1
|
Sim M, Nguyen J, Škopová K, Yoo K, Tai CH, Knipling L, Chen Q, Kim D, Nolan S, Elaksher R, Majdalani N, Lorenzi H, Stibitz S, Moon K, Hinton DM. A highly conserved sRNA downregulates multiple genes, including a σ 54 transcriptional activator, in the virulence mode of Bordetella pertussis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624354. [PMID: 39803429 PMCID: PMC11722255 DOI: 10.1101/2024.11.19.624354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Bacterial sRNAs together with the RNA chaperone Hfq post-transcriptionally regulate gene expression by affecting ribosome binding or mRNA stability. In the human pathogen Bordetella pertussis, the causative agent of whooping cough, hundreds of sRNAs have been identified, but their roles in B. pertussis biology are mostly unknown. Here we characterize a Hfq-dependent sRNA (S17), whose level is dramatically higher in the virulence (Bvg+) mode. We show that transcription from a σA-dependent promoter yields a long form of 190 nucleotides (nts) that is processed by RNase E to generate a shorter, more stable form (S17S) of 67 nts. Using RNA-seq and RT-qPCR, we identify 92 genes whose expression significantly increases in the absence of S17. Of these genes, 70 contain sequences at/near their ribosome binding sites (RBSs) that are complementary to single-stranded (ss) regions (Sites 1 or 2) of S17S. The identified genes include those encoding multiple transporters and 3 transcriptional regulators. Using a lacZ translational reporter system, we demonstrate that S17S directly represses one of these genes, BP2158, a σ54-dependent transcriptional regulator, suggesting the repression of a σ54 regulon in the Bvg+ mode. We find that the S17S region containing Sites 1 and 2 is 100% conserved throughout various Betaproteobacteria species, and the S17S target sites are often conserved in the homologs of the B. pertussis target genes. We speculate that S17S regulation represents a highly conserved process that fine-tunes gene expression in the Bvg+ mode of B. pertussis and perhaps under other conditions in related bacteria.
Collapse
Affiliation(s)
- Minji Sim
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffers Nguyen
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karolína Škopová
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kyungyoon Yoo
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qing Chen
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - David Kim
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Summer Nolan
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rawan Elaksher
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Hernan Lorenzi
- Tri-Lab Bioinformatics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Scott Stibitz
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Kyung Moon
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Yang Y, Guo S, Hong CJ, Liang ZX, Ho CL. Initial cyclic-di-GMP upregulation triggers sporadic cellular expansion leading to improved cellular survival. Biotechnol J 2024; 19:e2300542. [PMID: 38403404 DOI: 10.1002/biot.202300542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/29/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Bacterial second messenger c-di-GMP upregulation is associated with the transition from planktonic to sessile microbial lifestyle, inhibiting cellular motility, and virulence. However, in-depth elucidation of the cellular processes resulting from c-di-GMP upregulation has not been fully explored. Here, we report the role of upregulated cellular c-di-GMP in promoting planktonic cell growth of Escherichia coli K12 and Pseudomonas aeruginosa PAO1. We found a rapid expansion of cellular growth during initial cellular c-di-GMP upregulation, resulting in a larger planktonic bacterial population. The initial increase in c-di-GMP levels promotes bacterial swarming motility during the growth phase, which is subsequently inhibited by the continuous increase of c-di-GMP, and ultimately facilitates the formation of biofilms. We demonstrated that c-di-GMP upregulation triggers key bacterial genes linked to bacterial growth, swarming motility, and biofilm formation. These genes are mainly controlled by the master regulatory genes csgD and csrA. This study provides us a glimpse of the bacterial behavior of evading potential threats through adapting lifestyle changes via c-di-GMP regulation.
Collapse
Affiliation(s)
- Yongshuai Yang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Siyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Can-Jian Hong
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Zhao-Xun Liang
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
3
|
Luo X, Majdalani N. Directed Screening for sRNA Targets in E. coli Using a Plasmid Library. Methods Mol Biol 2024; 2741:291-306. [PMID: 38217660 DOI: 10.1007/978-1-0716-3565-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
A large number of bacterial small regulatory RNAs (sRNAs) modulate gene expression by base pairing to a target mRNA, affecting its translation or stability. This posttranscriptional regulation has been shown to be essential and critical for bacterial physiology. One of the challenges of studying sRNA signaling is identifying the sRNA regulators of specific genes. Here, we describe a protocol for making an sRNA expression library and using this library to screen for sRNA regulators of genes of interest in E. coli. This library can be easily expanded and adapted to use in other bacteria.
Collapse
Affiliation(s)
- Xing Luo
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA.
| | - Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
4
|
A toxin antitoxin system promotes the maintenance of the IncA/C-mobilizable Salmonella Genomic Island 1. Sci Rep 2016; 6:32285. [PMID: 27576575 PMCID: PMC5006074 DOI: 10.1038/srep32285] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
The multidrug resistance Salmonella Genomic Island 1 (SGI1) is an integrative mobilizable element identified in several enterobacterial pathogens. This chromosomal island requires a conjugative IncA/C plasmid to be excised as a circular extrachromosomal form and conjugally mobilized in trans. Preliminary observations suggest stable maintenance of SGI1 in the host chromosome but paradoxically also incompatibility between SGI1 and IncA/C plasmids. Here, using a Salmonella enterica serovar Agona clonal bacterial population as model, we demonstrate that a Toxin-Antitoxin (TA) system encoded by SGI1 plays a critical role in its stable host maintenance when an IncA/C plasmid is concomitantly present. This system, designated sgiAT for Salmonella genomic island 1 Antitoxin and Toxin respectively, thus seems to play a stabilizing role in a situation where SGI1 is susceptible to be lost through plasmid IncA/C-mediated excision. Moreover and for the first time, the incompatibility between SGI1 and IncA/C plasmids was experimentally confirmed.
Collapse
|
5
|
Cayrol B, Fortas E, Martret C, Cech G, Kloska A, Caulet S, Barbet M, Trépout S, Marco S, Taghbalout A, Busi F, Wegrzyn G, Arluison V. Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA. Integr Biol (Camb) 2015; 7:128-41. [PMID: 25407044 DOI: 10.1039/c4ib00102h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bacterial actin-homolog MreB is a key player in bacterial cell-wall biosynthesis and is required for the maintenance of the rod-like morphology of Escherichia coli. However, how MreB cellular levels are adjusted to growth conditions is poorly understood. Here, we show that DsrA, an E. coli small noncoding RNA (sRNA), is involved in the post-transcriptional regulation of mreB. DsrA is required for the downregulation of MreB cellular concentration during environmentally induced slow growth-rates, mainly growth at low temperature and during the stationary phase. DsrA interacts in an Hfq-dependent manner with the 5' region of mreB mRNA, which contains signals for translation initiation and thereby affects mreB translation and stability. Moreover, as DsrA is also involved in the regulation of two transcriptional regulators, σ(S) and the nucleoid associated protein H-NS, which negatively regulate mreB transcription, it also indirectly contributes to mreB transcriptional down-regulation. By using quantitative analyses, our results evidence the complexity of this regulation and the tangled interplay between transcriptional and post-transcriptional control. As transcription factors and sRNA-mediated post-transcriptional regulators use different timescales, we propose that the sRNA pathway helps to adapt to changes in temperature, but also indirectly mediates long-term regulation of MreB concentration. The tight regulation and fine-tuning of mreB gene expression in response to cellular stresses is discussed in regard to the effect of the MreB protein on cell elongation.
Collapse
Affiliation(s)
- Bastien Cayrol
- Laboratoire Léon Brillouin, CEA - Centre de Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Stress sigma factor RpoS degradation and translation are sensitive to the state of central metabolism. Proc Natl Acad Sci U S A 2015; 112:5159-64. [PMID: 25847996 DOI: 10.1073/pnas.1504639112] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RpoS, the stationary phase/stress sigma factor of Escherichia coli, regulates a large cohort of genes important for the cell to deal with suboptimal conditions. Its level increases quickly in the cell in response to many stresses and returns to low levels when growth resumes. Increased RpoS results from increased translation and decreased RpoS degradation. Translation is positively regulated by small RNAs (sRNAs). Protein stability is positively regulated by anti-adaptors, which prevent the RssB adaptor-mediated degradation of RpoS by the ClpXP protease. Inactivation of aceE, a subunit of pyruvate dehydrogenase (PDH), was found to increase levels of RpoS by affecting both translation and protein degradation. The stabilization of RpoS in aceE mutants is dependent on increased transcription and translation of IraP and IraD, two known anti-adaptors. The aceE mutation also leads to a significant increase in rpoS translation. The sRNAs known to positively regulate RpoS are not responsible for the increased translation; sequences around the start codon are sufficient for the induction of translation. PDH synthesizes acetyl-CoA; acetate supplementation allows the cell to synthesize acetyl-CoA by an alternative, less favored pathway, in part dependent upon RpoS. Acetate addition suppressed the effects of the aceE mutant on induction of the anti-adaptors, RpoS stabilization, and rpoS translation. Thus, the bacterial cell responds to lowered levels of acetyl-CoA by inducing RpoS, allowing reprogramming of E. coli metabolism.
Collapse
|
7
|
Nakashima N, Akita H, Hoshino T. Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin. Metab Eng 2014; 25:204-14. [PMID: 25108217 DOI: 10.1016/j.ymben.2014.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/23/2014] [Accepted: 07/29/2014] [Indexed: 11/17/2022]
Abstract
In this study, we describe a novel method for producing valuable chemicals from glucose and xylose in Escherichia coli. The notable features in our method are avoidance of plasmids and expensive inducers for foreign gene expression to reduce production costs; foreign genes are knocked into the chromosome, and their expression is induced with xylose that is present in most biomass feedstock. As loci for the gene knock-in, lacZYA and some pseudogenes are chosen to minimize unexpected effects of the knock-in on cell physiology. The promoter of xylF is inducible with xylose and is combined with the T7 RNA polymerase-T7 promoter system to ensure strong gene expression. This expression system was named BICES (biomass-inducible chromosome-based expression system). As examples of BICES application, 2,3-butanediol and acetoin were successfully produced from glucose and xylose, and the maximal concentrations reached 54gL(-1) [99.6% in (R,S)-form] and 31gL(-1), respectively. 2,3-Butanediol and acetoin are industrially important chemicals that are, at present, produced primarily through petrochemical processes. To demonstrate usability of BICES in practical situations, we produced these chemicals from a saccharified cedar solution. From these results, we can conclude that BICES is suitable for practical production of valuable chemicals from biomass.
Collapse
Affiliation(s)
- Nobutaka Nakashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan; Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 2-12-1-M6-5 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| | - Hironaga Akita
- Biomass Refinery Research Center, National Institute of Advanced Industrial Sciences and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Tamotsu Hoshino
- Bioproduction Research Institute, National Institute of Advanced Industrial Sciences and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan; Biomass Refinery Research Center, National Institute of Advanced Industrial Sciences and Technology (AIST), 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| |
Collapse
|
8
|
Jin DJ, Zhou YN, Shaw G, Ji X. Structure and function of RapA: a bacterial Swi2/Snf2 protein required for RNA polymerase recycling in transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:470-5. [PMID: 21419241 DOI: 10.1016/j.bbagrm.2011.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/04/2011] [Accepted: 03/10/2011] [Indexed: 11/26/2022]
Abstract
One of the hallmarks of the Swi2/Snf2 family members is their ability to modify the interaction between DNA-binding protein and DNA in controlling gene expression. The studies of Swi2/Snf2 have been mostly focused on their roles in chromatin and/or nucleosome remodeling in eukaryotes. A bacterial Swi2/Snf2 protein named RapA from Escherichia coli is a unique addition to these studies. RapA is an RNA polymerase (RNAP)-associated protein and an ATPase. It binds nucleic acids including RNA and DNA. The ATPase activity of RapA is stimulated by its interaction with RNAP, but not with nucleic acids. RapA and the major sigma factor σ70 compete for binding to core RNAP. After one transcription cycle in vitro, RNAP is immobilized in an undefined posttranscription/posttermination complex (PTC), thus becoming unavailable for reuse. RapA stimulates RNAP recycling by ATPase-dependent remodeling of PTC, leading to the release of sequestered RNAP, which then becomes available for reuse in another cycle of transcription. Recently, the crystal structure of RapA that is also the first full-length structure for the entire Swi2/Snf2 family was determined. The structure provides a framework for future studies of the mechanism of RNAP recycling in transcription. This article is part of a Special Issue entitled: Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Ding Jun Jin
- Center for Cancer Research, Natioal Cancer Institute, National Institute of Health, Frederick, MD 21702, USA.
| | | | | | | |
Collapse
|
9
|
Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol 2010; 192:5559-71. [PMID: 20802038 DOI: 10.1128/jb.00464-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small noncoding RNAs (sRNAs) regulate gene expression in Escherichia coli by base pairing with mRNAs and modulating translation and mRNA stability. The sRNAs DsrA and RprA stimulate the translation of the stress response transcription factor RpoS by base pairing with the 5' untranslated region of the rpoS mRNA. In the present study, we found that the rpoS mRNA was unstable in the absence of DsrA and RprA and that expression of these sRNAs increased both the accumulation and the half-life of the rpoS mRNA. Mutations in dsrA, rprA, or rpoS that disrupt the predicted pairing sequences and reduce translation of RpoS also destabilize the rpoS mRNA. We found that the rpoS mRNA accumulates in an RNase E mutant strain in the absence of sRNA expression and, therefore, is degraded by an RNase E-mediated mechanism. DsrA expression is required, however, for maximal translation even when rpoS mRNA is abundant. This suggests that DsrA protects rpoS mRNA from degradation by RNase E and that DsrA has a further activity in stimulating RpoS protein synthesis. rpoS mRNA is subject to degradation by an additional pathway, mediated by RNase III, which, in contrast to the RNase E-mediated pathway, occurs in the presence and absence of DsrA or RprA. rpoS mRNA and RpoS protein levels are increased in an RNase III mutant strain with or without the sRNAs, suggesting that the role of RNase III in this context is to reduce the translation of RpoS even when the sRNAs are acting to stimulate translation.
Collapse
|
10
|
Downregulation of the Escherichia coli guaB promoter by upstream-bound cyclic AMP receptor protein. J Bacteriol 2009; 191:6094-104. [PMID: 19633076 DOI: 10.1128/jb.00672-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli guaB promoter (P(guaB)) is responsible for directing transcription of the guaB and guaA genes, which specify the biosynthesis of the nucleotide GMP. P(guaB) is subject to growth rate-dependent control (GRDC) and possesses an UP element that is required for this regulation. In addition, P(guaB) contains a discriminator, three binding sites for the nucleoid-associated protein FIS, and putative binding sites for the regulatory proteins DnaA, PurR, and cyclic AMP receptor protein (CRP). Here we show that the CRP-cyclic AMP (cAMP) complex binds to a site located over 100 bp upstream of the guaB transcription start site, where it serves to downregulate P(guaB). The CRP-mediated repression of P(guaB) activity increases in media that support lower growth rates. Inactivation of the crp or cyaA gene or ablation/translocation of the CRP site relieves repression by CRP and results in a loss of GRDC of P(guaB). Thus, GRDC of P(guaB) involves a progressive increase in CRP-mediated repression of the promoter as the growth rate decreases. Our results also suggest that the CRP-cAMP complex does not direct GRDC at P(guaB) and that at least one other regulatory factor is required for conferring GRDC on this promoter. However, PurR and DnaA are not required for this regulatory mechanism.
Collapse
|
11
|
Regulski EE, Moy RH, Weinberg Z, Barrick JE, Yao Z, Ruzzo WL, Breaker RR. A widespread riboswitch candidate that controls bacterial genes involved in molybdenum cofactor and tungsten cofactor metabolism. Mol Microbiol 2008; 68:918-32. [PMID: 18363797 PMCID: PMC2408646 DOI: 10.1111/j.1365-2958.2008.06208.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We have identified a highly conserved RNA motif located upstream of genes encoding molybdate transporters, molybdenum cofactor (Moco) biosynthesis enzymes, and proteins that utilize Moco as a coenzyme. Bioinformatics searches have identified 176 representatives in γ-Proteobacteria, δ-Proteobacteria, Clostridia, Actinobacteria, Deinococcus-Thermus species and DNAs from environmental samples. Using genetic assays, we demonstrate that a Moco RNA in Escherichia coli associated with the Moco biosynthetic operon controls gene expression in response to Moco production. In addition, we provide evidence indicating that this conserved RNA discriminates against closely related analogues of Moco. These results, together with extensive phylogenetic conservation and typical gene control structures near some examples, indicate that representatives of this structured RNA represent a novel class of riboswitches that sense Moco. Furthermore, we identify variants of this RNA that are likely to be triggered by the related tungsten cofactor (Tuco), which carries tungsten in place of molybdenum as the metal constituent.
Collapse
Affiliation(s)
- Elizabeth E Regulski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The Rcs phosphorelay, consisting of a hybrid sensor kinase, a phosphotransferase, and a response regulator, regulates a large number of bacterial functions. These include capsule production, the target originally defined for these regulators, a small regulatory RNA, and a growing list of additional genes, many of unknown function. At the core of this phosphorelay is the response regulator RcsB that activates the expression of the target genes. In addition to RcsB, some but not all of these targets require a co-regulator. One such co-regulator is RcsA, which has not been described as working except with RcsB; RcsA is itself regulated at both the transcriptional and post-transcriptional levels. Signaling to the system is also complex, and numerous plasmids, mutations, and environmental conditions have been described as activating this system. Activation of the system on cell surfaces and the nature of some of the regulated functions suggest a role for this phosphorelay in biofilm formation. Here, we describe reporters and mutants that allow the genetic dissection of the system from two directions. In cases where a condition activates the system, for instance, causing an increase in capsule synthesis (a phenotype easily observed in colonies), specific tests can identify at what stage the signal feeds into the system. In cases where a target of the phosphorelay is identified, specific tests can define the genetic requirements for regulation of the target. Finally, in cases where overproduction of capsule interferes with other studies, mutants allow the study of cells in the absence of capsule formation.
Collapse
Affiliation(s)
- Nadim Majdalani
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| | | |
Collapse
|
13
|
Lynch SV, Dixon L, Benoit MR, Brodie EL, Keyhan M, Hu P, Ackerley DF, Andersen GL, Matin A. Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms. Antimicrob Agents Chemother 2007; 51:3650-8. [PMID: 17664315 PMCID: PMC2043260 DOI: 10.1128/aac.00601-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
By using a high-throughput screening method, a mutant of a uropathogenic Escherichia coli strain affected in the rapA gene was isolated. The mutant formed normal-architecture biofilms but showed decreased penicillin G resistance, although the mutation did not affect planktonic cell resistance. Transcriptome analysis showed that 22 genes were down-regulated in the mutant biofilm. One of these genes was yhcQ, which encodes a putative multidrug resistance pump. Mutants with mutations in this gene also formed biofilms with decreased resistance, although the effect was less pronounced than that of the rapA mutation. Thus, an additional mechanism(s) controlled by a rapA-regulated gene(s) was involved in wild-type biofilm resistance. The search for this mechanism was guided by the fact that another down-regulated gene in rapA biofilms, yeeZ, is suspected to be involved in extra cell wall-related functions. A comparison of the biofilm matrix of the wild-type and rapA strains revealed decreased polysaccharide quantities and coverage in the mutant biofilms. Furthermore, the (fluorescent) functional penicillin G homologue Bocillin FL penetrated the mutant biofilms more readily. The results strongly suggest a dual mechanism for the wild-type biofilm penicillin G resistance, retarded penetration, and effective efflux. The results of studies with an E. coli K-12 strain pointed to the same conclusion. Since efflux and penetration can be general resistance mechanisms, tests were conducted with other antibiotics. The rapA biofilm was also more sensitive to norfloxacin, chloramphenicol, and gentamicin.
Collapse
Affiliation(s)
- S V Lynch
- Department of Microbiology and Immunology, Sherman Fairchild Science Building, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kawano M, Storz G, Rao BS, Rosner JL, Martin RG. Detection of low-level promoter activity within open reading frame sequences of Escherichia coli. Nucleic Acids Res 2005; 33:6268-76. [PMID: 16260475 PMCID: PMC1275588 DOI: 10.1093/nar/gki928] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The search for promoters has largely been confined to sequences upstream of open reading frames (ORFs) or stable RNA genes. Here we used a cloning approach to discover other potential promoters in Escherichia coli. Chromosomal fragments of approximately 160 bp were fused to a promoterless lacZ reporter gene on a multi-copy plasmid. Eight clones were deliberately selected for high activity and 105 clones were selected at random. All eight of the high-activity clones carried promoters that were located upstream of an ORF. Among the randomly-selected clones, 56 had significantly elevated activity. Of these, 7 had inserts which also mapped upstream of an ORF, while 49 mapped within or downstream of ORFs. Surprisingly, the eight promoters selected for high activity matched the canonical sigma70 -35 and -10 sequences no better than sequences from the randomly-selected clones. For six of the nine most active sequences with orientations opposite to that of the ORF, chromosomal expression was detected by RT-PCR, but defined transcripts were not detected by northern analysis. Our results indicate that the E.coli chromosome carries numerous -35 and -10 sequences with weak promoter activity but that most are not productively expressed because other features needed to enhance promoter activity and transcript stability are absent.
Collapse
Affiliation(s)
| | | | - B. Sridhar Rao
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesda, MD 20892-0560, USA
| | - Judah L. Rosner
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney DiseasesBuilding 5, Room 333, Bethesda, MD 20892-0560, USA
| | - Robert G. Martin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney DiseasesBuilding 5, Room 333, Bethesda, MD 20892-0560, USA
- To whom correspondence should be addressed. Tel: +1 301 496 5466; Fax: +1 301 496 0201;
| |
Collapse
|
15
|
Yohannes E, Thurber AE, Wilks JC, Tate DP, Slonczewski JL. Polyamine stress at high pH in Escherichia coli K-12. BMC Microbiol 2005; 5:59. [PMID: 16223443 PMCID: PMC1274320 DOI: 10.1186/1471-2180-5-59] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Accepted: 10/13/2005] [Indexed: 12/04/2022] Open
Abstract
Background Polyamines such as spermine and spermidine are required for growth of Escherichia coli; they interact with nucleic acids, and they bind to ribosomes. Polyamines block porins and decrease membrane permeability, activities that may protect cells in acid. At high concentrations, however, polyamines impair growth. They impair growth more severely at high pH, probably due to their increased uptake as membrane-permeant weak bases. The role of pH is critical in understanding polyamine stress. Results The effect of polyamines was tested on survival of Escherichia coli K-12 W3110 in extreme acid or base (pH conditions outside the growth range). At pH 2, 10 mM spermine increased survival by 2-fold, and putrescine increased survival by 30%. At pH 9.8, however, E. coli survival was decreased 100-fold by 10 mM spermine, putrescine, cadaverine, or spermidine. At pH 8.5, spermine decreased the growth rate substantially, whereas little effect was seen at pH 5.5. Spermidine required ten-fold higher concentrations to impair growth. On proteomic 2-D gels, spermine and spermidine caused differential expression of 31 different proteins. During log-phase growth at pH 7.0, 1 mM spermine induced eight proteins, including PykF, GlpK, SerS, DeaD, OmpC and OmpF. Proteins repressed included acetate-inducible enzymes (YfiD, Pta, Lpd) as well as RapA (HepA), and FabB. At pH 8.5, spermine induced additional proteins: TnaA, OmpA, YrdA and NanA (YhcJ) and also repressed 17 proteins. Four of the proteins that spermine induced (GlpK, OmpA, OmpF, TnaA) and five that were repressed (Lpd, Pta, SucB, TpiA, YfiD) show similar induction or repression, respectively, in base compared to acid. Most of these base stress proteins were also regulated by spermidine, but only at ten-fold higher concentration (10 mM) at high pH (pH 8.5). Conclusion Polyamines increase survival in extreme acid, but decrease E. coli survival in extreme base. Growth inhibition by spermine and spermidine requires neutral or higher pH. At or above pH 7, spermine and spermidine regulate specific proteins, many of which are known to be regulated by base stress. High pH amplifies polyamine stress; and naturally occurring polyamines may play an important role in base stress.
Collapse
Affiliation(s)
| | - Amy E Thurber
- Department of Biology, Kenyon College, Gambier, OH 43022
| | | | - Daniel P Tate
- Department of Biology, Kenyon College, Gambier, OH 43022
| | | |
Collapse
|
16
|
Walker KA, Mallik P, Pratt TS, Osuna R. The Escherichia coli Fis promoter is regulated by changes in the levels of its transcription initiation nucleotide CTP. J Biol Chem 2004; 279:50818-28. [PMID: 15385561 DOI: 10.1074/jbc.m406285200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the Escherichia coli nucleoid-associated protein Fis (factor for inversion stimulation) is controlled at the transcriptional level in accordance with the nutritional availability. It is highly expressed during early logarithmic growth phase in cells growing in rich medium but poorly expressed in late logarithmic and stationary phase. However, fis mRNA expression is prolonged at high levels throughout the logarithmic and early stationary phase when the preferred transcription initiation site (+1C) is replaced with A or G, indicating that initiation with CTP is a required component of the regulation pattern. We show that RNA polymerase-fis promoter complexes are short lived and that transcription is stimulated over 20-fold from linear or supercoiled DNA if CTP is present during formation of initiation complexes, which serves to stabilize these complexes. Use of fis promoter fusions to lacZ indicated that fis promoter transcription is sensitive to the intracellular pool of the predominant initiating NTP. Growth conditions resulting in increases in CTP pools also result in corresponding increases in fis mRNA levels. Measurements of NTP pools performed throughout the growth of the bacterial culture in rich medium revealed a dramatic increase in all four NTP levels during the transition from stationary to logarithmic growth phase, followed by reproducible oscillations in their levels during logarithmic growth, which later decrease during the transition from logarithmic to stationary phase. In particular, CTP pools fluctuate in a manner consistent with a role in regulating fis expression. These observations support a model whereby fis expression is subject to regulation by the availability of its initiating NTP.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Chromatography, Thin Layer
- Cytidine/chemistry
- Cytidine Triphosphate/chemistry
- DNA Primers/chemistry
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/metabolism
- Dose-Response Relationship, Drug
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Factor For Inversion Stimulation Protein/genetics
- Gene Expression Regulation, Enzymologic
- Kinetics
- Lac Operon
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Oscillometry
- Plasmids/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Salts/pharmacology
- Time Factors
- Transcription, Genetic
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- Kimberly A Walker
- Department of Biological Sciences, University at Albany, Albany, New York 12222, USA
| | | | | | | |
Collapse
|
17
|
Abstract
In bacteria, genes are often expressed from multiple promoters to allow for a greater spectrum of regulation. Transcription of rRNA genes in Escherichia coli uses two promoters, rrn P1 and rrn P2. Under the conditions examined previously, the P1 and P2 promoters were regulated in response to many of the same changes in nutritional conditions. We report here that rrn P2 promoters play unique roles in rRNA expression during transitional situations. rrn P2 promoters play a dominant role in rRNA synthesis as cells enter into and persist in stationary phase. rrn P2 promoters also play a role in the rapid increases in rRNA synthesis that occur during outgrowth from stationary phase and during the initial stages of rapid shifts to richer media. We demonstrate that rrnB P2 directly senses the concentrations of guanosine 5'-disphosphate 3'-diphosphate (ppGpp) and the initiating nucleoside triphosphate (iNTP), thereby accounting, at least in part, for the observed patterns of regulation. Our work significantly extends previous information about the regulators responsible for control of the rrn P2 promoters and the relationship between the tandem rRNA promoters.
Collapse
Affiliation(s)
- Heath D Murray
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
18
|
Kim BH, Kim HG, Bae GI, Bang IS, Bang SH, Choi JH, Park YK. Expression of cspH upon nutrient up-shift in Salmonella enterica serovar Typhimurium. Arch Microbiol 2004; 182:37-43. [PMID: 15235764 DOI: 10.1007/s00203-004-0692-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2004] [Revised: 06/03/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
The gene cspH, which encodes one of the cold-shock proteins in Salmonella enterica serovar Typhimurium, has previously been reported to be induced during early exponential phase at 37 degrees C. In the present study, the expression of cspH upon nutrient up-shift at 37 degrees C was investigated and found to be affected by DNA gyrase and DNA-binding protein Fis. When cells at stationary phase were subcultured into a rich medium, the mRNA level of cspH increased dramatically prior to the first cell division. However, when the cells were treated with DNA gyrase inhibitors, cspH mRNA was not induced upon nutrient up-shift. The low level of DNA superhelical density at the cspH promoter in part affected the expression of cspH mRNA in vitro. In addition, a fis-deficient strain had a lower level of cspH mRNA than the wild-type upon nutrient up-shift. Finally, a cspH-lacZ construct, in which the putative binding region for Fis was deleted in the cspH promoter, expressed a low level of LacZ, in contrast to the native cspH-lacZ construct.
Collapse
Affiliation(s)
- Bae Hoon Kim
- School of Life Sciences and Biotechnology, Korea University, 136-701, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Cabrera JE, Jin DJ. The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol Microbiol 2003; 50:1493-505. [PMID: 14651633 DOI: 10.1046/j.1365-2958.2003.03805.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite extensive genetic, biochemical and structural studies on Escherichia coli RNA polymerase (RNAP), little is known about its location and distribution in response to environmental changes. To visualize the RNAP by fluorescence microscopy in E. coli under different physiological conditions, we constructed a functional rpoC-gfp gene fusion on the chromosome. We show that, although RNAP is located in the nucleoid and at its periphery, the distribution of RNAP is dynamic and dramatically influenced by cell growth conditions, nutrient starvation and overall transcription activity inside the cell. Moreover, mutational analysis suggests that the stable RNA synthesis plays an important role in nucleoid condensation.
Collapse
Affiliation(s)
- Julio E Cabrera
- Laboratory of Molecular Biology, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | |
Collapse
|
20
|
Zhi H, Wang X, Cabrera JE, Johnson RC, Jin DJ. Fis stabilizes the interaction between RNA polymerase and the ribosomal promoter rrnB P1, leading to transcriptional activation. J Biol Chem 2003; 278:47340-9. [PMID: 13679374 DOI: 10.1074/jbc.m305430200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been shown that Fis activates transcription of the ribosomal promoter rrnB P1; however, the mechanism by which Fis activates rrnB P1 transcription is not fully understood. Paradoxically, although Fis activates transcription of rrnB P1 in vitro, transcription from the promoter containing Fis sites (as measured from rrnB P1-lacZ fusions) is not reduced in a fis null mutant strain. In this study, we further investigated the mechanism by which Fis activates transcription of the rrnB P1 promoter and the role of Fis in rRNA synthesis and cell growth in Escherichia coli. Like all other stringent promoters investigated so far, open complex of rrnB P1 has been shown to be intrinsically unstable, making open complex stability a potential regulatory step in transcription of this class of promoters. Our results show that Fis acts at this regulatory step by stabilizing the interaction between RNA polymerase and rrnB P1 in the absence of NTPs. Mutational analysis of the Fis protein demonstrates that there is a complete correlation between Fis-mediated transcriptional activation of rrnB P1 and Fis-mediated stabilization of preinitiation complexes of the promoter. Thus, our study indicates that Fis-mediated stabilization of RNA polymerase-rrnB P1 preinitiation complexes, presumably at the open complex step, contributes prominently to transcriptional activation. Furthermore, our in vivo results show that rRNA synthesis from the P1 promoters of several rRNA operons are reduced 2-fold in a fis null mutant compared with the wild type strain, indicating that Fis plays an important role in the establishment of robust rRNA synthesis when E. coli cells are emerging from a growth-arrested phase to a rapid growth phase. Thus, our results resolve an apparent paradox of the role of Fis in vitro and in vivo in the field.
Collapse
Affiliation(s)
- Huijun Zhi
- Laboratory of Molecular Biology, National Cancer Institute/NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
21
|
Voloshin ON, Vanevski F, Khil PP, Camerini-Otero RD. Characterization of the DNA damage-inducible helicase DinG from Escherichia coli. J Biol Chem 2003; 278:28284-93. [PMID: 12748189 DOI: 10.1074/jbc.m301188200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dinG promoter was first isolated in a genetic screen scoring for damage-inducible loci in Escherichia coli (Lewis, L. K., Jenkins, M. E., and Mount, D. W. (1992) J. Bacteriol. 174, 3377-3385). Sequence analysis suggests that the dinG gene encodes a putative helicase related to a group of eukaryotic helicases that includes mammalian XPD (Koonin, E. V. (1993) Nucleic Acids Res. 21, 1497), an enzyme involved in transcription-coupled nucleotide excision repair and basal transcription. We have characterized the dinG gene product from E. coli using genetic and biochemical approaches. Deletion of dinG has no severe phenotype, indicating that it is non-essential for cell viability. Both dinG deletion and over-expression of the DinG protein from a multicopy plasmid result in a slight reduction of UV resistance. DinG, purified as a fusion protein from E. coli cells, behaves as a monomer in solution, as judged from gel filtration experiments. DinG is an ATP-hydrolyzing enzyme; single-stranded (ss) DNA stimulates the ATPase activity 15-fold. Kinetic data yield a Hill coefficient of 1, consistent with one ATP-hydrolyzing site per DinG molecule. DinG possesses a DNA helicase activity; it translocates along ssDNA in a 5' --> 3' direction, as revealed in experiments with substrates containing non-natural 5'-5' and 3'-3' linkages. The ATP-dependent DNA helicase activity of DinG requires divalent cations (Mg2+, Ca2+, and Mn2+) but is not observed in the presence of Zn2+. The DinG helicase does not discriminate between ribonucleotide and deoxyribonucleotide triphosphates, and it unwinds duplex DNA with similar efficiency in the presence of ATP or dATP. We discuss the possible involvement of the DinG helicase in DNA replication and repair processes.
Collapse
Affiliation(s)
- Oleg N Voloshin
- Genetics and Biochemistry Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
22
|
Abstract
Promoter escape is the last stage of transcription initiation when RNA polymerase, having initiated de novo phosphodiester bond synthesis, must begin to relinquish its hold on promoter DNA and advance to downstream regions (DSRs) of the template. In vitro, this process is marked by the release of high levels of abortive transcripts at most promoters, reflecting the high instability of initial transcribing complexes (ITCs) and indicative of the existence of barriers to the escape process. The high abortive initiation level is the result of the existence of unproductive ITCs that carry out repeated initiation and abortive release without escaping the promoter. The formation of unproductive ITCs is a widespread phenomenon, but it occurs to different extent on different promoters. Quantitative analysis of promoter mutations suggests that the extent and pattern of abortive initiation and promoter escape is determined by the sequence of promoter elements, both in the promoter recognition region (PRR) and the initial transcribed sequence (ITS). A general correlation has been found that the stronger the promoter DNA-polymerase interaction, the poorer the ability of RNA polymerase to escape the promoter. In gene regulation, promoter escape can be the rate-limiting step for transcription initiation. An increasing number of regulatory proteins are known to exert their control at this step. Examples are discussed with an emphasis on the diverse mechanisms involved. At the molecular level, the X-ray crystal structures of RNA polymerase and its various transcription complexes provide the framework for understanding the functional data on abortive initiation and promoter escape. Based on structural and biochemical evidence, a mechanism for abortive initiation and promoter escape is described.
Collapse
Affiliation(s)
- Lilian M Hsu
- Program in Biochemistry, Mount Holyoke College, South Hadley, MA 01075, USA.
| |
Collapse
|
23
|
Sukhodolets MV, Cabrera JE, Zhi H, Jin DJ. RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription. Genes Dev 2001; 15:3330-41. [PMID: 11751638 PMCID: PMC312849 DOI: 10.1101/gad.936701] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We report that RapA, an Escherichia coli RNA polymerase (RNAP)-associated homolog of SWI2/SNF2, is capable of dramatic activation of RNA synthesis. The RapA-mediated transcriptional activation in vitro depends on supercoiled DNA and high salt concentrations, a condition that is likely to render the DNA superhelix tightly compacted. Moreover, RapA activates transcription by stimulating RNAP recycling. Mutational analyses indicate that the ATPase activity of RapA is essential for its function as a transcriptional activator, and a rapA null mutant exhibits a growth defect on nutrient plates containing high salt concentrations in vivo. Thus, RapA acts as a general transcription factor and an integral component of the transcription machinery. The mode of action of RapA in remodeling posttranscription or posttermination complexes is discussed.
Collapse
Affiliation(s)
- M V Sukhodolets
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|