1
|
Yin Y, Yu X, Tao Z, French CE, Lu Z. Computer-directed rational engineering of dioxygenase TcsAB for triclosan biodegradation under cold conditions. Appl Environ Microbiol 2025; 91:e0034625. [PMID: 40042274 PMCID: PMC12016537 DOI: 10.1128/aem.00346-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 04/24/2025] Open
Abstract
The dioxygenase TcsAB is a specific dioxygenase involved in the initial biodegradation of the broad-spectrum antibacterial agent triclosan (TCS). However, it exhibits significantly reduced activity under cold conditions. In this study, a computer-directed approach combining loop engineering and N-terminal truncation was utilized to decrease the thermostability of TcsAB, thereby enhancing its catalytic activity in cold environments. The iterative mutant TcsAB (TcsAY277P/F279P/S311W/A313WTcsBN-terminal truncation) exhibited a 2.54-fold greater catalytic efficiency than the wild type at 15°C. Molecular dynamics simulations showed that the mutations introduced in the substrate-binding pocket increased its flexibility, leading to enhanced catalytic activity through binding in a more advantageous conformation. This modified dioxygenase was employed as a biological component, and Pseudomonas knackmussii B13 was used as a chassis cell to construct an engineered strain for the efficient degradation of TCS at low temperatures. The objective was to enhance the capacity of TCS bioremediation in natural environments. Insights gained from this study may inform the rational redesign of enzymes related to the robustness of biodegradation of emerging contaminants.IMPORTANCEThe presence of TCS in surface water and wastewater poses a significant risk to aquatic organisms and human health due to its high resistance to degradation. The biodegradation of TCS pollution in the environment through the metabolic processes of microorganisms represents a significant and effective remediation strategy. The dioxygenase TcsAB is the only specific enzyme that has been identified as responsible for the initial biodegradation of TCS. Nevertheless, the enzyme activity responsible for the degradation of TCS was markedly diminished at low temperatures. The actual ambient temperature is frequently lower than the optimum temperature for enzyme reaction, and maintaining the 30°C reaction condition results in high costs and energy consumption for TCS removal. Accordingly, the rational engineering of dioxygenase TcsAB for low-temperature activity will facilitate more efficient and realistic removal of TCS in an aqueous environment.
Collapse
Affiliation(s)
- Yiran Yin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinjie Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zongxin Tao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Christopher E. French
- Zhejiang University-University of Edinburgh Joint Research Centre for Engineering Biology, International Campus, Zhejiang University, Haining, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Zhejiang University-University of Edinburgh Joint Research Centre for Engineering Biology, International Campus, Zhejiang University, Haining, China
| |
Collapse
|
2
|
Iasakov T. Evolution End Classification of tfd Gene Clusters Mediating Bacterial Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D). Int J Mol Sci 2023; 24:14370. [PMID: 37762674 PMCID: PMC10531765 DOI: 10.3390/ijms241814370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The tfd (tfdI and tfdII) are gene clusters originally discovered in plasmid pJP4 which are involved in the bacterial degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) via the ortho-cleavage pathway of chlorinated catechols. They share this activity, with respect to substituted catechols, with clusters tcb and clc. Although great effort has been devoted over nearly forty years to exploring the structural diversity of these clusters, their evolution has been poorly resolved to date, and their classification is clearly obsolete. Employing comparative genomic and phylogenetic approaches has revealed that all tfd clusters can be classified as one of four different types. The following four-type classification and new nomenclature are proposed: tfdI, tfdII, tfdIII and tfdIV(A,B,C). Horizontal gene transfer between Burkholderiales and Sphingomonadales provides phenomenal linkage between tfdI, tfdII, tfdIII and tfdIV type clusters and their mosaic nature. It is hypothesized that the evolution of tfd gene clusters proceeded within first (tcb, clc and tfdI), second (tfdII and tfdIII) and third (tfdIV(A,B,C)) evolutionary lineages, in each of which, the genes were clustered in specific combinations. Their clustering is discussed through the prism of hot spots and driving forces of various models, theories, and hypotheses of cluster and operon formation. Two hypotheses about series of gene deletions and displacements are also proposed to explain the structural variations across members of clusters tfdII and tfdIII, respectively. Taking everything into account, these findings reconstruct the phylogeny of tfd clusters, have delineated their evolutionary trajectories, and allow the contribution of various evolutionary processes to be assessed.
Collapse
Affiliation(s)
- Timur Iasakov
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
3
|
Kato T, Nishimura K, Misu S, Ikeo K, Park EY. Changes of the gene expression in silkworm larvae and Cordyceps militaris at late stages of the pathogenesis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21968. [PMID: 36116100 DOI: 10.1002/arch.21968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Cordyceps militaris is an entomopathogenic fungus that forms its fruiting body. The gene expression change in C. militaris and silkworm larvae were analyzed using RNA-seq to investigate the relationship of C. militaris with the host, silkworm larvae before the death by mycosis. At 144 h after the injection of C. militaris conidia, genes encoding proteases, protease inhibitors, and cuticle proteins in the fat body of silkworm larvae were upregulated, but genes encoding lipoproteins and other proteins in hemolymph were downregulated. On the other hand, at 168 h after the injection of C. militaris conidia, genes encoding amino acid and oligopeptide transporters and permeases in C. militaris were upregulated, suggesting that C. militaris may use peptides and amino acids in silkworm larvae as a nutrient to grow in vivo. Additionally, one gene cluster composed of genes putatively involved in the degradation of phenolic substrates was also upregulated. The addition of 4,5-dichlorocatechol, an inhibitor of catechol 1,2-dioxygenase, inhibited the in vivo growth of C. militaris, Beauveria bassiana and Metarhizium anisopliae. These results also suggest that the expression of the gene cluster may be crucial for the in vivo growth of C. militaris and entomopathogenic fungi. This study will clarify how C. militaris grows in insect hosts by avoiding host's immune systems.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Konomi Nishimura
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Sadahiko Misu
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Kazuho Ikeo
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
4
|
Meier A, Worch S, Hartmann A, Marzec M, Mock HP, Bode R, Kunze G, Matthes F. Characterization of Catechol-1,2-Dioxygenase (Acdo1p) From Blastobotrys raffinosifermentans and Investigation of Its Role in the Catabolism of Aromatic Compounds. Front Microbiol 2022; 13:872298. [PMID: 35722288 PMCID: PMC9204233 DOI: 10.3389/fmicb.2022.872298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
Gallic acid, protocatechuic acid, catechol, and pyrogallol are only a few examples of industrially relevant aromatics. Today much attention is paid to the development of new microbial factories for the environmentally friendly biosynthesis of industrially relevant chemicals with renewable resources or organic pollutants as the starting material. The non-conventional yeast, Blastobotrys raffinosifermentans, possesses attractive properties for industrial bio-production processes such as thermo- and osmotolerance. An additional advantage is its broad substrate spectrum, with tannins at the forefront. The present study is dedicated to the characterization of catechol-1,2-dioxygenase (Acdo1p) and the analysis of its function in B. raffinosifermentans tannic acid catabolism. Acdo1p is a dimeric protein with higher affinity for catechol (K M = 0.004 ± 0.001 mM, k cat = 15.6 ± 0.4 s-1) than to pyrogallol (K M = 0.1 ± 0.02 mM, k cat = 10.6 ± 0.4 s-1). It is an intradiol dioxygenase and its reaction product with catechol as the substrate is cis,cis-muconic acid. B. raffinosifermentans G1212/YIC102-AYNI1-ACDO1-6H, which expresses the ACDO1 gene under the control of the strong nitrate-inducible AYNI1 promoter, achieved a maximum catechol-1,2-dioxygenase activity of 280.6 U/L and 26.9 U/g of dry cell weight in yeast grown in minimal medium with nitrate as the nitrogen source and 1.5% glucose as the carbon source. In the same medium with glucose as the carbon source, catechol-1,2-dioxygenase activity was not detected for the control strain G1212/YIC102 with ACDO1 expression under the regulation of its respective endogenous promoter. Gene expression analysis showed that ACDO1 is induced by gallic acid and protocatechuic acid. In contrast to the wild-type strain, the B. raffinosifermentans strain with a deletion of the ACDO1 gene was unable to grow on medium supplemented with gallic acid or protocatechuic acid as the sole carbon source. In summary, we propose that due to its substrate specificity, its thermal stability, and its ability to undergo long-term storage without significant loss of activity, B. raffinosifermentans catechol-1,2-dioxygenase (Acdo1p) is a promising enzyme candidate for industrial applications.
Collapse
Affiliation(s)
- Anna Meier
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Sebastian Worch
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Anja Hartmann
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Marek Marzec
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Hans-Peter Mock
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Rüdiger Bode
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Gotthard Kunze
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Falko Matthes
- Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
5
|
Alghuthaymi MA, Awad AM, Hassan HA. Isolation and Characterization a Novel Catabolic Gene Cluster Involved in Chlorobenzene Degradation in Haloalkaliphilic Alcanivorax sp. HA03. BIOLOGY 2022; 11:biology11050724. [PMID: 35625452 PMCID: PMC9138330 DOI: 10.3390/biology11050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022]
Abstract
Chlorobenzene (CB) poses a serious risk to human health and the environment, and because of its low degradation rate by microorganisms, it persists in the environment. Some bacterial strains can use CB as growth substrates and their degradative pathways have evolved; very little is known about these pathways and the enzymes for CB degradation in high pH and salinity environments. Alcanivorax sp. HA03 was isolated from the extremely saline and alkaline site. HA03 has the capability to degrade benzene, toluene and chlorobenzene (CB). CB catabolic genes were isolated from HA03, which have a complete gene cluster comprising α and β subunits, ferredoxin and ferredoxin reductase (CBA1A2A3A4), as well as one gene-encoding enzyme for chlorocatechol 1,2-dioxygenase (CC12DOs). Based on the deduced amino acid sequence homology, the gene cluster was thought to be responsible for the upper and lower catabolic pathways of CB degradation. The CBA1A2A3A4 genes probably encoding a chlorobenzene dioxygenase was confirmed by expression during the growth on CB by RT-PCR. Heterologous expression revealed that CBA1A2A3A4 exhibited activity for CB transformation into 3-chlorocatechol, while CC12DOs catalyze 3-chlorocatechol, transforming it into 2-chloromucounate. SDS-PAGE analysis indicated that the sizes of CbA1 and (CC12DOs) gene products were 51.8, 27.5 kDa, respectively. Thus, Alcanivorax sp. HA03 constitutes the first bacterial strain described in the metabolic pathway of CB degradation under high pH and salinity conditions. This finding may have obvious potential for the bioremediation of CB in both highly saline and alkaline contaminated sites.
Collapse
Affiliation(s)
- Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia;
| | - Ahmed M. Awad
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
| | - Hamdy A. Hassan
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia;
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt;
- Correspondence:
| |
Collapse
|
6
|
Wang B, Gao J, Xu J, Fu X, Han H, Li Z, Wang L, Zhang F, Tian Y, Peng R, Yao Q. Optimization and reconstruction of two new complete degradation pathways for 3-chlorocatechol and 4-chlorocatechol in Escherichia coli. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126428. [PMID: 34171665 DOI: 10.1016/j.jhazmat.2021.126428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Chlorinated aromatic compounds are a serious environmental concern because of their widespread occurrence throughout the environment. Although several microorganisms have evolved to gain the ability to degrade chlorinated aromatic compounds and use them as carbon sources, they still cannot meet the diverse needs of pollution remediation. In this study, the degradation pathways for 3-chlorocatechol (3CC) and 4-chlorocatechol (4CC) were successfully reconstructed by the optimization, synthesis, and assembly of functional genes from different strains. The addition of a 13C-labeled substrate and functional analysis of different metabolic modules confirmed that the genetically engineered strains can metabolize chlorocatechol similar to naturally degrading strains. The strain containing either of these artificial pathways can degrade catechol, 3CC, and 4CC completely, although differences in the degradation efficiency may be noted. Proteomic analysis and scanning electron microscopy observation showed that 3CC and 4CC have toxic effects on Escherichia coli, but the engineered bacteria can significantly eliminate these inhibitory effects. As core metabolic pathways for the degradation of chloroaromatics, the two chlorocatechol degradation pathways constructed in this study can be used to construct pollution remediation-engineered bacteria, and the related technologies may be applied to construct complete degradation pathways for complex organic hazardous materials.
Collapse
Affiliation(s)
- Bo Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Jianjie Gao
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Jing Xu
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Xiaoyan Fu
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Hongjuan Han
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Zhenjun Li
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Lijuan Wang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Fujian Zhang
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Yongsheng Tian
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China.
| | - Rihe Peng
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China.
| | - Quanhong Yao
- Shanghai Key laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, PR China.
| |
Collapse
|
7
|
Li T, Gao YZ, Xu J, Zhang ST, Guo Y, Spain JC, Zhou NY. A Recently Assembled Degradation Pathway for 2,3-Dichloronitrobenzene in Diaphorobacter sp. Strain JS3051. mBio 2021; 12:e0223121. [PMID: 34425699 PMCID: PMC8406286 DOI: 10.1128/mbio.02231-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
Diaphorobacter sp. strain JS3051 utilizes 2,3-dichloronitrobenzene (23DCNB), a toxic anthropogenic compound, as the sole carbon, nitrogen, and energy source for growth, but the metabolic pathway and its origins are unknown. Here, we establish that a gene cluster (dcb), encoding a Nag-like dioxygenase, is responsible for the initial oxidation of the 23DCNB molecule. The 2,3-dichloronitrobenzene dioxygenase system (DcbAaAbAcAd) catalyzes conversion of 23DCNB to 3,4-dichlorocatechol (34DCC). Site-directed mutagenesis studies indicated that residue 204 of DcbAc is crucial for the substrate specificity of 23DCNB dioxygenase. The presence of glutamic acid at position 204 of 23DCNB dioxygenase is unique among Nag-like dioxygenases. Genetic, biochemical, and structural evidence indicate that the 23DCNB dioxygenase is more closely related to 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42 than to the 34DCNB dioxygenase from Diaphorobacter sp. strain JS3050, which was isolated from the same site as strain JS3051. A gene cluster (dcc) encoding the enzymes for 34DCC catabolism, homologous to a clc operon in Pseudomonas knackmussii strain B13, is also on the chromosome at a distance of 2.5 Mb from the dcb genes. Heterologously expressed DccA catalyzed ring cleavage of 34DCC with high affinity and catalytic efficiency. This work not only establishes the molecular mechanism for 23DCNB mineralization, but also enhances the understanding of the recent evolution of the catabolic pathways for nitroarenes. IMPORTANCE Because anthropogenic nitroaromatic compounds have entered the biosphere relatively recently, exploration of the recently evolved catabolic pathways can provide clues for adaptive evolutionary mechanisms in bacteria. The concept that nitroarene dioxygenases shared a common ancestor with naphthalene dioxygenase is well established. But their phylogeny and how they evolved in response to novel nitroaromatic compounds are largely unknown. Elucidation of the molecular basis for 23DCNB degradation revealed that the catabolic pathways of two DCNB isomers in different isolates from the same site were derived from different recent origins. Integrating structural models of catalytic subunits and enzymatic activities data provided new insight about how recently modified enzymes were selected depending on the structure of new substrates. This study enhances understanding and prediction of adaptive evolution of catabolic pathways in bacteria in response to new chemicals.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Zhou Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Ting Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jim C. Spain
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, Pensacola, Florida, USA
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Gao YZ, Palatucci ML, Waidner LA, Li T, Guo Y, Spain JC, Zhou NY. A Nag-like dioxygenase initiates 3,4-dichloronitrobenzene degradation via 4,5-dichlorocatechol in Diaphorobacter sp. strain JS3050. Environ Microbiol 2021; 23:1053-1065. [PMID: 33103811 DOI: 10.1111/1462-2920.15295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
The chemical synthesis intermediate 3,4-dichloronitrobenzene (3,4-DCNB) is an environmental pollutant. Diaphorobacter sp. strain JS3050 utilizes 3,4-DCNB as a sole source of carbon, nitrogen and energy. However, the molecular determinants of its catabolism are poorly understood. Here, the complete genome of strain JS3050 was sequenced and key genes were expressed heterologously to establish the details of its degradation pathway. A chromosome-encoded three-component nitroarene dioxygenase (DcnAaAbAcAd) converted 3,4-DCNB stoichiometrically to 4,5-dichlorocatechol, which was transformed to 3,4-dichloromuconate by a plasmid-borne ring-cleavage chlorocatechol 1,2-dioxygenase (DcnC). On the chromosome, there are also genes encoding enzymes (DcnDEF) responsible for the subsequent transformation of 3,4-dichloromuconate to β-ketoadipic acid. The fact that the genes responsible for the catabolic pathway are separately located on plasmid and chromosome indicates that recent assembly and ongoing evolution of the genes encoding the pathway is likely. The regiospecificity of 4,5-dichlorocatechol formation from 3,4-DCNB by DcnAaAbAcAd represents a sophisticated evolution of the nitroarene dioxygenase that avoids misrouting of toxic intermediates. The findings enhance the understanding of microbial catabolic diversity during adaptive evolution in response to xenobiotics released into the environment.
Collapse
Affiliation(s)
- Yi-Zhou Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mallory L Palatucci
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Lisa A Waidner
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Palatucci ML, Waidner LA, Mack EE, Spain JC. Aerobic biodegradation of 2,3- and 3,4-dichloronitrobenzene. JOURNAL OF HAZARDOUS MATERIALS 2019; 378:120717. [PMID: 31203117 DOI: 10.1016/j.jhazmat.2019.05.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Dichloronitrobenzenes (DCNB) are intermediates in the production of dichloroanilines, which are key feedstocks for synthesis of diuron and other herbicides. Although DCNB is a major contaminant at certain chemical manufacturing sites, aerobic DCNB biodegradation is poorly understood and such sites have not been candidates for bioremediation. When a bench-scale aerobic fluidized- bed bioreactor was inoculated with samples from a DCNB contaminated site in Brazil 2,3-DCNB, 3,4-DCNB, 1,2-dichlorobenzene (o-DCB), and chlorobenzene (CB) were biodegraded simultaneously. Biodegradation of the mixture was complete even when the reactor was operated at high flow rates (1.6 h hydraulic residence time), and bacteria able to degrade the individual contaminants were isolated from the reactor by selective enrichment. The enrichments yielded 2 strains of bacteria able to degrade 3,4-DCNB and one able to degrade 2,3-DCNB. The isolates released nitrite during growth on the respective DCNB isomers under aerobic conditions. The draft genome sequence of Diaphorobacter sp. JS3050, which grew on 3,4-DCNB, revealed the presence of putative nitroarene dioxygenase genes, which is consistent with initial attack by a dioxygenase analogous to the initial steps in degradation of nitrobenzene and dinitrotoluenes. The results indicate clearly that the DCNB isomers are biodegradable under aerobic conditions and thus are candidates for natural attenuation/bioremediation.
Collapse
Affiliation(s)
- Mallory L Palatucci
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Lisa A Waidner
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - E Erin Mack
- DuPont, Corporate Remediation Group, Chestnut Run Plaza 730/3170-6, P.O. Box 2915, 974 Centre Road, Wilmington, DE, 19805, USA
| | - Jim C Spain
- Center for Environmental Diagnostics & Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA.
| |
Collapse
|
10
|
Wang L, Gao YZ, Zhao H, Xu Y, Zhou NY. Biodegradation of 2-bromonitrobenzene by Pseudomonas stutzeri ZWLR2-1. INTERNATIONAL BIODETERIORATION & BIODEGRADATION 2019; 138:87-91. [DOI: 10.1016/j.ibiod.2018.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2025]
|
11
|
Ferraroni M, Kolomytseva M, Scozzafava A, Golovleva L, Briganti F. X-ray structures of 4-chlorocatechol 1,2-dioxygenase adducts with substituted catechols: New perspectives in the molecular basis of intradiol ring cleaving dioxygenases specificity. J Struct Biol 2013; 181:274-82. [DOI: 10.1016/j.jsb.2012.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
|
12
|
An EPR, thermostability and pH-dependence study of wild-type and mutant forms of catechol 1,2-dioxygenase from Acinetobacter radioresistens S13. Biometals 2012; 26:75-84. [PMID: 23224984 DOI: 10.1007/s10534-012-9595-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/29/2012] [Indexed: 10/27/2022]
Abstract
Intradiol dioxygenase are iron-containing enzymes involved in the bacterial degradation of natural and xenobiotic aromatic compounds. The wild-type and mutants forms of catechol 1,2-dioxygenase Iso B from Acinetobacter radioresistens LMG S13 have been investigated in order to get an insight on the structure-function relationships within this system. 4K CW-EPR spectroscopy highlighted different oxygen binding properties of some mutants with respect to the wild-type enzyme, suggesting that a fine tuning of the substrate-binding determinants in the active site pocket may indirectly result in variations of the iron reactivity. A thermostability investigation by optical spectroscopy, that reports on the state of the metal center, showed that the structural stability is more influenced by the type rather than by the position of the mutation. Finally, the influence of pH and temperature on the catalytic activity was monitored and discussed in terms of perturbations induced on the tertiary contact network of the enzyme.
Collapse
|
13
|
A novel hydrolase identified by genomic-proteomic analysis of phenylurea herbicide mineralization by Variovorax sp. strain SRS16. Appl Environ Microbiol 2011; 77:8754-64. [PMID: 22003008 DOI: 10.1128/aem.06162-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterial isolate Variovorax sp. strain SRS16 mineralizes the phenylurea herbicide linuron. The proposed pathway initiates with hydrolysis of linuron to 3,4-dichloroaniline (DCA) and N,O-dimethylhydroxylamine, followed by conversion of DCA to Krebs cycle intermediates. Differential proteomic analysis showed a linuron-dependent upregulation of several enzymes that fit into this pathway, including an amidase (LibA), a multicomponent chloroaniline dioxygenase, and enzymes associated with a modified chlorocatechol ortho-cleavage pathway. Purified LibA is a monomeric linuron hydrolase of ∼55 kDa with a K(m) and a V(max) for linuron of 5.8 μM and 0.16 nmol min⁻¹, respectively. This novel member of the amidase signature family is unrelated to phenylurea-hydrolyzing enzymes from Gram-positive bacteria and lacks activity toward other tested phenylurea herbicides. Orthologues of libA are present in all other tested linuron-degrading Variovorax strains with the exception of Variovorax strains WDL1 and PBS-H4, suggesting divergent evolution of the linuron catabolic pathway in different Variovorax strains. The organization of the linuron degradation genes identified in the draft SRS16 genome sequence indicates that gene patchwork assembly is at the origin of the pathway. Transcription analysis suggests that a catabolic intermediate, rather than linuron itself, acts as effector in activation of the pathway. Our study provides the first report on the genetic organization of a bacterial pathway for complete mineralization of a phenylurea herbicide and the first report on a linuron hydrolase in Gram-negative bacteria.
Collapse
|
14
|
Liang B, Jiang J, Zhang J, Zhao Y, Li S. Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role. Crit Rev Microbiol 2011; 38:95-110. [DOI: 10.3109/1040841x.2011.618114] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Micalella C, Martignon S, Bruno S, Pioselli B, Caglio R, Valetti F, Pessione E, Giunta C, Rizzi M. X-ray crystallography, mass spectrometry and single crystal microspectrophotometry: a multidisciplinary characterization of catechol 1,2 dioxygenase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:817-23. [PMID: 20869471 DOI: 10.1016/j.bbapap.2010.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/06/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
Abstract
Intradiol-cleaving catechol 1,2 dioxygenases are Fe(III) dependent enzymes that act on catechol and substituted catechols, including chlorocatechols pollutants, by inserting molecular oxygen in the aromatic ring. Members of this class are the object of intense biochemical investigations aimed at the understanding of their catalytic mechanism, particularly for designing mutants with selected catalytic properties. We report here an in depth investigation of catechol 1,2 dioxygenase IsoB from Acinetobacter radioresistens LMG S13 and its A72G and L69A mutants. By applying a multidisciplinary approach that includes high resolution X-rays crystallography, mass spectrometry and single crystal microspectrophotometry, we characterised the phospholipid bound to the enzyme and provided a structural framework to understand the inversion of substrate specificity showed by the mutants. Our results might be of help for the rational design of enzyme mutants showing a biotechnologically relevant substrate specificity, particularly to be used in bioremediation. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.
Collapse
Affiliation(s)
- Chiara Micalella
- Department of Biochemistry and Molecular Biology, University of Parma, Viale GP. Usberti 23/A, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Experimental and theoretical affinity studies of substituted phenols to chlorocatechol 1,2-dioxygenases: A step toward the comprehension of inhibitor/substrate binding to intradiol dioxygenases. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2010.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 2010; 85:207-28. [PMID: 19730850 DOI: 10.1007/s00253-009-2192-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 02/03/2023]
Abstract
Biodegradation can achieve complete and cost-effective elimination of aromatic pollutants through harnessing diverse microbial metabolic processes. Aromatics biodegradation plays an important role in environmental cleanup and has been extensively studied since the inception of biodegradation. These studies, however, are diverse and scattered; there is an imperative need to consolidate, summarize, and review the current status of aromatics biodegradation. The first part of this review briefly discusses the catabolic mechanisms and describes the current status of aromatics biodegradation. Emphasis is placed on monocyclic, polycyclic, and chlorinated aromatic hydrocarbons because they are the most prevalent aromatic contaminants in the environment. Among monocyclic aromatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene; phenylacetic acid; and structurally related aromatic compounds are highlighted. In addition, biofilms and their applications in biodegradation of aromatic compounds are briefly discussed. In recent years, various biomolecular approaches have been applied to design and understand microorganisms for enhanced biodegradation. In the second part of this review, biomolecular approaches, their applications in aromatics biodegradation, and associated biosafety issues are discussed. Particular attention is given to the applications of metabolic engineering, protein engineering, and "omics" technologies in aromatics biodegradation.
Collapse
|
18
|
Characterization of a gene cluster involved in 4-chlorocatechol degradation by Pseudomonas reinekei MT1. J Bacteriol 2009; 191:4905-15. [PMID: 19465655 DOI: 10.1128/jb.00331-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas reinekei MT1 has previously been reported to degrade 4- and 5-chlorosalicylate by a pathway with 4-chlorocatechol, 3-chloromuconate, 4-chloromuconolactone, and maleylacetate as intermediates, and a gene cluster channeling various salicylates into an intradiol cleavage route has been reported. We now report that during growth on 5-chlorosalicylate, besides a novel (chloro)catechol 1,2-dioxygenase, C12O(ccaA), a novel (chloro)muconate cycloisomerase, MCI(ccaB), which showed features not yet reported, was induced. This cycloisomerase, which was practically inactive with muconate, evolved for the turnover of 3-substituted muconates and transforms 3-chloromuconate into equal amounts of cis-dienelactone and protoanemonin, suggesting that it is a functional intermediate between chloromuconate cycloisomerases and muconate cycloisomerases. The corresponding genes, ccaA (C12O(ccaA)) and ccaB (MCI(ccaB)), were located in a 5.1-kb genomic region clustered with genes encoding trans-dienelactone hydrolase (ccaC) and maleylacetate reductase (ccaD) and a putative regulatory gene, ccaR, homologous to regulators of the IclR-type family. Thus, this region includes genes sufficient to enable MT1 to transform 4-chlorocatechol to 3-oxoadipate. Phylogenetic analysis showed that C12O(ccaA) and MCI(ccaB) are only distantly related to previously described catechol 1,2-dioxygenases and muconate cycloisomerases. Kinetic analysis indicated that MCI(ccaB) and the previously identified C12O(salD), rather than C12O(ccaA), are crucial for 5-chlorosalicylate degradation. Thus, MT1 uses enzymes encoded by a completely novel gene cluster for degradation of chlorosalicylates, which, together with a gene cluster encoding enzymes for channeling salicylates into the ortho-cleavage pathway, form an effective pathway for 4- and 5-chlorosalicylate mineralization.
Collapse
|
19
|
Caglio R, Valetti F, Caposio P, Gribaudo G, Pessione E, Giunta C. Fine-Tuning of Catalytic Properties of Catechol 1,2-Dioxygenase by Active Site Tailoring. Chembiochem 2009; 10:1015-24. [DOI: 10.1002/cbic.200800836] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Gross R, Guzman CA, Sebaihia M, dos Santos VAPM, Pieper DH, Koebnik R, Lechner M, Bartels D, Buhrmester J, Choudhuri JV, Ebensen T, Gaigalat L, Herrmann S, Khachane AN, Larisch C, Link S, Linke B, Meyer F, Mormann S, Nakunst D, Rückert C, Schneiker-Bekel S, Schulze K, Vorhölter FJ, Yevsa T, Engle JT, Goldman WE, Pühler A, Göbel UB, Goesmann A, Blöcker H, Kaiser O, Martinez-Arias R. The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics 2008; 9:449. [PMID: 18826580 PMCID: PMC2572626 DOI: 10.1186/1471-2164-9-449] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 09/30/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bordetella petrii is the only environmental species hitherto found among the otherwise host-restricted and pathogenic members of the genus Bordetella. Phylogenetically, it connects the pathogenic Bordetellae and environmental bacteria of the genera Achromobacter and Alcaligenes, which are opportunistic pathogens. B. petrii strains have been isolated from very different environmental niches, including river sediment, polluted soil, marine sponges and a grass root. Recently, clinical isolates associated with bone degenerative disease or cystic fibrosis have also been described. RESULTS In this manuscript we present the results of the analysis of the completely annotated genome sequence of the B. petrii strain DSMZ12804. B. petrii has a mosaic genome of 5,287,950 bp harboring numerous mobile genetic elements, including seven large genomic islands. Four of them are highly related to the clc element of Pseudomonas knackmussii B13, which encodes genes involved in the degradation of aromatics. Though being an environmental isolate, the sequenced B. petrii strain also encodes proteins related to virulence factors of the pathogenic Bordetellae, including the filamentous hemagglutinin, which is a major colonization factor of B. pertussis, and the master virulence regulator BvgAS. However, it lacks all known toxins of the pathogenic Bordetellae. CONCLUSION The genomic analysis suggests that B. petrii represents an evolutionary link between free-living environmental bacteria and the host-restricted obligate pathogenic Bordetellae. Its remarkable metabolic versatility may enable B. petrii to thrive in very different ecological niches.
Collapse
Affiliation(s)
- Roy Gross
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Blasco R, Ramos JL, Wittich RM. Pseudomonas aeruginosa strain RW41 mineralizes 4-chlorobenzenesulfonate, the major polar by-product from DDT manufacturing. Environ Microbiol 2008; 10:1591-600. [DOI: 10.1111/j.1462-2920.2008.01575.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Jencova V, Strnad H, Chodora Z, Ulbrich P, Vlcek C, Hickey WJ, Paces V. Nucleotide sequence, organization and characterization of the (halo)aromatic acid catabolic plasmid pA81 from Achromobacter xylosoxidans A8. Res Microbiol 2007; 159:118-27. [PMID: 18249097 DOI: 10.1016/j.resmic.2007.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/26/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
The complete 98,192bp nucleotide sequence was determined for plasmid pA81, which is harbored by the haloaromatic acid-degrading bacterium Achromobacter xylosoxidans A8. The majority of the 103 open reading frames identified on pA81 could be categorized as either "backbone" genes, genes encoding (halo)aromatic compound degradation, or heavy metal resistance determinants. The backbone genes controlled conjugative transfer, replication and plasmid stability, and were well conserved with other IncP1-beta plasmids. Genes encoding (halo)aromatic degradation were clustered within a type I transposon, TnAxI, and included two ring-hydroxylating oxygenases (ortho-halobenzoate oxygenase, salicylate 5-hydroxylase) and a modified ortho-cleavage pathway for chlorocatechol degradation. The cluster of heavy metal resistance determinants was contained within a Type II transposon TnAxII, and included a predicted P-type ATPase and cation diffusion facilitator system. Genes identical to those carried by TnAxI and TnAxII were identified on other biodegradative/resistance plasmids and genomic islands, indicating an evolutionary relationship between these elements. Collectively, these insights further our understanding of how mobile elements, and interactions between mobile elements affect the fate of organic and inorganic toxicants in the environment.
Collapse
Affiliation(s)
- Vera Jencova
- Department of Biochemistry and Microbiology, Institute of Chemical Technology in Prague, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
23
|
Oh M, Yamada T, Hattori M, Goto S, Kanehisa M. Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways. J Chem Inf Model 2007; 47:1702-12. [PMID: 17516640 DOI: 10.1021/ci700006f] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds.
Collapse
Affiliation(s)
- Mina Oh
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
24
|
Wittich RM, Wolff P. Growth of the genetically engineered strain Cupriavidus necator RW112 with chlorobenzoates and technical chlorobiphenyls. Microbiology (Reading) 2007; 153:186-95. [PMID: 17185547 DOI: 10.1099/mic.0.29096-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cupriavidus necator (formerly Ralstonia eutropha) strain H850 is known to grow on biphenyl, and to co-oxidize congeners of polychlorinated biphenyls (PCBs). Using a Tn5-based minitransposon shuttle system and the TOL plasmid, the rational construction of hybrids of H850 was achieved by subsequent introduction of three distinct elements carrying 11 catabolic loci from three other biodegrading bacteria into the parent strain, finally yielding C. necator RW112. The new genetic elements introduced into H850 and its derivatives were tcbRCDEF, which encode the catabolic enzymes needed for chlorocatechol biodegradation under the control of a transcriptional regulator, followed by cbdABC, encoding a 2-halobenzoate dioxygenase, and xylXYZ, encoding a broad-spectrum toluate dioxygenase. The expression of the introduced genes was demonstrated by measuring the corresponding enzymic activities. The engineered strain RW112 gained the ability to grow on all isomeric monochlorobenzoates and 3,5-dichlorobenzoate, all monochlorobiphenyls, and 3,5-dichloro-, 2,3'-dichloro- and 2,4'-dichlorobiphenyl, without accumulation of chlorobenzoates. It also grew and utilized two commercial PCB formulations, Aroclor 1221 and Aroclor 1232, as sole carbon and energy sources for growth. This is the first report on the aerobic growth of a genetically improved bacterial strain at the expense of technical Aroclor mixtures.
Collapse
Affiliation(s)
- Rolf-Michael Wittich
- Division of Microbiology, German Research Centre for Biotechnology, Braunschweig, Germany.
| | | |
Collapse
|
25
|
Cámara B, Bielecki P, Kaminski F, dos Santos VM, Plumeier I, Nikodem P, Pieper DH. A gene cluster involved in degradation of substituted salicylates via ortho cleavage in Pseudomonas sp. strain MT1 encodes enzymes specifically adapted for transformation of 4-methylcatechol and 3-methylmuconate. J Bacteriol 2006; 189:1664-74. [PMID: 17172348 PMCID: PMC1855727 DOI: 10.1128/jb.01192-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain MT1 has recently been reported to degrade 4- and 5-chlorosalicylate by a pathway assumed to consist of a patchwork of reactions comprising enzymes of the 3-oxoadipate pathway. Genes encoding the initial steps in the degradation of salicylate and substituted derivatives were now localized and sequenced. One of the gene clusters characterized (sal) showed a novel gene arrangement, with salA, encoding a salicylate 1-hydroxylase, being clustered with salCD genes, encoding muconate cycloisomerase and catechol 1,2-dioxygenase, respectively, and was expressed during growth on salicylate and chlorosalicylate. A second gene cluster (cat), exhibiting the typical catRBCA arrangement of genes of the catechol branch of the 3-oxoadipate pathway in Pseudomonas strains, was expressed during growth on salicylate. Despite their high sequence similarities with isoenzymes encoded by the cat gene cluster, the catechol 1,2-dioxygenase and muconate cycloisomerase encoded by the sal cluster showed unusual kinetic properties. Enzymes were adapted for turnover of 4-chlorocatechol and 3-chloromuconate; however, 4-methylcatechol and 3-methylmuconate were identified as the preferred substrates. Investigation of the substrate spectrum identified 4- and 5-methylsalicylate as growth substrates, which were effectively converted by enzymes of the sal cluster into 4-methylmuconolactone, followed by isomerization to 3-methylmuconolactone. The function of the sal gene cluster is therefore to channel both chlorosubstituted and methylsubstituted salicylates into a catechol ortho cleavage pathway, followed by dismantling of the formed substituted muconolactones through specific pathways.
Collapse
Affiliation(s)
- Beatriz Cámara
- Division of Microbiology, HZI-Helmholtz Zentrum für Infektionsforschung, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Ferraroni M, Kolomytseva MP, Solyanikova IP, Scozzafava A, Golovleva LA, Briganti F. Crystal structure of 3-chlorocatechol 1,2-dioxygenase key enzyme of a new modified ortho-pathway from the Gram-positive Rhodococcus opacus 1CP grown on 2-chlorophenol. J Mol Biol 2006; 360:788-99. [PMID: 16793061 DOI: 10.1016/j.jmb.2006.05.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/15/2006] [Accepted: 05/18/2006] [Indexed: 11/18/2022]
Abstract
The crystal structure of the 3-chlorocatechol 1,2-dioxygenase from the Gram-positive bacterium Rhodococcus opacus (erythropolis) 1CP, a Fe(III) ion-containing enzyme specialized in the aerobic biodegradation of 3-chloro- and methyl-substituted catechols, has been solved by molecular replacement techniques using the coordinates of 4-chlorocatechol 1,2-dioxygenase from the same organism (PDB code 1S9A) as a starting model and refined at 1.9 A resolution (R(free) 21.9%; R-factor 17.4%). The analysis of the structure and of the kinetic parameters for a series of different substrates, and the comparison with the corresponding data for the 4-chlorocatechol 1,2-dioxygenase isolated from the same bacterial strain, provides evidence of which active site residues are responsible for the observed differences in substrate specificity. Among the amino acid residues expected to interact with substrates, only three are altered Val53(Ala53), Tyr78(Phe78) and Ala221(Cys224) (3-chlorocatechol 1,2-dioxygenase(4-chlorocatechol 1,2-dioxygenase)), clearly identifying the substitutions influencing substrate selectivity in these enzymes. The crystallographic asymmetric unit contains eight subunits (corresponding to four dimers) that show heterogeneity in the conformation of a co-crystallized molecule bound to the catalytic non-heme iron(III) ion resembling a benzohydroxamate moiety, probably a result of the breakdown of recently discovered siderophores synthesized by Gram-positive bacteria. Several different modes of binding benzohydroxamate into the active site induce distinct conformations of the interacting protein ligands Tyr167 and Arg188, illustrating the plasticity of the active site origin of the more promiscuous substrate preferences of the present enzyme.
Collapse
Affiliation(s)
- Marta Ferraroni
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | |
Collapse
|
27
|
Liu S, Ogawa N, Senda T, Hasebe A, Miyashita K. Amino acids in positions 48, 52, and 73 differentiate the substrate specificities of the highly homologous chlorocatechol 1,2-dioxygenases CbnA and TcbC. J Bacteriol 2005; 187:5427-36. [PMID: 16030237 PMCID: PMC1196051 DOI: 10.1128/jb.187.15.5427-5436.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlorocatechol 1,2-dioxygenase (CCD) is the first-step enzyme of the chlorocatechol ortho-cleavage pathway, which plays a central role in the degradation of various chloroaromatic compounds. Two CCDs, CbnA from the 3-chlorobenzoate-degrader Ralstonia eutropha NH9 and TcbC from the 1,2,4-trichlorobenzene-degrader Pseudomonas sp. strain P51, are highly homologous, having only 12 different amino acid residues out of identical lengths of 251 amino acids. But CbnA and TcbC are different in substrate specificities against dichlorocatechols, favoring 3,5-dichlorocatechol (3,5-DC) and 3,4-dichlorocatechol (3,4-DC), respectively. A study of chimeric mutants constructed from the two CCDs indicated that the N-terminal parts of the enzymes were responsible for the difference in the substrate specificities. Site-directed mutagenesis studies further identified the amino acid in position 48 (Leu in CbnA and Val in TcbC) as critical in differentiating the substrate specificities of the enzymes, which agreed well with molecular modeling of the two enzymes. Mutagenesis studies also demonstrated that Ile-73 of CbnA and Ala-52 of TcbC were important for their high levels of activity towards 3,5-DC and 3,4-DC, respectively. The importance of Ile-73 for 3,5-DC specificity determination was also shown with other CCDs such as TfdC from Burkholderia sp. NK8 and TfdC from Alcaligenes sp. CSV90 (identical to TfdC from R. eutropha JMP134), which convert 3,5-DC preferentially. Together with amino acid sequence comparisons indicating high conservation of Leu-48 and Ile-73 among CCDs, these results suggested that TcbC of strain P51 had diverged from other CCDs to be adapted to conversion of 3,4-DC.
Collapse
Affiliation(s)
- Shenghao Liu
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| | | | | | | | | |
Collapse
|
28
|
Lang GH, Ogawa N, Tanaka Y, Fujii T, Fulthorpe RR, Fukuda M, Miyashita K. Two kinds of chlorocatechol 1,2-dioxygenase from 2,4-dichlorophenoxyacetate-degrading Sphingomonas sp. strain TFD44. Biochem Biophys Res Commun 2005; 332:941-8. [PMID: 15916749 DOI: 10.1016/j.bbrc.2005.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 05/10/2005] [Indexed: 11/23/2022]
Abstract
Two kinds of chlorocatechol 1,2-dioxygenase (CCD), TfdC and TfdC2 were detected in Sphingomonas sp. strain TFD44. These two CCDs could be simultaneously synthesized in TFD44 during its growth with 2,4-D as the sole carbon and energy sources. The apparent subunit molecular masses of TfdC and TfdC2 estimated by SDS-PAGE analysis were 33.8 and 33.1 kDa, respectively. The genes encoding the two CCDs were cloned and expressed in Escherichia coli. The two purified CCDs showed broad substrate specificities but had different specificity patterns. TfdC showed the highest specificity constant for 3-chlorocatechol and TfdC2 showed the highest specificity constant for 3,5-dichlorocatechol. The substrate specificity difference seemed to correlate with the alternation of amino acid supposed to be involved in the interaction with substrates. Whereas phylogenetic analysis indicated that the CCDs of Sphingomonas constitute a distinctive group among Gram-negative bacteria, TfdC and TfdC2 of TFD44 have divergently evolved in terms of their substrate specificity.
Collapse
Affiliation(s)
- Gang-hua Lang
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Pollmann K, Wray V, Pieper DH. Chloromethylmuconolactones as critical metabolites in the degradation of chloromethylcatechols: recalcitrance of 2-chlorotoluene. J Bacteriol 2005; 187:2332-40. [PMID: 15774876 PMCID: PMC1065237 DOI: 10.1128/jb.187.7.2332-2340.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To elucidate possible reasons for the recalcitrance of 2-chlorotoluene, the metabolism of chloromethylcatechols, formed after dioxygenation and dehydrogenation by Ralstonia sp. strain PS12 tetrachlorobenzene dioxygenase and chlorobenzene dihydrodiol dehydrogenase, was monitored using chlorocatechol dioxygenases and chloromuconate cycloisomerases partly purified from Ralstonia sp. strain PS12 and Wautersia eutropha JMP134. Two chloromethylcatechols, 3-chloro-4-methylcatechol and 4-chloro-3-methylcatechol, were formed from 2-chlorotoluene. 3-Chloro-4-methylcatechol was transformed into 5-chloro-4-methylmuconolactone and 2-chloro-3-methylmuconolactone. For mechanistic reasons neither of these cycloisomerization products can be dehalogenated by chloromuconate cycloisomerases, with the result that 3-chloro-4-methylcatechol cannot be mineralized by reaction sequences related to catechol ortho-cleavage pathways known thus far. 4-Chloro-3-methylcatechol is only poorly dehalogenated during enzymatic processing due to the kinetic properties of the chloromuconate cycloisomerases. Thus, degradation of 2-chlorotoluene via a dioxygenolytic pathway is evidently problematic. In contrast, 5-chloro-3-methylcatechol, the major dioxygenation product formed from 3-chlorotoluene, is subject to quantitative dehalogenation after successive transformation by chlorocatechol 1,2-dioxygenase and chloromuconate cycloisomerase, resulting in the formation of 2-methyldienelactone. 3-Chloro-5-methylcatechol is transformed to 2-chloro-4-methylmuconolactone.
Collapse
Affiliation(s)
- Katrin Pollmann
- Bereich Mikrobiologie, AG Biodegradation, Gesellschaft für Biotechnologische Forschung mbH, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | | | | |
Collapse
|
30
|
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 2004; 67:170-91. [PMID: 15614564 DOI: 10.1007/s00253-004-1810-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/10/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively studied in recent years. The genetic organization of biphenyl catabolic genes has been elucidated in various groups of microorganisms, their structures have been analyzed with respect to their evolutionary relationships, and new information on mobile elements has become available. Key enzymes, specifically biphenyl 2,3-dioxygenases, have been intensively characterized, structure/sequence relationships have been determined and enzymes optimized for PCB transformation. However, due to the complex metabolic network responsible for PCB degradation, optimizing degradation by single bacterial species is necessarily limited. As PCBs are usually not mineralized by biphenyl-degrading organisms, and cometabolism can result in the formation of toxic metabolites, the degradation of chlorobenzoates has received special attention. A broad set of bacterial strategies to degrade chlorobenzoates has recently been elucidated, including new pathways for the degradation of chlorocatechols as central intermediates of various chloroaromatic catabolic pathways. To optimize PCB degradation in the environment beyond these metabolic limitations, enhancing degradation in the rhizosphere has been suggested, in addition to the application of surfactants to overcome bioavailability barriers. However, further research is necessary to understand the complex interactions between soil/sediment, pollutant, surfactant and microorganisms in different environments.
Collapse
Affiliation(s)
- Dietmar H Pieper
- Department of Environmental Microbiology, German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany.
| |
Collapse
|
31
|
Ahuatzi-chac�n D, Ordorica-morales G, Ruiz-ordaz N, Cristiani-urbina E, Ju�rez-ram�rez C, Gal�ndez-mayer J. Kinetic study of phenol hydroxylase and catechol 1,2-dioxygenase biosynthesis by Candida tropicalis cells grown on different phenolic substrates. World J Microbiol Biotechnol 2004. [DOI: 10.1007/s11274-004-2622-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Ferraroni M, Solyanikova IP, Kolomytseva MP, Scozzafava A, Golovleva L, Briganti F. Crystal structure of 4-chlorocatechol 1,2-dioxygenase from the chlorophenol-utilizing gram-positive Rhodococcus opacus 1CP. J Biol Chem 2004; 279:27646-55. [PMID: 15060064 DOI: 10.1074/jbc.m401692200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the 4-chlorocatechol 1,2-dioxygenase from the Gram-positive bacterium Rhodococcus opacus (erythropolis) 1CP, a Fe(III) ion-containing enzyme involved in the aerobic biodegradation of chloroaromatic compounds, has been solved by multiple wavelength anomalous dispersion using the weak anomalous signal of the two catalytic irons (1 Fe/257 amino acids) and refined at a 2.5 A resolution (R(free) 28.7%; R factor 21.4%). The analysis of the structure and its comparison with the structure of catechol 1,2-dioxygenase from Acinetobacter calcoaceticus ADP1 (Ac 1,2-CTD) highlight significant differences between these enzymes. The general topology of the present enzyme comprises two catalytic domains (one for each subunit) related by a noncrystallographic 2-fold axis and separated by a common alpha-helical zipper motif consisting of five N-terminal helices from each subunit; furthermore the C-terminal tail is shortened significantly with respect to the known Ac 1,2-CTD. The presence of two phospholipids binding in a hydrophobic tunnel along the dimer axis is shown here to be a common feature for this class of enzyme. The active site cavity presents several dissimilarities with respect to the known catechol-cleaving enzyme. The catalytic nonheme iron(III) ion is bound to the side chains of Tyr-134, Tyr-169, His-194, and His-196, and a cocrystallized benzoate ion, bound to the metal center, reveals details on a novel mode of binding of bidentate inhibitors and a distinctive hydrogen bond network with the surrounding ligands. Among the amino acid residues expected to interact with substrates, several are different from the corresponding analogs of Ac 1,2-CTD: Asp-52, Ala-53, Gly-76, Phe-78, and Cys-224; in addition, regions of largely conserved amino acid residues in the catalytic cleft show different shapes resulting from several substantial backbone and side chain shifts. The present structure is the first of intradiol dioxygenases that specifically catalyze the cleavage of chlorocatechols, key intermediates in the aerobic catabolism of toxic chloroaromatics.
Collapse
Affiliation(s)
- Marta Ferraroni
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, Sesto Fiorentino I-50019, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Nikodem P, Hecht V, Schlömann M, Pieper DH. New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. J Bacteriol 2004; 185:6790-800. [PMID: 14617643 PMCID: PMC262710 DOI: 10.1128/jb.185.23.6790-6800.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain MT1 is capable of degrading 4- and 5-chlorosalicylates via 4-chlorocatechol, 3-chloromuconate, and maleylacetate by a novel pathway. 3-Chloromuconate is transformed by muconate cycloisomerase of MT1 into protoanemonin, a dominant reaction product, as previously shown for other muconate cycloisomerases. However, kinetic data indicate that the muconate cycloisomerase of MT1 is specialized for 3-chloromuconate conversion and is not able to form cis-dienelactone. Protoanemonin is obviously a dead-end product of the pathway. A trans-dienelactone hydrolase (trans-DLH) was induced during growth on chlorosalicylates. Even though the purified enzyme did not act on either 3-chloromuconate or protoanemonin, the presence of muconate cylcoisomerase and trans-DLH together resulted in considerably lower protoanemonin concentrations but larger amounts of maleylacetate formed from 3-chloromuconate than the presence of muconate cycloisomerase alone resulted in. As trans-DLH also acts on 4-fluoromuconolactone, forming maleylacetate, we suggest that this enzyme acts on 4-chloromuconolactone as an intermediate in the muconate cycloisomerase-catalyzed transformation of 3-chloromuconate, thus preventing protoanemonin formation and favoring maleylacetate formation. The maleylacetate formed in this way is reduced by maleylacetate reductase. Chlorosalicylate degradation in MT1 thus occurs by a new pathway consisting of a patchwork of reactions catalyzed by enzymes from the 3-oxoadipate pathway (catechol 1,2-dioxygenase, muconate cycloisomerase) and the chlorocatechol pathway (maleylacetate reductase) and a trans-DLH.
Collapse
Affiliation(s)
- Patricia Nikodem
- Department of Environmental Microbiology, GBF-German Research Center for Biotechnology, D-38124 Braunschweig, Germany
| | | | | | | |
Collapse
|
34
|
Hoffmann D, Kleinsteuber S, Müller RH, Babel W. A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2545-2556. [PMID: 12949179 DOI: 10.1099/mic.0.26260-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterial strain Delftia acidovorans P4a, isolated from an extreme environment (heavily contaminated with organochlorines, highly alkaline conditions in an aqueous environment), was found to mineralize 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid under alkaline conditions. Screening a genomic DNA library of the alkalitolerant strain for 2,4-D genes revealed the presence of the two 2,4-D gene clusters tfdCDEF and tfdC(II)E(II)BKA, tfdR genes being located in the vicinity of each tfd gene cluster. The results showed that the putative genes of the complete 2,4-D degradation pathway are organized in a single genomic unit. Sequence similarities to homologous gene clusters indicate that the individual tfd elements of strain P4a do not share a common origin, but were brought together by recombination events. The entire region is flanked by insertion elements of the IS1071 and IS1380 families, forming a transposon-like structure of about 30 kb, of which 28.4 kb were analysed. This element was shown to be located on the bacterial chromosome. The present study provides the first reported case of a chromosomally located catabolic transposon which carries the genes for the complete 2,4-D degradation pathway.
Collapse
Affiliation(s)
- Doreen Hoffmann
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabine Kleinsteuber
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roland H Müller
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Wolfgang Babel
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
35
|
Solyanikova IP, Moiseeva OV, Boeren S, Boersma MG, Kolomytseva MP, Vervoort J, Rietjens IMCM, Golovleva LA, van Berkel WJH. Conversion of 2-fluoromuconate to cis-dienelactone by purified enzymes of Rhodococcus opacus 1cp. Appl Environ Microbiol 2003; 69:5636-42. [PMID: 12957954 PMCID: PMC194941 DOI: 10.1128/aem.69.9.5636-5642.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study describes the (19)F nuclear magnetic resonance analysis of the conversion of 3-halocatechols to lactones by purified chlorocatechol 1,2-dioxygenase (ClcA2), chloromuconate cycloisomerase (ClcB2), and chloromuconolactone dehalogenase (ClcF) from Rhodococcus opacus 1cp grown on 2-chlorophenol. The 3-halocatechol substrates were produced from the corresponding 2-halophenols by either phenol hydroxylase from Trichosporon cutaneum or 2-hydroxybiphenyl 3-mono-oxygenase from Pseudomonas azelaica. Several fluoromuconates resulting from intradiol ring cleavage by ClcA2 were identified. ClcB2 converted 2-fluoromuconate to 5-fluoromuconolactone and 2-chloro-4-fluoromuconate to 2-chloro-4-fluoromuconolactone. Especially the cycloisomerization of 2-fluoromuconate is a new observation. ClcF catalyzed the dehalogenation of 5-fluoromuconolactone to cis-dienelactone. The ClcB2 and ClcF-mediated reactions are in line with the recent finding of a second cluster of chlorocatechol catabolic genes in R. opacus 1cp which provides a new route for the microbial dehalogenation of 3-chlorocatechol.
Collapse
Affiliation(s)
- Inna P Solyanikova
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russian Federation
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Alfreider A, Vogt C, Babel W. Expression of chlorocatechol 1,2-dioxygenase and chlorocatechol 2,3-dioxygenase genes in chlorobenzene-contaminated subsurface samples. Appl Environ Microbiol 2003; 69:1372-6. [PMID: 12620818 PMCID: PMC150083 DOI: 10.1128/aem.69.3.1372-1376.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to evaluate the in situ degradative capabilities of microorganisms in an underground reactor facility housing two flowthrough columns filled with aquifer soil, we examined the distribution and phylogeny of gene transcripts encoding enzymes capable of catalyzing the cleavage of the chlorinated aromatic ring during transformation of the main pollutant, chlorobenzene. Initial biostimulation of the autochthonous bacteria in the originally anaerobic reactor columns was achieved by injecting nitrate and oxygen in the form of H(2)O(2). Two broad-range primer pairs were used for reverse transcriptase PCR (RT-PCR) of partial subunit genes of chlorocatechol 1,2-dioxygenase and catechol 2,3-dioxygenase from RNA directly extracted from different groundwater and aquifer samples. Samples retrieved from the lowermost sections of the reactor columns, which were operated in upflow mode, were positive for the presence of chlorocatechol 1,2-dioxygenase and catechol 2,3-dioxygenase mRNA. On the other hand, chlorocatechol 1,2-dioxygenase RT-PCR products were detected in a larger part of each reactor column, up to a zone 5.5 m above the bottom. Phylogenetic analyses of these chlorocatechol 1,2-dioxygenase sequences clearly separated them into two main clusters, one of which was closely affiliated with the broad-spectrum chlorocatechol 1,2-dioxygenase from Pseudomonas chlororaphis RW71. Analysis of sequences obtained from RT-PCR products amplified with catechol 2,3-dioxygenase primers revealed that their closest relative was the chlorocatechol 2,3-dioxygenase gene cbzE from Pseudomonas putida GJ31 (A. E. Mars, J. Kingma, S. R. Kaschabek, W. Reineke, and D. B. Janssen, J. Bacteriol. 181:1309-1318, 1999), with sequence similarities between 97.8 and 99.0%.
Collapse
Affiliation(s)
- Albin Alfreider
- Department of Environmental Microbiology, UFZ Centre for Environmental Research, Leipzig 04318, Germany.
| | | | | |
Collapse
|
37
|
Suzuki K, Ichimura A, Ogawa N, Hasebe A, Miyashita K. Differential expression of two catechol 1,2-dioxygenases in Burkholderia sp. strain TH2. J Bacteriol 2002; 184:5714-22. [PMID: 12270830 PMCID: PMC139607 DOI: 10.1128/jb.184.20.5714-5722.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia sp. strain TH2, a 2-chlorobenzoate (2CB)-degrading bacterium, metabolizes benzoate (BA) and 2CB via catechol. Two different gene clusters for the catechol ortho-cleavage pathway (cat1 and cat2) were cloned from TH2 and analyzed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis showed that while both catechol dioxygenases (CatA1 and CatA2) were produced in BA-grown cells, CatA1 was undetectable when strain TH2 was grown on 2CB or cis,cis-muconate (CCM), an intermediate of catechol degradation. However, production of CatA1 during growth on 2CB or CCM was observed when cat2 genes were disrupted. The difference in the production of CatA1 and CatA2 was apparently due to a difference in inducer recognition by the regulators of the gene clusters. The inducer of CatA1 was found to be BA, not 2CB, by using a 2-halobenzoate dioxygenase gene (cbd) disruptant, which is incapable of transforming (chloro)benzoate. It was also found that CCM or its metabolite acts as an inducer for CatA2. When cat2 genes were disrupted, the growth rate in 2CB culture was reduced while that in BA culture was not. These results suggest that although cat2 genes are not indispensable for growth of TH2 on 2CB, they are advantageous.
Collapse
Affiliation(s)
- Katsuhisa Suzuki
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | | | | | |
Collapse
|
38
|
Hoffmann D, Kleinsteuber S, Müller R, Babel W. Development and Application of PCR Primers for the Detection of thetfd Genes inDelftia acidovorans P4a Involved in the Degradation of 2,4-D. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/1521-3846(200111)21:4<321::aid-abio321>3.0.co;2-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|