7942 biocontainment system. J Biosci Bioeng 2023; 135:190-195. [PMID: 36653270 DOI: 10.1016/j.jbiosc.2022.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023]
Abstract
Biological containment is a biosafety strategy that prevents the dispersal of genetically modified organisms in natural ecosystems. We previously established a biocontainment system that makes bacterial growth dependent on the availability of phosphite (Pt), an ecologically rare form of phosphorus (P), by introducing Pt metabolic pathway genes and disrupting endogenous phosphate and organic phosphate transporter genes. Although this system proved highly effective, horizontal gene transfer (HGT) mediated recovery of a P transporter gene is considered as a potential pathway to abolish the Pt-dependent growth, resulting in escape from the containment. Here, we assessed the risk of HGT driven escape using the Pt-dependent cyanobacterium Synechococcus elongatus PCC 7942. Transformation experiments revealed that the Pt-dependent strain could regain phosphate transporter genes from the S. elongatus PCC 7942 wild-type genome and from the genome of the closely related strain, S. elongatus UTEX 2973. Transformed S. elongatus PCC 7942 became viable in a phosphate-containing medium. Meanwhile, transformation of the Synechocystis sp. PCC 6803 genome or environmental DNA did not yield escape strains, suggesting that only genetic material derived from phylogenetically-close species confer high risk to generate escape. Eliminating a single gene necessary for natural competence from the Pt-dependent strain reduced the escape occurrence rate. These results demonstrate that natural competence could be a potential risk to destabilize Pt-dependence, and therefore inhibiting exogenous DNA uptake would be effective for enhancing the robustness of the gene disruption-dependent biocontainment.
Collapse
Affiliation(s)
- Hiroki Murakami
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Kosuke Sano
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Kei Motomura
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Akio Kuroda
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Ryuichi Hirota
- Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan.
| |
Collapse
|
5
|
Diop A, Torrance EL, Stott CM, Bobay LM. Gene flow and introgression are pervasive forces shaping the evolution of bacterial species. Genome Biol 2022; 23:239. [PMID: 36357919 PMCID: PMC9650840 DOI: 10.1186/s13059-022-02809-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Although originally thought to evolve clonally, studies have revealed that most bacteria exchange DNA. However, it remains unclear to what extent gene flow shapes the evolution of bacterial genomes and maintains the cohesion of species. RESULTS Here, we analyze the patterns of gene flow within and between >2600 bacterial species. Our results show that fewer than 10% of bacterial species are truly clonal, indicating that purely asexual species are rare in nature. We further demonstrate that the taxonomic criterion of ~95% genome sequence identity routinely used to define bacterial species does not accurately represent a level of divergence that imposes an effective barrier to gene flow across bacterial species. Interruption of gene flow can occur at various sequence identities across lineages, generally from 90 to 98% genome identity. This likely explains why a ~95% genome sequence identity threshold has empirically been judged as a good approximation to define bacterial species. Our results support a universal mechanism where the availability of identical genomic DNA segments required to initiate homologous recombination is the primary determinant of gene flow and species boundaries in bacteria. We show that these barriers of gene flow remain porous since many distinct species maintain some level of gene flow, similar to introgression in sexual organisms. CONCLUSIONS Overall, bacterial evolution and speciation are likely shaped by similar forces driving the evolution of sexual organisms. Our findings support a model where the interruption of gene flow-although not necessarily the initial cause of speciation-leads to the establishment of permanent and irreversible species borders.
Collapse
Affiliation(s)
- Awa Diop
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| | - Ellis L. Torrance
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| | - Caroline M. Stott
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| | - Louis-Marie Bobay
- grid.266860.c0000 0001 0671 255XDepartment of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, 321 McIver Street, PO Box 26170, Greensboro, NC 27402 USA
| |
Collapse
|
6
|
Tenaillon O, Matic I. L’impact des mutations neutres sur l’évolvabilité et l’évolution des génomes. Med Sci (Paris) 2022; 38:777-785. [DOI: 10.1051/medsci/2022122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Les mutations bénéfiques à forts effets sont rares et les mutations délétères sont éliminées par la sélection naturelle. La majorité des mutations qui s’accumulent dans les génomes ont donc des effets sélectifs très faibles, voire nuls ; elles sont alors appelées mutations neutres. Au cours des deux dernières décennies, il a été montré que les mutations, même en l’absence d’effet sur la valeur sélective des organismes, affectent leur évolvabilité, en donnant accès à de nouveaux phénotypes par le biais de mutations apparaissant ultérieurement, et qui n’auraient pas été disponibles autrement. En plus de cet effet, de nombreuses mutations neutres – indépendamment de leurs effets sélectifs – peuvent affecter la mutabilité de séquences d’ADN voisines, et moduler l’efficacité de la recombinaison homologue. De telles mutations ne modifient pas le spectre des phénotypes accessibles, mais plutôt la vitesse à laquelle de nouveaux phénotypes seront produits, un processus qui a des conséquences à long terme mais aussi potentiellement à court terme, en lien avec l’émergence de cancers.
Collapse
|
7
|
Preska Steinberg A, Lin M, Kussell E. Core genes can have higher recombination rates than accessory genes within global microbial populations. eLife 2022; 11:78533. [PMID: 35801696 PMCID: PMC9444244 DOI: 10.7554/elife.78533] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/30/2022] [Indexed: 11/24/2022] Open
Abstract
Recombination is essential to microbial evolution, and is involved in the spread of antibiotic resistance, antigenic variation, and adaptation to the host niche. However, assessing the impact of homologous recombination on accessory genes which are only present in a subset of strains of a given species remains challenging due to their complex phylogenetic relationships. Quantifying homologous recombination for accessory genes (which are important for niche-specific adaptations) in comparison to core genes (which are present in all strains and have essential functions) is critical to understanding how selection acts on variation to shape species diversity and genome structures of bacteria. Here, we apply a computationally efficient, non-phylogenetic approach to measure homologous recombination rates in the core and accessory genome using >100,000 whole genome sequences from Streptococcus pneumoniae and several additional species. By analyzing diverse sets of sequence clusters, we show that core genes often have higher recombination rates than accessory genes, and for some bacterial species the associated effect sizes for these differences are pronounced. In a subset of species, we find that gene frequency and homologous recombination rate are positively correlated. For S. pneumoniae and several additional species, we find that while the recombination rate is higher for the core genome, the mutational divergence is lower, indicating that divergence-based homologous recombination barriers could contribute to differences in recombination rates between the core and accessory genome. Homologous recombination may therefore play a key role in increasing the efficiency of selection in the most conserved parts of the genome.
Collapse
Affiliation(s)
| | - Mingzhi Lin
- Department of Biology, New York University, New York, United States
| | - Edo Kussell
- Department of Biology, New York University, New York, United States
| |
Collapse
|
8
|
Abstract
Horizontal gene transfer (HGT) is arguably the most conspicuous feature of bacterial evolution. Evidence for HGT is found in most bacterial genomes. Although HGT can considerably alter bacterial genomes, not all transfer events may be biologically significant and may instead represent the outcome of an incessant evolutionary process that only occasionally has a beneficial purpose. When adaptive transfers occur, HGT and positive selection may result in specific, detectable signatures in genomes, such as gene-specific sweeps or increased transfer rates for genes that are ecologically relevant. In this Review, we first discuss the various mechanisms whereby HGT occurs, how the genetic signatures shape patterns of genomic variation and the distinct bioinformatic algorithms developed to detect these patterns. We then discuss the evolutionary theory behind HGT and positive selection in bacteria, and discuss the approaches developed over the past decade to detect transferred DNA that may be involved in adaptation to new environments.
Collapse
|
9
|
Winter M, Buckling A, Harms K, Johnsen PJ, Vos M. Antimicrobial resistance acquisition via natural transformation: context is everything. Curr Opin Microbiol 2021; 64:133-138. [PMID: 34710742 DOI: 10.1016/j.mib.2021.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Natural transformation is a process where bacterial cells actively take up free DNA from the environment and recombine it into their genome or reconvert it into extra-chromosomal genetic elements. Although this mechanism is known to mediate the uptake of antibiotic resistance determinants in a range of human pathogens, its importance in the spread of antimicrobial resistance is not always appreciated. This review highlights the context in which transformation takes place: in diverse microbiomes, in interaction with other forms of horizontal gene transfer and in increasingly polluted environments. This examination of the abiotic and biotic drivers of transformation reveals that it could be more important in the dissemination of resistance genes than is often recognised.
Collapse
Affiliation(s)
- Macaulay Winter
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, United Kingdom
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål Jarle Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, United Kingdom.
| |
Collapse
|
10
|
Ailloud F, Estibariz I, Suerbaum S. Evolved to vary: genome and epigenome variation in the human pathogen Helicobacter pylori. FEMS Microbiol Rev 2021; 45:5900976. [PMID: 32880636 DOI: 10.1093/femsre/fuaa042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, spiral shaped bacterium that selectively and chronically infects the gastric mucosa of humans. The clinical course of this infection can range from lifelong asymptomatic infection to severe disease, including peptic ulcers or gastric cancer. The high mutation rate and natural competence typical of this species are responsible for massive inter-strain genetic variation exceeding that observed in all other bacterial human pathogens. The adaptive value of such a plastic genome is thought to derive from a rapid exploration of the fitness landscape resulting in fast adaptation to the changing conditions of the gastric environment. Nevertheless, diversity is also lost through recurrent bottlenecks and H. pylori's lifestyle is thus a perpetual race to maintain an appropriate pool of standing genetic variation able to withstand selection events. Another aspect of H. pylori's diversity is a large and variable repertoire of restriction-modification systems. While not yet completely understood, methylome evolution could generate enough transcriptomic variation to provide another intricate layer of adaptive potential. This review provides an up to date synopsis of this rapidly emerging area of H. pylori research that has been enabled by the ever-increasing throughput of Omics technologies and a multitude of other technological advances.
Collapse
Affiliation(s)
- Florent Ailloud
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Iratxe Estibariz
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, LMU München, Pettenkoferstr. 9a, 80336 München, Germany.,DZIF Deutsches Zentrum für Infektionsforschung, Partner Site Munich, Pettenkoferstr. 9a, 80336 München, Germany.,National Reference Center for Helicobacter pylori, Pettenkoferstr. 9a, 80336 München, Germany
| |
Collapse
|
11
|
D'Aeth JC, van der Linden MPG, McGee L, de Lencastre H, Turner P, Song JH, Lo SW, Gladstone RA, Sá-Leão R, Ko KS, Hanage WP, Breiman RF, Beall B, Bentley SD, Croucher NJ. The role of interspecies recombination in the evolution of antibiotic-resistant pneumococci. eLife 2021; 10:e67113. [PMID: 34259624 PMCID: PMC8321556 DOI: 10.7554/elife.67113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-β-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome.
Collapse
Affiliation(s)
- Joshua C D'Aeth
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| | - Mark PG van der Linden
- Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital RWTH AachenAachenGermany
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Herminia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeirasPortugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller UniversityNew YorkUnited States
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Jae-Hoon Song
- Department of Molecular Cell Biology, Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - Stephanie W Lo
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Rebecca A Gladstone
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeirasPortugal
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - William P Hanage
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Robert F Breiman
- Department of Global Health, Rollins School of Public Health, Emory UniversityAtlantaUnited States
| | - Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
12
|
Elez M. Mismatch Repair: From Preserving Genome Stability to Enabling Mutation Studies in Real-Time Single Cells. Cells 2021; 10:cells10061535. [PMID: 34207040 PMCID: PMC8235422 DOI: 10.3390/cells10061535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022] Open
Abstract
Mismatch Repair (MMR) is an important and conserved keeper of the maintenance of genetic information. Miroslav Radman's contributions to the field of MMR are multiple and tremendous. One of the most notable was to provide, along with Bob Wagner and Matthew Meselson, the first direct evidence for the existence of the methyl-directed MMR. The purpose of this review is to outline several aspects and biological implications of MMR that his work has helped unveil, including the role of MMR during replication and recombination editing, and the current understanding of its mechanism. The review also summarizes recent discoveries related to the visualization of MMR components and discusses how it has helped shape our understanding of the coupling of mismatch recognition to replication. Finally, the author explains how visualization of MMR components has paved the way to the study of spontaneous mutations in living cells in real time.
Collapse
Affiliation(s)
- Marina Elez
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
- Laboratoire Jean Perrin (LJP), Institut de Biologie Paris-Seine (IBPS), CNRS, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
13
|
Harrow GL, Lees JA, Hanage WP, Lipsitch M, Corander J, Colijn C, Croucher NJ. Negative frequency-dependent selection and asymmetrical transformation stabilise multi-strain bacterial population structures. THE ISME JOURNAL 2021; 15:1523-1538. [PMID: 33408365 PMCID: PMC8115253 DOI: 10.1038/s41396-020-00867-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Streptococcus pneumoniae can be divided into many strains, each a distinct set of isolates sharing similar core and accessory genomes, which co-circulate within the same hosts. Previous analyses suggested the short-term vaccine-associated dynamics of S. pneumoniae strains may be mediated through multi-locus negative frequency-dependent selection (NFDS), which maintains accessory loci at equilibrium frequencies. Long-term simulations demonstrated NFDS stabilised clonally-evolving multi-strain populations through preventing the loss of variation through drift, based on polymorphism frequencies, pairwise genetic distances and phylogenies. However, allowing symmetrical recombination between isolates evolving under multi-locus NFDS generated unstructured populations of diverse genotypes. Replication of the observed data improved when multi-locus NFDS was combined with recombination that was instead asymmetrical, favouring deletion of accessory loci over insertion. This combination separated populations into strains through outbreeding depression, resulting from recombinants with reduced accessory genomes having lower fitness than their parental genotypes. Although simplistic modelling of recombination likely limited these simulations' ability to maintain some properties of genomic data as accurately as those lacking recombination, the combination of asymmetrical recombination and multi-locus NFDS could restore multi-strain population structures from randomised initial populations. As many bacteria inhibit insertions into their chromosomes, this combination may commonly underlie the co-existence of strains within a niche.
Collapse
Affiliation(s)
- Gabrielle L Harrow
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, 02115, USA
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Caroline Colijn
- Parasites & Microbes Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
14
|
Bruger EL, Chubiz LM, Rojas Echenique JI, Renshaw CJ, Espericueta NV, Draghi JA, Marx CJ. Genetic Context Significantly Influences the Maintenance and Evolution of Degenerate Pathways. Genome Biol Evol 2021; 13:6245841. [PMID: 33885815 PMCID: PMC8214414 DOI: 10.1093/gbe/evab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the evolution of novel physiological traits is highly relevant for expanding the characterization and manipulation of biological systems. Acquisition of new traits can be achieved through horizontal gene transfer (HGT). Here, we investigate drivers that promote or deter the maintenance of HGT-driven degeneracy, occurring when processes accomplish identical functions through nonidentical components. Subsequent evolution can optimize newly acquired functions; for example, beneficial alleles identified in an engineered Methylorubrum extorquens strain allowed it to utilize a “Foreign” formaldehyde oxidation pathway substituted for its Native pathway for methylotrophic growth. We examined the fitness consequences of interactions between these alleles when they were combined with the Native pathway or both (Dual) pathways. Unlike the Foreign pathway context where they evolved, these alleles were often neutral or deleterious when moved into these alternative genetic backgrounds. However, there were instances where combinations of multiple alleles resulted in higher fitness outcomes than individual allelic substitutions could provide. Importantly, the genetic context accompanying these allelic substitutions significantly altered the fitness landscape, shifting local fitness peaks and restricting the set of accessible evolutionary trajectories. These findings highlight how genetic context can negatively impact the probability of maintaining native and HGT-introduced functions together, making it difficult for degeneracy to evolve. However, in cases where the cost of maintaining degeneracy was mitigated by adding evolved alleles impacting the function of these pathways, we observed rare opportunities for pathway coevolution to occur. Together, our results highlight the importance of genetic context and resulting epistasis in retaining or losing HGT-acquired degenerate functions.
Collapse
Affiliation(s)
- Eric L Bruger
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA.,The BEACON Center for the Study of Evolution in Action, University of Idaho, Moscow, Idaho, USA
| | - Lon M Chubiz
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Biology, University of Missouri, St. Louis, Missouri, USA
| | - José I Rojas Echenique
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Caleb J Renshaw
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
| | - Nora Victoria Espericueta
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Department of Biological Sciences, California State University, Long Beach, California, USA
| | - Jeremy A Draghi
- Department of Biological Sciences, Virginia Institute of Technology, Blacksburg, Virginia, USA
| | - Christopher J Marx
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.,Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA.,The BEACON Center for the Study of Evolution in Action, University of Idaho, Moscow, Idaho, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Serrano E, Ramos C, Alonso JC, Ayora S. Recombination proteins differently control the acquisition of homeologous DNA during Bacillus subtilis natural chromosomal transformation. Environ Microbiol 2020; 23:512-524. [PMID: 33264457 DOI: 10.1111/1462-2920.15342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Abstract
Natural chromosomal transformation (CT) plays a major role in prokaryote evolution, yet factors that govern the integration of DNA from related species remain poorly understood. We show that in naturally competent Bacillus subtilis cells the acquisition of homeologous sequences is governed by sequence divergence (SD). Integration initiates in a minimal efficient processing segment via homology-directed CT, and its frequency decreases log-linearly with increased SD up to 15%. Beyond this and up to 23% SD the interspecies boundaries prevail, the CT frequency marginally decreases, and short (<10-nucleotides) segments are integrated via homology-facilitated micro-homologous integration. Both mechanisms are RecA dependent. We identify the other recombination proteins required for the acquisition of homeologous DNA. The absence of AddAB, RecF, RecO, RuvAB or RecU, crucial for repair-by-recombination, did not affect CT. However, dprA, radA, recJ, recX or recD2 inactivation strongly decreased intraspecies and interspecies CT. Interspecies CT was not detected beyond ~8% SD in ΔdprA, ~10% in ΔrecJ, ΔradA, ΔrecX and ~14% in ΔrecD2 cells. We propose that DprA, RecX, RadA/Sms, RecJ and RecD2 accessory proteins are important for the generation of genetic diversity. Together with RecA, they facilitate gene acquisition from bacteria of related species.
Collapse
Affiliation(s)
- Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Cristina Ramos
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| | - Silvia Ayora
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| |
Collapse
|
16
|
John EM, Varghese EM, Shaike JM. Plasmid-Mediated Biodegradation of Chlorpyrifos and Analysis of Its Metabolic By-Products. Curr Microbiol 2020; 77:3095-3103. [PMID: 32715316 DOI: 10.1007/s00284-020-02115-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/06/2020] [Indexed: 11/29/2022]
Abstract
Organophosphate pesticide persistence is an emerging menace to the environment and despite this fact, its use has been enhanced due to its high efficiency. Bioremediation using microorganisms would be the only means by which these hazardous compounds could be wiped out without disturbing the environmental harmony. The current work studied the molecular mechanism of degradation of Chlorpyrifos (CP) by a bacterial consortium C5 comprising of three soil isolates Staphylococcus warneri (CPI 2), Pseudomonas putida (CPI 9) and Stenotrophomonas maltophilia (CPI 15), which unveiled that the property is plasmid borne. All the isolates were found to possess a 4 kb plasmid which could be cured only by using sodium azide. The Escherichia coli JM109 cells when transformed individually with the plasmid of the isolates showed CP degradation in mineral salts medium (MSM) that contained CP as the sole carbon source. The degradative enzyme organophosphorus hydrolase (~ 60 KDa) of the isolates was extracted and purified to 31.85, 26 and 37.74 fold, respectively. The possible metabolic by-products of CP degradation by the consortium C5, were also analysed. The LC-Q-Tof MS analysis revealed the presence of the major metabolite 3, 5, 6 -trichloropyridine (TCP) with the formation of chlorpyrifos oxon as the intermediate. The isolates also showed trichloropyridine degradation (> 80%) individually in MSM-TCP medium proving its efficiency to remediate both CP and TCP.
Collapse
Affiliation(s)
- Elizabeth M John
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Edna M Varghese
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - Jisha M Shaike
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India.
| |
Collapse
|
17
|
Bobay LM. CoreSimul: a forward-in-time simulator of genome evolution for prokaryotes modeling homologous recombination. BMC Bioinformatics 2020; 21:264. [PMID: 32580695 PMCID: PMC7315543 DOI: 10.1186/s12859-020-03619-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
Background Prokaryotes are asexual, but these organisms frequently engage in homologous recombination, a process that differs from meiotic recombination in sexual organisms. Most tools developed to simulate genome evolution either assume sexual reproduction or the complete absence of DNA flux in the population. As a result, very few simulators are adapted to model prokaryotic genome evolution while accounting for recombination. Moreover, many simulators are based on the coalescent, which assumes a neutral model of genomic evolution, and those are best suited for organisms evolving under weak selective pressures, such as animals and plants. In contrast, prokaryotes are thought to be evolving under much stronger selective pressures, suggesting that forward-in-time simulators are better suited for these organisms. Results Here, I present CoreSimul, a forward-in-time simulator of core genome evolution for prokaryotes modeling homologous recombination. Simulations are guided by a phylogenetic tree and incorporate different substitution models, including models of codon selection. Conclusions CoreSimul is a flexible forward-in-time simulator that constitutes a significant addition to the limited list of available simulators applicable to prokaryote genome evolution.
Collapse
Affiliation(s)
- Louis-Marie Bobay
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, PO Box 26170, Greensboro, NC, 27402, USA.
| |
Collapse
|
18
|
Abstract
Beneficial mutations are rare and deleterious mutations are purged by natural selection. As a result, the vast majority of mutations that accumulate in genomes belong to the class of neutral mutations. Over the last two decades, neutral mutations, despite their null effect on fitness, have been shown to affect evolvability by providing access to new phenotypes through subsequent mutations that would not have been available otherwise. Here we propose that in addition, many mutations - independent of their selective effects - can affect the mutability of neighboring DNA sequences and modulate the efficacy of homologous recombination. Such mutations do not change the spectrum of accessible phenotypes, but rather the rate at which new phenotypes will be produced. Therefore, neutral mutations that accumulate in genomes have an important long-term impact on the evolutionary fate of genomes.
Collapse
|
19
|
Iranzo J, Wolf YI, Koonin EV, Sela I. Gene gain and loss push prokaryotes beyond the homologous recombination barrier and accelerate genome sequence divergence. Nat Commun 2019; 10:5376. [PMID: 31772262 PMCID: PMC6879757 DOI: 10.1038/s41467-019-13429-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/07/2019] [Indexed: 02/05/2023] Open
Abstract
Bacterial and archaeal evolution involve extensive gene gain and loss. Thus, phylogenetic trees of prokaryotes can be constructed both by traditional sequence-based methods (gene trees) and by comparison of gene compositions (genome trees). Comparing the branch lengths in gene and genome trees with identical topologies for 34 clusters of closely related bacterial and archaeal genomes, we show here that terminal branches of gene trees are systematically compressed compared to those of genome trees. Thus, sequence evolution is delayed compared to genome evolution by gene gain and loss. The extent of this delay differs widely among bacteria and archaea. Mathematical modeling shows that the divergence delay can result from sequence homogenization by homologous recombination. The model explains how homologous recombination maintains the cohesiveness of the core genome of a species while allowing extensive gene gain and loss within the accessory genome. Once evolving genomes become isolated by barriers impeding homologous recombination, gene and genome evolution processes settle into parallel trajectories, and genomes diverge, resulting in speciation. A significant proportion of the molecular evolution of bacteria and archaea occurs through gene gain and loss. Here Iranzo et al. develop a mathematical model that explains observed differential patterns of sequence evolution vs. gene content evolution as a consequence of homologous recombination.
Collapse
Affiliation(s)
- Jaime Iranzo
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.,Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| | - Itamar Sela
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
20
|
Palmer M, Venter SN, Coetzee MP, Steenkamp ET. Prokaryotic species are sui generis evolutionary units. Syst Appl Microbiol 2019; 42:145-158. [DOI: 10.1016/j.syapm.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/25/2022]
|
21
|
Carrasco B, Serrano E, Martín-González A, Moreno-Herrero F, Alonso JC. Bacillus subtilis MutS Modulates RecA-Mediated DNA Strand Exchange Between Divergent DNA Sequences. Front Microbiol 2019; 10:237. [PMID: 30814990 PMCID: PMC6382021 DOI: 10.3389/fmicb.2019.00237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
The efficiency of horizontal gene transfer, which contributes to acquisition and spread of antibiotic resistance and pathogenicity traits, depends on nucleotide sequence and different mismatch-repair (MMR) proteins participate in this process. To study how MutL and MutS MMR proteins regulate recombination across species boundaries, we have studied natural chromosomal transformation with DNA up to ∼23% sequence divergence. We show that Bacillus subtilis natural chromosomal transformation decreased logarithmically with increased sequence divergence up to 15% in wild type (wt) cells or in cells lacking MutS2 or mismatch repair proteins (MutL, MutS or both). Beyond 15% sequence divergence, the chromosomal transformation efficiency is ∼100-fold higher in ΔmutS and ΔmutSL than in ΔmutS2 or wt cells. In the first phase of the biphasic curve (up to 15% sequence divergence), RecA-catalyzed DNA strand exchange contributes to the delineation of species, and in the second phase, homology-facilitated illegitimate recombination might aid in the restoration of inactivated genes. To understand how MutS modulates the integration process, we monitored DNA strand exchange reactions using a circular single-stranded DNA and a linear double-stranded DNA substrate with an internal 77-bp region with ∼16% or ∼54% sequence divergence in an otherwise homologous substrate. The former substrate delayed, whereas the latter halted RecA-mediated strand exchange. Interestingly, MutS addition overcame the heterologous barrier. We propose that MutS assists DNA strand exchange by facilitating RecA disassembly, and indirectly re-engagement with the homologous 5′-end of the linear duplex. Our data supports the idea that MutS modulates bidirectional RecA-mediated integration of divergent sequences and this is important for speciation.
Collapse
Affiliation(s)
- Begoña Carrasco
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ester Serrano
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alejandro Martín-González
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan C Alonso
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
22
|
Beauruelle C, Pastuszka A, Mereghetti L, Lanotte P. Group B Streptococcus Vaginal Carriage in Pregnant Women as Deciphered by Clustered Regularly Interspaced Short Palindromic Repeat Analysis. J Clin Microbiol 2018; 56:e01949-17. [PMID: 29618502 PMCID: PMC5971545 DOI: 10.1128/jcm.01949-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/28/2018] [Indexed: 11/20/2022] Open
Abstract
We evaluated the diversity of group B Streptococcus (GBS) vaginal carriage populations in pregnant women. For this purpose, we studied each isolate present in a primary culture of a vaginal swab using a new approach based on clustered regularly interspaced short palindromic repeats (CRISPR) locus analysis. To evaluate the CRISPR array composition rapidly, a restriction fragment length polymorphism (RFLP) analysis was performed. For each different pattern observed, the CRISPR array was sequenced and capsular typing and multilocus sequence typing (MLST) were performed. A total of 970 isolates from 10 women were analyzed by CRISPR-RFLP. Each woman carrying GBS isolates presented one to five specific "personal" patterns. Five women showed similar isolates with specific and unique restriction patterns, suggesting the carriage of a single GBS clone. Different patterns were observed among isolates from the other five women. For three of these, CRISPR locus sequencing highlighted low levels of internal modifications in the locus backbone, whereas there were high levels of modifications for the last two women, suggesting the carriage of two different clones. These two clones were closely related, having the same ancestral spacer(s), the same capsular type and, in one case, the same ST, but showed different antibiotic resistance patterns in pairs. Eight of 10 women were colonized by a single GBS clone, while two of them were colonized by two strains, leading to a risk of selection of more-virulent and/or more-resistant clones during antibiotic prophylaxis. This CRISPR analysis made it possible to separate isolates belonging to a single capsular type and sequence type, highlighting the greater discriminating power of this approach.
Collapse
Affiliation(s)
- Clemence Beauruelle
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- CHRU de Tours, Service de Bactériologie-Virologie, Tours, France
| | - Adeline Pastuszka
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- CHRU de Tours, Service de Bactériologie-Virologie, Tours, France
| | - Laurent Mereghetti
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- CHRU de Tours, Service de Bactériologie-Virologie, Tours, France
| | - Philippe Lanotte
- Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, Tours, France
- INRA, UMR1282 Infectiologie et Santé Publique, Nouzilly, France
- CHRU de Tours, Service de Bactériologie-Virologie, Tours, France
| |
Collapse
|
23
|
Wyllie AL, Pannekoek Y, Bovenkerk S, van Engelsdorp Gastelaars J, Ferwerda B, van de Beek D, Sanders EAM, Trzciński K, van der Ende A. Sequencing of the variable region of rpsB to discriminate between Streptococcus pneumoniae and other streptococcal species. Open Biol 2018; 7:rsob.170074. [PMID: 28931649 PMCID: PMC5627049 DOI: 10.1098/rsob.170074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/11/2017] [Indexed: 01/08/2023] Open
Abstract
The vast majority of streptococci colonizing the human upper respiratory tract are commensals, only sporadically implicated in disease. Of these, the most pathogenic is Mitis group member, Streptococcus pneumoniae Phenotypic and genetic similarities between streptococci can cause difficulties in species identification. Using ribosomal S2-gene sequences extracted from whole-genome sequences published from 501 streptococci, we developed a method to identify streptococcal species. We validated this method on non-pneumococcal isolates cultured from cases of severe streptococcal disease (n = 101) and from carriage (n = 103), and on non-typeable pneumococci from asymptomatic individuals (n = 17) and on whole-genome sequences of 1157 pneumococcal isolates from meningitis in the Netherlands. Following this, we tested 221 streptococcal isolates in molecular assays originally assumed specific for S. pneumoniae, targeting cpsA, lytA, piaB, ply, Spn9802, zmpC and capsule-type-specific genes. Cluster analysis of S2-sequences showed grouping according to species in line with published phylogenies of streptococcal core genomes. S2-typing convincingly distinguished pneumococci from non-pneumococcal species (99.2% sensitivity, 100% specificity). Molecular assays targeting regions of lytA and piaB were 100% specific for S. pneumoniae, whereas assays targeting cpsA, ply, Spn9802, zmpC and selected serotype-specific assays (but not capsular sequence typing) showed a lack of specificity. False positive results were over-represented in species associated with carriage, although no particular confounding signal was unique for carriage isolates.
Collapse
Affiliation(s)
- Anne L Wyllie
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yvonne Pannekoek
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Sandra Bovenkerk
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Jody van Engelsdorp Gastelaars
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Bart Ferwerda
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Diederik van de Beek
- Department of Neurology, Academic Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Krzysztof Trzciński
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Arie van der Ende
- Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands.,The Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Zhang C, Parrello D, Brown PJB, Wall JD, Hu Z. A novel whole-cell biosensor of Pseudomonas aeruginosa to monitor the expression of quorum sensing genes. Appl Microbiol Biotechnol 2018; 102:6023-6038. [PMID: 29730766 DOI: 10.1007/s00253-018-9044-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023]
Abstract
A novel whole-cell biosensor was developed to noninvasively and simultaneously monitor the in situ genetic activities of the four quorum sensing (QS) networks in Pseudomonas aeruginosa PAO1, including the las, rhl, pqs, and iqs systems. P. aeruginosa PAO1 is a model bacterium for studies of biofilm and pathogenesis while both processes are closely controlled by the QS systems. This biosensor worked well by selectively monitoring the expression of one representative gene from each network. In the biosensor, the promoter regions of lasI, rhlI, pqsA, and ambB (QS genes) controlled the fluorescent reporter genes of Turbo YFP, mTag BFP2, mNEON Green, and E2-Orange, respectively. The biosensor was successful in monitoring the impact of an important environmental factor, salt stress, on the genetic regulation of QS networks. High salt concentrations (≥ 20 g·L-1) significantly downregulated rhlI, pqsA, and ambB after the biosensor was incubated for 17 h to 18 h at 37 °C, resulting in slow bacterial growth.
Collapse
Affiliation(s)
- Chiqian Zhang
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, USA
| | - Damien Parrello
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, USA
| | - Pamela J B Brown
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Judy D Wall
- Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Zhiqiang Hu
- Department of Civil & Environmental Engineering, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
25
|
Apagyi KJ, Fraser C, Croucher NJ. Transformation Asymmetry and the Evolution of the Bacterial Accessory Genome. Mol Biol Evol 2017; 35:575-581. [PMID: 29211859 PMCID: PMC5850275 DOI: 10.1093/molbev/msx309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacterial transformation can insert or delete genomic islands (GIs), depending on the donor and recipient genotypes, if an homologous recombination spans the GI’s integration site and includes sufficiently long flanking homologous arms. Combining mathematical models of recombination with experiments using pneumococci found GI insertion rates declined geometrically with the GI’s size. The decrease in acquisition frequency with length (1.08×10−3 bp−1) was higher than a previous estimate of the analogous rate at which core genome recombinations terminated. Although most efficient for shorter GIs, transformation-mediated deletion frequencies did not vary consistently with GI length, with removal of 10-kb GIs ∼50% as efficient as acquisition of base substitutions. Fragments of 2 kb, typical of transformation event sizes, could drive all these deletions independent of island length. The strong asymmetry of transformation, and its capacity to efficiently remove GIs, suggests nonmobile accessory loci will decline in frequency without preservation by selection.
Collapse
Affiliation(s)
- Katinka J Apagyi
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Christophe Fraser
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J Croucher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Ambur OH, Engelstädter J, Johnsen PJ, Miller EL, Rozen DE. Steady at the wheel: conservative sex and the benefits of bacterial transformation. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0528. [PMID: 27619692 PMCID: PMC5031613 DOI: 10.1098/rstb.2015.0528] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2016] [Indexed: 12/25/2022] Open
Abstract
Many bacteria are highly sexual, but the reasons for their promiscuity remain obscure. Did bacterial sex evolve to maximize diversity and facilitate adaptation in a changing world, or does it instead help to retain the bacterial functions that work right now? In other words, is bacterial sex innovative or conservative? Our aim in this review is to integrate experimental, bioinformatic and theoretical studies to critically evaluate these alternatives, with a main focus on natural genetic transformation, the bacterial equivalent of eukaryotic sexual reproduction. First, we provide a general overview of several hypotheses that have been put forward to explain the evolution of transformation. Next, we synthesize a large body of evidence highlighting the numerous passive and active barriers to transformation that have evolved to protect bacteria from foreign DNA, thereby increasing the likelihood that transformation takes place among clonemates. Our critical review of the existing literature provides support for the view that bacterial transformation is maintained as a means of genomic conservation that provides direct benefits to both individual bacterial cells and to transformable bacterial populations. We examine the generality of this view across bacteria and contrast this explanation with the different evolutionary roles proposed to maintain sex in eukaryotes. This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'.
Collapse
Affiliation(s)
- Ole Herman Ambur
- Department of Life Sciences and Health, Oslo and Akershus University College of Applied Sciences, 1478 Oslo, Norway
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pål J Johnsen
- Faculty of Health Sciences, Department of Pharmacy, UiT-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Eric L Miller
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Daniel E Rozen
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| |
Collapse
|
27
|
Potential Dissemination of ARB and ARGs into Soil Through the Use of Treated Wastewater for Agricultural Irrigation: Is It a True Cause for Concern? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-66260-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Hoetzinger M, Hahn MW. Genomic divergence and cohesion in a species of pelagic freshwater bacteria. BMC Genomics 2017; 18:794. [PMID: 29037158 PMCID: PMC5644125 DOI: 10.1186/s12864-017-4199-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 10/08/2017] [Indexed: 11/15/2022] Open
Abstract
Background In many prokaryotic genera a clustered phylogeny is observed, akin to the occurrence of species in sexually reproducing organisms. For some taxa, homologous recombination has been invoked as the underlying mechanism providing genomic cohesion among conspecific individuals. Whether this mechanism is applicable to prokaryotes in freshwaters with low habitat connectivity – i.e. elevated geographic barriers to gene flow – is unclear. To investigate further we studied genomic trends within the globally abundant PnecC cluster (genus Polynucleobacter, Betaproteobacteria) and analyzed homologous recombination within the affiliated species P. asymbioticus. Results Comparisons among 20 PnecC genomes revealed a clearly discontinuous distribution of nucleotide sequence similarities. Among the nine conspecific individuals (P. asymbioticus) all average nucleotide identity (ANI) values were greater than 97%, whereas all other comparisons exhibited ANI values lower than 85%. The reconstruction of recombination and mutation events for the P. asymbioticus core genomes yielded an r/m ratio of 7.4, which is clearly above estimated thresholds for recombination to act as a cohesive force. Hotspots of recombination were found to be located in the flanking regions of genomic islands. Even between geographically separated habitats a high flux of recombination was evident. While a biogeographic population structure was suggested from MLST data targeting rather conserved loci, such a structure was barely visible when whole genome data was considered. However, both MLST and whole genome data showed evidence of differentiation between two lineages of P. asymbioticus. The ratios of non-synonymous to synonymous substitution rates as well as growth rates in transplantation experiments suggested that this divergence was not selectively neutral. Conclusions The high extent of homologous recombination among P. asymbioticus bacteria can act as a cohesive force that effectively counteracts genetic divergence. At least on a regional scale, homologous recombination can act across geographically separated ecosystems and therefore plays an important role in the evolution and consistency of bacterial freshwater species. A species model akin to the biological species concept may be applicable for P. asymbioticus. Nonetheless, two genetically distinct lineages have emerged and further research may clarify if their divergence has been initiated by reinforced geographical barriers or has been evolving in sympatry. Electronic supplementary material The online version of this article (10.1186/s12864-017-4199-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthias Hoetzinger
- Research Institute for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310, Mondsee, Austria.
| | - Martin W Hahn
- Research Institute for Limnology, University of Innsbruck, Mondseestrasse 9, A-5310, Mondsee, Austria
| |
Collapse
|
29
|
Mostowy RJ, Croucher NJ, De Maio N, Chewapreecha C, Salter SJ, Turner P, Aanensen DM, Bentley SD, Didelot X, Fraser C. Pneumococcal Capsule Synthesis Locus cps as Evolutionary Hotspot with Potential to Generate Novel Serotypes by Recombination. Mol Biol Evol 2017; 34:2537-2554. [PMID: 28595308 PMCID: PMC5850285 DOI: 10.1093/molbev/msx173] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Diversity of the polysaccharide capsule in Streptococcus pneumoniae-main surface antigen and the target of the currently used pneumococcal vaccines-constitutes a major obstacle in eliminating pneumococcal disease. Such diversity is genetically encoded by almost 100 variants of the capsule biosynthesis locus, cps. However, the evolutionary dynamics of the capsule remains not fully understood. Here, using genetic data from 4,519 bacterial isolates, we found cps to be an evolutionary hotspot with elevated substitution and recombination rates. These rates were a consequence of relaxed purifying selection and positive, diversifying selection acting at this locus, supporting the hypothesis that the capsule has an increased potential to generate novel diversity compared with the rest of the genome. Diversifying selection was particularly evident in the region of wzd/wze genes, which are known to regulate capsule expression and hence the bacterium's ability to cause disease. Using a novel, capsule-centered approach, we analyzed the evolutionary history of 12 major serogroups. Such analysis revealed their complex diversification scenarios, which were principally driven by recombination with other serogroups and other streptococci. Patterns of recombinational exchanges between serogroups could not be explained by serotype frequency alone, thus pointing to nonrandom associations between co-colonizing serotypes. Finally, we discovered a previously unobserved mosaic serotype 39X, which was confirmed to carry a viable and structurally novel capsule. Adding to previous discoveries of other mosaic capsules in densely sampled collections, these results emphasize the strong adaptive potential of the bacterium by its ability to generate novel antigenic diversity by recombination.
Collapse
Affiliation(s)
- Rafał J. Mostowy
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Nicola De Maio
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute for Emerging Infections, Oxford Martin School, Oxford, United Kingdom
| | - Claire Chewapreecha
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Susannah J. Salter
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Paul Turner
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - David M. Aanensen
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen D. Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Oxford Big Data Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Hosseini SR, Wagner A. Constraint and Contingency Pervade the Emergence of Novel Phenotypes in Complex Metabolic Systems. Biophys J 2017; 113:690-701. [PMID: 28793223 DOI: 10.1016/j.bpj.2017.06.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/25/2017] [Accepted: 06/19/2017] [Indexed: 01/23/2023] Open
Abstract
An evolutionary constraint is a bias or limitation in phenotypic variation that a biological system produces. We know examples of such constraints, but we have no systematic understanding about their extent and causes for any one biological system. We here study metabolisms, genomically encoded complex networks of enzyme-catalyzed biochemical reactions, and the constraints they experience in bringing forth novel phenotypes that allow survival on novel carbon sources. Our computational approach does not limit us to analyzing constrained variation in any one organism, but allows us to quantify constraints experienced by any metabolism. Specifically, we study metabolisms that are viable on one of 50 different carbon sources, and quantify how readily alterations of their chemical reactions create the ability to survive on a novel carbon source. We find that some metabolic phenotypes are much less likely to originate than others. For example, metabolisms viable on D-glucose are 1835 times more likely to give rise to metabolisms viable on D-fructose than on acetate. Likewise, we observe that some novel metabolic phenotypes are more contingent on parental phenotypes than others. Biochemical similarities among carbon sources can help explain the causes of these constraints. In addition, we study metabolisms that can be produced by recombination among 55 metabolisms of different bacterial strains or species, and show that their novel phenotypes are also contingent on and constrained by parental genotypes. To our knowledge, our analysis is the first to systematically quantify the incidence of constrained evolution in a broad class of biological system that is central to life and its evolution.
Collapse
Affiliation(s)
- Sayed-Rzgar Hosseini
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; The Swiss Institute of Bioinformatics, Bioinformatics, Lausanne, Switzerland
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; The Swiss Institute of Bioinformatics, Bioinformatics, Lausanne, Switzerland; The Santa Fe Institute, Santa Fe, New Mexico.
| |
Collapse
|
31
|
Gennaro A, Gomes A, Herman L, Nogue F, Papadopoulou N, Tebbe C. Explanatory note on DNA sequence similarity searches in the context of the assessment of horizontal gene transfer from plants to microorganisms. ACTA ACUST UNITED AC 2017. [DOI: 10.2903/sp.efsa.2017.en-1273] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Marttinen P, Hanage WP. Speciation trajectories in recombining bacterial species. PLoS Comput Biol 2017; 13:e1005640. [PMID: 28671999 PMCID: PMC5542674 DOI: 10.1371/journal.pcbi.1005640] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 08/03/2017] [Accepted: 06/15/2017] [Indexed: 01/26/2023] Open
Abstract
It is generally agreed that bacterial diversity can be classified into genetically and ecologically cohesive units, but what produces such variation is a topic of intensive research. Recombination may maintain coherent species of frequently recombining bacteria, but the emergence of distinct clusters within a recombining species, and the impact of habitat structure in this process are not well described, limiting our understanding of how new species are created. Here we present a model of bacterial evolution in overlapping habitat space. We show that the amount of habitat overlap determines the outcome for a pair of clusters, which may range from fast clonal divergence with little interaction between the clusters to a stationary population structure, where different clusters maintain an equilibrium distance between each other for an indefinite time. We fit our model to two data sets. In Streptococcus pneumoniae, we find a genomically and ecologically distinct subset, held at a relatively constant genetic distance from the majority of the population through frequent recombination with it, while in Campylobacter jejuni, we find a minority population we predict will continue to diverge at a higher rate. This approach may predict and define speciation trajectories in multiple bacterial species.
Collapse
Affiliation(s)
- Pekka Marttinen
- Helsinki Institute for Information Technology HIIT, Department of Computer Science, Aalto University, Espoo, Finland
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
33
|
Millán-Aguiñaga N, Chavarria KL, Ugalde JA, Letzel AC, Rouse GW, Jensen PR. Phylogenomic Insight into Salinispora (Bacteria, Actinobacteria) Species Designations. Sci Rep 2017; 7:3564. [PMID: 28620214 PMCID: PMC5472633 DOI: 10.1038/s41598-017-02845-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 11/12/2022] Open
Abstract
Bacteria represent the most genetically diverse kingdom of life. While great progress has been made in describing this diversity, it remains difficult to identify the phylogenetic and ecological characteristics that delineate groups of bacteria that possess species-like properties. One major challenge associated with species delineations is that not all shared genes have the same evolutionary history, and thus the choice of loci can have a major impact on phylogenetic reconstruction. Sequencing the genomes of large numbers of closely related strains provides new opportunities to distinguish ancestral from acquired alleles and assess the effects of recombination on phylogenetic inference. Here we analyzed the genomes of 119 strains of the marine actinomycete genus Salinispora, which is currently comprised of three named species that share 99% 16S rRNA gene sequence identity. While 63% of the core genome showed evidence of recombination, this had no effect on species-level phylogenomic resolution. Recombination did however blur intra-species relationships and biogeographic resolution. The genome-wide average nucleotide identity provided a new perspective on Salinispora diversity, revealing as many as seven new species. Patterns of orthologous group distributions reveal a genetic basis to delineation the candidate taxa and insight into the levels of genetic cohesion associated with bacterial species.
Collapse
Affiliation(s)
- Natalie Millán-Aguiñaga
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.,Universidad Autónoma de Baja California. Facultad de Ciencias Marinas, Ensenada, Baja California, Mexico
| | - Krystle L Chavarria
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Juan A Ugalde
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.,Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias Biológicas, Universidad Andrés Bella, Santiago, Chile
| | - Anne-Catrin Letzel
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Greg W Rouse
- Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States. .,Marine Biology Research Division Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States.
| |
Collapse
|
34
|
Wagner A, Whitaker RJ, Krause DJ, Heilers JH, van Wolferen M, van der Does C, Albers SV. Mechanisms of gene flow in archaea. Nat Rev Microbiol 2017; 15:492-501. [DOI: 10.1038/nrmicro.2017.41] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Tan SY, Tan IKP, Tan MF, Dutta A, Choo SW. Evolutionary study of Yersinia genomes deciphers emergence of human pathogenic species. Sci Rep 2016; 6:36116. [PMID: 27796355 PMCID: PMC5086877 DOI: 10.1038/srep36116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
On record, there are 17 species in the Yersinia genus, of which three are known to be pathogenic to human. While the chromosomal and pYV (or pCD1) plasmid-borne virulence genes as well as pathogenesis of these three species are well studied, their genomic evolution is poorly understood. Our study aims to predict the key evolutionary events that led to the emergence of pathogenic Yersinia species by analyzing gene gain-and-loss, virulence genes, and “Clustered regularly-interspaced short palindromic repeats”. Our results suggest that the most recent ancestor shared by the human pathogenic Yersinia was most probably an environmental species that had adapted to the human body. This might have led to ecological specialization that diverged Yersinia into ecotypes and distinct lineages based on differential gene gain-and-loss in different niches. Our data also suggest that Y. pseudotuberculosis group might be the donor of the ail virulence gene to Y. enterocolitica. Hence, we postulate that evolution of human pathogenic Yersinia might not be totally in parallel, but instead, there were lateral gene transfer events. Furthermore, the presence of virulence genes seems to be important for the positive selection of virulence plasmid. Our studies provide better insights into the evolutionary biology of these bacteria.
Collapse
Affiliation(s)
- Shi Yang Tan
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Irene Kit Ping Tan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mui Fern Tan
- Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Avirup Dutta
- Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Siew Woh Choo
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.,Genome Informatics Research Laboratory, High Impact Research Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Hosseini SR, Martin OC, Wagner A. Phenotypic innovation through recombination in genome-scale metabolic networks. Proc Biol Sci 2016; 283:rspb.2016.1536. [PMID: 27683361 DOI: 10.1098/rspb.2016.1536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
Recombination is an important source of metabolic innovation, especially in prokaryotes, which have evolved the ability to survive on many different sources of chemical elements and energy. Metabolic systems have a well-understood genotype-phenotype relationship, which permits a quantitative and biochemically principled understanding of how recombination creates novel phenotypes. Here, we investigate the power of recombination to create genome-scale metabolic reaction networks that enable an organism to survive in new chemical environments. To this end, we use flux balance analysis, an experimentally validated computational method that can predict metabolic phenotypes from metabolic genotypes. We show that recombination is much more likely to create novel metabolic abilities than random changes in chemical reactions of a metabolic network. We also find that phenotypic innovation is more likely when recombination occurs between parents that are genetically closely related, phenotypically highly diverse, and viable on few rather than many carbon sources. Survival on a new carbon source preferentially involves reactions that are superessential, that is, essential in many metabolic networks. We validate our observations with data from 61 reconstructed prokaryotic metabolic networks. Our systematic and quantitative analysis of metabolic systems helps understand how recombination creates innovation.
Collapse
Affiliation(s)
- Sayed-Rzgar Hosseini
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Building Y27, Winterthurerstrasse 190, 8057 Zurich, Switzerland The Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, 1015 Lausanne, Switzerland
| | - Olivier C Martin
- GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Andreas Wagner
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Building Y27, Winterthurerstrasse 190, 8057 Zurich, Switzerland The Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, 1015 Lausanne, Switzerland The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
37
|
Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C. Horizontal DNA Transfer Mechanisms of Bacteria as Weapons of Intragenomic Conflict. PLoS Biol 2016; 14:e1002394. [PMID: 26934590 PMCID: PMC4774983 DOI: 10.1371/journal.pbio.1002394] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/29/2016] [Indexed: 01/21/2023] Open
Abstract
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Rafal Mostowy
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Christopher Wymant
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Abstract
Many groups of closely related species have reticulate phylogenies. Recent genomic analyses are showing this in many insects and vertebrates, as well as in microbes and plants. In microbes, lateral gene transfer is the dominant process that spoils strictly tree-like phylogenies, but in multicellular eukaryotes hybridization and introgression among related species is probably more important. Because many species, including the ancestors of ancient major lineages, seem to evolve rapidly in adaptive radiations, some sexual compatibility may exist among them. Introgression and reticulation can thereby affect all parts of the tree of life, not just the recent species at the tips. Our understanding of adaptive evolution, speciation, phylogenetics, and comparative biology must adapt to these mostly recent findings. Introgression has important practical implications as well, not least for the management of genetically modified organisms in pest and disease control.
Collapse
Affiliation(s)
- James Mallet
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
- Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
| | - Nora Besansky
- Department of Biological Sciences and Eck Institute for Global HealthUniversity of Notre DameNotre DameINUSA
| | - Matthew W. Hahn
- Department of Biology and School of Informatics and ComputingIndiana UniversityBloomingtonINUSA
| |
Collapse
|
39
|
Mismatch repair and homeologous recombination. DNA Repair (Amst) 2015; 38:75-83. [PMID: 26739221 DOI: 10.1016/j.dnarep.2015.11.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 10/26/2015] [Accepted: 11/30/2015] [Indexed: 12/27/2022]
Abstract
DNA mismatch repair influences the outcome of recombination events between diverging DNA sequences. Here we discuss how mismatch repair proteins are active in different homologous recombination subpathways and specific reaction steps, resulting in differential modulation of these recombination events, with a focus on the mechanism of heteroduplex rejection during the inhibition of recombination between slightly diverged (homeologous) DNA sequences.
Collapse
|
40
|
Lassalle F, Muller D, Nesme X. Ecological speciation in bacteria: reverse ecology approaches reveal the adaptive part of bacterial cladogenesis. Res Microbiol 2015; 166:729-41. [DOI: 10.1016/j.resmic.2015.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/28/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
|
41
|
Marttinen P, Croucher NJ, Gutmann MU, Corander J, Hanage WP. Recombination produces coherent bacterial species clusters in both core and accessory genomes. Microb Genom 2015; 1:e000038. [PMID: 28348822 PMCID: PMC5320679 DOI: 10.1099/mgen.0.000038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Population samples show bacterial genomes can be divided into a core of ubiquitous genes and accessory genes that are present in a fraction of isolates. The ecological significance of this variation in gene content remains unclear. However, microbiologists agree that a bacterial species should be 'genomically coherent', even though there is no consensus on how this should be determined. RESULTS We use a parsimonious model combining diversification in both the core and accessory genome, including mutation, homologous recombination (HR) and horizontal gene transfer (HGT) introducing new loci, to produce a population of interacting clusters of strains with varying genome content. New loci introduced by HGT may then be transferred on by HR. The model fits well to a systematic population sample of 616 pneumococcal genomes, capturing the major features of the population structure with parameter values that agree well with empirical estimates. CONCLUSIONS The model does not include explicit selection on individual genes, suggesting that crude comparisons of gene content may be a poor predictor of ecological function. We identify a clearly divergent subpopulation of pneumococci that are inconsistent with the model and may be considered genomically incoherent with the rest of the population. These strains have a distinct disease tropism and may be rationally defined as a separate species. We also find deviations from the model that may be explained by recent population bottlenecks or spatial structure.
Collapse
Affiliation(s)
- Pekka Marttinen
- Aalto University, Espoo, Finland
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA, USA
| | | | | | | | - William P. Hanage
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
42
|
Spring-Pearson SM, Stone JK, Doyle A, Allender CJ, Okinaka RT, Mayo M, Broomall SM, Hill JM, Karavis MA, Hubbard KS, Insalaco JM, McNew LA, Rosenzweig CN, Gibbons HS, Currie BJ, Wagner DM, Keim P, Tuanyok A. Pangenome Analysis of Burkholderia pseudomallei: Genome Evolution Preserves Gene Order despite High Recombination Rates. PLoS One 2015; 10:e0140274. [PMID: 26484663 PMCID: PMC4613141 DOI: 10.1371/journal.pone.0140274] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/23/2015] [Indexed: 11/19/2022] Open
Abstract
The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is ‘open’, with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.
Collapse
Affiliation(s)
- Senanu M. Spring-Pearson
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Joshua K. Stone
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Adina Doyle
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Christopher J. Allender
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Richard T. Okinaka
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Mark Mayo
- Menzies School of Health Research and Infectious Disease Department, Royal Darwin Hospital. Darwin, Northern Territory, Australia
| | - Stacey M. Broomall
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Jessica M. Hill
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Mark A. Karavis
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Kyle S. Hubbard
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Joseph M. Insalaco
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Lauren A. McNew
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - C. Nicole Rosenzweig
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Henry S. Gibbons
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD, United States of America
| | - Bart J. Currie
- Menzies School of Health Research and Infectious Disease Department, Royal Darwin Hospital. Darwin, Northern Territory, Australia
| | - David M. Wagner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
| | - Paul Keim
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
- * E-mail:
| | - Apichai Tuanyok
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, United States of America
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
43
|
Abstract
An approximation to the ∼4-Mbp basic genome shared by 32 strains of Escherichia coli representing six evolutionary groups has been derived and analyzed computationally. A multiple alignment of the 32 complete genome sequences was filtered to remove mobile elements and identify the most reliable ∼90% of the aligned length of each of the resulting 496 basic-genome pairs. Patterns of single base-pair mutations (SNPs) in aligned pairs distinguish clonally inherited regions from regions where either genome has acquired DNA fragments from diverged genomes by homologous recombination since their last common ancestor. Such recombinant transfer is pervasive across the basic genome, mostly between genomes in the same evolutionary group, and generates many unique mosaic patterns. The six least-diverged genome pairs have one or two recombinant transfers of length ∼40-115 kbp (and few if any other transfers), each containing one or more gene clusters known to confer strong selective advantage in some environments. Moderately diverged genome pairs (0.4-1% SNPs) show mosaic patterns of interspersed clonal and recombinant regions of varying lengths throughout the basic genome, whereas more highly diverged pairs within an evolutionary group or pairs between evolutionary groups having >1.3% SNPs have few clonal matches longer than a few kilobase pairs. Many recombinant transfers appear to incorporate fragments of the entering DNA produced by restriction systems of the recipient cell. A simple computational model can closely fit the data. Most recombinant transfers seem likely to be due to generalized transduction by coevolving populations of phages, which could efficiently distribute variability throughout bacterial genomes.
Collapse
|
44
|
Abstract
Horizontal or Lateral Gene Transfer (HGT or LGT) is the transmission of portions of genomic DNA between organisms through a process decoupled from vertical inheritance. In the presence of HGT events, different fragments of the genome are the result of different evolutionary histories. This can therefore complicate the investigations of evolutionary relatedness of lineages and species. Also, as HGT can bring into genomes radically different genotypes from distant lineages, or even new genes bearing new functions, it is a major source of phenotypic innovation and a mechanism of niche adaptation. For example, of particular relevance to human health is the lateral transfer of antibiotic resistance and pathogenicity determinants, leading to the emergence of pathogenic lineages. Computational identification of HGT events relies upon the investigation of sequence composition or evolutionary history of genes. Sequence composition-based ("parametric") methods search for deviations from the genomic average, whereas evolutionary history-based ("phylogenetic") approaches identify genes whose evolutionary history significantly differs from that of the host species. The evaluation and benchmarking of HGT inference methods typically rely upon simulated genomes, for which the true history is known. On real data, different methods tend to infer different HGT events, and as a result it can be difficult to ascertain all but simple and clear-cut HGT events.
Collapse
Affiliation(s)
| | - Nives Škunca
- ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Zurich, Switzerland
| | | | - Christophe Dessimoz
- University College London, London, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
45
|
Bang C, Schmitz RA. Archaea associated with human surfaces: not to be underestimated. FEMS Microbiol Rev 2015; 39:631-48. [DOI: 10.1093/femsre/fuv010] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/18/2022] Open
|
46
|
Chao Y, Marks LR, Pettigrew MM, Hakansson AP. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front Cell Infect Microbiol 2015; 4:194. [PMID: 25629011 PMCID: PMC4292784 DOI: 10.3389/fcimb.2014.00194] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/24/2014] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm formation and dispersion will elucidate novel avenues to interfere with the spread of antibiotic resistance and vaccine escape, as well as novel strategies to target the mechanisms involved in induction of pneumococcal disease.
Collapse
Affiliation(s)
- Yashuan Chao
- Division of Experimental Infection Medicine, Department of Laboratory Medicine, Lund UniversityMalmö, Sweden
| | - Laura R. Marks
- Department of Microbiology and Immunology, University at Buffalo, The State University of New YorkBuffalo, NY, USA
| | - Melinda M. Pettigrew
- Department of Epidemiology and Microbial Diseases, Yale School of Public HealthNew Haven, CT, USA
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Laboratory Medicine, Lund UniversityMalmö, Sweden
- Department of Microbiology and Immunology, University at Buffalo, The State University of New YorkBuffalo, NY, USA
| |
Collapse
|
47
|
Urbanczyk H, Ogura Y, Hayashi T. Contrasting inter- and intraspecies recombination patterns in the "Harveyi clade" vibrio collected over large spatial and temporal scales. Genome Biol Evol 2014; 7:71-80. [PMID: 25527835 PMCID: PMC4316622 DOI: 10.1093/gbe/evu269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recombination plays an important role in the divergence of bacteria, but the frequency of interspecies and intraspecies recombination events remains poorly understood. We investigated recombination events that occurred within core genomes of 35 Vibrio strains (family Vibrionaceae, Gammaproteobacteria), from six closely related species in the so-called “Harveyi clade.” The strains were selected from a collection of strains isolated in the last 90 years, from various environments worldwide. We found a close relationship between the number of interspecies recombination events within core genomes of the 35 strains and the overall genomic identity, as inferred from calculations of the average nucleotide identity. The relationship between the overall nucleotide identity and the number of detected interspecies recombination events was comparable when analyzing strains isolated over 80 years apart, from different hemispheres, or from different ecologies, as well as in strains isolated from the same geographic location within a short time frame. We further applied the same method of detecting recombination events to analyze 11 strains of Vibrio campbellii, and identified disproportionally high number of intraspecies recombination events within the core genomes of some, but not all, strains. The high number of recombination events was detected between V. campbellii strains that have significant temporal (over 18 years) and geographical (over 10,000 km) differences in their origins of isolation. Results of this study reveal a remarkable stability of Harveyi clade species, and give clues about the origins and persistence of species in the clade.
Collapse
Affiliation(s)
- Henryk Urbanczyk
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Japan
| | - Yoshitoshi Ogura
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Japan Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| | - Tetsuya Hayashi
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, Japan Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
48
|
Identification of proteins in Streptococcus pneumoniae by reverse vaccinology and genetic diversity of these proteins in clinical isolates. Appl Biochem Biotechnol 2014; 175:2124-65. [PMID: 25448632 DOI: 10.1007/s12010-014-1375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. Virulence-associated proteins common and conserved among all capsular types now represent the best strategy to combat pneumococcal infections. Our aim was to identify conserved targets in pneumococci that showed positive prediction for lipoprotein and extracellular subcellular location using bioinformatics programs and verify the distribution and the degree of conservation of these targets in pneumococci. These targets can be considered potential vaccine candidate to be evaluated in the future. A set of 13 targets were analyzed and confirmed the presence in all pneumococci tested. These 13 genes were highly conserved showing around >96 % of amino acid and nucleotide identity, but they were also present and show high identity in the closely related species Streptococcus mitis, Streptococcus oralis, and Streptococcus pseudopneumoniae. S. oralis clusters away from S. pneumoniae, while S. pseudopneumoniae and S. mitis cluster closer. The divergence between the selected targets was too small to be observed consistently in phylogenetic groups between the analyzed genomes of S. pneumoniae. The proteins analyzed fulfill two of the initial criteria of a vaccine candidate: targets are present in a variety of different pneumococci strains including different serotypes and are conserved among the samples evaluated.
Collapse
|
49
|
Hernández-López A, Chabrol O, Royer-Carenzi M, Merhej V, Pontarotti P, Raoult D. To tree or not to tree? Genome-wide quantification of recombination and reticulate evolution during the diversification of strict intracellular bacteria. Genome Biol Evol 2014; 5:2305-17. [PMID: 24259310 PMCID: PMC3879967 DOI: 10.1093/gbe/evt178] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is well known that horizontal gene transfer (HGT) is a major force in the evolution of prokaryotes. During the adaptation of a bacterial population to a new ecological niche, and particularly for intracellular bacteria, selective pressures are shifted and ecological niches reduced, resulting in a lower rate of genetic connectivity. HGT and positive selection are therefore two important evolutionary forces in microbial pathogens that drive adaptation to new hosts. In this study, we use genomic distance analyses, phylogenomic networks, tree topology comparisons, and Bayesian inference methods to investigate to what extent HGT has occurred during the evolution of the genus Rickettsia, the effect of the use of different genomic regions in estimating reticulate evolution and HGT events, and the link of these to host range. We show that ecological specialization restricts recombination occurrence in Rickettsia, but other evolutionary processes and genome architecture are also important for the occurrence of HGT. We found that recombination, genomic rearrangements, and genome conservation all show evidence of network-like evolution at whole-genome scale. We show that reticulation occurred mainly, but not only, during the early Rickettsia radiation, and that core proteome genes of every major functional category have experienced reticulated evolution and possibly HGT. Overall, the evolution of Rickettsia bacteria has been tree-like, with evidence of HGT and reticulated evolution for around 10–25% of the core Rickettsia genome. We present evidence of extensive recombination/incomplete lineage sorting (ILS) during the radiation of the genus, probably linked with the emergence of intracellularity in a wide range of hosts.
Collapse
Affiliation(s)
- Antonio Hernández-López
- Aix-Marseille Université, LATP UMR - CNRS 7353, Evolution Biologique et Modélisation, Marseille, France
| | | | | | | | | | | |
Collapse
|
50
|
Bao HX, Tang L, Yu L, Wang XY, Li Y, Deng X, Li YG, Li A, Zhu DL, Johnston RN, Liu GR, Feng Y, Liu SL. Differential efficiency in exogenous DNA acquisition among closely related Salmonella strains: implications in bacterial speciation. BMC Microbiol 2014; 14:157. [PMID: 24928416 PMCID: PMC4094785 DOI: 10.1186/1471-2180-14-157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 06/10/2014] [Indexed: 12/17/2022] Open
Abstract
Background Acquisition of exogenous genetic material is a key event in bacterial speciation. It seems reasonable to assume that recombination of the incoming DNA into genome would be more efficient with higher levels of relatedness between the DNA donor and recipient. If so, bacterial speciation would be a smooth process, leading to a continuous spectrum of genomic divergence of bacteria, which, however, is not the case as shown by recent findings. The goal of this study was todetermine if DNA transfer efficiency is correlated with the levels of sequence identity. Results To compare the relative efficiency of exogenous DNA acquisition among closely related bacteria, we carried out phage-mediated transduction and plasmid-mediated transformation in representative Salmonella strains with different levels of relatedness. We found that the efficiency was remarkably variable even among genetically almost identical bacteria. Although there was a general tendency that more closely related DNA donor-recipient pairs had higher transduction efficiency, transformation efficiency exhibited over a thousand times difference among the closely related Salmonella strains. Conclusion DNA acquisition efficiency is greatly variable among bacteria that have as high as over 99% identical genetic background, suggesting that bacterial speciation involves highly complex processes affected not only by whether beneficial exogenous DNA may exist in the environment but also the “readiness” of the bacteria to accept it.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Gui-Rong Liu
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | | | | |
Collapse
|