1
|
Muñoz-Villagrán C, Grossolli-Gálvez J, Acevedo-Arbunic J, Valenzuela X, Ferrer A, Díez B, Levicán G. Characterization and genomic analysis of two novel psychrotolerant Acidithiobacillus ferrooxidans strains from polar and subpolar environments. Front Microbiol 2022; 13:960324. [PMID: 36090071 PMCID: PMC9449456 DOI: 10.3389/fmicb.2022.960324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The bioleaching process is carried out by aerobic acidophilic iron-oxidizing bacteria that are mainly mesophilic or moderately thermophilic. However, many mining sites are located in areas where the mean temperature is lower than the optimal growth temperature of these microorganisms. In this work, we report the obtaining and characterization of two psychrotolerant bioleaching bacterial strains from low-temperature sites that included an abandoned mine site in Chilean Patagonia (PG05) and an acid rock drainage in Marian Cove, King George Island in Antarctic (MC2.2). The PG05 and MC2.2 strains showed significant iron-oxidation activity and grew optimally at 20°C. Genome sequence analyses showed chromosomes of 2.76 and 2.84 Mbp for PG05 and MC2.2, respectively, and an average nucleotide identity estimation indicated that both strains clustered with the acidophilic iron-oxidizing bacterium Acidithiobacillus ferrooxidans. The Patagonian PG05 strain had a high content of genes coding for tolerance to metals such as lead, zinc, and copper. Concordantly, electron microscopy revealed the intracellular presence of polyphosphate-like granules, likely involved in tolerance to metals and other stress conditions. The Antarctic MC2.2 strain showed a high dosage of genes for mercury resistance and low temperature adaptation. This report of cold-adapted cultures of the At. ferrooxidans species opens novel perspectives to satisfy the current challenges of the metal bioleaching industry.
Collapse
Affiliation(s)
- Claudia Muñoz-Villagrán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Jonnathan Grossolli-Gálvez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Javiera Acevedo-Arbunic
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Ximena Valenzuela
- Programa de Biorremediación, Campus Patagonia, Universidad Austral de Chile, Valdivia, Chile
| | - Alonso Ferrer
- Núcleo de Química y Bioquímica, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Beatriz Díez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, Santiago, Chile
- Center for Genome Regulation (CRG), Santiago, Chile
| | - Gloria Levicán
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
- *Correspondence: Gloria Levicán,
| |
Collapse
|
2
|
Yu RQ, Barkay T. Microbial mercury transformations: Molecules, functions and organisms. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:31-90. [PMID: 35461663 DOI: 10.1016/bs.aambs.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.
Collapse
Affiliation(s)
- Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
3
|
Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126985. [PMID: 34464861 DOI: 10.1016/j.jhazmat.2021.126985] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a highly toxic element that occurs at low concentrations in nature. However, various anthropogenic and natural sources contribute around 5000 to 8000 metric tons of Hg per year, rapidly deteriorating the environmental conditions. Mercury-resistant bacteria that possess the mer operon system have the potential for Hg bioremediation through volatilization from the contaminated milieus. Thus, bacterial mer operon plays a crucial role in Hg biogeochemistry and bioremediation by converting both reactive inorganic and organic forms of Hg to relatively inert, volatile, and monoatomic forms. Both the broad-spectrum and narrow-spectrum bacteria harbor many genes of mer operon with their unique definitive functions. The presence of mer genes or proteins can regulate the fate of Hg in the biogeochemical cycle in the environment. The efficiency of Hg transformation depends upon the nature and diversity of mer genes present in mercury-resistant bacteria. Additionally, the bacterial cellular mechanism of Hg resistance involves reduced Hg uptake, extracellular sequestration, and bioaccumulation. The presence of unique physiological properties in a specific group of mercury-resistant bacteria enhances their bioremediation capabilities. Many advanced biotechnological tools also can improve the bioremediation efficiency of mercury-resistant bacteria to achieve Hg bioremediation.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| |
Collapse
|
4
|
Norambuena J, Miller M, Boyd JM, Barkay T. Expression and regulation of the mer operon in Thermus thermophilus. Environ Microbiol 2020; 22:1619-1634. [PMID: 32090420 DOI: 10.1111/1462-2920.14953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 11/25/2022]
Abstract
Mercury (Hg) is a highly toxic and widely distributed heavy metal, which some Bacteria and Archaea detoxify by the reduction of ionic Hg (Hg[II]) to the elemental volatile form, Hg(0). This activity is specified by the mer operon. The mer operon of the deeply branching thermophile Thermus thermophilus HB27 encodes for, an O-acetyl-l-homoacetylserine sulfhydrylase (Oah2), a transcriptional regulator (MerR), a hypothetical protein (hp) and a mercuric reductase (MerA). Here, we show that this operon has two convergently expressed and differentially regulated promoters. An upstream promoter, P oah , controls the constitutive transcription of the entire operon and a second promoter (P mer ), located within merR, is responsive to Hg(II). In the absence of Hg(II), the transcription of merA is basal and when Hg(II) is present, merA transcription is induced. This response to Hg(II) is controlled by MerR and genetic evidence suggests that MerR acts as a repressor and activator of P mer . When the whole merR, including P mer , is removed, merA is transcribed from P oah independently of Hg(II). These results suggest that the transcriptional regulation of mer in T. thermophilus is both similar to, and different from, the well-documented regulation of proteobacterial mer systems, possibly representing an early step in the evolution of mer-operon regulation.
Collapse
Affiliation(s)
- Javiera Norambuena
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, 08901, New Jersey, USA
| | - Maximilian Miller
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, 08901, New Jersey, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, 08901, New Jersey, USA
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, 08901, New Jersey, USA
| |
Collapse
|
5
|
Undabarrena A, Ugalde JA, Seeger M, Cámara B. -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017; 5:e2912. [PMID: 28229018 PMCID: PMC5312570 DOI: 10.7717/peerj.2912] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
Abstract
Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Juan A Ugalde
- Centro de Genética y Genómica, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo , Santiago , Chile
| | - Michael Seeger
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Beatriz Cámara
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| |
Collapse
|
6
|
Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Appl Microbiol Biotechnol 2016; 100:2967-84. [PMID: 26860944 DOI: 10.1007/s00253-016-7364-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.
Collapse
|
7
|
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1017-39. [PMID: 26093238 DOI: 10.1016/j.bbagrm.2015.06.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Ivonne Robledo-Casados
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
8
|
IRAWATI WAHYU, PATRICIA, SORAYA YENNY, BASKORO ABYATARHUGO. A Study on Mercury-Resistant Bacteria Isolated from a Gold Mine in Pongkor Village, Bogor, Indonesia. HAYATI JOURNAL OF BIOSCIENCES 2012. [DOI: 10.4308/hjb.19.4.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
9
|
Allen RC, Tu YK, Nevarez MJ, Bobbs AS, Friesen JW, Lorsch JR, McCauley JA, Voet JG, Hamlett NV. The mercury resistance (mer) operon in a marine gliding flavobacterium, Tenacibaculum discolor 9A5. FEMS Microbiol Ecol 2012; 83:135-48. [PMID: 22816663 DOI: 10.1111/j.1574-6941.2012.01460.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 01/18/2023] Open
Abstract
Genes conferring mercury resistance have been investigated in a variety of bacteria and archaea but not in bacteria of the phylum Bacteroidetes, despite their importance in many environments. We found, however, that a marine gliding Bacteroidetes species, Tenacibaculum discolor, was the predominant mercury-resistant bacterial taxon cultured from a salt marsh fertilized with mercury-contaminated sewage sludge. Here we report characterization of the mercuric reductase and the narrow-spectrum mercury resistance (mer) operon from one of these strains - T. discolor 9A5. This mer operon, which confers mercury resistance when cloned into Flavobacterium johnsoniae, encodes a novel mercury-responsive ArsR/SmtB family transcriptional regulator that appears to have evolved independently from other mercury-responsive regulators, a novel putative transport protein consisting of a fusion between the integral membrane Hg(II) transporter MerT and the periplasmic Hg(II)-binding protein MerP, an additional MerP protein, and a mercuric reductase that is phylogenetically distinct from other known mercuric reductases.
Collapse
Affiliation(s)
- Rachel C Allen
- Program in Molecular Biology, Pomona College, Claremont, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Adelaja O, Keenan H. Tolerance of TBT-resistant Bacteria Isolates to Methylmercury. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/rjes.2012.1.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Boden R, Murrell JC. Response to mercury (II) ions in Methylococcus capsulatus (Bath). FEMS Microbiol Lett 2011; 324:106-10. [PMID: 22092810 DOI: 10.1111/j.1574-6968.2011.02395.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 11/28/2022] Open
Abstract
The mercury (II) ion is toxic and is usually detoxified in Bacteria by reduction to elemental mercury, which is less toxic. This is catalysed by an NAD(P)H-dependent mercuric reductase (EC 1.16.1.1). Here, we present strong evidence that Methylococcus capsulatus (Bath) - a methanotrophic member of the Gammaproteobacteria - uses this enzyme to detoxify mercury. In radiorespirometry studies, it was found that cells exposed to mercury dissimilated 100% of [(14) C]-methane provided to generate reducing equivalents to fuel mercury (II) reduction, rather than the mix of assimilation and dissimilation found in control incubations. The detoxification system is constitutively expressed with a specific activity of 352 (±18) nmol NADH oxidized min(-1) (mg protein)(-1) . Putative mercuric reductase genes were predicted in the M. capsulatus (Bath) genome and found in mRNA microarray studies. The MerA-derived polypeptide showed high identity (> 80%) with MerA sequences from the Betaproteobacteria.
Collapse
Affiliation(s)
- Rich Boden
- School of Life Sciences, University of Warwick, Coventry, UK.
| | | |
Collapse
|
12
|
Bafana A, Krishnamurthi K, Patil M, Chakrabarti T. Heavy metal resistance in Arthrobacter ramosus strain G2 isolated from mercuric salt-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2010; 177:481-486. [PMID: 20060643 DOI: 10.1016/j.jhazmat.2009.12.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/10/2009] [Accepted: 12/10/2009] [Indexed: 05/28/2023]
Abstract
Present study describes isolation of a multiple metal-resistant Arthrobacter ramosus strain from mercuric salt-contaminated soil. The isolate was found to resist and bioaccumulate several metals, such as cadmium, cobalt, zinc, chromium and mercury. Maximum tolerated concentrations for above metals were found to be 37, 525, 348, 1530 and 369 microM, respectively. The isolate could also reduce and detoxify redox-active metals like chromium and mercury, indicating that it has great potential in bioremediation of heavy metal-contaminated sites. Chromate reductase and mercuric reductase (MerA) activities in protein extract of the culture were found to be 2.3 and 0.17 units mg(-1) protein, respectively. MerA enzyme was isolated from the culture by (NH(4))(2)SO(4) precipitation followed by dye affinity chromatography and its identity was confirmed by nano-LC-MS/MS. Its monomeric molecular weight, and optimum pH and temperature were 57kDa, 7.4 and 55 degrees C, respectively. Thus, the enzyme was mildly thermophilic as compared to other MerA enzymes. K(m) and V(max) of the enzyme were 16.9 microM HgCl(2) and 6.2 micromol min(-1)mg(-1) enzyme, respectively. The enzyme was found to be NADPH-specific. To our knowledge this is the first report on characterization of MerA enzyme from an Arthrobacter sp.
Collapse
Affiliation(s)
- Amit Bafana
- Environmental Biotechnology Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, India.
| | | | | | | |
Collapse
|
13
|
Sequence and analysis of a plasmid-encoded mercury resistance operon from Mycobacterium marinum identifies MerH, a new mercuric ion transporter. J Bacteriol 2008; 191:439-44. [PMID: 18931130 PMCID: PMC2612448 DOI: 10.1128/jb.01063-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we report the DNA sequence and biological analysis of a mycobacterial mercury resistance operon encoding a novel Hg(2+) transporter. MerH was found to transport mercuric ions in Escherichia coli via a pair of essential cysteine residues but only when coexpressed with the mercuric reductase.
Collapse
|
14
|
Lazzaro A, Widmer F, Sperisen C, Frey B. Identification of dominant bacterial phylotypes in a cadmium-treated forest soil. FEMS Microbiol Ecol 2007; 63:143-55. [PMID: 18093142 DOI: 10.1111/j.1574-6941.2007.00417.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The presence of heavy metals in soils can lead to changes in microbial community structure, characterized by the dominance of groups that are able to tolerate contamination. Such groups may provide good microbial indicators of heavy-metal pollution in soil. Through terminal restriction fragment length polymorphism (T-RFLP) profiling, changes in the bacterial community structure of an acidic forest soil that had been incubated with cadmium (Cd) for 30 days were investigated. T-RFLP revealed, in particular, three operational taxonomic units (OTUs) strongly dominating in relative abundance in the contaminated soil. By cloning of the amplified 16S rRNA genes and partial sequencing of 25 clones, these three dominant OTUs were phylogenetically characterized. One dominant OTU in the cadmium-contaminated soil was derived from Betaproteobacteria, genus Burkholderia, and the other two were from uncultured members of the class Actinobacteria, closely related to the genus Streptomyces. To confirm T-RFLP data, four primers were designed on the basis of this study's dominant sequences, targeting the OTUs corresponding to Burkholderia or Actinobacteria. Real-time PCR showed that Burkholderia target sequences were more abundant in cadmium-treated soil (7.8 x 10(7)+/- 3.0 x 10(7) targets g(-1) soil) than in untreated soil (4.0 x 10(6)+/- 8.9 x 10(5) targets g(-1) soil). It was concluded that the genus Burkholderia includes species that may be particularly dominant under cadmium contamination.
Collapse
Affiliation(s)
- Anna Lazzaro
- Soil Sciences, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, Birmensdorf, Switzerland
| | | | | | | |
Collapse
|
15
|
Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495-548. [PMID: 17804669 PMCID: PMC2168647 DOI: 10.1128/mmbr.00005-07] [Citation(s) in RCA: 633] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Actinobacteria constitute one of the largest phyla among bacteria and represent gram-positive bacteria with a high G+C content in their DNA. This bacterial group includes microorganisms exhibiting a wide spectrum of morphologies, from coccoid to fragmenting hyphal forms, as well as possessing highly variable physiological and metabolic properties. Furthermore, Actinobacteria members have adopted different lifestyles, and can be pathogens (e.g., Corynebacterium, Mycobacterium, Nocardia, Tropheryma, and Propionibacterium), soil inhabitants (Streptomyces), plant commensals (Leifsonia), or gastrointestinal commensals (Bifidobacterium). The divergence of Actinobacteria from other bacteria is ancient, making it impossible to identify the phylogenetically closest bacterial group to Actinobacteria. Genome sequence analysis has revolutionized every aspect of bacterial biology by enhancing the understanding of the genetics, physiology, and evolutionary development of bacteria. Various actinobacterial genomes have been sequenced, revealing a wide genomic heterogeneity probably as a reflection of their biodiversity. This review provides an account of the recent explosion of actinobacterial genomics data and an attempt to place this in a biological and evolutionary context.
Collapse
Affiliation(s)
- Marco Ventura
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, parco Area delle Scienze 11a, 43100 Parma, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Gao B, Paramanathan R, Gupta RS. Signature proteins that are distinctive characteristics of Actinobacteria and their subgroups. Antonie van Leeuwenhoek 2006; 90:69-91. [PMID: 16670965 DOI: 10.1007/s10482-006-9061-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 01/20/2006] [Indexed: 10/24/2022]
Abstract
The Actinobacteria constitute one of the main phyla of Bacteria. Presently, no morphological and very few molecular characteristics are known which can distinguish species of this highly diverse group. In this work, we have analyzed the genomes of four actinobacteria (viz. Mycobacterium leprae TN, Leifsonia xyli subsp. xyli str. CTCB07, Bifidobacterium longum NCC2705 and Thermobifida fusca YX) to search for proteins that are unique to Actinobacteria. Our analyses have identified 233 actinobacteria-specific proteins, homologues of which are generally not present in any other bacteria. These proteins can be grouped as follows: (i) 29 proteins uniquely present in most sequenced actinobacterial genomes; (ii) 6 proteins present in almost all actinobacteria except Bifidobacterium longum and another 37 proteins absent in B. longum and few other species; (iii) 11 proteins which are mainly present in Corynebacterium, Mycobacterium and Nocardia (CMN) subgroup as well as Streptomyces, T. fusca and Frankia sp., but they are not found in Bifidobacterium and Micrococcineae; (iv) 8 proteins that are specific for T. fusca and Streptomyces species, plus 2 proteins also present in the Frankia species; (v) 13 proteins that are specific for the Corynebacterineae or the CMN group; (vi) 14 proteins only found in Mycobacterium and Nocardia; (vii) 24 proteins unique to different Mycobacterium species; (viii) 8 proteins specific to the Micrococcineae; (ix) 85 proteins which are distributed sporadically in actinobacterial species. Additionally, many examples of lateral gene transfer from Actinobacteria to Magnetospirillum magnetotacticum have also been identified. The identified proteins provide novel molecular means for defining and circumscribing the Actinobacteria phylum and a number of subgroups within it. The distribution of these proteins also provides useful information regarding interrelationships among the actinobacterial subgroups. Most of these proteins are of unknown function and studies aimed at understanding their cellular functions should reveal common biochemical and physiological characteristics unique to either all actinobacteria or particular subgroups of them. The identified proteins also provide potential targets for development of drugs that are specific for actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, L8N3Z5, Hamilton, Canada
| | | | | |
Collapse
|
17
|
Narita M, Chiba K, Nishizawa H, Ishii H, Huang CC, Kawabata Z, Silver S, Endo G. Diversity of mercury resistance determinants among Bacillus strains isolated from sediment of Minamata Bay. FEMS Microbiol Lett 2003; 223:73-82. [PMID: 12799003 DOI: 10.1016/s0378-1097(03)00325-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Thirty mercury-resistant (Hg R) Bacillus strains were isolated from mercury-polluted sediment of Minamata Bay, Japan. Mercury resistance phenotypes were classified into broad-spectrum (resistant to inorganic Hg(2+) and organomercurials) and narrow-spectrum (resistant to inorganic Hg(2+) and sensitive to organomercurials) groups. Polymerase chain reaction (PCR) product sizes and the restriction nuclease site maps of mer operon regions from all broad-spectrum Hg R Bacillus were identical to that of Bacillus megaterium MB1. On the other hand, the PCR products of the targeted merP (extracellular mercury-binding protein gene) and merA (intracellular mercury reductase protein gene) regions from the narrow-spectrum Hg R Bacillus were generally smaller than those of the B. megaterium MB1 mer determinant. Diversity of gene structure configurations was also observed by restriction fragment length polymorphism (RFLP) profiles of the merA PCR products from the narrow-spectrum Hg R Bacillus. The genetic diversity of narrow-spectrum mer operons was greater than that of broad-spectrum ones.
Collapse
Affiliation(s)
- Masaru Narita
- Laboratory of Environmental Biotechnology, Faculty of Engineering, Tohoku Gakuin University, Tagajo, 985-8537, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
De J, Ramaiah N, Mesquita A, Verlekar XN. Tolerance to various toxicants by marine bacteria highly resistant to mercury. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2003; 5:185-193. [PMID: 12876655 DOI: 10.1007/s10126-002-0061-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2001] [Accepted: 05/09/2002] [Indexed: 05/24/2023]
Abstract
Bacteria highly resistant to mercury isolated from seawater and sediment samples were tested for growth in the presence of different heavy metals, pesticides, phenol, formaldehyde, formic acid, and trichloroethane to investigate their potential for growth in the presence of a variety of toxic xenobiotics. We hypothesized that bacteria resistant to high concentrations of mercury would have potential capacities to tolerate or possibly degrade a variety of toxic materials and thus would be important in environmental pollution bioremediation. The mercury-resistant bacteria were found to belong to Pseudomonas, Proteus, Xanthomonas, Alteromonas, Aeromonas, and Enterobacteriaceae. All these environmental bacterial strains tolerant to mercury used in this study were capable of growth at a far higher concentration (50 ppm) of mercury than previously reported. Likewise, their ability to grow in the presence of toxic xenobiotics, either singly or in combination, was superior to that of bacteria incapable of growth in media containing 5 ppm mercury. Plasmid-curing assays done in this study ascertained that resistance to mercury antibiotics, and toxic xenobiotics is mediated by chromosomally borne genes and/or transposable elements rather than by plasmids.
Collapse
Affiliation(s)
- Jaysankar De
- National Institute of Oceanography, Dona Paula, Goa 403 004, India.
| | | | | | | |
Collapse
|
19
|
Pitts KE, Summers AO. The roles of thiols in the bacterial organomercurial lyase (MerB). Biochemistry 2002; 41:10287-96. [PMID: 12162744 DOI: 10.1021/bi0259148] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacterial plasmid-encoded organomercurial lyase, MerB (EC 4.99.1.2), catalyzes the protonolysis of organomercury compounds yielding Hg(II) and the corresponding protonated hydrocarbon. A small, soluble protein with no known homologues, MerB is widely distributed among eubacteria in three phylogenetically distinct subfamilies whose most prominent motif includes three conserved cysteine residues. We found that the 212-residue MerB encoded by plasmid R831b is a cytosolic enzyme, consistent with its high thiol requirement in vitro. MerB is inhibited by the nonphysiological dithiol DTT but uses the physiological thiols, glutathione and cysteine, equally well. Highly conserved Cys96 and Cys159 are essential for activity, whereas weakly conserved Cys160 is not. Proteins mutant in highly conserved Cys117 are insoluble. All MerB cysteines are DTNB-reactive in native and denatured states except Cys117, which fails to react with DTNB in the native form, suggesting it is buried. Mass spectrometric analysis of trypsin fragments of reduced proteins treated with N-ethylmaleimide or iodoacetamide revealed that all cysteines form covalent adducts and remain covalently modifiable even when exposed to 1:1 PHMB prior to treatment with NEM or IAM. Stable PHMB adducts were also observed on all cysteines in mutant proteins, suggesting rapid exchange of PHMB among the remaining protein thiols. However, PHMB exposure of reduced wild-type MerB yielded only Hg adducts on the Cys159/Cys160 peptide, suggesting a trapped reaction intermediate. Using HPLC to follow release of benzoic acid from PHMB, we confirmed that fully reduced wild-type MerB and mutant C160S can carry out a single protonolysis without exogenous thiols. On the basis of the foregoing we refine the previously proposed S(E)2 mechanism for protonolysis by MerB.
Collapse
Affiliation(s)
- Keith E Pitts
- Department of Microbiology and Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|