1
|
Iacobino A, Piccaro G, Pardini M, Fattorini L, Giannoni F. Moxifloxacin Activates the SOS Response in Mycobacterium tuberculosis in a Dose- and Time-Dependent Manner. Microorganisms 2021; 9:microorganisms9020255. [PMID: 33513836 PMCID: PMC7911356 DOI: 10.3390/microorganisms9020255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Previous studies on Escherichia coli demonstrated that sub-minimum inhibitory concentration (MIC) of fluoroquinolones induced the SOS response, increasing drug tolerance. We characterized the transcriptional response to moxifloxacin in Mycobacterium tuberculosis. Reference strain H37Rv was treated with moxifloxacin and gene expression studied by qRT-PCR. Five SOS regulon genes, recA, lexA, dnaE2, Rv3074 and Rv3776, were induced in a dose- and time-dependent manner. A range of moxifloxacin concentrations induced recA, with a peak observed at 2 × MIC (0.25 μg/mL) after 16 h. Another seven SOS responses and three DNA repair genes were significantly induced by moxifloxacin. Induction of recA by moxifloxacin was higher in log-phase than in early- and stationary-phase cells, and absent in dormant bacilli. Furthermore, in an H37Rv fluoroquinolone-resistant mutant carrying the D94G mutation in the gyrA gene, the SOS response was induced at drug concentrations higher than the mutant MIC value. The 2 × MIC of moxifloxacin determined no significant changes in gene expression in a panel of 32 genes, except for up-regulation of the relK toxin and of Rv3290c and Rv2517c, two persistence-related genes. Overall, our data show that activation of the SOS response by moxifloxacin, a likely link to increased mutation rate and persister formation, is time, dose, physiological state and, possibly, MIC dependent.
Collapse
Affiliation(s)
- Angelo Iacobino
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.I.); (M.P.); (L.F.)
| | - Giovanni Piccaro
- Organismo Notificato Unificato, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Manuela Pardini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.I.); (M.P.); (L.F.)
| | - Lanfranco Fattorini
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.I.); (M.P.); (L.F.)
| | - Federico Giannoni
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (A.I.); (M.P.); (L.F.)
- Correspondence: ; Tel.: +39-06-4990-2318; Fax: +39-06-4990-2886
| |
Collapse
|
2
|
Chengalroyen MD, Jordaan A, Seldon R, Ioerger T, Franzblau SG, Nasr M, Warner DF, Mizrahi V. Biological Profiling Enables Rapid Mechanistic Classification of Phenotypic Screening Hits and Identification of KatG Activation-Dependent Pyridine Carboxamide Prodrugs With Activity Against Mycobacterium tuberculosis. Front Cell Infect Microbiol 2020; 10:582416. [PMID: 33282750 PMCID: PMC7691319 DOI: 10.3389/fcimb.2020.582416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/20/2020] [Indexed: 01/22/2023] Open
Abstract
Compounds with novel modes of action are urgently needed to develop effective combination therapies for the treatment of tuberculosis. In this study, a series of compounds was evaluated for activity against replicating Mycobacterium tuberculosis and Vero cell line toxicity. Fourteen of the compounds with in vitro activities in the low micrometer range and a favorable selectivity index were classified using reporter strains of M. tuberculosis which showed that six interfered with cell wall metabolism and one disrupted DNA metabolism. Counter-screening against strains carrying mutations in promiscuous drug targets argued against DprE1 and MmpL3 as hits of any of the cell wall actives and eliminated the cytochrome bc1 complex as a target of any of the compounds. Instead, whole-genome sequencing of spontaneous resistant mutants and/or counter-screening against common isoniazid-resistant mutants of M. tuberculosis revealed that four of the six cell wall-active compounds, all pyridine carboxamide analogues, were metabolized by KatG to form InhA inhibitors. Resistance to two of these compounds was associated with mutations in katG that did not confer cross-resistance to isoniazid. Of the remaining seven compounds, low-level resistance to one was associated with an inactivating mutation in Rv0678, the regulator of the MmpS5-MmpL5 system, which has been implicated in non-specific efflux of multiple chemotypes. Another mapped to the mycothiol-dependent reductase, Rv2466c, suggesting a prodrug mechanism of action in that case. The inability to isolate spontaneous resistant mutants to the seven remaining compounds suggests that they act via mechanisms which have yet to be elucidated.
Collapse
Affiliation(s)
- Melissa D Chengalroyen
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Audrey Jordaan
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Ronnett Seldon
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa.,H3D Drug Discovery and Development Centre, Department of Chemistry, University of Cape Town, Cape Town, South Africa
| | - Thomas Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX, United States
| | - Scott G Franzblau
- Institute for Tuberculosis Research, Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Mohamed Nasr
- Division of AIDS, NIAID, National Institutes of Health, Bethesda, MD, United States
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Müller AU, Imkamp F, Weber-Ban E. The Mycobacterial LexA/RecA-Independent DNA Damage Response Is Controlled by PafBC and the Pup-Proteasome System. Cell Rep 2019; 23:3551-3564. [PMID: 29924998 DOI: 10.1016/j.celrep.2018.05.073] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/16/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Mycobacteria exhibit two DNA damage response pathways: the LexA/RecA-dependent SOS response and a LexA/RecA-independent pathway. Using a combination of transcriptomics and genome-wide binding site analysis, we demonstrate that PafBC (proteasome accessory factor B and C), encoded in the Pup-proteasome system (PPS) gene locus, is the transcriptional regulator of the predominant LexA/RecA-independent pathway. Comparison of the resulting PafBC regulon with the DNA damage response of Mycobacterium smegmatis reveals that the majority of induced DNA repair genes are upregulated by PafBC. We further demonstrate that RecA, a member of the PafBC regulon and principal regulator of the SOS response, is degraded by the PPS when DNA damage stress has been overcome. Our results suggest a model for the regulation of the mycobacterial DNA damage response that employs the concerted action of PafBC as master transcriptional activator and the PPS for removal of DNA repair proteins to maintain a temporally controlled stress response.
Collapse
Affiliation(s)
- Andreas U Müller
- ETH Zurich, Institute of Molecular Biology and Biophysics, 8093 Zurich, Switzerland
| | - Frank Imkamp
- University of Zurich, Institute of Medical Microbiology, 8006 Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, 8093 Zurich, Switzerland.
| |
Collapse
|
4
|
Choudhary E, Sharma R, Kumar Y, Agarwal N. Conditional Silencing by CRISPRi Reveals the Role of DNA Gyrase in Formation of Drug-Tolerant Persister Population in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2019; 9:70. [PMID: 30972304 PMCID: PMC6443821 DOI: 10.3389/fcimb.2019.00070] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Abstract
Drug tolerance in mycobacterial pathogens is a global concern. Fluoroquinolone (FQ) treatment is widely used for induction of persisters in bacteria. Although FQs that target DNA gyrase are currently used as second-line anti-tuberculosis (TB) drugs, little is known about their impact on Mycobacterium tuberculosis (Mtb) persister formation. Here we explored the CRISPRi-based genetic repression for better understanding the effect of DNA gyrase depletion on Mtb physiology and response to anti-TB drugs. We find that suppression of DNA gyrase drastically affects intra- and extracellular growth of Mtb. Interestingly, gyrase depletion in Mtb leads to activation of RecA/LexA-mediated SOS response and drug tolerance via induction of persister subpopulation. Chemical inhibition of RecA in gyrase-depleted bacteria results in reversion of persister phenotype and better killing by antibiotics. This study provides evidence that inhibition of SOS response can be advantageous in improving the efficacy of anti-TB drugs and shortening the duration of current TB treatment.
Collapse
Affiliation(s)
- Eira Choudhary
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India.,Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Rishabh Sharma
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
5
|
Wipperman MF, Heaton BE, Nautiyal A, Adefisayo O, Evans H, Gupta R, van Ditmarsch D, Soni R, Hendrickson R, Johnson J, Krogan N, Glickman MS. Mycobacterial Mutagenesis and Drug Resistance Are Controlled by Phosphorylation- and Cardiolipin-Mediated Inhibition of the RecA Coprotease. Mol Cell 2018; 72:152-161.e7. [PMID: 30174294 DOI: 10.1016/j.molcel.2018.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/30/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022]
Abstract
Infection with Mycobacterium tuberculosis continues to cause substantial human mortality, in part because of the emergence of antimicrobial resistance. Antimicrobial resistance in tuberculosis is solely the result of chromosomal mutations that modify drug activators or targets, yet the mechanisms controlling the mycobacterial DNA-damage response (DDR) remain incompletely defined. Here, we identify RecA serine 207 as a multifunctional signaling hub that controls the DDR in mycobacteria. RecA S207 is phosphorylated after DNA damage, which suppresses the emergence of antibiotic resistance by selectively inhibiting the LexA coprotease function of RecA without affecting its ATPase or strand exchange functions. Additionally, RecA associates with the cytoplasmic membrane during the mycobacterial DDR, where cardiolipin can specifically inhibit the LexA coprotease function of unmodified, but not S207 phosphorylated, RecA. These findings reveal that RecA S207 controls mutagenesis and antibiotic resistance in mycobacteria through phosphorylation and cardiolipin-mediated inhibition of RecA coprotease function.
Collapse
Affiliation(s)
- Matthew F Wipperman
- Immunology Program, Sloan Kettering Institute, New York, NY, USA; Clinical & Translational Science Center, Weill Cornell Medicine, New York, NY, USA
| | - Brook E Heaton
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Astha Nautiyal
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Oyindamola Adefisayo
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY, USA
| | - Henry Evans
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Richa Gupta
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | | | - Rajesh Soni
- Microchemistry and Proteomics Core, MSKCC, New York, NY, USA
| | - Ron Hendrickson
- Microchemistry and Proteomics Core, MSKCC, New York, NY, USA
| | - Jeff Johnson
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Michael S Glickman
- Immunology Program, Sloan Kettering Institute, New York, NY, USA; Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, NY, USA.
| |
Collapse
|
6
|
Du P, Sohaskey CD, Shi L. Transcriptional and Physiological Changes during Mycobacterium tuberculosis Reactivation from Non-replicating Persistence. Front Microbiol 2016; 7:1346. [PMID: 27630619 PMCID: PMC5005354 DOI: 10.3389/fmicb.2016.01346] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/15/2016] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium tuberculosis can persist for years in the hostile environment of the host in a non-replicating or slowly replicating state. While active disease predominantly results from reactivation of a latent infection, the molecular mechanisms of M. tuberculosis reactivation are still poorly understood. We characterized the physiology and global transcriptomic profiles of M. tuberculosis during reactivation from hypoxia-induced non-replicating persistence. We found that M. tuberculosis reactivation upon reaeration was associated with a lag phase, in which the recovery of cellular physiological and metabolic functions preceded the resumption of cell replication. Enrichment analysis of the transcriptomic dynamics revealed changes to many metabolic pathways and transcription regulons/subnetworks that orchestrated the metabolic and physiological transformation in preparation for cell division. In particular, we found that M. tuberculosis reaeration lag phase is associated with down-regulation of persistence-associated regulons/subnetworks, including DosR, MprA, SigH, SigE, and ClgR, as well as metabolic pathways including those involved in the uptake of lipids and their catabolism. More importantly, we identified a number of up-regulated transcription regulons and metabolic pathways, including those involved in metal transport and remobilization, second messenger-mediated responses, DNA repair and recombination, and synthesis of major cell wall components. We also found that inactivation of the major alternative sigma factors SigE or SigH disrupted exit from persistence, underscoring the importance of the global transcriptional reprogramming during M. tuberculosis reactivation. Our observations suggest that M. tuberculosis lag phase is associated with a global gene expression reprogramming that defines the initiation of a reactivation process.
Collapse
Affiliation(s)
- Peicheng Du
- Office of Advanced Research Computing, Rutgers, The State University of New Jersey New Brunswick, NJ, USA
| | - Charles D Sohaskey
- VA Long Beach Healthcare System, United States Department of Veterans Affairs Long Beach, CA, USA
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey Newark, NJ, USA
| |
Collapse
|
7
|
Nautiyal A, Rani PS, Sharples GJ, Muniyappa K. Mycobacterium tuberculosis RuvX is a Holliday junction resolvase formed by dimerisation of the monomeric YqgF nuclease domain. Mol Microbiol 2016; 100:656-74. [PMID: 26817626 DOI: 10.1111/mmi.13338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 01/07/2023]
Abstract
The Mycobacterium tuberculosis genome possesses homologues of the ruvC and yqgF genes that encode putative Holliday junction (HJ) resolvases. However, their gene expression profiles and enzymatic properties have not been experimentally defined. Here we report that expression of ruvC and yqgF is induced in response to DNA damage. Protein-DNA interaction assays with purified M. tuberculosis RuvC (MtRuvC) and YqgF (MtRuvX) revealed that both associate preferentially with HJ DNA, albeit with differing affinities. Although both MtRuvC and MtRuvX cleaved HJ DNA in vitro, the latter displayed robust HJ resolution activity by symmetrically related, paired incisions. MtRuvX showed a higher binding affinity for the HJ structure over other branched recombination and replication intermediates. An MtRuvX(D28N) mutation, eliminating one of the highly conserved catalytic residues in this class of endonucleases, dramatically reduced its ability to cleave HJ DNA. Furthermore, a unique cysteine (C38) fulfils a crucial role in HJ cleavage, consistent with disulfide-bond mediated dimerization being essential for MtRuvX activity. In contrast, E. coli YqgF is monomeric and exhibits no branched DNA binding or cleavage activity. These results fit with a functional modification of YqgF in M. tuberculosis so that it can act as a dimeric HJ resolvase analogous to that of RuvC.
Collapse
Affiliation(s)
- Astha Nautiyal
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - P Sandhya Rani
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Gary J Sharples
- Department of Chemistry, School of Biological and Biomedical Sciences, Biophysical Sciences Institute, University of Durham, DH1 3LE, UK
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| |
Collapse
|
8
|
Abstract
Discontinuity of both strands of the chromosome is a lethal event in all living organisms because it compromises chromosome replication. As such, a diversity of DNA repair systems has evolved to repair double-strand DNA breaks (DSBs). In part, this diversity of DSB repair systems has evolved to repair breaks that arise in diverse physiologic circumstances or sequence contexts, including cellular states of nonreplication or breaks that arise between repeats. Mycobacteria elaborate a set of three genetically distinct DNA repair pathways: homologous recombination, nonhomologous end joining, and single-strand annealing. As such, mycobacterial DSB repair diverges substantially from the standard model of prokaryotic DSB repair and represents an attractive new model system. In addition, the presence in mycobacteria of a DSB repair system that can repair DSBs in nonreplicating cells (nonhomologous end joining) or when DSBs arise between repeats (single-strand annealing) has clear potential relevance to Mycobacterium tuberculosis pathogenesis, although the exact role of these systems in M. tuberculosis pathogenesis is still being elucidated. In this article we will review the genetics of mycobacterial DSB repair systems, focusing on recent insights.
Collapse
|
9
|
Patkari M, Mehra S. Transcriptomic study of ciprofloxacin resistance in Streptomyces coelicolor A3(2). MOLECULAR BIOSYSTEMS 2013; 9:3101-16. [DOI: 10.1039/c3mb70341j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Multiple strategies for translesion synthesis in bacteria. Cells 2012; 1:799-831. [PMID: 24710531 PMCID: PMC3901139 DOI: 10.3390/cells1040799] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/29/2012] [Accepted: 09/30/2012] [Indexed: 12/16/2022] Open
Abstract
Damage to DNA is common and can arise from numerous environmental and endogenous sources. In response to ubiquitous DNA damage, Y-family DNA polymerases are induced by the SOS response and are capable of bypassing DNA lesions. In Escherichia coli, these Y-family polymerases are DinB and UmuC, whose activities are modulated by their interaction with the polymerase manager protein UmuD. Many, but not all, bacteria utilize DinB and UmuC homologs. Recently, a C-family polymerase named ImuC, which is similar in primary structure to the replicative DNA polymerase DnaE, was found to be able to copy damaged DNA and either carry out or suppress mutagenesis. ImuC is often found with proteins ImuA and ImuB, the latter of which is similar to Y‑family polymerases, but seems to lack the catalytic residues necessary for polymerase activity. This imuAimuBimuC mutagenesis cassette represents a widespread alternative strategy for translesion synthesis and mutagenesis in bacteria. Bacterial Y‑family and ImuC DNA polymerases contribute to replication past DNA damage and the acquisition of antibiotic resistance.
Collapse
|
11
|
Midha M, Prasad NK, Vindal V. MycoRRdb: a database of computationally identified regulatory regions within intergenic sequences in mycobacterial genomes. PLoS One 2012; 7:e36094. [PMID: 22563442 PMCID: PMC3338573 DOI: 10.1371/journal.pone.0036094] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/29/2012] [Indexed: 11/18/2022] Open
Abstract
The identification of regulatory regions for a gene is an important step towards deciphering the gene regulation. Regulatory regions tend to be conserved under evolution that facilitates the application of comparative genomics to identify such regions. The present study is an attempt to make use of this attribute to identify regulatory regions in the Mycobacterium species followed by the development of a database, MycoRRdb. It consist the regulatory regions identified within the intergenic distances of 25 mycobacterial species. MycoRRdb allows to retrieve the identified intergenic regulatory elements in the mycobacterial genomes. In addition to the predicted motifs, it also allows user to retrieve the Reciprocal Best BLAST Hits across the mycobacterial genomes. It is a useful resource to understand the transcriptional regulatory mechanism of mycobacterial species. This database is first of its kind which specifically addresses cis-regulatory regions and also comprehensive to the mycobacterial species. Database URL: http://mycorrdb.uohbif.in.
Collapse
Affiliation(s)
- Mohit Midha
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nirmal K. Prasad
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Vaibhav Vindal
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- * E-mail:
| |
Collapse
|
12
|
Smollett KL, Smith KM, Kahramanoglou C, Arnvig KB, Buxton RS, Davis EO. Global analysis of the regulon of the transcriptional repressor LexA, a key component of SOS response in Mycobacterium tuberculosis. J Biol Chem 2012; 287:22004-14. [PMID: 22528497 PMCID: PMC3381160 DOI: 10.1074/jbc.m112.357715] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The DNA damage response is crucial for bacterial survival. The transcriptional repressor LexA is a key component of the SOS response, the main mechanism for the regulation of DNA repair genes in many bacteria. In contrast, in mycobacteria gene induction by DNA damage is carried out by two mechanisms; a relatively small number of genes are thought to be regulated by LexA, and a larger number by an alternate, independent mechanism. In this study we have used ChIP-seq analysis to identify 25 in vivo LexA-binding sites, including nine regulating genes not previously known to be part of this regulon. Some of these binding sites were found to be internal to the predicted open reading frame of the gene they are thought to regulate; experimental analysis has confirmed that these LexA-binding sites regulate the expression of the expected genes, and transcriptional start site analysis has found that their apparent relative location is due to misannotation of these genes. We have also identified novel binding sites for LexA in the promoters of genes that show no apparent DNA damage induction, show positive regulation by LexA, and those encoding small RNAs.
Collapse
Affiliation(s)
- Katherine L Smollett
- Division of Mycobacterial Research, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| | | | | | | | | | | |
Collapse
|
13
|
McGuire AM, Weiner B, Park ST, Wapinski I, Raman S, Dolganov G, Peterson M, Riley R, Zucker J, Abeel T, White J, Sisk P, Stolte C, Koehrsen M, Yamamoto RT, Iacobelli-Martinez M, Kidd MJ, Maer AM, Schoolnik GK, Regev A, Galagan J. Comparative analysis of Mycobacterium and related Actinomycetes yields insight into the evolution of Mycobacterium tuberculosis pathogenesis. BMC Genomics 2012; 13:120. [PMID: 22452820 PMCID: PMC3388012 DOI: 10.1186/1471-2164-13-120] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 03/28/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The sequence of the pathogen Mycobacterium tuberculosis (Mtb) strain H37Rv has been available for over a decade, but the biology of the pathogen remains poorly understood. Genome sequences from other Mtb strains and closely related bacteria present an opportunity to apply the power of comparative genomics to understand the evolution of Mtb pathogenesis. We conducted a comparative analysis using 31 genomes from the Tuberculosis Database (TBDB.org), including 8 strains of Mtb and M. bovis, 11 additional Mycobacteria, 4 Corynebacteria, 2 Streptomyces, Rhodococcus jostii RHA1, Nocardia farcinia, Acidothermus cellulolyticus, Rhodobacter sphaeroides, Propionibacterium acnes, and Bifidobacterium longum. RESULTS Our results highlight the functional importance of lipid metabolism and its regulation, and reveal variation between the evolutionary profiles of genes implicated in saturated and unsaturated fatty acid metabolism. It also suggests that DNA repair and molybdopterin cofactors are important in pathogenic Mycobacteria. By analyzing sequence conservation and gene expression data, we identify nearly 400 conserved noncoding regions. These include 37 predicted promoter regulatory motifs, of which 14 correspond to previously validated motifs, as well as 50 potential noncoding RNAs, of which we experimentally confirm the expression of four. CONCLUSIONS Our analysis of protein evolution highlights gene families that are associated with the adaptation of environmental Mycobacteria to obligate pathogenesis. These families include fatty acid metabolism, DNA repair, and molybdopterin biosynthesis. Our analysis reinforces recent findings suggesting that small noncoding RNAs are more common in Mycobacteria than previously expected. Our data provide a foundation for understanding the genome and biology of Mtb in a comparative context, and are available online and through TBDB.org.
Collapse
|
14
|
MsDpo4-a DinB Homolog from Mycobacterium smegmatis-Is an Error-Prone DNA Polymerase That Can Promote G:T and T:G Mismatches. J Nucleic Acids 2012; 2012:285481. [PMID: 22523658 PMCID: PMC3317225 DOI: 10.1155/2012/285481] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 12/09/2011] [Indexed: 11/17/2022] Open
Abstract
Error-prone DNA synthesis in prokaryotes imparts plasticity to the genome to allow for evolution in unfavorable environmental conditions, and this phenomenon is termed adaptive mutagenesis. At a molecular level, adaptive mutagenesis is mediated by upregulating the expression of specialized error-prone DNA polymerases that generally belong to the Y-family, such as the polypeptide product of the dinB gene in case of E. coli. However, unlike E. coli, it has been seen that expression of the homologs of dinB in Mycobacterium tuberculosis are not upregulated under conditions of stress. These studies suggest that DinB homologs in Mycobacteria might not be able to promote mismatches and participate in adaptive mutagenesis. We show that a representative homolog from Mycobacterium smegmatis (MsDpo4) can carry out template-dependent nucleotide incorporation and therefore is a DNA polymerase. In addition, it is seen that MsDpo4 is also capable of misincorporation with a significant ability to promote G:T and T:G mismatches. The frequency of misincorporation for these two mismatches is similar to that exhibited by archaeal and prokaryotic homologs. Overall, our data show that MsDpo4 has the capacity to facilitate transition mutations and can potentially impart plasticity to the genome.
Collapse
|
15
|
Wang Y, Huang Y, Xue C, He Y, He ZG. ClpR protein-like regulator specifically recognizes RecA protein-independent promoter motif and broadly regulates expression of DNA damage-inducible genes in mycobacteria. J Biol Chem 2011; 286:31159-67. [PMID: 21771781 DOI: 10.1074/jbc.m111.241802] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The RecA-dependent DNA damage response pathway (SOS response) appears to be the major DNA repair mechanism in most bacteria, but it has been suggested that a RecA-independent mechanism is responsible for controlling expression of most damage-inducible DNA repair genes in Mycobacterium tuberculosis. The specific reparative responses and molecular mediators involved in the DNA repair mechanism remain largely unclear in this pathogen and its related species. In this study, a mycobacterial ClpR-like regulator, corresponding to Rv2745c in M. tuberculosis and to Ms2694 in M. smegmatis mc(2)155, was found to interact with the promoter regions of multiple damage-inducible DNA repair genes. Specific binding of the ClpR-like factor to the conserved RecA-independent promoter RecA-NDp motif was then confirmed using in vitro electrophoretic mobility shift assays as well as in vivo chromatin immunoprecipitation experiments. The ClpR knock-out experiments, in combination with quantitative real time PCR assays, demonstrated that the expression of these RecA-independent genes were significantly down-regulated in the mutant strain of M. smegmatis in response to a DNA-damaging agent compared with the wild type strain. Furthermore, the ClpR-like factor was shown to contribute to mycobacterial genomic stability. These results enhance our understanding of the function of the ClpR regulator and the regulatory mechanism of RecA-independent DNA repair in mycobacteria.
Collapse
Affiliation(s)
- Yi Wang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|
16
|
Sharma A, Nair DT. Cloning, expression, purification, crystallization and preliminary crystallographic analysis of MsDpo4: a Y-family DNA polymerase from Mycobacterium smegmatis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:812-6. [PMID: 21795801 PMCID: PMC3144803 DOI: 10.1107/s1744309111019063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022]
Abstract
The expression of error-prone DNA polymerases belonging to the Y-family is upregulated in prokaryotes under adverse conditions to facilitate adaptive mutagenesis. However, it has been suggested that representatives of this family in mycobacteria do not participate in adaptive mutagenesis. These studies raise the possibility that mycobacterial representatives might be devoid of biochemical activity. In order to determine whether this possible loss of activity is a consequence of significant changes in the structure of these enzymes, structural studies on a representative enzyme from Mycobacterium smegmatis, MsDpo4, were initiated. The protein crystallized in space group P6(1)22 or P6(5)22. The Matthews coefficient was 4.0 Å3 Da(-1) assuming the presence of one molecule in the asymmetric unit; the corresponding solvent content was 69%. X-ray diffraction data were collected to a minimum Bragg spacing of 2.6 Å and crystals of selenomethionine-labelled MsDpo4 have been prepared for ab initio phasing.
Collapse
Affiliation(s)
- Amit Sharma
- National Centre for Biological Sciences (NCBS–TIFR), UAS GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Deepak T. Nair
- National Centre for Biological Sciences (NCBS–TIFR), UAS GKVK Campus, Bellary Road, Bangalore 560 065, India
| |
Collapse
|
17
|
Nde CW, Toghrol F, Jang HJ, Bentley WE. Toxicogenomic response of Mycobacterium bovis BCG to peracetic acid and a comparative analysis of the M. bovis BCG response to three oxidative disinfectants. Appl Microbiol Biotechnol 2010; 90:277-304. [PMID: 21152916 DOI: 10.1007/s00253-010-2931-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/08/2010] [Accepted: 10/01/2010] [Indexed: 12/16/2022]
Abstract
Tuberculosis is a leading cause of death worldwide and infects thousands of Americans annually. Mycobacterium bovis causes tuberculosis in humans and several animal species. Peracetic acid is an approved tuberculocide in hospital and domestic environments. This study presents for the first time the transcriptomic changes in M. bovis BCG after treatment with 0.1 mM peracetic acid for 10 and 20 min. This study also presents for the first time a comparison among the transcriptomic responses of M. bovis BCG to three oxidative disinfectants: peracetic acid, sodium hypochlorite, and hydrogen peroxide after 10 min of treatment. Results indicate that arginine biosynthesis, virulence, and oxidative stress response genes were upregulated after both peracetic acid treatment times. Three DNA repair genes were downregulated after 10 and 20 min and cell wall component genes were upregulated after 20 min. The devR-devS signal transduction system was upregulated after 10 min, suggesting a role in the protection against peracetic acid treatment. Results also suggest that peracetic acid and sodium hypochlorite both induce the expression of the ctpF gene which is upregulated in hypoxic environments. Further, this study reveals that in M. bovis BCG, hydrogen peroxide and peracetic acid both induce the expression of katG involved in oxidative stress response and the mbtD and mbtI genes involved in iron regulation/virulence.
Collapse
Affiliation(s)
- Chantal W Nde
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
18
|
Kana BD, Abrahams GL, Sung N, Warner DF, Gordhan BG, Machowski EE, Tsenova L, Sacchettini JC, Stoker NG, Kaplan G, Mizrahi V. Role of the DinB homologs Rv1537 and Rv3056 in Mycobacterium tuberculosis. J Bacteriol 2010; 192:2220-7. [PMID: 20139184 PMCID: PMC2849458 DOI: 10.1128/jb.01135-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 01/28/2010] [Indexed: 11/20/2022] Open
Abstract
The environment encountered by Mycobacterium tuberculosis during infection is genotoxic. Most bacteria tolerate DNA damage by engaging specialized DNA polymerases that catalyze translesion synthesis (TLS) across sites of damage. M. tuberculosis possesses two putative members of the DinB class of Y-family DNA polymerases, DinB1 (Rv1537) and DinB2 (Rv3056); however, their role in damage tolerance, mutagenesis, and survival is unknown. Here, both dinB1 and dinB2 are shown to be expressed in vitro in a growth phase-dependent manner, with dinB2 levels 12- to 40-fold higher than those of dinB1. Yeast two-hybrid analyses revealed that DinB1, but not DinB2, interacts with the beta-clamp, consistent with its canonical C-terminal beta-binding motif. However, knockout of dinB1, dinB2, or both had no effect on the susceptibility of M. tuberculosis to compounds that form N(2)-dG adducts and alkylating agents. Similarly, deletion of these genes individually or in combination did not affect the rate of spontaneous mutation to rifampin resistance or the spectrum of resistance-conferring rpoB mutations and had no impact on growth or survival in human or mouse macrophages or in mice. Moreover, neither gene conferred a mutator phenotype when expressed ectopically in Mycobacterium smegmatis. The lack of the effect of altering the complements or expression levels of dinB1 and/or dinB2 under conditions predicted to be phenotypically revealing suggests that the DinB homologs from M. tuberculosis do not behave like their counterparts from other organisms.
Collapse
Affiliation(s)
- Bavesh D. Kana
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa, Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, International Center for Public Health, 225 Warren St., Newark, New Jersey 07103-3535, Texas A&M University, College Station, Texas 77843, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Garth L. Abrahams
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa, Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, International Center for Public Health, 225 Warren St., Newark, New Jersey 07103-3535, Texas A&M University, College Station, Texas 77843, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Nackmoon Sung
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa, Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, International Center for Public Health, 225 Warren St., Newark, New Jersey 07103-3535, Texas A&M University, College Station, Texas 77843, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Digby F. Warner
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa, Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, International Center for Public Health, 225 Warren St., Newark, New Jersey 07103-3535, Texas A&M University, College Station, Texas 77843, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Bhavna G. Gordhan
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa, Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, International Center for Public Health, 225 Warren St., Newark, New Jersey 07103-3535, Texas A&M University, College Station, Texas 77843, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Edith E. Machowski
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa, Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, International Center for Public Health, 225 Warren St., Newark, New Jersey 07103-3535, Texas A&M University, College Station, Texas 77843, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Liana Tsenova
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa, Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, International Center for Public Health, 225 Warren St., Newark, New Jersey 07103-3535, Texas A&M University, College Station, Texas 77843, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - James C. Sacchettini
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa, Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, International Center for Public Health, 225 Warren St., Newark, New Jersey 07103-3535, Texas A&M University, College Station, Texas 77843, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Neil G. Stoker
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa, Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, International Center for Public Health, 225 Warren St., Newark, New Jersey 07103-3535, Texas A&M University, College Station, Texas 77843, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Gilla Kaplan
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa, Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, International Center for Public Health, 225 Warren St., Newark, New Jersey 07103-3535, Texas A&M University, College Station, Texas 77843, Royal Veterinary College, London NW1 0TU, United Kingdom
| | - Valerie Mizrahi
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology of the University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa, Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute, International Center for Public Health, 225 Warren St., Newark, New Jersey 07103-3535, Texas A&M University, College Station, Texas 77843, Royal Veterinary College, London NW1 0TU, United Kingdom
| |
Collapse
|
19
|
O'Sullivan DM. Real-time PCR methods to study expression of genes related to hypermutability. Methods Mol Biol 2010; 642:63-73. [PMID: 20401586 DOI: 10.1007/978-1-60327-279-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Pathogenic bacteria can have sub-populations of hypermutable bacteria. This sub-population has a higher spontaneous mutation rate than the majority of the population which can be attributed to defects in proofreading and repair mechanisms. This leads to the evolution of drug-resistant strains of bacteria through genetic change. It is important to study the expression of genes involved in, for example, mismatch repair and the SOS system by real-time PCR to determine hypermutability and therefore provide an indicator of the mutagenic ability of certain strains of pathogenic bacteria.
Collapse
Affiliation(s)
- Denise M O'Sullivan
- Department of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
20
|
RecA-independent DNA damage induction of Mycobacterium tuberculosis ruvC despite an appropriately located SOS box. J Bacteriol 2009; 192:599-603. [PMID: 19915023 DOI: 10.1128/jb.01066-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Mycobacterium tuberculosis ruvC was induced by DNA damage in a DeltarecA strain despite having an appropriately positioned SOS box to which LexA binds in vitro. An inducible transcript start mapped within the SOS box, and transcriptional fusions identified the promoter. Disruption of the SOS box did not prevent induction, indicating that an alternative mechanism plays a significant role in the control of ruvC expression.
Collapse
|
21
|
Dos Vultos T, Mestre O, Tonjum T, Gicquel B. DNA repair inMycobacterium tuberculosisrevisited. FEMS Microbiol Rev 2009; 33:471-87. [DOI: 10.1111/j.1574-6976.2009.00170.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
22
|
Jochmann N, Kurze AK, Czaja LF, Brinkrolf K, Brune I, Hüser AT, Hansmeier N, Pühler A, Borovok I, Tauch A. Genetic makeup of the Corynebacterium glutamicum LexA regulon deduced from comparative transcriptomics and in vitro DNA band shift assays. MICROBIOLOGY-SGM 2009; 155:1459-1477. [PMID: 19372162 DOI: 10.1099/mic.0.025841-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The lexA gene of Corynebacterium glutamicum ATCC 13032 was deleted to create the mutant strain C. glutamicum NJ2114, which has an elongated cell morphology and an increased doubling time. To characterize the SOS regulon in C. glutamicum, the transcriptomes of NJ2114 and a DNA-damage-induced wild-type strain were compared with that of a wild-type control using DNA microarray hybridization. The expression data were combined with bioinformatic pattern searches for LexA binding sites, leading to the detection of 46 potential SOS boxes located upstream of differentially expressed transcription units. Binding of a hexahistidyl-tagged LexA protein to 40 double-stranded oligonucleotides containing the potential SOS boxes was demonstrated in vitro by DNA band shift assays. It turned out that LexA binds not only to SOS boxes in the promoter-operator region of upregulated genes, but also to SOS boxes detected upstream of downregulated genes. These results demonstrated that LexA controls directly the expression of at least 48 SOS genes organized in 36 transcription units. The deduced genes encode a variety of physiological functions, many of them involved in DNA repair and survival after DNA damage, but nearly half of them have hitherto unknown functions. Alignment of the LexA binding sites allowed the corynebacterial SOS box consensus sequence TcGAA(a/c)AnnTGTtCGA to be deduced. Furthermore, the common intergenic region of lexA and the differentially expressed divS-nrdR operon, encoding a cell division suppressor and a regulator of deoxyribonucleotide biosynthesis, was characterized in detail. Promoter mapping revealed differences in divS-nrdR expression during SOS response and normal growth conditions. One of the four LexA binding sites detected in the intergenic region is involved in regulating divS-nrdR transcription, whereas the other sites are apparently used for negative autoregulation of lexA expression.
Collapse
Affiliation(s)
- Nina Jochmann
- International NRW Graduate School in Bioinformatics and Genome Research, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany.,Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Anna-Katharina Kurze
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Lisa F Czaja
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Karina Brinkrolf
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Iris Brune
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Andrea T Hüser
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Nicole Hansmeier
- Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA
| | - Alfred Pühler
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| | - Ilya Borovok
- George S. Wise Faculty of Life Sciences, Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andreas Tauch
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, D-33615 Bielefeld, Germany
| |
Collapse
|
23
|
O'Sullivan DM, Hinds J, Butcher PD, Gillespie SH, McHugh TD. Mycobacterium tuberculosis DNA repair in response to subinhibitory concentrations of ciprofloxacin. J Antimicrob Chemother 2008; 62:1199-202. [PMID: 18799471 DOI: 10.1093/jac/dkn387] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To investigate how the SOS response, an error-prone DNA repair pathway, is expressed following subinhibitory quinolone treatment of Mycobacterium tuberculosis. METHODS Genome-wide expression profiling followed by quantitative RT (qRT)-PCR was used to study the effect of ciprofloxacin on M. tuberculosis gene expression. RESULTS Microarray analysis showed that 16/110 genes involved in DNA protection, repair and recombination were up-regulated. There appeared to be a lack of downstream genes involved in the SOS response. qRT-PCR detected an induction of lexA and recA after 4 h and of dnaE2 after 24 h of subinhibitory treatment. CONCLUSIONS The pattern of gene expression observed following subinhibitory quinolone treatment differed from that induced after other DNA-damaging agents (e.g. mitomycin C). The expression of the DnaE2 polymerase response was significantly delayed following subinhibitory quinolone exposure.
Collapse
Affiliation(s)
- D M O'Sullivan
- Centre for Medical Microbiology, Department of Infection, Royal Free Campus, University College London, Rowland Hill Street, Hampstead, London NW3 2PF, UK
| | | | | | | | | |
Collapse
|
24
|
Yang MK, Hsu CH, Sung VL. Analyses of binding sequences of the two LexA proteins of Xanthomonas axonopodis pathovar citri. Mol Genet Genomics 2008; 280:49-58. [PMID: 18437426 DOI: 10.1007/s00438-008-0344-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
Xanthomonas axonopodis pv. citri (X. axonopodis pv. citri) possesses two lexA genes, designated lexA1 and lexA2. Electrophoretic mobility shift data show that LexA1 binds to both lexA1 and lexA2 promoters, but LexA2 does not bind to the lexA1 promoter, suggesting that LexA1 and LexA2 play different roles in regulating the expression of SOS genes. In this study, we have determined that LexA2 binds to a 14-bp dyad-spacer-dyad palindromic sequence, 5'-TGTACAAATGTACA-3', located at nucleotides -41 to -28 relative to the translation start site of lexA2 of X. axonopodis pv. citri. The two spacer nucleotides in this sequence can be changed from AA to TT without affecting LexA2 binding; all other base deletions or substitutions abolish LexA2 binding. The LexA1 binding sequence in the promoter region of lexA2 is TTAGTACTAAAGTTATAA and is located at -133 to -116, and that in the lexA1 gene is AGTAGTAATACTACT located at nucleotides -19 to -5 relative to the translation start site of lexA1. Any base change in the latter sequence abolishes LexA1 binding.
Collapse
Affiliation(s)
- Mei-Kwei Yang
- Department of Life Science, Fu Jen University, 510 Chun-Chen Road, Taipei 242, Taiwan, ROC.
| | | | | |
Collapse
|
25
|
Abstract
The sigG gene of Mycobacterium tuberculosis was disrupted by homologous recombination, and the genes regulated by SigG were examined by real-time reverse-transcription PCR and microarray studies. The SigG consensus promoter recognition sequence was identified as GCGNGT-N15-18-CGANCA. A DeltasigG mutant was found to be more resistant to mitomycin C treatment than the wild-type strain, indicating that it may be involved in the SOS response in M. tuberculosis.
Collapse
|
26
|
Bergval IL, Klatser PR, Schuitema ARJ, Oskam L, Anthony RM. Specific mutations in theMycobacterium tuberculosis rpoBgene are associated with increaseddnaE2expression. FEMS Microbiol Lett 2007; 275:338-43. [PMID: 17868360 DOI: 10.1111/j.1574-6968.2007.00905.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In Mycobacterium tuberculosis (MTB), rifampicin resistance is almost invariably due to mutations in the rpoB gene, whose function is critical for cell viability. Most of these mutations, at least initially, impair the fitness of the bacteria but confer a selective advantage when antibiotic pressure is exerted. Subsequent adaptation may be critical to restore fitness. The possibility was considered that MTB with mutations in the rpoB gene elicits a constitutive stress response, increasing the probability of subsequent adaptation. In order to test this hypothesis, the expression of recA and dnaE2, an inducible putative error-prone DNA polymerase, was determined in six different isogenic laboratory-generated rpoB-mutants of MTB. Expression levels were determined with real-time PCR and the data obtained were compared with those of the wild-type parent. In four of the six rpoB mutants, a two- to fivefold induction of dnaE2 was detected (P<0.05). Thus, the presence of specific mutations in rpoB is not only associated with impaired fitness but also results in a detectable, moderate yet persistent increase in the expression of dnaE2 but not recA.
Collapse
Affiliation(s)
- Indra L Bergval
- Royal Tropical Institute, KIT Biomedical Research, Meibergdreef, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Roback P, Beard J, Baumann D, Gille C, Henry K, Krohn S, Wiste H, Voskuil M, Rainville C, Rutherford R. A predicted operon map for Mycobacterium tuberculosis. Nucleic Acids Res 2007; 35:5085-95. [PMID: 17652327 PMCID: PMC1976454 DOI: 10.1093/nar/gkm518] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The prediction of operons in Mycobacterium tuberculosis (MTB) is a first step toward understanding the regulatory network of this pathogen. Here we apply a statistical model using logistic regression to predict operons in MTB. As predictors, our model incorporates intergenic distance and the correlation of gene expression calculated for adjacent gene pairs from over 474 microarray experiments with MTB RNA. We validate our findings with known examples from the literature and experimentation. From this model, we rank each potential operon pair by the strength of evidence for cotranscription, choose a classification threshold with a true positive rate of over 90% at a false positive rate of 9.1%, and use it to construct an operon map for the MTB genome.
Collapse
Affiliation(s)
- P. Roback
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - J. Beard
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - D. Baumann
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - C. Gille
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - K. Henry
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - S. Krohn
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - H. Wiste
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - M.I. Voskuil
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - C. Rainville
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
| | - R. Rutherford
- Department of Mathematics, Statistics and Computer Science, Center for Interdisciplinary Research and Department of Biology St. Olaf College, Northfield MN 55057, Department of Microbiology, University of Colorado Health Sciences Center, Aurora, CO 80045 and Department of Biology, Seattle University, 901 12th Ave, Seattle, WA 98052, USA
- *To whom correspondence should be addressed.+1 206 296 2501+1 206 296 5634
| |
Collapse
|
28
|
Cirz RT, O'Neill BM, Hammond JA, Head SR, Romesberg FE. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol 2006; 188:7101-10. [PMID: 17015649 PMCID: PMC1636241 DOI: 10.1128/jb.00807-06] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa infections can be virtually impossible to eradicate, and the evolution of resistance during antibiotic therapy is a significant concern. In this study, we use DNA microarrays to characterize the global transcriptional response of P. aeruginosa to clinical-like doses of the antibiotic ciprofloxacin and also to determine the component that is regulated by LexA cleavage and the SOS response. We find that genes involved in virtually every facet of metabolism are down-regulated in response to ciprofloxacin. The LexA-controlled SOS regulon identified by microarray analysis includes only 15 genes but does include several genes that encode proteins involved in recombination and replication, including two inducible polymerases known to play a role in mutation and the evolution of antibiotic resistance in other organisms. The data suggest that the inhibition of LexA cleavage during therapy might help combat this pathogen by decreasing its ability to adapt and evolve resistance.
Collapse
Affiliation(s)
- Ryan T Cirz
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
29
|
Chauhan A, Lofton H, Maloney E, Moore J, Fol M, Madiraju MVVS, Rajagopalan M. Interference of Mycobacterium tuberculosis cell division by Rv2719c, a cell wall hydrolase. Mol Microbiol 2006; 62:132-47. [PMID: 16942606 DOI: 10.1111/j.1365-2958.2006.05333.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The genetic factors responsible for the regulation of cell division in Mycobacterium tuberculosis are largely unknown. We showed that exposure of M. tuberculosis to DNA damaging agents, or to cephalexin, or growth of M. tuberculosis in macrophages increased cell length and sharply elevated the expression of Rv2719c, a LexA-controlled gene. Overexpression of Rv2719c in the absence of DNA damage or of antibiotic treatment also led to filamentation and reduction in viability both in broth and in macrophages indicating a correlation between Rv2719c levels and cell division. Overproduction of Rv2719c compromised midcell localization of FtsZ rings, but had no effect on the intracellular levels of FtsZ. In vitro, the Rv2719c protein did not interfere with the GTP-dependent polymerization activity of FtsZ indicating that the effects of Rv2719c on Z-ring assembly are indirect. Rv2719c protein exhibited mycobacterial murein hydrolase activity that was localized to the N-terminal 110 amino acids. Visualization of nascent peptidoglycan (PG) synthesis zones by probing with fluoresceinated vancomycin (Van-FL) and localization of green fluorescent protein-Rv2719c fusion suggested that the Rv2719c activity is targeted to potential PG synthesis zones. We propose that Rv2719c is a potential regulator of M. tuberculosis cell division and that its levels, and possibly activities, are modulated under a variety of growth conditions including growth in vivo and during DNA damage, so that the assembly of FtsZ-rings, and therefore the cell division, can proceed in a regulated manner.
Collapse
Affiliation(s)
- Ashwini Chauhan
- Biomedical Research, The University of Texas Health Center at Tyler, 11937 US Hwy 271, Tyler, TX 75708-3154, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Brooks PC, Dawson LF, Rand L, Davis EO. The mycobacterium-specific gene Rv2719c is DNA damage inducible independently of RecA. J Bacteriol 2006; 188:6034-8. [PMID: 16885473 PMCID: PMC1540060 DOI: 10.1128/jb.00340-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The mycobacterium-specific gene Rv2719c was found to be expressed primarily from a promoter that was clearly DNA damage inducible independently of RecA. Upstream of the transcriptional start site for this promoter, sequence motifs resembling those observed previously at the RecA-independent, DNA damage-inducible recA promoter were identified, and the -10 motif was demonstrated by mutational analysis in transcriptional fusion constructs to be important for expression of Rv2719c.
Collapse
Affiliation(s)
- Patricia C Brooks
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, United Kingdom
| | | | | | | |
Collapse
|
31
|
Mazón G, Campoy S, Erill I, Barbé J. Identification of the Acidobacterium capsulatum LexA box reveals a lateral acquisition of the Alphaproteobacteria lexA gene. MICROBIOLOGY-SGM 2006; 152:1109-1118. [PMID: 16549674 DOI: 10.1099/mic.0.28376-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acidobacterium capsulatum is the most thoroughly studied species of a new bacterial phylogenetic group designated the phylum Acidobacteria. Through a tblastn search, the A. capsulatum lexA gene has been identified, and its product purified. Electrophoretic mobility shift assays have shown that A. capsulatum LexA protein binds specifically to the direct repeat GTTCN(7)GTTC motif. Strikingly, this is also the LexA box of the Alphaproteobacteria, but had not previously been described outside this subclass of the Proteobacteria. In addition, a phylogenetic analysis of the LexA protein clusters together Acidobacterium and the Alphaproteobacteria, moving the latter away from their established phylogenetic position as a subclass of the Proteobacteria, and pointing to a lateral gene transfer of the lexA gene from the phylum Acidobacteria, or an immediate ancestor, to the Alphaproteobacteria. Lastly, in vivo experiments demonstrate that the A. capsulatum recA gene is DNA-damage inducible, despite the fact that a LexA-binding sequence is not present in its promoter region.
Collapse
Affiliation(s)
- Gerard Mazón
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Susana Campoy
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ivan Erill
- Biomedical Applications Group, Centro Nacional de Microelectrónica, 08193 Bellaterra, Spain
| | - Jordi Barbé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
32
|
Hare JM, Perkins SN, Gregg-Jolly LA. A constitutively expressed, truncated umuDC operon regulates the recA-dependent DNA damage induction of a gene in Acinetobacter baylyi strain ADP1. Appl Environ Microbiol 2006; 72:4036-43. [PMID: 16751513 PMCID: PMC1489636 DOI: 10.1128/aem.02774-05] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 02/28/2006] [Indexed: 11/20/2022] Open
Abstract
In response to environmentally caused DNA damage, SOS genes are up-regulated due to RecA-mediated relief of LexA repression. In Escherichia coli, the SOS umuDC operon is required for DNA damage checkpoint functions and for replicating damaged DNA in the error-prone process called SOS mutagenesis. In the model soil bacterium Acinetobacter baylyi strain ADP1, however, the content, regulation, and function of the umuDC operon are unusual. The umuC gene is incomplete, and a remnant of an ISEhe3-like transposase has replaced the middle 57% of the umuC coding region. The umuD open reading frame is intact, but it is 1.5 times the size of other umuD genes and has an extra 5' region that lacks homology to known umuD genes. Analysis of a umuD::lacZ fusion showed that umuD was expressed at very high levels in both the absence and presence of mitomycin C and that this expression was not affected in a recA-deficient background. The umuD mutation did not affect the growth rate or survival after UV-induced DNA damage. However, the UmuD-like protein found in ADP1 (UmuDAb) was required for induction of an adjacent DNA damage-inducible gene, ddrR. The umuD mutation specifically reduced the DNA damage induction of the RecA-dependent DNA damage-inducible ddrR locus by 83% (from 12.9-fold to 2.3-fold induction), but it did not affect the 33.9-fold induction of benA, an unrelated benzoate degradation gene. These data suggest that the response of the ADP1 umuDC operon to DNA damage is unusual and that UmuDAb specifically regulates the expression of at least one DNA damage-inducible gene.
Collapse
Affiliation(s)
- Janelle M Hare
- Department of Biological & Environmental Sciences, 327-G Lappin Hall, Morehead State University, Morehead, KY 40351, USA.
| | | | | |
Collapse
|
33
|
Campoy S, Hervàs A, Busquets N, Erill I, Teixidó L, Barbé J. Induction of the SOS response by bacteriophage lytic development in Salmonella enterica. Virology 2006; 351:360-7. [PMID: 16713610 DOI: 10.1016/j.virol.2006.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/26/2006] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Infection of Salmonella enterica with lytic mutants of either P22 or SE1 bacteriophages triggers the expression of its DNA damage-inducible SOS response through a lexA-dependent pathway. This induction of the SOS system strictly requires the presence of the bacteriophage kil gene. Accordingly, plasmid overexpression of the kil gene also promotes the S. enterica SOS network induction. Furthermore, S. enterica Gifsy prophages are induced following the infection with SE1 and P22 lytic derivatives. The observed data reveal a hitherto unknown SOS system-mediated fail-safe mechanism of resident prophages against infection with heteroimmune lytic bacteriophages and suggest a novel role for the kil family of proteins.
Collapse
Affiliation(s)
- Susana Campoy
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Duigou S, Ehrlich SD, Noirot P, Noirot-Gros MF. Distinctive genetic features exhibited by the Y-family DNA polymerases in Bacillus subtilis. Mol Microbiol 2005; 54:439-51. [PMID: 15469515 DOI: 10.1111/j.1365-2958.2004.04259.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Translesional DNA polymerases form a large family of structurally related proteins, known as the Y-polymerases. Bacillus subtilis encodes two Y-polymerases, referred herewith as Pol Y1 and Pol Y2. Pol Y1 was expressed constitutively and did not mediate UV mutagenesis. Pol Y1 overexpression increased spontaneous mutagenesis. This effect depended on Pol Y1 polymerase activity, Pol Y1 interaction with the beta-clamp, and did not require the presence of the RecA protein. In addition, Pol Y1 overexpression delayed cell growth at low temperature. The growth delay was mediated by Pol Y1 interaction with the beta-clamp but not by its polymerase activity, suggesting that an excess of Pol Y1 in the cell could sequester the beta-clamp. In contrast, Pol Y2 was expressed during the SOS response, and, in its absence, UV-induced mutagenesis was abolished. Upon Pol Y2 overproduction, both UV-induced and spontaneous mutagenesis were stimulated, and both depended on the Pol Y2 polymerase activity. However, UV mutagenesis did not appear to require the interaction of Pol Y2 with the beta-clamp whereas spontaneous mutagenesis did. In addition, Pol Y2-mediated spontaneous mutagenesis required the presence of RecA. Together, these results show that the regulation and the genetic requirements of the two B. subtilis Y-polymerases are different, indicating that they fulfil distinct biological roles. Remarkably, Pol Y1 appears to exhibit a mutator activity similar to that of Escherichia coli Pol IV, as well as an E. coli UmuD-related function in growth delay. Pol Y2 exhibits an E. coli Pol V-like mutator activity, but probably acts as a single polypeptide to bypass UV lesions. Thus, B. subtilis Pol Y1 and Pol Y2 exhibit distinctive features from the E. coli Y-polymerases, indicating that different bacteria have adapted different solutions to deal with the lesions in their genetic material.
Collapse
Affiliation(s)
- Stéphane Duigou
- Laboratoire de Génétique Microbienne, Domaine de Vilvert, INRA, 78352 Jouy en Josas Cedex, France
| | | | | | | |
Collapse
|
35
|
Abella M, Erill I, Jara M, Mazón G, Campoy S, Barbé J. Widespread distribution of a lexA-regulated DNA damage-inducible multiple gene cassette in the Proteobacteria phylum. Mol Microbiol 2004; 54:212-22. [PMID: 15458417 DOI: 10.1111/j.1365-2958.2004.04260.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The SOS response comprises a set of cellular functions aimed at preserving bacterial cell viability in front of DNA injuries. The SOS network, negatively regulated by the LexA protein, is found in many bacterial species that have not suffered major reductions in their gene contents, but presents distinctly divergent LexA-binding sites across the Bacteria domain. In this article, we report the identification and characterization of an imported multiple gene cassette in the Gamma Proteobacterium Pseudomonas putida that encodes a LexA protein, an inhibitor of cell division (SulA), an error-prone polymerase (DinP) and the alpha subunit of DNA polymerase III (DnaE). We also demonstrate that these genes constitute a DNA damage-inducible operon that is regulated by its own encoded LexA protein, and we establish that the latter is a direct derivative of the Gram-positive LexA protein. In addition, in silico analyses reveal that this multiple gene cassette is also present in many Proteobacteria families, and that both its gene content and LexA-binding sequence have evolved over time, ultimately giving rise to the lexA lineage of extant Gamma Proteobacteria.
Collapse
Affiliation(s)
- Marc Abella
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Waddell SJ, Stabler RA, Laing K, Kremer L, Reynolds RC, Besra GS. The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis (Edinb) 2004; 84:263-74. [PMID: 15207496 PMCID: PMC7016511 DOI: 10.1016/j.tube.2003.12.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 10/26/2022]
Abstract
The response of Mycobacterium tuberculosis to six anti-microbial agents was determined by microarray analysis in an attempt to define mechanisms of innate resistance in M. tuberculosis. The gene expression profiles of M. tuberculosis after treatment at the minimal inhibitory concentration (MIC) for 4 h with isoniazid, isoxyl, tetrahydrolipstatin, SRI#221, SR1#967 and SR1#9190 were compared to untreated M. tuberculosis. A common response to drug exposure was defined, and this expression profile overlapped with a number of other mycobacterial stress responses recently identified by microarray analysis. Compound-specific responses were also distinguished including a number of putative transcriptional regulators and translocation-related genes. These genes may contribute to the intrinsic resistance of M. tuberculosis to anti-microbial compounds. Further investigation into these mechanisms may elucidate novel pathways contributing to mycobacterial drug resistance and influence anti-mycobacterial drug development strategies.
Collapse
Affiliation(s)
- Simon J Waddell
- Department of Cellular and Molecular Medicine, St. George's Hospital Medical School, Cranmer Terrace, Tooting, London SW17 0RE, UK.
| | | | | | | | | | | |
Collapse
|
37
|
Yellaboina S, Seshadri J, Kumar MS, Ranjan A. PredictRegulon: a web server for the prediction of the regulatory protein binding sites and operons in prokaryote genomes. Nucleic Acids Res 2004; 32:W318-20. [PMID: 15215402 PMCID: PMC441502 DOI: 10.1093/nar/gkh364] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An interactive web server is developed for predicting the potential binding sites and its target operons for a given regulatory protein in prokaryotic genomes. The program allows users to submit known or experimentally determined binding sites of a regulatory protein as ungapped multiple sequence alignments. It analyses the upstream regions of all genes in a user-selected prokaryote genome and returns the potential binding sites along with the downstream co-regulated genes (operons). The known binding sites of a regulatory protein can also be used to identify its orthologue binding sites in phylogeneticaly related genomes where the trans-acting regulator protein and cognate cis-acting DNA sequences could be conserved. PredictRegulon can be freely accessed from a link on our world wide web server: http://www.cdfd.org.in/predictregulon/.
Collapse
Affiliation(s)
- Sailu Yellaboina
- Computational & Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, EMBnet India Node, Hyderabad 500076, India
| | | | | | | |
Collapse
|
38
|
Rand L, Hinds J, Springer B, Sander P, Buxton RS, Davis EO. The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA. Mol Microbiol 2004; 50:1031-42. [PMID: 14617159 DOI: 10.1046/j.1365-2958.2003.03765.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA. Here we investigate the generality of each of these mechanisms by analysing the global response to DNA damage in both wild-type M. tuberculosis and a recA deletion strain of M. tuberculosis using microarrays. This revealed that the majority of the genes that were induced remained inducible in the recA mutant stain. Of particular note most of the inducible genes with known or predicted functions in DNA repair did not depend on recA for induction. Amongst these are genes involved in nucleotide excision repair, base excision repair, damage reversal and recombination. Thus, it appears that this novel mechanism of gene regulation is important for DNA repair in M. tuberculosis.
Collapse
Affiliation(s)
- Lucinda Rand
- National Institute for Biomedical Research, London, UK
| | | | | | | | | | | |
Collapse
|
39
|
Campoy S, Fontes M, Padmanabhan S, Cortés P, Llagostera M, Barbé J. LexA-independent DNA damage-mediated induction of gene expression in Myxococcus xanthus. Mol Microbiol 2003; 49:769-81. [PMID: 12864858 DOI: 10.1046/j.1365-2958.2003.03592.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Myxococcus xanthus, a member of the Proteobacteria delta-class, has two independent recA genes, recA1 and recA2, but only recA2 is DNA damage-inducible. The lexA gene has been isolated from M. xanthus by PCR amplification with oligonucleotides designed after sequence identification by tblastn analysis of its genome at the Cereon Microbial Sequence Database. The M. xanthus purified LexA protein is shown to bind specifically to the consensus sequence CTRHAMRYBYGTTCAGS present upstream of lexA and recA2. A degenerate copy of this motif but with important differences can be identified in the region upstream of the recA1 gene. A knock-out lexA(Def) mutant that has been generated does not differ significantly from wild type in morphology, growth rate, light-induced carotenogenesis or development. Using transcriptional lacZ fusions and quantitative RT-PCR analysis, it has been demonstrated that expression of both lexA and recA2 genes is constitutive in the lexA(Def) mutant, whereas the transcription of the DNA damage non-inducible recA1 gene is not affected in this strain. recN and ssb, whose expression in Escherichia coli are LexA-regulated, are induced by DNA damage in the M. xanthus lexA(Def) mutant. These data reveal the existence of different regulatory mechanisms for DNA damage-inducible genes in bacteria belonging to different phyla.
Collapse
Affiliation(s)
- Susana Campoy
- Departament de Genética i Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Fernández de Henestrosa AR, Cuñé J, Mazón G, Dubbels BL, Bazylinski DA, Barbé J. Characterization of a new LexA binding motif in the marine magnetotactic bacterium strain MC-1. J Bacteriol 2003; 185:4471-82. [PMID: 12867456 PMCID: PMC165786 DOI: 10.1128/jb.185.15.4471-4482.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MC-1 is a marine, magnetotactic bacterium that is phylogenetically associated with the alpha subclass of the Proteobacteria and is the first and only magnetotactic coccus isolated in pure culture to date. By using a TBLASTN search, a lexA gene was identified in the published genome of MC-1; it was subsequently cloned, and the protein was purified to >90% purity. Results from reverse transcription-PCR analysis revealed that the MC-1 lexA gene comprises a single transcriptional unit with two open reading frames encoding proteins of unknown function and with a rumA-like gene, a homologue of the Escherichia coli umuD gene. Mobility shift assays revealed that this LexA protein specifically binds both to its own promoter and to that of the umuDC operon. However, MC-1 LexA does not bind to the promoter regions of other genes, such as recA and uvrA, that have been previously reported to be regulated by LexA in bacterial species belonging to the alpha subclass of the Proteobacteria: Site-directed mutagenesis of both the lexA and umuDC operator regions demonstrated that the sequence CCTN(10)AGG is the specific target motif for the MC-1 LexA protein.
Collapse
|
41
|
Boshoff HIM, Reed MB, Barry CE, Mizrahi V. DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 2003; 113:183-93. [PMID: 12705867 DOI: 10.1016/s0092-8674(03)00270-8] [Citation(s) in RCA: 324] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of multiple copies of the major replicative DNA polymerase (DnaE) in some organisms, including important pathogens and symbionts, has remained an unresolved enigma. We postulated that one copy might participate in error-prone DNA repair synthesis. We found that UV irradiation of Mycobacterium tuberculosis results in increased mutation frequency in the surviving fraction. We identified dnaE2 as a gene that is upregulated in vitro by several DNA damaging agents, as well as during infection of mice. Loss of this protein reduces both survival of the bacillus after UV irradiation and the virulence of the organism in mice. Our data suggest that DnaE2, and not a member of the Y family of error-prone DNA polymerases, is the primary mediator of survival through inducible mutagenesis and can contribute directly to the emergence of drug resistance in vivo. These results may indicate a potential new target for therapeutic intervention.
Collapse
Affiliation(s)
- Helena I M Boshoff
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II, 12441 Parklawn Drive, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|
42
|
Fernández de Henestrosa AR, Cuñé J, Erill I, Magnuson JK, Barbé J. A green nonsulfur bacterium, Dehalococcoides ethenogenes, with the LexA binding sequence found in gram-positive organisms. J Bacteriol 2002; 184:6073-80. [PMID: 12374844 PMCID: PMC135389 DOI: 10.1128/jb.184.21.6073-6080.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dehalococcoides ethenogenes is a member of the physiologically diverse division of green nonsulfur bacteria. Using a TBLASTN search, the D. ethenogenes lexA gene has been identified, cloned, and expressed and its protein has been purified. Mobility shift assays revealed that the D. ethenogenes LexA protein specifically binds to both its own promoter and that of the uvrA gene, but not to the recA promoter. Our results demonstrate that the D. ethenogenes LexA binding site is GAACN(4)GTTC, which is identical to that found in gram-positive bacteria. In agreement with this fact, the Bacillus subtilis DinR protein binds specifically to the D. ethenogenes LexA operator. This constitutes the first non-gram-positive bacterium exhibiting a LexA binding site identical to that of B. subtilis.
Collapse
|
43
|
Dullaghan EM, Brooks PC, Davis EO. The role of multiple SOS boxes upstream of the Mycobacterium tuberculosis lexA gene--identification of a novel DNA-damage-inducible gene. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3609-3615. [PMID: 12427951 DOI: 10.1099/00221287-148-11-3609] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Four potential binding sites for LexA were identified upstream of the Mycobacterium tuberculosis lexA gene. A mutational analysis of these sites in a lexA-lacZ reporter construct revealed that only one of these SOS boxes was required for DNA-damage-mediated regulation of lexA expression. A novel DNA-damage-inducible gene, Rv2719c, was identified that was divergently transcribed relative to lexA; the other three SOS boxes were found to be involved in regulating expression of this novel mycobacterial-specific gene. The SOS boxes lay in the respective promoter regions of the genes that they regulated.
Collapse
Affiliation(s)
- Edith M Dullaghan
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| | - Patricia C Brooks
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| | - Elaine O Davis
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK1
| |
Collapse
|
44
|
Davis EO, Springer B, Gopaul KK, Papavinasasundaram KG, Sander P, Böttger EC. DNA damage induction of recA in Mycobacterium tuberculosis independently of RecA and LexA. Mol Microbiol 2002; 46:791-800. [PMID: 12410836 DOI: 10.1046/j.1365-2958.2002.03199.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ubiquitous and highly conserved RecA protein is generally expressed from a single promoter, which is regulated by LexA in conjunction with RecA. We show here using transcriptional fusions to a reporter gene that the Mycobacterium tuberculosis recA gene is expressed from two promoters. Although one promoter is clearly regulated in the classical way, the other remains DNA damage inducible in the absence of RecA or when LexA binding is prevented. These observations demonstrate convincingly for the first time that there is a novel mechanism of DNA damage induction in M. tuberculosis that is independent of LexA and RecA.
Collapse
Affiliation(s)
- Elaine O Davis
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | | | | | | | | | |
Collapse
|
45
|
Campoy S, Mazón G, Fernández de Henestrosa AR, Llagostera M, Monteiro PB, Barbé J. A new regulatory DNA motif of the gamma subclass Proteobacteria: identification of the LexA protein binding site of the plant pathogen Xylella fastidiosa. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3583-3597. [PMID: 12427949 DOI: 10.1099/00221287-148-11-3583] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli LexA protein is the repressor of a gene network whose members are directly involved in the repair of damaged DNA and in the survival of bacterial cells until DNA lesions have been eliminated. The lexA gene is widely present in bacteria, although the sequences of only three LexA-binding sites are known: Gram-positive, alpha Proteobacteria and some members of gamma Proteobacteria represented by E. coli. Taking advantage of the fact that the genome sequence of the plant-pathogenic bacterium Xylella fastidiosa has been determined, its lexA gene has been cloned and overexpressed in E. coli to purify its product. After demonstration that X. fastidiosa lexA and recA genes are co-transcribed, gel mobility shift assays and directed mutagenesis experiments using the promoter of the lexA-recA transcriptional unit demonstrated that the X. fastidiosa LexA protein specifically binds the imperfect palindrome TTAGN(6)TACTA. This is the first LexA binding sequence identified in the gamma Proteobacteria differing from the E. coli-like LexA box. Although a computational search has revealed the presence of TTAGN(6)TACTA-like motifs upstream of X. fastidiosa genes other than lexA, X. fastidiosa LexA only binds the promoter of one of them, XF2313, encoding a putative DNA-modification methylase. Moreover, X. fastidiosa LexA protein does not bind any of the other genes whose homologues are regulated by the LexA repressor in E. coli (uvrA, uvrB, ssb, ruvAB, ftsK, dinG, recN and ybfE). RT-PCR quantitative analysis has also demonstrated that lexA-recA and XF2313 genes, as well as the X. fastidiosa genes which are homologues to those of E. coli belonging to the LexA regulon, with the exception of ssb, are DNA damage-inducible in X. fastidiosa.
Collapse
Affiliation(s)
- Susana Campoy
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain1
| | - Gerard Mazón
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain1
| | | | - Montserrat Llagostera
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona-Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 Barcelona, Spain3
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain1
| | - Patricia Brant Monteiro
- Fundo de Defesa da Citricultura (Fundecitrus), 14807-040, VI. Melhado- C. P. 391, Araraquara, Sao Paulo, Brazil2
| | - Jordi Barbé
- Centre de Recerca en Sanitat Animal (CReSA), Universitat Autònoma de Barcelona-Institut de Recerca i Tecnologia Agroalimentària (UAB-IRTA), Bellaterra, 08193 Barcelona, Spain3
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain1
| |
Collapse
|
46
|
Davis EO, Dullaghan EM, Rand L. Definition of the mycobacterial SOS box and use to identify LexA-regulated genes in Mycobacterium tuberculosis. J Bacteriol 2002; 184:3287-95. [PMID: 12029045 PMCID: PMC135081 DOI: 10.1128/jb.184.12.3287-3295.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bases of the mycobacterial SOS box important for LexA binding were determined by replacing each base with every other and examining the effect on the induction of a reporter gene following DNA damage. This analysis revealed that the SOS box was longer than originally thought by 2 bp in each half of the palindromic site. A search of the Mycobacterium tuberculosis genome sequence with the new consensus, TCGAAC(N)(4)GTTCGA, identified 4 sites which were perfect matches and 12 sites with a single mismatch which were predicted to bind LexA. Genes which could potentially be regulated by these SOS boxes were ascertained from their positions relative to the sites. Examination of expression data for these genes following DNA damage identified 12 new genes which are most likely regulated by LexA as well as the known M. tuberculosis DNA damage-inducible genes recA, lexA, and ruvC. Of these 12 genes, only 2 have a predicted function: dnaE2, a component of DNA polymerase III, and linB, which is similar to 1,3,4,6-tetrachloro-1,4-cylcohexadiene hydrolase. Curiously, of the remaining 10 genes predicted to be LexA regulated, 7 are members of the M. tuberculosis 13E12 repeat family, which has some of the characteristics of mobile elements.
Collapse
Affiliation(s)
- Elaine O Davis
- Division of Mycobacterial Research, National Institute for Medical Research, London NW7 1AA, England.
| | | | | |
Collapse
|