1
|
Ousalem F, Singh S, Bailey NA, Wong KH, Zhu L, Neky MJ, Sibindi C, Fei J, Gonzalez RL, Boël G, Hunt JF. Comparative genetic, biochemical, and biophysical analyses of the four E. coli ABCF paralogs support distinct functions related to mRNA translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.543863. [PMID: 37398404 PMCID: PMC10312648 DOI: 10.1101/2023.06.11.543863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Multiple paralogous ABCF ATPases are encoded in most genomes, but the physiological functions remain unknown for most of them. We herein compare the four Escherichia coli K12 ABCFs - EttA, Uup, YbiT, and YheS - using assays previously employed to demonstrate EttA gates the first step of polypeptide elongation on the ribosome dependent on ATP/ADP ratio. A Δ uup knockout, like Δ ettA , exhibits strongly reduced fitness when growth is restarted from long-term stationary phase, but neither Δ ybiT nor Δ yheS exhibits this phenotype. All four proteins nonetheless functionally interact with ribosomes based on in vitro translation and single-molecule fluorescence resonance energy transfer experiments employing variants harboring glutamate-to-glutamine active-site mutations (EQ 2 ) that trap them in the ATP-bound conformation. These variants all strongly stabilize the same global conformational state of a ribosomal elongation complex harboring deacylated tRNA Val in the P site. However, EQ 2 -Uup uniquely exchanges on/off the ribosome on a second timescale, while EQ 2 -YheS-bound ribosomes uniquely sample alternative global conformations. At sub-micromolar concentrations, EQ 2 -EttA and EQ 2 -YbiT fully inhibit in vitro translation of an mRNA encoding luciferase, while EQ 2 -Uup and EQ 2 -YheS only partially inhibit it at ~10-fold higher concentrations. Moreover, tripeptide synthesis reactions are not inhibited by EQ 2 -Uup or EQ 2 -YheS, while EQ 2 -YbiT inhibits synthesis of both peptide bonds and EQ 2 -EttA specifically traps ribosomes after synthesis of the first peptide bond. These results support the four E. coli ABCF paralogs all having different activities on translating ribosomes, and they suggest that there remains a substantial amount of functionally uncharacterized "dark matter" involved in mRNA translation.
Collapse
|
2
|
Osorio Garcia MA, Wood EA, Keck JL, Cox MM. Interaction with single-stranded DNA-binding protein (SSB) modulates Escherichia coli RadD DNA repair activities. J Biol Chem 2023; 299:104773. [PMID: 37142225 DOI: 10.1016/j.jbc.2023.104773] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
The bacterial RadD enzyme is important for multiple genome maintenance pathways, including RecA DNA strand exchange and RecA-independent suppression of DNA crossover template switching. However, much remains unknown about the precise roles of RadD. One potential clue into RadD mechanisms is its direct interaction with the single-stranded DNA binding protein (SSB), which coats single-stranded DNA exposed during genome maintenance reactions in cells. Interaction with SSB stimulates the ATPase activity of RadD. To probe the mechanism and importance of RadD:SSB complex formation, we identified a pocket on RadD that is essential for binding SSB. In a mechanism shared with many other SSB-interacting proteins, RadD uses a hydrophobic pocket framed by basic residues to bind the C-terminal end of SSB. We found that RadD variants that substitute acidic residues for basic residues in the SSB binding site impair RadD:SSB complex formation and eliminate SSB stimulation of RadD ATPase activity in vitro. Additionally, mutant E. coli strains carrying charge reversal radD changes display increased sensitivity to DNA damaging agents synergistically with deletions of radA and recG, although the phenotypes of the SSB-binding radD mutants are not as severe as a full radD deletion. This suggests that cellular RadD requires an intact the interaction with SSB for full RadD function.
Collapse
Affiliation(s)
| | - Elizabeth A Wood
- Department of Biochemistry, University of Wisconsin, Madison, Madison, WI 53706
| | - James L Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA.
| | - Michael M Cox
- Department of Biochemistry, University of Wisconsin, Madison, Madison, WI 53706.
| |
Collapse
|
3
|
Kalita A, Mishra RK, Kumar V, Arora A, Dutta D. An Intrinsic Alkalization Circuit Turns on mntP Riboswitch under Manganese Stress in Escherichia coli. Microbiol Spectr 2022; 10:e0336822. [PMID: 36190429 PMCID: PMC9603457 DOI: 10.1128/spectrum.03368-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 01/04/2023] Open
Abstract
The trace metal manganese in excess affects iron-sulfur cluster and heme-protein biogenesis, eliciting cellular toxicity. The manganese efflux protein MntP is crucial to evading manganese toxicity in bacteria. Recently, two Mn-sensing riboswitches upstream of mntP and alx in Escherichia coli have been reported to mediate the upregulation of their expression under manganese shock. As the alx riboswitch is also responsive to alkaline shock administered externally, it is intriguing whether the mntP riboswitch is also responsive to alkaline stress. Furthermore, how both manganese and alkaline pH simultaneously regulate these two riboswitches under physiological conditions is a puzzle. Using multiple approaches, we show that manganese shock activated glutamine synthetase (GlnA) and glutaminases (GlsA and GlsB) to spike ammonia production in E. coli. The elevated ammonia intrinsically alkalizes the cytoplasm. We establish that this alkalization under manganese stress is crucial for attaining the highest degree of riboswitch activation. Additional studies showed that alkaline pH promotes a 17- to 22-fold tighter interaction between manganese and the mntP riboswitch element. Our study uncovers a physiological linkage between manganese efflux and pH homeostasis that mediates enhanced manganese tolerance. IMPORTANCE Riboswitch RNAs are cis-acting elements that can adopt alternative conformations in the presence or absence of a specific ligand(s) to modulate transcription termination or translation initiation processes. In the present work, we show that manganese and alkaline pH are both necessary for maximal mntP riboswitch activation to mitigate the manganese toxicity. This study bridges the gap between earlier studies that separately emphasize the importance of alkaline pH and manganese in activating the riboswitches belonging to the yybP-ykoY family. This study also ascribes a physiological relevance as to how manganese can rewire cellular physiology to render cytoplasmic pH alkaline for its homeostasis.
Collapse
Affiliation(s)
- Arunima Kalita
- CSIR Institute of Microbial Technology, Chandigarh, India
| | | | - Vineet Kumar
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Amit Arora
- CSIR Institute of Microbial Technology, Chandigarh, India
| | - Dipak Dutta
- CSIR Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
4
|
Ali N, Gowrishankar J. Cross-subunit catalysis and a new phenomenon of recessive resurrection in Escherichia coli RNase E. Nucleic Acids Res 2020; 48:847-861. [PMID: 31802130 PMCID: PMC6954427 DOI: 10.1093/nar/gkz1152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5′-sensor pocket that renders enzyme activity maximal on 5′-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability. Here, we provide evidence that a full-length hetero-tetramer, composed of a mixture of wild-type and (recessive lethal) active-site mutant subunits, exhibits identical activity in vivo as the wild-type homo-tetramer itself (‘recessive resurrection’). When all of the cognate polypeptides lacked the CTH, the active-site mutant subunits were dominant negative. A pair of C-terminally truncated polypeptides, which were individually inactive because of additional mutations in their active site and 5′-sensor pocket respectively, exhibited catalytic function in combination, both in vivo and in vitro (i.e. intragenic or allelic complementation). Our results indicate that adjacent subunits within an oligomer are separately responsible for 5′-sensing and cleavage, and that RNA binding facilitates oligomerization. We propose also that the CTH mediates a rate-determining initial step for enzyme function, which is likely the binding and channelling of substrate for NTH’s endonucleolytic action.
Collapse
Affiliation(s)
- Nida Ali
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jayaraman Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
5
|
Ousalem F, Singh S, Chesneau O, Hunt JF, Boël G. ABC-F proteins in mRNA translation and antibiotic resistance. Res Microbiol 2019; 170:435-447. [PMID: 31563533 DOI: 10.1016/j.resmic.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/01/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022]
Abstract
The ATP binding cassette protein superfamily comprises ATPase enzymes which are, for the most part, involved in transmembrane transport. Within this superfamily however, some protein families have other functions unrelated to transport. One example is the ABC-F family, which comprises an extremely diverse set of cytoplasmic proteins. All of the proteins in the ABC-F family characterized to date act on the ribosome and are translation factors. Their common function is ATP-dependent modulation of the stereochemistry of the peptidyl transferase center (PTC) in the ribosome coupled to changes in its global conformation and P-site tRNA binding geometry. In this review, we give an overview of the function, structure, and theories for the mechanisms-of-action of microbial proteins in the ABC-F family, including those involved in mediating resistance to ribosome-binding antibiotics.
Collapse
Affiliation(s)
- Farès Ousalem
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 75005, Paris, France
| | - Shikha Singh
- Department of Biological, 702A Sherman Fairchild Center, Columbia University, New York, NY, 10027, United States
| | - Olivier Chesneau
- Département de Microbiologie, Institut Pasteur, 75724, Paris Cedex 15, France.
| | - John F Hunt
- Department of Biological, 702A Sherman Fairchild Center, Columbia University, New York, NY, 10027, United States.
| | - Grégory Boël
- UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 75005, Paris, France.
| |
Collapse
|
6
|
Screening of a Leptospira biflexa mutant library to identify genes involved in ethidium bromide tolerance. Appl Environ Microbiol 2014; 80:6091-103. [PMID: 25063661 DOI: 10.1128/aem.01619-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Leptospira spp. are spirochete bacteria comprising both pathogenic and free-living species. The saprophyte L. biflexa is a model bacterium for studying leptospiral biology due to relative ease of culturing and genetic manipulation. In this study, we constructed a library of 4,996 random transposon mutants in L. biflexa. We screened the library for increased susceptibility to the DNA intercalating agent, ethidium bromide (EtBr), in order to identify genetic determinants that reduce L. biflexa susceptibility to antimicrobial agents. By phenotypic screening, using subinhibitory EtBr concentrations, we identified 29 genes that, when disrupted via transposon insertion, led to increased sensitivity of the bacteria to EtBr. At the functional level, these genes could be categorized by function as follows: regulation and signaling (n=11), transport (n=6), membrane structure (n=5), stress response (n=2), DNA damage repair (n=1), and other processes (n=3), while 1 gene had no predicted function. Genes involved in transport (including efflux pumps) and regulation (two-component systems, anti-sigma factor antagonists, etc.) were overrepresented, demonstrating that these genes are major contributors to EtBr tolerance. This finding suggests that transport genes which would prevent EtBr to enter the cell cytoplasm are critical for EtBr resistance. We identified genes required for the growth of L. biflexa in the presence of sublethal EtBr concentration and characterized their potential as antibiotic resistance determinants. This study will help to delineate mechanisms of adaptation to toxic compounds, as well as potential mechanisms of antibiotic resistance development in pathogenic L. interrogans.
Collapse
|
7
|
Li W, Cong Q, Pei J, Kinch LN, Grishin NV. The ABC transporters in Candidatus Liberibacter asiaticus. Proteins 2012; 80:2614-28. [PMID: 22807026 PMCID: PMC3688454 DOI: 10.1002/prot.24147] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/11/2012] [Accepted: 06/25/2012] [Indexed: 12/16/2022]
Abstract
Candidatus Liberibacter asiaticus (Ca. L. asiaticus) is a Gram-negative bacterium and the pathogen of Citrus Greening disease (Huanglongbing, HLB). As a parasitic bacterium, Ca. L. asiaticus harbors ABC transporters that play important roles in exchanging chemical compounds between Ca. L. asiaticus and its host. Here, we analyzed all the ABC transporter-related proteins in Ca. L. asiaticus. We identified 14 ABC transporter systems and predicted their structures and substrate specificities. In-depth sequence and structure analysis including multiple sequence alignment, phylogenetic tree reconstruction, and structure comparison further support their function predictions. Our study shows that this bacterium could use these ABC transporters to import metabolites (amino acids and phosphates) and enzyme cofactors (choline, thiamine, iron, manganese, and zinc), resist to organic solvent, heavy metal, and lipid-like drugs, maintain the composition of the outer membrane (OM), and secrete virulence factors. Although the features of most ABC systems could be deduced from the abundant experimental data on their orthologs, we reported several novel observations within ABC system proteins. Moreover, we identified seven nontransport ABC systems that are likely involved in virulence gene expression regulation, transposon excision regulation, and DNA repair. Our analysis reveals several candidates for further studies to understand and control the disease, including the type I virulence factor secretion system and its substrate that are likely related to Ca. L. asiaticus pathogenicity and the ABC transporter systems responsible for bacterial OM biosynthesis that are good drug targets.
Collapse
Affiliation(s)
- Wenlin Li
- Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Qian Cong
- Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Jimin Pei
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| | - Nick V Grishin
- Department of Biochemistry and Department of Biophysics, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
- Howard Hughes Medical Institute, University of Texas Southwestern Medical CenterDallas, Texas 75390-9050
| |
Collapse
|
8
|
Zepeda MYB, Alessandri K, Murat D, El Amri C, Dassa E. C-terminal domain of the Uup ATP-binding cassette ATPase is an essential folding domain that binds to DNA. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:755-61. [DOI: 10.1016/j.bbapap.2009.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/12/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
|
9
|
Deletion of the Escherichia coli uup gene encoding a protein of the ATP binding cassette superfamily affects bacterial competitiveness. Res Microbiol 2008; 159:671-7. [PMID: 18848624 DOI: 10.1016/j.resmic.2008.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/19/2008] [Accepted: 09/09/2008] [Indexed: 11/23/2022]
Abstract
Bacteria use a variety of mechanisms for intercellular communication. Here we show that deletion of the uup gene, which encodes a soluble ATP binding cassette (ABC) ATPase, renders the mutant strain sensitive to its parent when they are grown together in the same medium. Our data suggest that the decrease in viability of the mutant is dependent on direct cell-to-cell contact with the parent strain. Furthermore, we show that the presence of intact Walker B motifs in Uup is required for immunity or resistance to the parental strain, suggesting that ATP hydrolysis is an important determinant of this phenotype.
Collapse
|
10
|
Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 PMCID: PMC2415747 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 979] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
Affiliation(s)
- Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
11
|
Amundsen SK, Smith GR. Chi hotspot activity in Escherichia coli without RecBCD exonuclease activity: implications for the mechanism of recombination. Genetics 2007; 175:41-54. [PMID: 17110484 PMCID: PMC1774988 DOI: 10.1534/genetics.106.065524] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 10/23/2006] [Indexed: 11/18/2022] Open
Abstract
The major pathway of genetic recombination and DNA break repair in Escherichia coli requires RecBCD enzyme, a complex nuclease and DNA helicase regulated by Chi sites (5'-GCTGGTGG-3'). During its unwinding of DNA containing Chi, purified RecBCD enzyme has two alternative nucleolytic reactions, depending on the reaction conditions: simple nicking of the Chi-containing strand at Chi or switching of nucleolytic degradation from the Chi-containing strand to its complement at Chi. We describe a set of recC mutants with a novel intracellular phenotype: retention of Chi hotspot activity in genetic crosses but loss of detectable nucleolytic degradation as judged by the growth of mutant T4 and lambda phages and by assay of cell-free extracts. We conclude that RecBCD enzyme's nucleolytic degradation of DNA is not necessary for intracellular Chi hotspot activity and that nicking of DNA by RecBCD enzyme at Chi is sufficient. We discuss the bearing of these results on current models of RecBCD pathway recombination.
Collapse
Affiliation(s)
- Susan K Amundsen
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
12
|
Lesnyak DV, Sergiev PV, Bogdanov AA, Dontsova OA. Identification of Escherichia coli m2G methyltransferases: I. the ycbY gene encodes a methyltransferase specific for G2445 of the 23 S rRNA. J Mol Biol 2006; 364:20-5. [PMID: 17010378 DOI: 10.1016/j.jmb.2006.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 11/18/2022]
Abstract
N2-methylguanosine 2445 of the 23 S rRNA is located in a cluster of modified nucleotides concentrated at the peptidyl transferase center of the ribosome. Here we describe the identification of a gene, ycbY, as encoding an enzyme responsible for methylation of G2445. Knock-out of the ycbY gene leads to loss of modification at G2445 as revealed by reverse transcription. The modification is restored in the ycbY knock-out strain if co-transformed with a plasmid expressing the ycbY gene product. Recombinant YcbY protein is able to methylate 23 S rRNA purified from the ycbY knock-out strain in vitro, assembled 50 S subunits are not a substrate for the methylase. Knock-out of the ycbY gene leads to growth retardation. Growth competition with the parental wild-type strain leads to a gradual decrease in the knock-out strain cells proportion in the media. It is likely that the G2445 modification is necessary for prevention of non-functional secondary or tertiary structure formation at the peptidyl transferase center. Based on these results we suggest that YcbY be renamed to RlmL in accordance with the accepted nomenclature for rRNA methyltransferases.
Collapse
Affiliation(s)
- Dmitry V Lesnyak
- Department of Bioinformatics and Bioengineering, Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
13
|
Murat D, Bance P, Callebaut I, Dassa E. ATP hydrolysis is essential for the function of the Uup ATP-binding cassette ATPase in precise excision of transposons. J Biol Chem 2006; 281:6850-9. [PMID: 16407313 DOI: 10.1074/jbc.m509926200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli K-12, the RecA- and transposase-independent precise excision of transposons is thought to be mediated by the slippage of the DNA polymerase between the two short direct repeats that flank the transposon. Inactivation of the uup gene, encoding an ATP-binding cassette (ABC) ATPase, led to an important increase in the frequency of precise excision of transposons Tn10 and Tn5 and a defective growth of bacteriophage Mu. To provide insight into the mechanism of Uup in transposon excision, we purified this protein, and we demonstrated that it is a cytosolic ABC protein. Purified recombinant Uup binds and hydrolyzes ATP and undergoes a large conformational change in the presence of this nucleotide. This change affects a carboxyl-terminal domain of the protein that displays predicted structural homology with the socalled little finger domain of Y family DNA polymerases. In these enzymes, this domain is involved in DNA binding and in the processivity of replication. We show that Uup binds to DNA and that this binding is in part dependent on its carboxyl-terminal domain. Analysis of Walker motif B mutants suggests that ATP hydrolysis at the two ABC domains is strictly coordinated and is essential for the function of Uup in vivo.
Collapse
Affiliation(s)
- Dorothée Murat
- Unité des Membranes Bactériennes CNRS URA2172, Département de Microbiologie Fondamentale et Médicale, Site Fernbach, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
14
|
Deeraksa A, Moonmangmee S, Toyama H, Yamada M, Adachi O, Matsushita K. Characterization and spontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100. Microbiology (Reading) 2005; 151:4111-4120. [PMID: 16339956 DOI: 10.1099/mic.0.28350-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acetobacter tropicalis SKU1100 produces a pellicle polysaccharide, consisting of galactose, glucose and rhamnose, which attaches to the cell surface. This strain forms two types of colony on agar plates: a rough-surfaced colony (R strain) and a mucoid smooth-surfaced colony (S strain). The R strain forms a pellicle, allowing it to float on the medium surface in static culture, while the S strain does not. The pellicle is an assemblage of cells which are tightly associated with capsular polysaccharides (CPS) on the cell surface. In this study, a gene required for pellicle formation by the R strain was investigated by transposon mutagenesis using Tn10. The resulting mutant, designated Pel−, has a smooth-surfaced colony and a defect in pellicle formation, as for the S strain. The mutant produced polysaccharide which was instead secreted into the culture medium as extracellular polysaccharide (EPS). An ORF was identified at the Tn10 insertion site, designated polE, upstream of which polABCD genes were also found. The deduced amino acid sequences of polABCD showed a high level of homology to those of rfbBACD which are involved in dTDP-rhamnose synthesis, whereas polE had a relatively low level of homology to glycosyltransferase. In this study a polB (rfbA) disruptant was also prepared, which lacked both CPS and EPS production. A plasmid harbouring the polE or polB genes could restore pellicle formation in the Pel− mutant and S strains, and in the ΔpolB mutant, respectively. Thus both polE and polB are evidently involved in pellicle formation, most likely by anchoring polysaccharide to the cell surface and through the production of dTDP-rhamnose, respectively. The Pel− and ΔpolB mutants were unable to grow in static culture and became more sensitive to acetic acid due to the loss of pellicle formation. Additionally, this study identified the mutation sites of several S strains which were spontaneously isolated from the original culture and found them to be concentrated in a sequence of 7 C residues in the coding sequence of polE, with the deletion or addition of a single C nucleotide.
Collapse
Affiliation(s)
- Arpaporn Deeraksa
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Somporn Moonmangmee
- Department of Biotechnology, Thailand Institute of Scientific and Technological Research, Khlong Luang, Pathumthani 12120, Thailand
| | - Hirohide Toyama
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Osao Adachi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
15
|
Blount ZD, Grogan DW. New insertion sequences of Sulfolobus: functional properties and implications for genome evolution in hyperthermophilic archaea. Mol Microbiol 2005; 55:312-25. [PMID: 15612937 DOI: 10.1111/j.1365-2958.2004.04391.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Analyses of complete genomes indicate that insertion sequences (ISs) are abundant and widespread in hyperthermophilic archaea, but few experimental studies have measured their activities in these hosts. As a way to investigate the impact of ISs on Sulfolobus genomes, we identified seven transpositionally active ISs in a widely distributed Sulfolobus species, and measured their functional properties. Six of the seven were found to be distinct from previously described ISs of Sulfolobus, and one of the six could not be assigned to any known IS family. A type II 'Miniature Inverted-repeat Transposable Element' (MITE) related to one of the ISs was also recovered. Rates of transposition of the different ISs into the pyrEF region of their host strains varied over a 250-fold range. The Sulfolobus ISs also differed with respect to target-site selectivity, although several shared an apparent preference for the pyrEF promoter region. Despite the number of distinct ISs assayed and their molecular diversity, only one demonstrated precise excision from the chromosomal target region. The fact that this IS is the only one lacking inverted repeats and target-site duplication suggests that the observed precise excision may be promoted by the IS itself. Sequence searches revealed previously unidentified partial copies of the newly identified ISs in the Sulfolobus tokodaii and Sulfolobus solfataricus genomes. The structures of these fragmentary copies suggest several distinct molecular mechanisms which, in the absence of precise excision, inactivate ISs and gradually eliminate the defective copies from Sulfolobus genomes.
Collapse
Affiliation(s)
- Zachary D Blount
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | | |
Collapse
|
16
|
Harinarayanan R, Gowrishankar J. A dnaC mutation in Escherichia coli that affects copy number of ColE1-like plasmids and the PriA-PriB (but not Rep-PriC) pathway of chromosomal replication restart. Genetics 2004; 166:1165-76. [PMID: 15082538 PMCID: PMC1470795 DOI: 10.1534/genetics.166.3.1165] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli nusG and rho mutants, which are defective in transcription termination, are killed following transformation with several ColE1-like plasmids that lack the plasmid-encoded copy-number regulator gene rom because of uncontrolled plasmid replication within the cells. In this study, a mutation [dnaC1331(A84T)] in the dnaC gene encoding the replicative helicase-loading protein was characterized as a suppressor of this plasmid-mediated lethality phenotype. The mutation also reduced the copy number of the plasmids in otherwise wild-type strains. In comparison with the isogenic dnaC(+) strain, the dnaC mutant was largely unaffected for (i) growth on rich or minimal medium, (ii) tolerance to UV irradiation, or (iii) survival in the absence of the PriA, RecA, or RecB proteins. However, it was moderately SOS-induced and was absolutely dependent on both the Rep helicase and the PriC protein for its viability. A dnaC1331(A84T) dam mutant, but not its mutH derivative, exhibited sensitivity to growth on rich medium, suggestive of a reduced capacity in the dnaC1331(A84T) strains to survive chromosomal double-strand breaks. We propose that DnaC-A84T is proficient in the assembly of replication forks for both initiation of chromosome replication (at oriC) and replication restart via the Rep-PriC pathway, but that it is specifically defective for replication restart via the PriA-PriB pathway (and consequently also for replication of the Rom(-) ColE1-like plasmids).
Collapse
Affiliation(s)
- R Harinarayanan
- Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | | |
Collapse
|
17
|
Nagy Z, Chandler M. Regulation of transposition in bacteria. Res Microbiol 2004; 155:387-98. [PMID: 15207871 DOI: 10.1016/j.resmic.2004.01.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 01/20/2004] [Indexed: 11/30/2022]
Abstract
Mobile genetic elements (MGEs) play a central role in the evolution of bacterial genomes. Transposable elements (TE: transposons and insertion sequences) represent an important group of these elements. Comprehension of the dynamics of genome evolution requires an understanding of how the activity of TEs is regulated and how their activity responds to the physiology of the host cell. This article presents an overview of the large range of, often astute, regulatory mechanisms, which have been adopted by TEs. These include mechanisms intrinsic to the element at the level of gene expression, the presence of key checkpoints in the recombination pathway and the intervention of host proteins which provide a TE/host interface. The multiplicity and interaction of these mechanisms clearly illustrates the importance of limiting transposition activity and underlines the compromise that has been reached between TE activity and the host genome. Finally, we consider how TE activity can shape the host genome.
Collapse
MESH Headings
- Bacteria/genetics
- DNA Methylation
- DNA Repair/genetics
- DNA Transposable Elements/genetics
- DNA, Superhelical/genetics
- Evolution, Molecular
- Frameshifting, Ribosomal/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genome, Bacterial
- Integration Host Factors/genetics
- Models, Genetic
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis/genetics
- RNA Stability/genetics
- RNA, Antisense/genetics
- SOS Response, Genetics/genetics
Collapse
Affiliation(s)
- Zita Nagy
- Laboratoire de Microbiologie et de Génétique Moléculaire (CNRS), 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | | |
Collapse
|
18
|
Kerr ID. Sequence analysis of twin ATP binding cassette proteins involved in translational control, antibiotic resistance, and ribonuclease L inhibition. Biochem Biophys Res Commun 2004; 315:166-73. [PMID: 15013441 DOI: 10.1016/j.bbrc.2004.01.044] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Indexed: 11/16/2022]
Abstract
Genome sequencing has identified open reading frames which belong to the ATP binding cassette (ABC) transporter family, but which are unlikely to be involved in transport phenomena. These frequently contain a pair of nucleotide binding domains (NBD) with no associated transmembrane domains. The functions of many of these twin-NBD proteins remain unknown. In this manuscript, sequence analysis has been employed to analyse two families of twin-NBD proteins, ABCE and ABCF. The ABCE proteins, postulated to be inhibitors of RNase L, are identified by two potential Fe-S metal-binding domains in addition to two NBDs. Surprisingly, ABCE homologues are identified in numerous species which apparently lack an RNase L, questioning the proposed function of these proteins. The ABCF proteins can be sub-divided into more than a dozen sub-classes. Intriguingly, sequence similarity is shown between eukaryotic ABCF proteins, which are involved in translation initiation and elongation, and prokaryotic ABCF proteins which are implicated in resistance to macrolide inhibitors of protein synthesis.
Collapse
Affiliation(s)
- Ian D Kerr
- Centre for Biochemistry and Cell Biology, School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
19
|
Abstract
In this work the involvement of polymerase II (Pol II) in the precise excision of Tn10 stimulated by a dnaB252 thermosensitive (Ts) mutant at the permissive temperature, by a uvrD mutant, or by mitomycin C (MMC) or ultraviolet (UV) light treatment, was investigated. A deltapolB::kan mutant showed a significant decrease in the excision of Tn10 induced by the dnaB mutation, or by MMC or UV treatment, indicating the participation of Pol II in this type of deletion process. However, no effect of Pol II was evidenced in the excision of Tn10 stimulated by the uvrD mutation. The effect of the polB mutation on Tn10 precise excision induced by all these treatments was compared to that of mutations in repair-recombination genes recF and recA. The results reveal that the degree of participation of these genes varies depending on the agent that stimulates the deletion event.
Collapse
Affiliation(s)
- Rosa Nagel
- CEFYBO, CONICET, Serrano 669, Buenos Aires 1414, Argentina.
| | | |
Collapse
|
20
|
Wang Y, Lynch AS, Chen SJ, Wang JC. On the molecular basis of the thermal sensitivity of an Escherichia coli topA mutant. J Biol Chem 2002; 277:1203-9. [PMID: 11700321 DOI: 10.1074/jbc.m109436200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of two temperature-sensitive Escherichia coli topA strains AS17 and BR83, both of which were supposed to carry a topA amber mutation and a temperature-sensitive supD43,74 amber-suppressor, led to conflicting results regarding the essentiality of DNA topoisomerase I in cells grown in media of low osmolarity. We have therefore reexamined the molecular basis of the temperature sensitivity of strain AS17. We find that the supD allele in this strain had lost its temperature sensitivity. The temperature sensitivity of the strain, in media of all osmolarity, results from the synthesis of a mutant DNA topoisomerase I that is itself temperature-sensitive. Nucleotide sequencing of the AS17 topA allele and studies of its expected cellular product show that the mutant enzyme is not as active as its wild-type parent even at 30 degrees C, a permissive temperature for the strain, and its activity relative to the wild-type enzyme is further reduced at 42 degrees C, a nonpermissive temperature. Our results thus implicate an indispensable role of DNA topoisomerase I in E. coli cells grown in media of any osmolarity.
Collapse
Affiliation(s)
- Yong Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
21
|
Zhu Q, Pongpech P, DiGate RJ. Type I topoisomerase activity is required for proper chromosomal segregation in Escherichia coli. Proc Natl Acad Sci U S A 2001; 98:9766-71. [PMID: 11493711 PMCID: PMC55527 DOI: 10.1073/pnas.171579898] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2000] [Indexed: 11/18/2022] Open
Abstract
Type I DNA topoisomerases are ubiquitous enzymes involved in many aspects of DNA metabolism. Escherichia coli possesses two type I topoisomerase activities, DNA topoisomerase I (Topo I) and III (Topo III). The gene encoding Topo III (topB) can be deleted without affecting cell viability. Cells possessing a deletion of the gene encoding Topo I (topA) are only viable in the presence of an additional compensatory mutation. In the presence of compensatory mutations, Topo I deletion strains grow normally; however, if Topo III activity is repressed in these cells, they filament extensively and possess an abnormal nucleoid structure. These defects can be suppressed by the deletion of the recA gene, suggesting that these enzymes may be involved in RecA-mediated recombination and may specifically resolve recombination intermediates before partitioning.
Collapse
Affiliation(s)
- Q Zhu
- Molecular and Cell Biology Program, University of Maryland, Baltimore 21201, USA
| | | | | |
Collapse
|
22
|
Bzymek M, Lovett ST. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci U S A 2001; 98:8319-25. [PMID: 11459970 PMCID: PMC37438 DOI: 10.1073/pnas.111008398] [Citation(s) in RCA: 248] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rearrangements between tandem sequence homologies of various lengths are a major source of genomic change and can be deleterious to the organism. These rearrangements can result in either deletion or duplication of genetic material flanked by direct sequence repeats. Molecular genetic analysis of repetitive sequence instability in Escherichia coli has provided several clues to the underlying mechanisms of these rearrangements. We present evidence for three mechanisms of RecA-independent sequence rearrangements: simple replication slippage, sister-chromosome exchange-associated slippage, and single-strand annealing. We discuss the constraints of these mechanisms and contrast their properties with RecA-dependent homologous recombination. Replication plays a critical role in the two slipped misalignment mechanisms, and difficulties in replication appear to trigger rearrangements via all these mechanisms.
Collapse
Affiliation(s)
- M Bzymek
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | | |
Collapse
|