1
|
Sinha S, Aggarwal S, Singh DV. Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:368-377. [PMID: 39568862 PMCID: PMC11576857 DOI: 10.15698/mic2024.11.839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
Staphylococcus aureus, a versatile human pathogen, poses a significant challenge in healthcare settings due to its ability to develop antibiotic resistance and form robust biofilms. Understanding the intricate mechanisms underlying the antibiotic resistance is crucial for effective infection treatment and control. This comprehensive review delves into the multifaceted roles of efflux pumps in S. aureus, with a focus on their contribution to antibiotic resistance and biofilm formation. Efflux pumps, integral components of the bacterial cell membrane, are responsible for expelling a wide range of toxic substances, including antibiotics, from bacterial cells. By actively extruding antibiotics, these pumps reduce intracellular drug concentrations, rendering antibiotics less effective. Moreover, efflux pumps have emerged as significant contributors to both antibiotic resistance and biofilm formation in S. aureus. Biofilms, structured communities of bacterial cells embedded in a protective matrix, enable S. aureus to adhere to surfaces, evade host immune responses, and resist antibiotic therapy. Efflux pumps play a pivotal role in the development and maintenance of S. aureus biofilms. However, the interplay between efflux pumps, antibiotic resistance and biofilm formation remains unexplored in S. aureus. This review aims to elucidate the complex relationship between efflux pumps, antibiotic resistance and biofilm formation in S. aureus with the aim to aid in the development of potential therapeutic targets for combating S. aureus infections, especially those associated with biofilms. The insights provided herein may contribute to the advancement of novel strategies to overcome antibiotic resistance and disrupt biofilm formation in this clinically significant pathogen.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar Gaya, 824236 India
| | - Shifu Aggarwal
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023 India
- Current Address: Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts USA
| | - Durg Vijai Singh
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar Gaya, 824236 India
| |
Collapse
|
2
|
Kumar S, Lekshmi M, Stephen J, Ortiz-Alegria A, Ayitah M, Varela MF. Dynamics of efflux pumps in antimicrobial resistance, persistence, and community living of Vibrionaceae. Arch Microbiol 2023; 206:7. [PMID: 38017151 DOI: 10.1007/s00203-023-03731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.
Collapse
Affiliation(s)
- Sanath Kumar
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Manjusha Lekshmi
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Jerusha Stephen
- QC Laboratory, Post-Harvest Technology, ICAR-Central Institute of Fisheries Education (CIFE), Mumbai, 400061, India
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Matthew Ayitah
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM, 88130, USA.
| |
Collapse
|
3
|
Varela MF, Ortiz-Alegria A, Lekshmi M, Stephen J, Kumar S. Functional Roles of the Conserved Amino Acid Sequence Motif C, the Antiporter Motif, in Membrane Transporters of the Major Facilitator Superfamily. BIOLOGY 2023; 12:1336. [PMID: 37887046 PMCID: PMC10604125 DOI: 10.3390/biology12101336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
The biological membrane surrounding all living cells forms a hydrophobic barrier to the passage of biologically important molecules. Integral membrane proteins called transporters circumvent the cellular barrier and transport molecules across the cell membrane. These molecular transporters enable the uptake and exit of molecules for cell growth and homeostasis. One important collection of related transporters is the major facilitator superfamily (MFS). This large group of proteins harbors passive and secondary active transporters. The transporters of the MFS consist of uniporters, symporters, and antiporters, which share similarities in structures, predicted mechanism of transport, and highly conserved amino acid sequence motifs. In particular, the antiporter motif, called motif C, is found primarily in antiporters of the MFS. The antiporter motif's molecular elements mediate conformational changes and other molecular physiological roles during substrate transport across the membrane. This review article traces the history of the antiporter motif. It summarizes the physiological evidence reported that supports these biological roles.
Collapse
Affiliation(s)
- Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA;
| | - Anely Ortiz-Alegria
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA;
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (M.L.); (J.S.); (S.K.)
| | - Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (M.L.); (J.S.); (S.K.)
| | - Sanath Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (M.L.); (J.S.); (S.K.)
| |
Collapse
|
4
|
Varela MF, Stephen J, Bharti D, Lekshmi M, Kumar S. Inhibition of Multidrug Efflux Pumps Belonging to the Major Facilitator Superfamily in Bacterial Pathogens. Biomedicines 2023; 11:1448. [PMID: 37239119 PMCID: PMC10216197 DOI: 10.3390/biomedicines11051448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial pathogens resistant to multiple structurally distinct antimicrobial agents are causative agents of infectious disease, and they thus constitute a serious concern for public health. Of the various bacterial mechanisms for antimicrobial resistance, active efflux is a well-known system that extrudes clinically relevant antimicrobial agents, rendering specific pathogens recalcitrant to the growth-inhibitory effects of multiple drugs. In particular, multidrug efflux pump members of the major facilitator superfamily constitute central resistance systems in bacterial pathogens. This review article addresses the recent efforts to modulate these antimicrobial efflux transporters from a molecular perspective. Such investigations can potentially restore the clinical efficacy of infectious disease chemotherapy.
Collapse
Affiliation(s)
- Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM 88130, USA
| | - Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Deeksha Bharti
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Sanath Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| |
Collapse
|
5
|
Stephen J, Salam F, Lekshmi M, Kumar SH, Varela MF. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Antibiotics (Basel) 2023; 12:343. [PMID: 36830254 PMCID: PMC9952236 DOI: 10.3390/antibiotics12020343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The ESKAPEE bacterial pathogen Staphylococcus aureus has posed a serious public health concern for centuries. Throughout its evolutionary course, S. aureus has developed strains with resistance to antimicrobial agents. The bacterial pathogen has acquired multidrug resistance, causing, in many cases, untreatable infectious diseases and raising serious public safety and healthcare concerns. Amongst the various mechanisms for antimicrobial resistance, integral membrane proteins that serve as secondary active transporters from the major facilitator superfamily constitute a chief system of multidrug resistance. These MFS transporters actively export structurally different antimicrobial agents from the cells of S. aureus. This review article discusses the S. aureus-specific MFS multidrug efflux pump systems from a molecular mechanistic perspective, paying particular attention to structure-function relationships, modulation of antimicrobial resistance mediated by MFS drug efflux pumps, and direction for future investigation.
Collapse
Affiliation(s)
- Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Fathima Salam
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Sanath H. Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India
| | - Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
6
|
Occurrence and Variability of the Efflux Pump Gene norA across the Staphylococcus Genus. Int J Mol Sci 2022; 23:ijms232315306. [PMID: 36499632 PMCID: PMC9738427 DOI: 10.3390/ijms232315306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
NorA is one of the main native MDR efflux pumps of Staphylococcus aureus, contributing to reduced susceptibility towards fluoroquinolones and biocides, but little is known about its variability within S. aureus or its distribution and conservation among other staphylococci. We screened for sequences homologous to S. aureus norA and found it in 61 out of the 63 Staphylococcus species described. To the best of our knowledge, this is the first study to report the occurrence of norA across the Staphylococcus genus. The norA phylogenetic tree follows the evolutionary relations of staphylococci and the closely related Mammalliicoccus genus. Comparative analyses suggest a conservation of the NorA function in staphylococci. We also analyzed the variability of norA within S. aureus, for which there are several circulating norA alleles, differing up to 10% at the nucleotide level, which may hamper proper norA detection. We demonstrate the applicability of a PCR-based algorithm to detect and differentiate norA alleles in 52 S. aureus representing a wider collection of 89 isolates from different hosts. Our results highlight the prevalence of norAI and norAII in different settings and the association of norA alleles with specific S. aureus clonal lineages. Ultimately, it confirms the applicability of our PCR-based algorithm to rapidly detect and assign the different norA alleles, a trait that may impact antimicrobial efflux capacity and the search for potential NorA inhibitors.
Collapse
|
7
|
Colagrossi L, Costabile V, Scutari R, Agosta M, Onori M, Mancinelli L, Lucignano B, Onetti Muda A, Del Baldo G, Mastronuzzi A, Locatelli F, Trua G, Montanari M, Alteri C, Bernaschi P, Perno CF. Evidence of pediatric sepsis caused by a drug resistant Lactococcus garvieae contaminated platelet concentrate. Emerg Microbes Infect 2022; 11:1325-1334. [PMID: 35475418 PMCID: PMC9132404 DOI: 10.1080/22221751.2022.2071174] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Owing to an increasing number of infections in adults, Lactococcus (L.) garvieae has gained recognition as an emerging human pathogen, causing bacteraemia and septicaemia. In September 2020, four paediatric onco-hematologic patients received a platelet concentrate from the same adult donor at Bambino Gesù Children’s Hospital IRCCS, Rome. Three of four patients experienced L. garvieae sepsis one day after transfusion. The L. garvieae pediatric isolates and the donor’s platelet concentrates were retrospectively collected for whole-genome sequencing and shot-gun metagenomics, respectively (Illumina HiSeq). By de novo assembly of the L. garvieae genomes, we found that all three pediatric isolates shared a 99.9% identity and were characterized by 440 common SNPs. Plasmid pUC11C (conferring virulence properties) and the temperate prophage Plg-Tb25 were detected in all three strains. Core SNP genome-based maximum likelihood and Bayesian trees confirmed their phylogenetic common origin and revealed their relationship with L. garvieae strains affecting cows and humans (bootstrap values >100 and posterior probabilities = 1.00). Bacterial reads obtained by the donor’s platelet concentrate have been profiled with MetaPhlAn2 (v.2.7.5); among these, 29.9% belonged to Firmicutes, and 5.16% to Streptococcaceae (>97% identity with L. garvieae), confirming the presence of L. garvieae in the platelet concentrate transfusion. These data showed three episodes of sepsis for the first time due to a transfusion-associated transmission of L. garvieae in three pediatric hospitalized hematology patients. This highlights the importance to implement the screening of platelet components with new human-defined pathogens for ensuring the safety of blood supply, and more broadly, for the surveillance of emerging pathogens.
Collapse
Affiliation(s)
- Luna Colagrossi
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Valentino Costabile
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Rossana Scutari
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Marilena Agosta
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Manuela Onori
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Livia Mancinelli
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Barbara Lucignano
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Andrea Onetti Muda
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Guglielmo Trua
- Department of Transfusion Medicine, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Mauro Montanari
- Department of Transfusion Medicine, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Claudia Alteri
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Paola Bernaschi
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Department of Laboratories, Unit of Diagnostic Microbiology and Immunology and Multimodal Medicine Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
8
|
Zhai G, Zhang Z, Dong C. Mutagenesis and functional analysis of SotB: A multidrug transporter of the major facilitator superfamily from Escherichia coli. Front Microbiol 2022; 13:1024639. [PMID: 36386622 PMCID: PMC9650428 DOI: 10.3389/fmicb.2022.1024639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 10/28/2023] Open
Abstract
Dysfunction of the major facilitator superfamily multidrug (MFS Mdr) transporters can lead to a variety of serious diseases in human. In bacteria, such membrane proteins are often associated with bacterial resistance. However, as one of the MFS Mdr transporters, the physiological function of SotB from Escherichia coli is poorly understood to date. To better understand the function and mechanism of SotB, a systematic study on this MFS Mdr transporter was carried out. In this study, SotB was found to directly efflux L-arabinose in E. coli by overexpressing sotB gene combined with cell based radiotracer uptake assay. Besides, the surface plasmon resonance (SPR) studies, the L-arabinose inhibition assays, together with precise molecular docking analysis, reveal the following: (i) the functional importance of E29 (protonation), H115/N343 (substrate recognition), and W119/S339 (substrate efflux) in the SotB mediated export of L-arabinose, and (ii) for the first time find that D-xylose, an isomer of L-arabinose, likely hinders the binding of L-arabinose with SotB as a competitive inhibitor. Finally, by analyzing the structure of SotB2 (shares 62.8% sequence similarity with SotB) predicted by AlphaFold 2, the different molecular mechanism of substrate recognition between SotB and SotB2 is explained. To our knowledge, this is the first systematic study of MFS Mdr transporter SotB. The structural information, together with the biochemical inspections in this study, provide a valuable framework for further deciphering the functional mechanisms of the physiologically important L-arabinose transporter SotB and its family.
Collapse
Affiliation(s)
| | - Zhengyu Zhang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Sharma S, Banerjee A, Moreno A, Redhu AK, Falson P, Prasad R. Spontaneous Suppressors against Debilitating Transmembrane Mutants of CaMdr1 Disclose Novel Interdomain Communication via Signature Motifs of the Major Facilitator Superfamily. J Fungi (Basel) 2022; 8:538. [PMID: 35628792 PMCID: PMC9143388 DOI: 10.3390/jof8050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
The Major Facilitator Superfamily (MFS) drug:H+ antiporter CaMdr1, from Candida albicans, is responsible for the efflux of structurally diverse antifungals. MFS members share a common fold of 12−14 transmembrane helices (TMHs) forming two N- and C-domains. Each domain is arranged in a pseudo-symmetric fold of two tandems of 3-TMHs that alternatively expose the drug-binding site towards the inside or the outside of the yeast to promote drug binding and release. MFS proteins show great diversity in primary structure and few conserved signature motifs, each thought to have a common function in the superfamily, although not yet clearly established. Here, we provide new information on these motifs by having screened a library of 64 drug transport-deficient mutants and their corresponding suppressors spontaneously addressing the deficiency. We found that five strains recovered the drug-resistance capacity by expressing CaMdr1 with a secondary mutation. The pairs of debilitating/rescuing residues are distributed either in the same TMH (T127ATMH1- > G140DTMH1) or 3-TMHs repeat (F216ATMH4- > G260ATMH5), at the hinge of 3-TMHs repeats tandems (R184ATMH3- > D235HTMH4, L480ATMH10- > A435TTMH9), and finally between the N- and C-domains (G230ATMH4- > P528HTMH12). Remarkably, most of these mutants belong to the different signature motifs, highlighting a mechanistic role and interplay thought to be conserved among MFS proteins. Results also point to the specific role of TMH11 in the interplay between the N- and C-domains in the inward- to outward-open conformational transition.
Collapse
Affiliation(s)
- Suman Sharma
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.S.); (A.B.)
| | - Atanu Banerjee
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.S.); (A.B.)
| | - Alexis Moreno
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, Institut de Biologie et Chimie des Protéines, CNRS-Lyon 1 University Research lab n° 5086, 69367 Lyon, France;
| | | | - Pierre Falson
- Drug Resistance & Membrane Proteins Team, Molecular Microbiology and Structural Biochemistry Laboratory, Institut de Biologie et Chimie des Protéines, CNRS-Lyon 1 University Research lab n° 5086, 69367 Lyon, France;
| | - Rajendra Prasad
- Amity Institute of Biotechnology, Amity University Haryana, Gurugram 122413, India; (S.S.); (A.B.)
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
10
|
Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus. Nat Chem Biol 2022; 18:706-712. [PMID: 35361990 PMCID: PMC9246859 DOI: 10.1038/s41589-022-00994-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Membrane protein efflux pumps confer antibiotic resistance by extruding structurally distinct compounds and lowering their intracellular concentration. Yet, there are no clinically approved drugs to inhibit efflux pumps, which would potentiate the efficacy of existing antibiotics rendered ineffective by drug efflux. Here we identified synthetic antigen-binding fragments (Fabs) that inhibit the quinolone transporter NorA from methicillin-resistant Staphylococcus aureus (MRSA). Structures of two NorA-Fab complexes determined using cryo-electron microscopy reveal a Fab loop deeply inserted in the substrate-binding pocket of NorA. An arginine residue on this loop interacts with two neighboring aspartate and glutamate residues essential for NorA-mediated antibiotic resistance in MRSA. Peptide mimics of the Fab loop inhibit NorA with submicromolar potency and ablate MRSA growth in combination with the antibiotic norfloxacin. These findings establish a class of peptide inhibitors that block antibiotic efflux in MRSA by targeting indispensable residues in NorA without the need for membrane permeability.
Collapse
|
11
|
Dashtbani-Roozbehani A, Brown MH. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiotics (Basel) 2021; 10:antibiotics10121502. [PMID: 34943714 PMCID: PMC8698293 DOI: 10.3390/antibiotics10121502] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/04/2023] Open
Abstract
The increasing emergence of antimicrobial resistance in staphylococcal bacteria is a major health threat worldwide due to significant morbidity and mortality resulting from their associated hospital- or community-acquired infections. Dramatic decrease in the discovery of new antibiotics from the pharmaceutical industry coupled with increased use of sanitisers and disinfectants due to the ongoing COVID-19 pandemic can further aggravate the problem of antimicrobial resistance. Staphylococci utilise multiple mechanisms to circumvent the effects of antimicrobials. One of these resistance mechanisms is the export of antimicrobial agents through the activity of membrane-embedded multidrug efflux pump proteins. The use of efflux pump inhibitors in combination with currently approved antimicrobials is a promising strategy to potentiate their clinical efficacy against resistant strains of staphylococci, and simultaneously reduce the selection of resistant mutants. This review presents an overview of the current knowledge of staphylococcal efflux pumps, discusses their clinical impact, and summarises compounds found in the last decade from plant and synthetic origin that have the potential to be used as adjuvants to antibiotic therapy against multidrug resistant staphylococci. Critically, future high-resolution structures of staphylococcal efflux pumps could aid in design and development of safer, more target-specific and highly potent efflux pump inhibitors to progress into clinical use.
Collapse
|
12
|
Mat Rani NNI, Mustafa Hussein Z, Mustapa F, Azhari H, Sekar M, Chen XY, Mohd Amin MCI. Exploring the possible targeting strategies of liposomes against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Pharm Biopharm 2021; 165:84-105. [PMID: 33974973 DOI: 10.1016/j.ejpb.2021.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Multi antibiotic-resistant bacterial infections are on the rise due to the overuse of antibiotics. Methicillin-resistant Staphylococcus aureus (MRSA) is one of the pathogens listed under the category of serious threats where vancomycin remains the mainstay treatment despite the availability of various antibacterial agents. Recently, decreased susceptibility to vancomycin from clinical isolates of MRSA has been reported and has drawn worldwide attention as it is often difficult to overcome and leads to increased medical costs, mortality, and longer hospital stays. Development of antibiotic delivery systems is often necessary to improve bioavailability and biodistribution, in order to reduce antibiotic resistance and increase the lifespan of antibiotics. Liposome entrapment has been used as a method to allow higher drug dosing apart from reducing toxicity associated with drugs. The surface of the liposomes can also be designed and enhanced with drug-release properties, active targeting, and stealth effects to prevent recognition by the mononuclear phagocyte system, thus enhancing its circulation time. The present review aimed to highlight the possible targeting strategies of liposomes against MRSA bacteremia systemically while investigating the magnitude of this effect on the minimum inhibitory concentration level.
Collapse
Affiliation(s)
- Nur Najihah Izzati Mat Rani
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Zahraa Mustafa Hussein
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Fahimi Mustapa
- Hospital Batu Gajah Jalan Changkat, 31000 Batu Gajah, Perak, Malaysia
| | - Hanisah Azhari
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450 Ipoh, Perak, Malaysia
| | - Xiang Yi Chen
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Staphylococcus aureus Tet38 Efflux Pump Structural Modeling and Roles of Essential Residues in Drug Efflux and Host Cell Internalization. Infect Immun 2021; 89:IAI.00811-20. [PMID: 33619028 DOI: 10.1128/iai.00811-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/13/2021] [Indexed: 12/29/2022] Open
Abstract
The Staphylococcus aureus Tet38 membrane protein has distinct functions, including drug efflux and host cell attachment and internalization mediated by interaction with host cell CD36. Using structural modeling and site-directed mutagenesis, we identified key amino acids involved in different functions. Tet38, a member of the major facilitator superfamily, is predicted to have 14 transmembrane segments (TMS), 6 cytoplasmic loops, and 7 external loops. Cysteine substitutions of arginine 106 situated at the junction of TMS 4 and external loop L2, and glycine 151 of motif C on TMS 5, resulted in complete or near-complete (8- to 16-fold) reductions in Tet38-mediated resistance to tetracycline, with minimal to no effect on A549 host cell internalization. In contrast, a three-amino-acid deletion, F411P412G413, in external loop L7 situated between TMS 13 and 14 led to a decrease of 4-fold in S. aureus internalization by A549 cells and a partial effect on tetracycline resistance (4-fold reduction). A three-amino-acid deletion, D38D39L40, in external loop L1 situated between TMS-1 and TMS-2, had a similar partial effect on tetracycline resistance but did not affect cell internalization. Using an Ni column retention assay, we showed further that the L7, but not the L1, deletion impaired binding to CD36. Thus, the L7 domain of Tet38 is key for interaction with CD36 and host cell internalization, and amino acids R106 and G151 (TMSs 4 and 5) are particularly important for tetracycline resistance without affecting internalization.
Collapse
|
14
|
Imchen M, Kumavath R. Metagenomic insights into the antibiotic resistome of mangrove sediments and their association to socioeconomic status. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115795. [PMID: 33068846 DOI: 10.1016/j.envpol.2020.115795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/03/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Mangrove sediments are prone to anthropogenic activities that could enrich antibiotics resistance genes (ARGs). The emergence and dissemination of ARGs are of serious concern to public health worldwide. Therefore, a comprehensive resistome analysis of global mangrove sediment is of paramount importance. In this study, we have implemented a deep machine learning approach to analyze the resistome of mangrove sediments from Brazil, China, Saudi Arabia, India, and Malaysia. Geography (RANOSIM = 39.26%; p < 0.005) as well as human intervention (RANOSIM = 16.92%; p < 0.005) influenced the ARG diversity. ARG diversity was also inversely correlated to the human development index (HDI) of the host country (R = -0.53; p < 0.05) rather than antibiotics consumption (p > 0.05). Several genes including multidrug efflux pumps were significantly (p < 0.05) enriched in the sites with human intervention. Resistome was consistently dominated by rpoB2 (19.26 ± 0.01%), multidrug ABC transporter (10.40 ± 0.23%), macB (8.84 ± 0.36n%), tetA (4.13 ± 0.35%), mexF (3.26 ± 0.19%), CpxR (2.93 ± 0.2%), bcrA (2.38 ± 0.24%), acrB (2.37 ± 0.18%), mexW (2.19 ± 0.17%), and vanR (1.99 ± 0.11%). Besides, mobile ARGs such as vanA, tet(48), mcr, and tetX were also detected in the mangrove sediments. Comparative analysis against terrestrial and ocean resistomes showed that the ocean ecosystem harbored the lowest ARG diversity (Chao1 = 71.12) followed by mangroves (Chao1 = 258.07) and terrestrial ecosystem (Chao1 = 294.07). ARG subtypes such as abeS and qacG were detected exclusively in ocean datasets. Likewise, rpoB2, multidrug ABC transporter, and macB, detected in mangrove and terrestrial datasets, were not detected in the ocean datasets. This study shows that the socioeconomic factors strongly determine the antibiotic resistome in the mangrove. Direct anthropogenic intervention in the mangrove environment also enriches antibiotic resistome.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala, 671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (P.O) Kasaragod, Kerala, 671320, India.
| |
Collapse
|
15
|
Xiao Q, Sun B, Zhou Y, Wang C, Guo L, He J, Deng D. Visualizing the nonlinear changes of a drug-proton antiporter from inward-open to occluded state. Biochem Biophys Res Commun 2020; 534:272-278. [PMID: 33280821 DOI: 10.1016/j.bbrc.2020.11.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 11/24/2022]
Abstract
Drug-proton antiporters (DHA) play an important role in multi-drug resistance, utilizing the proton-motive force to drive the expulsion of toxic molecules, including antibiotics and drugs. DHA transporters belong to the major facilitator superfamily (MFS), members of which deliver substrates by utilizing the alternating access model of transport. However, the transport process is still elusive. Here, we report the structures of SotB, a member of DHA1 family (TCDB: 2.A.1.2) from Escherichia coli. Four crystal structures of SotB were captured in different conformations, including substrate-bound occluded, inward-facing, and inward-open states. Comparisons between the four structures reveal nonlinear rigid-body movements of alternating access during the state transition from inward-open to occluded conformation. This work not only reveals the conformational dynamics of SotB but also deepens our understanding of the alternating access mechanism of MFS transporters.
Collapse
Affiliation(s)
- Qingjie Xiao
- From the Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Sun
- Shanghai Synchrotron Radiation Facility Science Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yanxia Zhou
- From the Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Chen Wang
- From the Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Guo
- From the Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianhua He
- Shanghai Synchrotron Radiation Facility Science Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China.
| | - Dong Deng
- From the Division of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Functional and Structural Roles of the Major Facilitator Superfamily Bacterial Multidrug Efflux Pumps. Microorganisms 2020; 8:microorganisms8020266. [PMID: 32079127 PMCID: PMC7074785 DOI: 10.3390/microorganisms8020266] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Pathogenic microorganisms that are multidrug-resistant can pose severe clinical and public health concerns. In particular, bacterial multidrug efflux transporters of the major facilitator superfamily constitute a notable group of drug resistance mechanisms primarily because multidrug-resistant pathogens can become refractory to antimicrobial agents, thus resulting in potentially untreatable bacterial infections. The major facilitator superfamily is composed of thousands of solute transporters that are related in terms of their phylogenetic relationships, primary amino acid sequences, two- and three-dimensional structures, modes of energization (passive and secondary active), and in their mechanisms of solute and ion translocation across the membrane. The major facilitator superfamily is also composed of numerous families and sub-families of homologous transporters that are conserved across all living taxa, from bacteria to humans. Members of this superfamily share several classes of highly conserved amino acid sequence motifs that play essential mechanistic roles during transport. The structural and functional importance of multidrug efflux pumps that belong to the major facilitator family and that are harbored by Gram-negative and -positive bacterial pathogens are considered here.
Collapse
|
17
|
Varela MF, Kumar S. Strategies for discovery of new molecular targets for anti-infective drugs. Curr Opin Pharmacol 2019; 48:57-68. [PMID: 31146204 DOI: 10.1016/j.coph.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 12/29/2022]
Abstract
Multidrug resistant bacterial pathogens as causative agents of infectious disease are a primary public health concern. Clinical efficacy of antimicrobial chemotherapy toward bacterial infection has been compromised in cases where causative agents are resistant to multiple structurally distinct antimicrobial agents. Modification of extant antimicrobial agents that exploit conventional bacterial targets have been developed since the advent of the antimicrobial era. This approach, while successful in certain cases, nonetheless suffers overall from the costs of development and rapid emergence of bacterial variants with confounding resistances to modified agents. Thus, additional strategies toward discovery of new molecular targets have been developed based on bioinformatics analyses and comparative genomics. These and other strategies meant to identify new molecular targets represent promising avenues for reducing emergence of bacterial infections. This short review considers these strategies for discovery of new molecular targets within bacterial pathogens.
Collapse
Affiliation(s)
- Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- Post Harvest Technology, ICAR-Central Institute of Fisheries Education, Seven Bungalows, Andheri (W), Mumbai, 400016, India
| |
Collapse
|
18
|
Costa SS, Sobkowiak B, Parreira R, Edgeworth JD, Viveiros M, Clark TG, Couto I. Genetic Diversity of norA, Coding for a Main Efflux Pump of Staphylococcus aureus. Front Genet 2019; 9:710. [PMID: 30687388 PMCID: PMC6333699 DOI: 10.3389/fgene.2018.00710] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
NorA is the best studied efflux system of Staphylococcus aureus and therefore frequently used as a model for investigating efflux-mediated resistance in this pathogen. NorA activity is associated with resistance to fluoroquinolones, several antiseptics and disinfectants and several reports have pointed out the role of efflux systems, including NorA, as a first-line response to antimicrobials in S. aureus. Genetic diversity studies of the gene norA have described three alleles; norAI, norAII and norAIII. However, the epidemiology of these alleles and their impact on NorA activity remains unclear. Additionally, increasing studies do not account for norA variability when establishing relations between resistance phenotypes and norA presence or reported absence, which actually corresponds, as we now demonstrate, to different norA alleles. In the present study we assessed the variability of the norA gene present in the genome of over 1,000 S. aureus isolates, corresponding to 112 S. aureus strains with whole genome sequences publicly available; 917 MRSA strains sourced from a London-based study and nine MRSA isolates collected in a major Hospital in Lisbon, Portugal. Our analyses show that norA is part of the core genome of S. aureus. It also suggests that occurrence of norA variants reflects the population structure of this major pathogen. Overall, this work highlights the ubiquitous nature of norA in S. aureus which must be taken into account when studying the role played by this important determinant on S. aureus resistance to antimicrobials.
Collapse
Affiliation(s)
- Sofia Santos Costa
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Benjamin Sobkowiak
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ricardo Parreira
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Jonathan D. Edgeworth
- Department of Infectious Diseases, Centre for Clinical Infection and Diagnostics Research, Guy’s and St Thomas’ NHS Foundation Trust, King’s College London, London, United Kingdom
| | - Miguel Viveiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Isabel Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Otarigho B, Falade MO. Analysis of antibiotics resistant genes in different strains of Staphylococcus aureus. Bioinformation 2018; 14:113-122. [PMID: 29785070 PMCID: PMC5953858 DOI: 10.6026/97320630014113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 12/20/2022] Open
Abstract
The control of Staphylococcus aureus infection is being hampered by methicillin and other resistant strains. The identification of the unique antibiotic resistant genes from the genomes of various strains of S. aureus is of interest. We analyzed 11 S. aureus genomes sequences for Antibiotics Resistance Genes (ARGs) using CARD 2017 platform. We identified 32 ARGs across 11 S. aureus strains. Tet(38), norB, lmrB, mepA and mepR were present across genomes except for S. aureus strain UTSW MRSA 55. The mepA and mepR were found across 11 different genomes. However, FosB3, vgaALC, mphC and SAT-4 were found in UTSW MRSA 55, S.a. strain ISU935 and S.a. strain FDAARGOS_159. The prevalent mode of mechanism of antibiotics resistant was efflux pump complex or subunit conferring antibiotic resistance as well as protein(s). Analysis of norB, ImrB, norA, ImrB, tet (38), sav1866 and mecA have 12 to 14 TMHs. The results help in the understanding of Staphylococcus aureus pathogenesis in the context of antibiotic resistance.
Collapse
Affiliation(s)
- Benson Otarigho
- Department of Biological Science, Edo University, Iyamho, Edo State, Nigeria
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, OR USA
| | - Mofolusho O. Falade
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
20
|
Lekshmi M, Ammini P, Adjei J, Sanford LM, Shrestha U, Kumar S, Varela MF. Modulation of antimicrobial efflux pumps of the major facilitator superfamily in Staphylococcus aureus. AIMS Microbiol 2018; 4:1-18. [PMID: 31294201 PMCID: PMC6605029 DOI: 10.3934/microbiol.2018.1.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Variants of the microorganism Staphylococcus aureus which are resistant to antimicrobial agents exist as causative agents of serious infectious disease and constitute a considerable public health concern. One of the main antimicrobial resistance mechanisms harbored by S. aureus pathogens is exemplified by integral membrane transport systems that actively remove antimicrobial agents from bacteria where the cytoplasmic drug targets reside, thus allowing the bacteria to survive and grow. An important class of solute transporter proteins, called the major facilitator superfamily, includes related and homologous passive and secondary active transport systems, many of which are antimicrobial efflux pumps. Transporters of the major facilitator superfamily, which confer antimicrobial efflux and bacterial resistance in S. aureus, are good targets for development of resistance-modifying agents, such as efflux pump inhibition. Such modulatory action upon these antimicrobial efflux systems of the major facilitator superfamily in S. aureus may circumvent resistance and restore the clinical efficacy of therapy towards S. aureus infection.
Collapse
Affiliation(s)
- Manjusha Lekshmi
- QC Laboratory, Harvest and Post Harvest Technology Division, ICAR-Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - Parvathi Ammini
- CSIR-National Institute of Oceanography (NIO), Regional Centre, Dr. Salim Ali Road, Kochi, 682018, India
| | - Jones Adjei
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| | - Leslie M Sanford
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| | - Ugina Shrestha
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| | - Sanath Kumar
- QC Laboratory, Harvest and Post Harvest Technology Division, ICAR-Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai, 400061, India
| | - Manuel F Varela
- Eastern New Mexico, Department of Biology, Station 33, 1500 South Avenue K, Portales, NM, 88130, USA
| |
Collapse
|
21
|
K Redhu A, Shah AH, Prasad R. MFS transporters of Candida species and their role in clinical drug resistance. FEMS Yeast Res 2016; 16:fow043. [PMID: 27188885 DOI: 10.1093/femsyr/fow043] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
ABC (ATP-binding cassette) and MFS (major facilitator superfamily) exporters, belonging to two different superfamilies, are one of the most prominent contributors of multidrug resistance (MDR) in yeast. While the role of ABC efflux pump proteins in the development of MDR is well documented, the MFS transporters which are also implicated in clinical drug resistance have not received due attention. The MFS superfamily is the largest known family of secondary active membrane carriers, and MFS exporters are capable of transporting a host of substrates ranging from small molecules, including organic and inorganic ions, to complex biomolecules, such as peptide and lipid moieties. A few of the members of the drug/H(+) antiporter family of the MFS superfamily function as multidrug transporters and employ downhill transport of protons to efflux their respective substrates. This review focuses on the recent developments in MFS of Candida and highlights their role in drug transport by using the example of the relatively well characterized promiscuous Mdr1 efflux pump of the pathogenic yeast C. albicans.
Collapse
Affiliation(s)
- Archana K Redhu
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul H Shah
- Department of Bioresources, University of Kashmir, Srinagar 190006, India
| | - Rajendra Prasad
- Institute of Integrative Sciences and Health and Institute of Biotechnology, Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| |
Collapse
|
22
|
Candida Efflux ATPases and Antiporters in Clinical Drug Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:351-376. [PMID: 26721282 DOI: 10.1007/978-3-319-25304-6_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An enhanced expression of genes encoding ATP binding cassette (ABC) and major facilitator superfamily (MFS) transport proteins are known to contribute to the development of tolerance to antifungals in pathogenic yeasts. For example, the azole resistant (AR) clinical isolates of the opportunistic human fungal pathogen Candida albicans show an overexpression of CDR1 and/or CaMDR1 belonging to ABC and MFS, superfamilies, respectively. The reduced accumulation (due to rapid efflux) of drugs in AR isolates confirms the role of efflux pump proteins in the development of drug tolerance. Considering the importance of major multidrug transporters, the focus of recent research has been to understand the structure and function of these proteins which could help to design inhibitors/modulators of these pump proteins. This chapter focuses on some aspects of the structure and function of yeast transporter proteins particularly in relation to MDR in Candida.
Collapse
|
23
|
Andersen JL, He GX, Kakarla P, K C R, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I, Shrestha U, Tran T, Varela MF. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1487-547. [PMID: 25635914 PMCID: PMC4344678 DOI: 10.3390/ijerph120201487] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/15/2015] [Indexed: 02/07/2023]
Abstract
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.
Collapse
Affiliation(s)
- Jody L Andersen
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Gui-Xin He
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Prathusha Kakarla
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ranjana K C
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Sanath Kumar
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Wazir Singh Lakra
- QC Laboratory, Harvest and Post-Harvest Technology Division, Central Institute of Fisheries Education (CIFE), Seven Bungalows, Versova, Andheri (W), Mumbai 400061, India.
| | - Mun Mun Mukherjee
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Indrika Ranaweera
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Ugina Shrestha
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| | - Thuy Tran
- Department of Clinical Laboratory and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| | - Manuel F Varela
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA.
| |
Collapse
|
24
|
Prasad R, Rawal MK. Efflux pump proteins in antifungal resistance. Front Pharmacol 2014; 5:202. [PMID: 25221515 PMCID: PMC4148622 DOI: 10.3389/fphar.2014.00202] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/13/2014] [Indexed: 11/13/2022] Open
Abstract
It is now well-known that the enhanced expression of ATP binding cassette (ABC) and major facilitator superfamily (MFS) proteins contribute to the development of tolerance to antifungals in yeasts. For example, the azole resistant clinical isolates of the opportunistic human fungal pathogen Candida albicans show an overexpression of Cdr1p and/or CaMdr1p belonging to ABC and MFS superfamilies, respectively. Hence, azole resistant isolates display reduced accumulation of therapeutic drug due to its rapid extrusion and that facilitates its survival. Considering the importance of major antifungal transporters, the focus of recent research has been to understand the structure and function of these proteins to design inhibitors/modulators to block the pump protein activity so that the drug already in use could again sensitize resistant yeast cells. The review focuses on the structure and function of ABC and MFS transporters of Candida to highlight the recent advancement in the field.
Collapse
Affiliation(s)
- Rajendra Prasad
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| | - Manpreet K Rawal
- Membrane Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University New Delhi, India
| |
Collapse
|
25
|
Functional and biochemical characterisation of the Escherichia coli major facilitator superfamily multidrug transporter MdtM. Biochimie 2012; 94:1334-46. [DOI: 10.1016/j.biochi.2012.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 03/01/2012] [Indexed: 01/22/2023]
|
26
|
Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci 2012; 13:4484-4495. [PMID: 22605991 PMCID: PMC3344227 DOI: 10.3390/ijms13044484] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/09/2012] [Accepted: 03/15/2012] [Indexed: 11/17/2022] Open
Abstract
Bacterial pathogens that are multi-drug resistant compromise the effectiveness of treatment when they are the causative agents of infectious disease. These multi-drug resistance mechanisms allow bacteria to survive in the presence of clinically useful antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen drug resistance. Therefore, because of their overwhelming presence in bacterial pathogens, these active multi-drug efflux mechanisms remain a major area of intense study, so that ultimately measures may be discovered to inhibit these active multi-drug efflux pumps.
Collapse
|
27
|
Kapoor K, Rehan M, Lynn AM, Prasad R. Employing information theoretic measures and mutagenesis to identify residues critical for drug-proton antiport function in Mdr1p of Candida albicans. PLoS One 2010; 5:e11041. [PMID: 20548793 PMCID: PMC2883579 DOI: 10.1371/journal.pone.0011041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/19/2010] [Indexed: 11/18/2022] Open
Abstract
By employing information theoretic measures, this study presents a structure and functional analysis of a multidrug-proton antiporter Mdr1p of Candida albicans. Since CaMdr1p belongs to drug-proton antiporter (DHA1) family of Major Facilitator Superfamily (MFS) of transporters, we contrasted DHA1 (antiporters) with Sugar Porter family (symporters). Cumulative Relative Entropy (CRE) calculated for these two sets of alignments enabled us to selectively identify conserved residues of not only CaMdr1p but for the entire DHA1 family. Based on CRE, the highest scoring thirty positions were selected and predicted to impart functional specificity to CaMdr1p as well as to other drug-proton antiporters. Nineteen positions wherein the CaMdr1p residue matched with the most frequent amino acid at a particular alignment position of DHA1 members were subjected to site-directed mutagenesis and were replaced with either alanine or leucine. All these mutant variants, except one, displayed either complete or selective sensitivity to the tested drugs. The enhanced susceptibility of these mutant variants was corroborated with the simultaneously abrogated efflux of substrates. Taken together, based on scaled CRE between two MFS sub-families, we could accurately predict the functionally relevant residues of CaMdr1p. An extrapolation of these predictions to the entire DHA1 family members as validated from previously published data shows that these residues are functionally critical in other members of the DHA1 family also.
Collapse
Affiliation(s)
- Khyati Kapoor
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Rehan
- School of Information Technology, Jawaharlal Nehru University, New Delhi, India
| | - Andrew M. Lynn
- School of Information Technology, Jawaharlal Nehru University, New Delhi, India
| | - Rajendra Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Kapoor K, Rehan M, Kaushiki A, Pasrija R, Lynn AM, Prasad R. Rational mutational analysis of a multidrug MFS transporter CaMdr1p of Candida albicans by employing a membrane environment based computational approach. PLoS Comput Biol 2009; 5:e1000624. [PMID: 20041202 PMCID: PMC2789324 DOI: 10.1371/journal.pcbi.1000624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 11/20/2009] [Indexed: 01/31/2023] Open
Abstract
CaMdr1p is a multidrug MFS transporter of pathogenic Candida albicans. An over-expression of the gene encoding this protein is linked to clinically encountered azole resistance. In-depth knowledge of the structure and function of CaMdr1p is necessary for an effective design of modulators or inhibitors of this efflux transporter. Towards this goal, in this study, we have employed a membrane environment based computational approach to predict the functionally critical residues of CaMdr1p. For this, information theoretic scores which are variants of Relative Entropy (Modified Relative Entropy RE(M)) were calculated from Multiple Sequence Alignment (MSA) by separately considering distinct physico-chemical properties of transmembrane (TM) and inter-TM regions. The residues of CaMdr1p with high RE(M) which were predicted to be significantly important were subjected to site-directed mutational analysis. Interestingly, heterologous host Saccharomyces cerevisiae, over-expressing these mutant variants of CaMdr1p wherein these high RE(M) residues were replaced by either alanine or leucine, demonstrated increased susceptibility to tested drugs. The hypersensitivity to drugs was supported by abrogated substrate efflux mediated by mutant variant proteins and was not attributed to their poor expression or surface localization. Additionally, by employing a distance plot from a 3D deduced model of CaMdr1p, we could also predict the role of these functionally critical residues in maintaining apparent inter-helical interactions to provide the desired fold for the proper functioning of CaMdr1p. Residues predicted to be critical for function across the family were also found to be vital from other previously published studies, implying its wider application to other membrane protein families.
Collapse
Affiliation(s)
- Khyati Kapoor
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohd Rehan
- School of Information Technology, Jawaharlal Nehru University, New Delhi, India
| | - Ajeeta Kaushiki
- School of Information Technology, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Pasrija
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Andrew M. Lynn
- School of Information Technology, Jawaharlal Nehru University, New Delhi, India
| | - Rajendra Prasad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
29
|
Smith KP, Kumar S, Varela MF. Identification, cloning, and functional characterization of EmrD-3, a putative multidrug efflux pump of the major facilitator superfamily from Vibrio cholerae O395. Arch Microbiol 2009; 191:903-11. [PMID: 19876617 DOI: 10.1007/s00203-009-0521-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/02/2009] [Accepted: 10/12/2009] [Indexed: 12/31/2022]
Abstract
A putative multidrug efflux pump, EmrD-3, belonging to the major facilitator superfamily (MFS) of transporters and sharing homology with the Bcr/CflA subfamily, was identified in Vibrio cholerae O395. We cloned the emrD-3 gene and evaluated its role in antimicrobial efflux in a hypersensitive Escherichia coli strain. The efflux activity of this membrane protein resulted in lowering the intracellular concentration of ethidium. The recombinant plasmid carrying emrD-3 conferred enhanced resistance to several antimicrobials. Among the antimicrobials tested, the highest relative increase in minimum inhibitory concentration (MIC) of 102-fold was observed for linezolid (MIC = 256 microg/ml), followed by an 80.1-fold increase for tetraphenylphosphonium chloride (TPCL) (156.2 microg/ml), 62.5-fold for rifampin (MIC = 50 microg/ml), >30-fold for erythromycin (MIC = 50 microg/ml) and minocycline (MIC = 2 microg/ml), 20-fold for trimethoprim (MIC = 0.12 microg/ml), and 18.7-fold for chloramphenicol (MIC = 18.7 microg/ml). Among the fluorescent DNA-binding dyes, the highest relative increase in MIC of 41.7-fold was observed for ethidium bromide (125 microg/ml) followed by a 17.2-fold increase for rhodamine 6G (100 microg/ml). Thus, we demonstrate that EmrD-3 is a multidrug efflux pump of V. cholerae, the homologues of which are present in several Vibrio spp., some members of Enterobacteriaceae family, and Gram-positive Bacillus spp.
Collapse
Affiliation(s)
- Kenneth P Smith
- Department of Biology, Eastern New Mexico University, Roosevelt Hall, Room 101, Station 33, Portales, NM 88130, USA
| | | | | |
Collapse
|
30
|
Optimized production and analysis of the staphylococcal multidrug efflux protein QacA. Protein Expr Purif 2009; 64:118-24. [DOI: 10.1016/j.pep.2008.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 11/19/2008] [Accepted: 11/22/2008] [Indexed: 11/21/2022]
|
31
|
Walther C, Rossano A, Thomann A, Perreten V. Antibiotic resistance in Lactococcus species from bovine milk: Presence of a mutated multidrug transporter mdt(A) gene in susceptible Lactococcus garvieae strains. Vet Microbiol 2008; 131:348-57. [DOI: 10.1016/j.vetmic.2008.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 03/17/2008] [Accepted: 03/25/2008] [Indexed: 11/28/2022]
|
32
|
Abstract
The development of MDR (multidrug resistance) in yeast is due to a number of mechanisms. The most documented mechanism is enhanced extrusion of drugs mediated by efflux pump proteins belonging to either the ABC (ATP-binding cassette) superfamily or MFS (major facilitator superfamily). These drug-efflux pump proteins are localized on the plasma membrane, and the milieu therein affects their proper functioning. Several recent studies demonstrate that fluctuations in membrane lipid composition affect the localization and proper functioning of the MDR efflux pump proteins. Interestingly, the efflux pumps of the ABC superfamily are particularly susceptible to imbalances in membrane-raft lipid constituents. This review focuses on the importance of the membrane environment in functioning of the drug-efflux pumps and explores a correlation between MDR and membrane lipid homoeostasis.
Collapse
|
33
|
Hassan KA, Skurray RA, Brown MH. Active Export Proteins Mediating Drug Resistance in Staphylococci. J Mol Microbiol Biotechnol 2007; 12:180-96. [PMID: 17587867 DOI: 10.1159/000099640] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Drug resistance mediated by integral membrane transporters is an important mode of cellular resistance to cytotoxic agents across all classes of living organisms. Gram-positive bacteria, such as staphylococcal species, are not encapsulated by a selective outer membrane permeability barrier. Therefore, these organisms often employ integral membrane drug transport systems to maintain cellular concentrations of antimicrobials at subtoxic levels. Staphylococcal species, including the opportunistic human pathogen Staphylococcus aureus, encode a multitude of drug exporters, encompassing transporters from each of the five currently recognized families of bacterial drug resistance transporters. A number of these transporters are chromosomally encoded and allow the host cell to realize clinically significant levels of drug resistance after minor mutations to regulatory regions. Others are plasmid-encoded and can be easily passed between staphylococcal strains and species, or acquired from other Gram-positive genera. In combination, staphylococcal drug transporters potentiate resistance to a vast array of antimicrobial compounds, including macrolide, quinolone, tetracycline and streptogramin antibiotics, as well as a broad range of biocides, such as quaternary ammonium compounds, biguanidines and diamidines. An understanding of the genetic and molecular properties of drug transporters will lead to effective treatments of staphylococcal infections. Here we provide a detailed review of the active drug transporters of the staphylococci.
Collapse
Affiliation(s)
- Karl A Hassan
- School of Biological Sciences, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
34
|
Pasrija R, Banerjee D, Prasad R. Structure and function analysis of CaMdr1p, a major facilitator superfamily antifungal efflux transporter protein of Candida albicans: identification of amino acid residues critical for drug/H+ transport. EUKARYOTIC CELL 2007; 6:443-53. [PMID: 17209122 PMCID: PMC1828935 DOI: 10.1128/ec.00315-06] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have cloned and overexpressed multidrug transporter CaMdr1p as a green fluorescent protein-tagged protein to show its capability to extrude drug substrates. The drug extrusion was sensitive to pH and energy inhibitors and displayed selective substrate specificity. CaMdr1p has a unique and conserved antiporter motif, also called motif C [G(X6)G(X3)GP(X2)GP(X2)G], in its transmembrane segment 5 (TMS 5). Alanine scanning of all the amino acids of the TMS 5 by site-directed mutagenesis highlighted the importance of the motif, as well as that of other residues of TMS 5, in drug transport. The mutant variants of TMS 5 were placed in four different categories. The first category had four residues, G244, G251, G255, and G259, which are part of the conserved motif C, and their substitution with alanine resulted in increased sensitivity to drugs and displayed impaired efflux of drugs. Interestingly, first category mutants, when replaced with leucine, resulted in more dramatic loss of drug resistance and efflux. Notwithstanding the location in the core motif, the second category included residues which are part of the motif, such as P260, and those which were not part of the motif, such as L245, W248, P256, and F262, whose substitution with alanine resulted in a severe loss of drug resistance and efflux. The third category included G263, which is a part of motif C, but unlike other conserved glycines, its replacement with alanine or leucine showed no change in the phenotype. The replacement of the remaining 11 residues of the fourth category did not result in any change. The putative helical wheel projection showed clustering of functionally critical residues to one side and thus suggests an asymmetric nature of TMS 5.
Collapse
Affiliation(s)
- Ritu Pasrija
- Membrane Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|
35
|
Chandrasekaran A, Ojeda AM, Kolmakova NG, Parsons SM. Mutational and bioinformatics analysis of proline- and glycine-rich motifs in vesicular acetylcholine transporter. J Neurochem 2006; 98:1551-9. [PMID: 16923166 DOI: 10.1111/j.1471-4159.2006.03975.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The vesicular acetylcholine transporter (VAChT) contains six conserved sequence motifs that are rich in proline and glycine. Because these residues can have special roles in the conformation of polypeptide backbone, the motifs might have special roles in conformational changes during transport. Using published bioinformatics insights, the amino acid sequences of the 12 putative, helical, transmembrane segments of wild-type and mutant VAChTs were analyzed for propensity to form non-alpha-helical conformations and molecular notches. Many instances were found. In particular, high propensity for kinks and notches are robustly predicted for motifs D2, C and C'. Mutations in these motifs either increase or decrease Vmax for transport, but they rarely affect the equilibrium dissociation constants for ACh and the allosteric inhibitor, vesamicol. The near absence of equilibrium effects implies that the mutations do not alter the backbone conformation. In contrast, the Vmax effects demonstrate that the mutations alter the difficulty of a major conformational change in transport. Interestingly, mutation of an alanine to a glycine residue in motif C significantly increases the rates for reorientation across the membrane. These latter rates are deduced from the kinetics model of the transport cycle. This mutation is also predicted to produce a more flexible kink and tighter tandem notches than are present in wild-type. For the full set of mutations, faster reorientation rates correlate with greater predicted propensity for kinks and notches. The results of the study argue that conserved motifs mediate conformational changes in the VAChT backbone during transport.
Collapse
Affiliation(s)
- Ananda Chandrasekaran
- Department of Chemistry and Biochemistry and Neuroscience Research Institute, University of California, Santa Barbara, California 93106-9510, USA
| | | | | | | |
Collapse
|
36
|
De Jesus M, Jin J, Guffanti AA, Krulwich TA. Importance of the GP dipeptide of the antiporter motif and other membrane-embedded proline and glycine residues in tetracycline efflux protein Tet(L). Biochemistry 2005; 44:12896-904. [PMID: 16171405 PMCID: PMC2515593 DOI: 10.1021/bi050762c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proline and glycine residues are well represented among functionally important residues in hydrophobic domains of membrane transport proteins, and several critical roles have been suggested for them. Here, the effects of mutational changes in membrane-embedded proline and glycine residues of Tet(L) were examined, with a focus on the conserved GP(155,156) dipeptide of motif C, a putative "antiporter motif". Mutation of Gly155 to cysteine resulted in a mutant Tet(L) that bound its tetracycline-divalent metal (Tc-Me2+) substrate but did not catalyze efflux or exchange of Tc-Me2+ or catalyze uptake or exchange of Rb+ which was used to monitor the coupling ion. These results support suggestions that this region is involved in the conformational changes required for translocation. Mutations in Pro156 resulted in reduction (P156G) or loss (P156A or P156C) of Tc-Me2+ efflux capacity. All three Pro156 mutants exhibited a K+ leak (monitored by 86Rb+ fluxes) that was not observed in wild-type Tet(L). A similar leak was observed in a mutant in a membrane-embedded proline residue elsewhere in the Tet(L) protein (P175C) as well as in a P156C mutant of related antiporter Tet(K). These findings are consistent with roles proposed for membrane-embedded prolines in tight helix packing. Patterns of Tc resistance conferred by additional Tet(L) mutants indicate important roles for another GP dipeptide in transmembrane segment (TMS) X as well as for membrane-embedded glycine residues in TMS XIII.
Collapse
Affiliation(s)
- Magdia De Jesus
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
37
|
Jin J, Guffanti AA, Bechhofer DH, Krulwich TA. Tet(L) and tet(K) tetracycline-divalent metal/H+ antiporters: characterization of multiple catalytic modes and a mutagenesis approach to differences in their efflux substrate and coupling ion preferences. J Bacteriol 2002; 184:4722-32. [PMID: 12169596 PMCID: PMC135290 DOI: 10.1128/jb.184.17.4722-4732.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Tet(L) protein encoded in the Bacillus subtilis chromosome and the closely related Tet(K) protein from Staphylococcus aureus plasmids are multifunctional antiporters that have three cytoplasmic efflux substrates: a tetracycline-divalent metal (TC-Me(2+)) complex that bears a net single positive charge, Na+, and K+. Tet(L) and Tet(K) had been shown to couple efflux of each of these substrates to influx of H+ as the coupling ion. In this study, competitive cross-inhibition between K+ and other cytoplasmic efflux substrates was demonstrated. Tet(L) and Tet(K) had also been shown to use K+ as an alternate coupling ion in support of Na+ or K+ efflux. Here they were shown to couple TC-Me(2+) efflux to K+ uptake as well, exhibiting greater use of K+ as a coupling ion as the external pH increased. The substrate and coupling ion preferences of the two Tet proteins differed, especially in the higher preference of Tet(K) than Tet(L) for K+, both as a cytoplasmic efflux substrate and as an external coupling ion. Site-directed mutagenesis was employed to test the hypothesis that some feature of the putative "antiporter motif," motif C, of Tet proteins would be involved in these characteristic preferences. Mutation of the A157 in Tet(L) to a hydroxyamino acid resulted in a more Tet(K)-like K+ preference both as coupling ion and efflux substrate. A reciprocal S157A mutant of Tet(K) exhibited reduced K+ preference. Competitive inhibition among substrates and the parallel effects of the single mutation upon K+ preference, as both an efflux substrate and coupling ion, are compatible with a model in which a single translocation pathway through the Tet(L) and Tet(K) transporters is used both for the cytoplasmic efflux substrates and for the coupling ions, in an alternating fashion. However, the effects of the A157 and other mutations of Tet(L) indicate that even if there are a shared binding site and translocation pathway, some elements of that pathway are used by all substrates and others are important only for particular substrates.
Collapse
Affiliation(s)
- Jie Jin
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
38
|
Jin J, Krulwich TA. Site-directed mutagenesis studies of selected motif and charged residues and of cysteines of the multifunctional tetracycline efflux protein Tet(L). J Bacteriol 2002; 184:1796-800. [PMID: 11872735 PMCID: PMC134896 DOI: 10.1128/jb.184.6.1796-1800.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All of the transmembrane glutamates of Tet(L) are essential for tetracycline (TET) resistance, and E397 has been shown to be essential for all catalytic modes, i.e., TET-Me(2+) and Na(+) efflux and K(+) uptake. Loop residues D74 and G70 are essential for TET flux but not for Na(+) or K(+) flux. A cysteineless Tet(L) protein exhibits all activities.
Collapse
Affiliation(s)
- Jie Jin
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
39
|
Perreten V, Schwarz FV, Teuber M, Levy SB. Mdt(A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia coli. Antimicrob Agents Chemother 2001; 45:1109-14. [PMID: 11257023 PMCID: PMC90432 DOI: 10.1128/aac.45.4.1109-1114.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2000] [Accepted: 01/12/2001] [Indexed: 11/20/2022] Open
Abstract
The mdt(A) gene, previously designated mef214, from Lactococcus lactis subsp. lactis plasmid pK214 encodes a protein [Mdt(A) (multiple drug transporter)] with 12 putative transmembrane segments (TMS) that contain typical motifs conserved among the efflux proteins of the major facilitator superfamily. However, it also has two C-motifs (conserved in the fifth TMS of the antiporters) and a putative ATP-binding site. Expression of the cloned mdt(A) gene decreased susceptibility to macrolides, lincosamides, streptogramins, and tetracyclines in L. lactis and Escherichia coli, but not in Enterococcus faecalis or in Staphylococcus aureus. Glucose-dependent efflux of erythromycin and tetracycline was demonstrated in L. lactis and in E. coli.
Collapse
Affiliation(s)
- V Perreten
- Center for Adaptation Genetics and Drug Resistance, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
40
|
Saraceni-Richards CA, Levy SB. Second-site suppressor mutations of inactivating substitutions at gly247 of the tetracycline efflux protein, Tet(B). J Bacteriol 2000; 182:6514-6. [PMID: 11053399 PMCID: PMC94801 DOI: 10.1128/jb.182.22.6514-6516.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An Asp or Asn substitution for Gly247 in transmembrane helix 8 (TM-8) of Tet(B), the tetracycline efflux protein, eliminated tetracycline resistance. Second site suppressor mutations which partially restored resistance were located in TM-5, -8, -10, or -11 or in cytoplasmic loop 8-9 or loop 10-11. These results indicate physical proximity or functional relationships between TM-8 and these other regions of Tet(B).
Collapse
Affiliation(s)
- C A Saraceni-Richards
- The Center for Adaptation Genetics and Drug Resistance and the Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|