1
|
Garcia ÍR, de Oliveira Garcia FA, Pereira PS, Coutinho HDM, Siyadatpanah A, Norouzi R, Wilairatana P, de Lourdes Pereira M, Nissapatorn V, Tintino SR, Rodrigues FFG. Microbial resistance: The role of efflux pump superfamilies and their respective substrates. Life Sci 2022; 295:120391. [PMID: 35149116 DOI: 10.1016/j.lfs.2022.120391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
The microorganism resistance to antibiotics has become one of the most worrying issues for science due to the difficulties related to clinical treatment and the rapid spread of diseases. Efflux pumps are classified into six groups of carrier proteins that are part of the different types of mechanisms that contribute to resistance in microorganisms, allowing their survival. The present study aimed to carry out a bibliographic review on the superfamilies of carriers in order to understand their compositions, expressions, substrates, and role in intrinsic resistance. At first, a search for manuscripts was carried out in the databases Medline, Pubmed, ScienceDirect, and Scielo, using as descriptors: efflux pump, expression, pump inhibitors and efflux superfamily. For article selection, two criteria were taken into account: for inclusion, those published between 2000 and 2020, including textbooks, and for exclusion, duplicates and academic collections. In this research, 139,615 published articles were obtained, with 312 selected articles and 7 book chapters that best met the aim. From the comprehensive analysis, it was possible to consider that the chromosomes and genetic elements can contain genes encoding efflux pumps and are responsible for multidrug resistance. Even though this is a well-explored topic in the scientific community, understanding the behavior of antibiotics as substrates that increase the expression of pump-encoding genes has challenged medicine. This review study succinctly summarizes the most relevant features of these systems, as well as their contribution to multidrug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and Research Excellence Center for Innovation and Health, Walailak University, Thailand
| | | | | |
Collapse
|
2
|
Bahrenberg T, Yardeni EH, Feintuch A, Bibi E, Goldfarb D. Substrate binding in the multidrug transporter MdfA in detergent solution and in lipid nanodiscs. Biophys J 2021; 120:1984-1993. [PMID: 33771471 PMCID: PMC8204392 DOI: 10.1016/j.bpj.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022] Open
Abstract
MdfA from Escherichia coli is a prototypical secondary multi-drug (Mdr) transporter that exchanges drugs for protons. MdfA-mediated drug efflux is driven by the proton gradient and enabled by conformational changes that accompany the recruitment of drugs and their release. In this work, we applied distance measurements by W-band double electron-electron resonance (DEER) spectroscopy to explore the binding of mito-TEMPO, a nitroxide-labeled substrate analog, to Gd(III)-labeled MdfA. The choice of Gd(III)-nitroxide DEER enabled measurements in the presence of excess of mito-TEMPO, which has a relatively low affinity to MdfA. Distance measurements between mito-TEMPO and MdfA labeled at the periplasmic edges of either of three selected transmembrane helices (TM3101, TM5168, and TM9310) revealed rather similar distance distributions in detergent micelles (n-dodecyl-β-d-maltopyranoside, DDM)) and in lipid nanodiscs (ND). By grafting the predicted positions of the Gd(III) tag on the inward-facing (If) crystal structure, we looked for binding positions that reproduced the maxima of the distance distributions. The results show that the location of the mito-TEMPO nitroxide in DDM-solubilized or ND-reconstituted MdfA is similar (only 0.4 nm apart). In both cases, we located the nitroxide moiety near the ligand binding pocket in the If structure. However, according to the DEER-derived position, the substrate clashes with TM11, suggesting that for mito-TEMPO-bound MdfA, TM11 should move relative to the If structure. Additional DEER studies with MdfA labeled with Gd(III) at two sites revealed that TM9 also dislocates upon substrate binding. Together with our previous reports, this study demonstrates the utility of Gd(III)-Gd(III) and Gd(III)-nitroxide DEER measurements for studying the conformational behavior of transporters.
Collapse
Affiliation(s)
- Thorsten Bahrenberg
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eliane Hadas Yardeni
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Akiva Feintuch
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Daniella Goldfarb
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Yardeni EH, Mishra S, Stein RA, Bibi E, Mchaourab HS. The Multidrug Transporter MdfA Deviates from the Canonical Model of Alternating Access of MFS Transporters. J Mol Biol 2020; 432:5665-5680. [PMID: 32860775 DOI: 10.1016/j.jmb.2020.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
The prototypic multidrug (Mdr) transporter MdfA from Escherichia coli efflux chemically- dissimilar substrates in exchange for protons. Similar to other transporters, MdfA purportedly functions by alternating access of a central substrate binding pocket to either side of the membrane. Accordingly, MdfA should open at the cytoplasmic side and/or laterally toward the membrane to enable access of drugs into its pocket. At the end of the cycle, the periplasmic side is expected to open to release drugs. Two distinct conformations of MdfA have been captured by X-ray crystallography: An outward open (Oo) conformation, stabilized by a Fab fragment, and a ligand-bound inward-facing (If) conformation, possibly stabilized by a mutation (Q131R). Here, we investigated how these structures relate to ligand-dependent conformational dynamics of MdfA in lipid bilayers. For this purpose, we combined distances measured by double electron-electron resonance (DEER) between pairs of spin labels in MdfA, reconstituted in nanodiscs, with cysteine cross-linking of natively expressed membrane-embedded MdfA variants. Our results suggest that in a membrane environment, MdfA assumes a relatively flexible, outward-closed/inward-closed (Oc/Ic) conformation. Unexpectedly, our data show that neither the substrate TPP nor protonation induces large-scale conformational changes. Rather, we identified a substrate-responsive lateral gate, which is open toward the inner leaflet of the membrane but closes upon drug binding. Together, our results suggest a modified model for the functional conformational cycle of MdfA that does not invoke canonical elements of alternating access.
Collapse
Affiliation(s)
- Eliane H Yardeni
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Eitan Bibi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
4
|
Yardeni EH, Bahrenberg T, Stein RA, Mishra S, Zomot E, Graham B, Tuck KL, Huber T, Bibi E, Mchaourab HS, Goldfarb D. Probing the solution structure of the E. coli multidrug transporter MdfA using DEER distance measurements with nitroxide and Gd(III) spin labels. Sci Rep 2019; 9:12528. [PMID: 31467343 PMCID: PMC6715713 DOI: 10.1038/s41598-019-48694-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/08/2019] [Indexed: 11/09/2022] Open
Abstract
Methodological and technological advances in EPR spectroscopy have enabled novel insight into the structural and dynamic aspects of integral membrane proteins. In addition to an extensive toolkit of EPR methods, multiple spin labels have been developed and utilized, among them Gd(III)-chelates which offer high sensitivity at high magnetic fields. Here, we applied a dual labeling approach, employing nitroxide and Gd(III) spin labels, in conjunction with Q-band and W-band double electron-electron resonance (DEER) measurements to characterize the solution structure of the detergent-solubilized multidrug transporter MdfA from E. coli. Our results identify highly flexible regions of MdfA, which may play an important role in its functional dynamics. Comparison of distance distribution of spin label pairs on the periplasm with those calculated using inward- and outward-facing crystal structures of MdfA, show that in detergent micelles, the protein adopts a predominantly outward-facing conformation, although more closed than the crystal structure. The cytoplasmic pairs suggest a small preference to the outward-facing crystal structure, with a somewhat more open conformation than the crystal structure. Parallel DEER measurements with the two types of labels led to similar distance distributions, demonstrating the feasibility of using W-band spectroscopy with a Gd(III) label for investigation of the structural dynamics of membrane proteins.
Collapse
Affiliation(s)
- Eliane H Yardeni
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot, Rehovot, 76100, Israel
| | - Thorsten Bahrenberg
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Elia Zomot
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot, Rehovot, 76100, Israel
| | - Bim Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Wellington Road, Clayton, Victoria, Australia
| | - Thomas Huber
- Research School of Chemistry, The Australian National University, Canberra, ACT 2601, Australia
| | - Eitan Bibi
- Department of Biomolecular Sciences, Weizmann Institute of Science Rehovot, Rehovot, 76100, Israel.
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
5
|
Clamping down on drugs: the Escherichia coli multidrug efflux protein MdtM. Res Microbiol 2017; 169:461-467. [PMID: 28962921 DOI: 10.1016/j.resmic.2017.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/19/2017] [Accepted: 09/21/2017] [Indexed: 11/22/2022]
Abstract
Multidrug resistance is principally a consequence of the active transport of drugs out of the cell by proteins that are integral membrane transporters. In the following review, we present a synthesis of current understanding of the Escherichia coli multidrug resistance transporter, MdtM, a 410 amino acid residue protein that belongs to the large and ubiquitous major facilitator superfamily (MFS).
Collapse
|
6
|
Yardeni EH, Zomot E, Bibi E. The fascinating but mysterious mechanistic aspects of multidrug transport by MdfA from Escherichia coli. Res Microbiol 2017; 169:455-460. [PMID: 28951231 DOI: 10.1016/j.resmic.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
MdfA is an interesting member of a large group of secondary multidrug (Mdr) transporters. Through genetic, biochemical and biophysical studies of MdfA, many challenging aspects of the multidrug transport phenomenon have been addressed. This includes its ability to interact with chemically unrelated drugs and how it utilizes energy to drive efflux of compounds that are not only structurally, but also electrically, different. Admittedly, however, despite all efforts and a recent pioneering structural contribution, several important mechanistic issues of the promiscuous capabilities of MdfA still seek better molecular and dynamic understanding.
Collapse
Affiliation(s)
- Eliane H Yardeni
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elia Zomot
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eitan Bibi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
7
|
Wang D, Hu E, Chen J, Tao X, Gutierrez K, Qi Y. Characterization of novel ybjG and dacC variants in Escherichia coli. J Med Microbiol 2013; 62:1728-1734. [PMID: 23912810 DOI: 10.1099/jmm.0.062893-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A total of 69 strains of Escherichia coli from patients in the Taizhou Municipal Hospital, China, were isolated, and 11 strains were identified that were resistant to bacitracin, chloramphenicol, tetracycline and erythromycin. These strains were PCR positive for at least two out of three genes, ybjG, dacC and mdfA, by gene mapping with conventional PCR detection. Conjugation experiments demonstrated that these genes existed in plasmids that conferred resistance. Novel ybjG and dacC variants were isolated from E. coli strains EC2163 and EC2347, which were obtained from the sputum of intensive care unit patients. Genetic mapping showed that the genes were located on 8200 kb plasmid regions flanked by EcoRI restriction sites. Three distinct genetic structures were identified among the 11 PCR-positive strains of E. coli, and two contained the novel ybjG and dacC variants. The putative amino acid differences in the ybjG and dacC gene variants were characterized. These results provide evidence for novel variants of ybjG and dacC, and suggest that multiple drug resistance in hospital strains of E. coli depends on the synergistic function of ybjG, dacC and mdfA within three distinct genetic structures in conjugative plasmids.
Collapse
Affiliation(s)
- Dongguo Wang
- Department of Clinical Lab Medicine, Taizhou University affiliated Taizhou Municipal Hospital, Taizhou, PR China
| | - Enping Hu
- Department of Urology Surgery, Taizhou University affiliated Taizhou Municipal Hospital, Taizhou, PR China
| | - Jiayu Chen
- Department of Lab Medicine, Medical College of Taizhou University, Taizhou, PR China
| | - Xiulin Tao
- Department of Urology Surgery, Taizhou University affiliated Taizhou Municipal Hospital, Taizhou, PR China
| | | | - Yongxiao Qi
- Department of Lab Medicine, Medical College of Taizhou University, Taizhou, PR China
| |
Collapse
|
8
|
Biochemistry of bacterial multidrug efflux pumps. Int J Mol Sci 2012; 13:4484-4495. [PMID: 22605991 PMCID: PMC3344227 DOI: 10.3390/ijms13044484] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/09/2012] [Accepted: 03/15/2012] [Indexed: 11/17/2022] Open
Abstract
Bacterial pathogens that are multi-drug resistant compromise the effectiveness of treatment when they are the causative agents of infectious disease. These multi-drug resistance mechanisms allow bacteria to survive in the presence of clinically useful antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen drug resistance. Therefore, because of their overwhelming presence in bacterial pathogens, these active multi-drug efflux mechanisms remain a major area of intense study, so that ultimately measures may be discovered to inhibit these active multi-drug efflux pumps.
Collapse
|
9
|
Escherichia coli SRP, its protein subunit Ffh, and the Ffh M domain are able to selectively limit membrane protein expression when overexpressed. mBio 2010; 1. [PMID: 20714446 PMCID: PMC2921155 DOI: 10.1128/mbio.00020-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 05/06/2010] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli signal recognition particle (SRP) system plays an important role in membrane protein biogenesis. Previous studies have suggested indirectly that in addition to its role during the targeting of ribosomes translating membrane proteins to translocons, the SRP might also have a quality control role in preventing premature synthesis of membrane proteins in the cytoplasm. This proposal was studied here using cells simultaneously overexpressing various membrane proteins and either SRP, the SRP protein Ffh, its 4.5S RNA, or the Ffh M domain. The results show that SRP, Ffh, and the M domain are all able to selectively inhibit the expression of membrane proteins. We observed no apparent changes in the steady-state mRNA levels or membrane protein stability, suggesting that inhibition may occur at the level of translation, possibly through the interaction between Ffh and ribosome-hydrophobic nascent chain complexes. Since E. coli SRP does not have a eukaryote-like translation arrest domain, we discuss other possible mechanisms by which this SRP might regulate membrane protein translation when overexpressed. The eukaryotic SRP slows down translation of SRP substrates by cytoplasmic ribosomes. This activity is important for preventing premature synthesis of secretory and membrane proteins in the cytoplasm. It is likely that an analogous quality control step would be required in all living cells. However, on the basis of its composition and domain structure and limited in vitro studies, it is believed that the E. coli SRP is unable to regulate ribosomes translating membrane proteins. Nevertheless, several in vivo studies have suggested otherwise. To address this issue further in vivo, we utilized unbalanced conditions under which E. coli simultaneously overexpresses SRP and each of several membrane or cytosolic proteins. Surprisingly, our results clearly show that the E. coli SRP is capable of regulating membrane protein synthesis and demonstrate that the M domain of Ffh mediates this activity. These results thus open the way for mechanistic characterization of this quality control process in bacteria.
Collapse
|
10
|
Yosef I, Bochkareva ES, Adler J, Bibi E. Membrane protein biogenesis in Ffh- or FtsY-depleted Escherichia coli. PLoS One 2010; 5:e9130. [PMID: 20161748 PMCID: PMC2817740 DOI: 10.1371/journal.pone.0009130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/21/2010] [Indexed: 11/19/2022] Open
Abstract
Background The Escherichia coli version of the mammalian signal recognition particle (SRP) system is required for biogenesis of membrane proteins and contains two essential proteins: the SRP subunit Ffh and the SRP-receptor FtsY. Scattered in vivo studies have raised the possibility that expression of membrane proteins is inhibited in cells depleted of FtsY, whereas Ffh-depletion only affects their assembly. These differential results are surprising in light of the proposed model that FtsY and Ffh play a role in the same pathway of ribosome targeting to the membrane. Therefore, we decided to evaluate these unexpected results systematically. Methodology/Principal Findings We characterized the following aspects of membrane protein biogenesis under conditions of either FtsY- or Ffh-depletion: (i) Protein expression, stability and localization; (ii) mRNA levels; (iii) folding and activity. With FtsY, we show that it is specifically required for expression of membrane proteins. Since no changes in mRNA levels or membrane protein stability were detected in cells depleted of FtsY, we propose that its depletion may lead to specific inhibition of translation of membrane proteins. Surprisingly, although FtsY and Ffh function in the same pathway, depletion of Ffh did not affect membrane protein expression or localization. Conclusions Our results suggest that indeed, while FtsY-depletion affects earlier steps in the pathway (possibly translation), Ffh-depletion disrupts membrane protein biogenesis later during the targeting pathway by preventing their functional assembly in the membrane.
Collapse
Affiliation(s)
- Ido Yosef
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Elena S. Bochkareva
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Julia Adler
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
11
|
Erez E, Bibi E. Cleavage of a multispanning membrane protein by an intramembrane serine protease. Biochemistry 2010; 48:12314-22. [PMID: 19919105 DOI: 10.1021/bi901648g] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
All intramembrane proteases are known to cleave membrane proteins with a single transmembrane helix. Such cleavages often release anchored soluble domains, which play a role in physiologically important inter- and intracellular processes. However, in many cases the physiological roles/substrates of intramembrane proteases are not known. It is interesting that no multispanning substrates were identified so far, despite the fact that intramembrane proteases have promiscuous substrate recognition and cleavage capabilities. Here we determined whether, in a synthetic experimental system, intramembrane proteases have the capability to interact with and cleave multispanning membrane proteins. We utilized the Escherichia coli rhomboid GlpG, an intramembrane serine protease, and truncated versions of the E. coli multidrug transporter MdfA as model multispanning membrane proteins. On the basis of in vivo and in vitro studies on the association of GlpG with various MdfA constructs and their cleavage, we conclude that GlpG is able to recognize and cleave truncated forms of MdfA but not the intact protein. We propose that GlpG has the capacity to act on unfolded multispanning membrane proteins, thus providing an incentive for investigating possible physiological consequences.
Collapse
Affiliation(s)
- Elinor Erez
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
12
|
Fluman N, Cohen-Karni D, Weiss T, Bibi E. A promiscuous conformational switch in the secondary multidrug transporter MdfA. J Biol Chem 2009; 284:32296-304. [PMID: 19808670 DOI: 10.1074/jbc.m109.050658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug (Mdr) transporters are membrane proteins that actively export structurally dissimilar drugs from the cell, thereby rendering the cell resistant to toxic compounds. Similar to substrate-specific transporters, Mdr transporters also undergo substrate-induced conformational changes. However, the mechanism by which a variety of dissimilar substrates are able to induce similar transport-compatible conformational responses in a single transporter remains unclear. To address this major aspect of Mdr transport, we studied the conformational behavior of the Escherichia coli Mdr transporter MdfA. Our results show that indeed, different substrates induce similar conformational changes in the transporter. Intriguingly, in addition, we observed that compounds other than substrates are able to confer similar conformational changes when covalently attached at the putative Mdr recognition pocket of MdfA. Taken together, the results suggest that the Mdr-binding pocket of MdfA is conformationally sensitive. We speculate that the same conformational switch that usually drives active transport is triggered promiscuously by merely occupying the Mdr-binding site.
Collapse
Affiliation(s)
- Nir Fluman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
13
|
Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 2007. [PMID: 17874175 DOI: 10.1007/s11010‐007‐9603‐6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among the various expression systems employed for the over-production of proteins, bacteria still remains the favorite choice of a Protein Biochemist. However, even today, due to the lack of post-translational modification machinery in bacteria, recombinant eukaryotic protein production poses an immense challenge, which invariably leads to the production of biologically in-active protein in this host. A number of techniques are cited in the literature, which describe the conversion of inactive protein, expressed as an insoluble fraction, into a soluble and active form. Overall, we have divided these methods into three major groups: Group-I, where the factors influencing the formation of insoluble fraction are modified through a stringent control of the cellular milieu, thereby leading to the expression of recombinant protein as soluble moiety; Group-II, where protein is refolded from the inclusion bodies and thereby target protein modification is avoided; Group-III, where the target protein is engineered to achieve soluble expression through fusion protein technology. Even within the same family of proteins (e.g., tyrosine kinases), optimization of standard operating protocol (SOP) may still be required for each protein's over-production at a pilot-scale in Escherichia coli. However, once standardized, this procedure can be made amenable to the industrial production for that particular protein with minimum alterations.
Collapse
Affiliation(s)
- Sudhir Sahdev
- Department of Biotechnology & Bioinformatics, New Drug Discovery Research, Ranbaxy Research Laboratories-R&D-3, 20-Sector 18 Udyog Vihar, Gurgaon, India.
| | | | | |
Collapse
|
14
|
Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 2007; 307:249-64. [PMID: 17874175 DOI: 10.1007/s11010-007-9603-6] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 08/27/2007] [Indexed: 12/13/2022]
Abstract
Among the various expression systems employed for the over-production of proteins, bacteria still remains the favorite choice of a Protein Biochemist. However, even today, due to the lack of post-translational modification machinery in bacteria, recombinant eukaryotic protein production poses an immense challenge, which invariably leads to the production of biologically in-active protein in this host. A number of techniques are cited in the literature, which describe the conversion of inactive protein, expressed as an insoluble fraction, into a soluble and active form. Overall, we have divided these methods into three major groups: Group-I, where the factors influencing the formation of insoluble fraction are modified through a stringent control of the cellular milieu, thereby leading to the expression of recombinant protein as soluble moiety; Group-II, where protein is refolded from the inclusion bodies and thereby target protein modification is avoided; Group-III, where the target protein is engineered to achieve soluble expression through fusion protein technology. Even within the same family of proteins (e.g., tyrosine kinases), optimization of standard operating protocol (SOP) may still be required for each protein's over-production at a pilot-scale in Escherichia coli. However, once standardized, this procedure can be made amenable to the industrial production for that particular protein with minimum alterations.
Collapse
Affiliation(s)
- Sudhir Sahdev
- Department of Biotechnology & Bioinformatics, New Drug Discovery Research, Ranbaxy Research Laboratories-R&D-3, 20-Sector 18 Udyog Vihar, Gurgaon, India.
| | | | | |
Collapse
|
15
|
Abstract
MdfA is a 410-residue-long secondary multidrug transporter from E. coli. Cells expressing MdfA from a multicopy plasmid exhibit resistance against a diverse group of toxic compounds, including neutral and cationic ones, because of active multidrug export. As a prerequisite for high-resolution structural studies and a better understanding of the mechanism of substrate recognition and translocation by MdfA, we investigated its biochemical properties and overall structural characteristics. To this end, we purified the beta-dodecyl maltopyranoside (DDM)-solubilized protein using a 6-His tag and metal affinity chromatography, and size exclusion chromatography (SE-HPLC). Purified MdfA was analyzed for its DDM and phospholipid (PL) content, and tetraphenylphosphonium (TPP+)-binding activity. The results are consistent with MdfA being an active monomer in DDM solution. Furthermore, an investigation of two-dimensional crystals by electron crystallography and 3D reconstruction lent support to the notion that MdfA may also be monomeric in reconstituted proteoliposomes.
Collapse
Affiliation(s)
- Nadejda Sigal
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
16
|
Sigal N, Molshanski-Mor S, Bibi E. No single irreplaceable acidic residues in the Escherichia coli secondary multidrug transporter MdfA. J Bacteriol 2006; 188:5635-9. [PMID: 16855255 PMCID: PMC1540044 DOI: 10.1128/jb.00422-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The largest family of solute transporters (major facilitator superfamily [MFS]) includes proton-motive-force-driven secondary transporters. Several characterized MFS transporters utilize essential acidic residues that play a critical role in the energy-coupling mechanism during transport. Surprisingly, we show here that no single acidic residue plays an irreplaceable role in the Escherichia coli secondary multidrug transporter MdfA.
Collapse
Affiliation(s)
- Nadejda Sigal
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
17
|
Lewinson O, Adler J, Sigal N, Bibi E. Promiscuity in multidrug recognition and transport: the bacterial MFS Mdr transporters. Mol Microbiol 2006; 61:277-84. [PMID: 16856936 DOI: 10.1111/j.1365-2958.2006.05254.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multidrug (Mdr) transport is an obstacle to the successful treatment of cancer and infectious diseases, and it is mediated by Mdr transporters that recognize and export an unusually broad spectrum of chemically dissimilar toxic compounds. Therefore, in addition to its clinical significance, the Mdr transport phenomenon presents intriguing and challenging mechanistic queries. Recent studies of secondary Mdr transporters of the major facilitator superfamily (MFS) have revealed that they are promiscuous not only regarding their substrate recognition profile, but also with respect to matters of energy utilization, electrical and chemical flexibility in the Mdr recognition pocket, and surprisingly, also in their physiological functions.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | |
Collapse
|
18
|
Adler J, Bibi E. Promiscuity in the geometry of electrostatic interactions between the Escherichia coli multidrug resistance transporter MdfA and cationic substrates. J Biol Chem 2004; 280:2721-9. [PMID: 15557318 DOI: 10.1074/jbc.m412332200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli multidrug transporter MdfA contains a single membrane-embedded charged residue (Glu-26) that plays a critical role in the recognition of cationic substrates (Edgar, R., and Bibi, E. (1999) EMBO J. 18, 822-832). Using an inactive mutant (MdfA-E26T), we isolated a spontaneous second-site mutation (MdfA-E26T/V335E) that re-established the recognition of cationic drugs by the transporter. Only a negative charge at position 335 was able to restore the functioning of the inactive mutant MdfA-E26T. Intriguingly, the two genetically interacting residues are located at remote and distinct regions along the secondary structure of MdfA. Glu-26 is located in the periplasmic half of transmembrane helix 1, and as shown here, the complementing charge at position 335 resides within the cytoplasmic loop connecting transmembrane helices 10 and 11. The spatial relation between the two residues was investigated by cross-linking. A functional split version of MdfA devoid of cysteines was constructed and introduced with a cysteine pair at positions 26 and 335. Strikingly, the results indicate that residues 26 and 335 are spatially adjacent, suggesting that they both constitute parts of the multidrug recognition pocket of MdfA. The fact that electrostatic interactions are preserved with cationic substrates even if the critical acidic residue is placed on another face of the pocket reveals an additional dimension of promiscuity in multidrug recognition and transport.
Collapse
Affiliation(s)
- Julia Adler
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
19
|
Lewinson O, Padan E, Bibi E. Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. Proc Natl Acad Sci U S A 2004; 101:14073-8. [PMID: 15371593 PMCID: PMC521123 DOI: 10.1073/pnas.0405375101] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MdfA is an Escherichia coli multidrug-resistance transporter. Cells expressing MdfA from a multicopy plasmid exhibit multidrug resistance against a diverse group of toxic compounds. In this article, we show that, in addition to its role in multidrug resistance, MdfA confers extreme alkaline pH resistance and allows the growth of transformed cells under conditions that are close to those used normally by alkaliphiles (up to pH 10) by maintaining a physiological internal pH. MdfA-deleted E. coli cells are sensitive even to mild alkaline conditions, and the wild-type phenotype is restored fully by MdfA expressed from a plasmid. This activity of MdfA requires Na(+) or K(+). Fluorescence studies with inverted membrane vesicles demonstrate that MdfA catalyzes Na(+)- or K(+)-dependent proton transport, and experiments with reconstituted proteoliposomes confirm that MdfA is solely responsible for this phenomenon. Studies with multidrug resistance-defective MdfA mutants and competitive transport assays suggest that these activities of MdfA are related. Together, the results demonstrate that a single protein has an unprecedented capacity to turn E. coli from an obligatory neutrophile into an alkalitolerant bacterium, and they suggest a previously uncharacterized physiological role for MdfA in pH homeostasis.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
20
|
Adler J, Lewinson O, Bibi E. Role of a conserved membrane-embedded acidic residue in the multidrug transporter MdfA. Biochemistry 2004; 43:518-25. [PMID: 14717607 DOI: 10.1021/bi035485t] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
According to the current topology model of the Escherichia coli multidrug transporter MdfA, it contains a membrane-embedded negatively charged residue, Glu26, which was shown to play an important role in substrate recognition. To further elucidate the role of this substrate recognition determinant, various Glu26 replacements were characterized. Surprisingly, studies with neutral MdfA substrates showed that, unlike many enzymatic systems where the size and chemical properties of binding site residues are relatively defined, MdfA tolerates a variety of changes at position 26, including size, hydrophobicity, and charge. Moreover, although efficient transport of positively charged substrates requires a negative charge at position 26 (Glu or Asp), neutralization of this charge does not always abrogate the interaction of MdfA with cationic drugs, thus demonstrating that the negative charge does not play an essential role in the multidrug transport mechanism. Collectively, these results suggest a link between the broad substrate specificity profile of multidrug transporters and the structural and chemical promiscuity at their substrate recognition pockets.
Collapse
Affiliation(s)
- Julia Adler
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
21
|
Adler J, Bibi E. Determinants of substrate recognition by the Escherichia coli multidrug transporter MdfA identified on both sides of the membrane. J Biol Chem 2003; 279:8957-65. [PMID: 14688269 DOI: 10.1074/jbc.m313422200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli multidrug transporter MdfA contains a membrane-embedded charged residue (Glu-26) that was shown to play an important role in substrate recognition. To identify additional determinants of multidrug recognition we isolated 58 intragenic second-site mutations that restored the function of inactive MdfA E26X mutants. In addition, two single-site mutations that enhanced the activity of wild-type MdfA were identified. Most of the mutations were found in two regions, the cytoplasmic half of transmembrane segments (TMs) 4, 5, and 6 (cluster 1) and the periplasmic half of TM 1 and 2 (cluster 2). The identified residues were mutated to cysteines in the background of a functional cysteine-less MdfA, and substrate protection against alkylation was analyzed. The results support the suggestion that the two clusters are involved in substrate recognition. Using inverted membrane vesicles we observed that a proton electrochemical gradient (Deltamicro(H(+)), inside positive and acidic) enhanced the substrate-protective effect in the cytoplasmic region, whereas it largely reduced this effect in the periplasmic side of MdfA. Therefore, we propose that substrates interact with two sites in MdfA, one in the cytoplasmic leaflet of the membrane and the other in the periplasmic leaflet. Theoretically, these domains could constitute a large part of the multidrug pathway through MdfA.
Collapse
Affiliation(s)
- Julia Adler
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
22
|
Courville P, Chaloupka R, Veyrier F, Cellier MFM. Determination of transmembrane topology of the Escherichia coli natural resistance-associated macrophage protein (Nramp) ortholog. J Biol Chem 2003; 279:3318-26. [PMID: 14607838 DOI: 10.1074/jbc.m309913200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The natural resistance-associated macrophage protein (Nramp) defines a conserved family of secondary metal transporters. Molecular evolutionary analysis of the Nramp family revealed the early duplication of an ancestral eukaryotic Nramp gene, which was likely derived from a bacterial ortholog and characterized as a proton-dependent manganese transporter MntH (Makui, H., Roig, E., Cole, S. T., Helmann, J. D., Gros, P., and Cellier, M. F. (2000) Mol. Microbiol. 35, 1065-1078). Escherichia coli MntH represents a model of choice to study structure function relationship in the Nramp protein family. Here, we report E. coli MntH transmembrane topology using a combination of in silico predictions, genetic fusion with cytoplasmic and periplasmic reporters, and MntH functional assays. Constructs of the secreted form of beta-lactamase (Blam) revealed extra loops between transmembrane domains 1/2, 5/6, 7/8, and 9/10, and placed the C terminus periplasmically; chloramphenicol acetyltransferase constructs indicated cytoplasmic loops 2/3, 6/7, 8/9, and 10/11. Two intra loops for which no data were produced (N terminus, intra loop 4/5) both display composition bias supporting their deduced localization. The extra loops 5/6 and 6/7 and periplasmic exposure of the C terminus were confirmed by targeted reporter insertion. Three of them preserved MntH function as measured by a disk assay of divalent metal uptake and a fluorescence assay of divalent metal-dependent proton transport, whereas a truncated form lacking transmembrane domain 11 was inactive. These results demonstrate that EcoliA is a type III integral membrane protein with 11 transmembrane domains transporting both divalent metal ions and protons.
Collapse
Affiliation(s)
- Pascal Courville
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Québec, Canada H7V 1B7
| | | | | | | |
Collapse
|
23
|
Dery KJ, Søballe B, Witherspoon MSL, Bui D, Koch R, Sherratt DJ, Tolmasky ME. The aminoglycoside 6'-N-acetyltransferase type Ib encoded by Tn1331 is evenly distributed within the cell's cytoplasm. Antimicrob Agents Chemother 2003; 47:2897-902. [PMID: 12936992 PMCID: PMC182613 DOI: 10.1128/aac.47.9.2897-2902.2003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multiresistance transposon Tn1331, which mediates resistance to several aminoglycosides and beta-lactams, includes the aac(6')-Ib, aadA1, bla(OXA-9), and bla(TEM-1) genes. The nucleotide sequence of aac(6')-Ib includes a region identical to that of the bla(TEM-1) gene. This region encompasses the promoter and the initiation codon followed by 15 nucleotides. Since there were three possible translation initiation sites, the amino acid sequence at the N terminus of the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib] was determined and was found to be SIQHF. This result indicated that aac(6')-Ib includes a translational fusion: the first five amino acids of the leader peptide of the TEM beta-lactamase are fused to the rest of the AAC(6')-Ib protein. This gene fusion could have formed during the genesis of Tn1331 as a consequence of the generation of a 520-nucleotide duplication (M. E. Tolmasky, Plasmid 24:218-226, 1990). An identical gene isolated from a Serratia marcescens strain has been previously described (G. Tran van Nhieu and E. Collatz, J. Bacteriol. 169:5708-5714, 1987). Extraction of the periplasmic proteins of E. coli harboring aac(6')-Ib by spheroplast formation showed that most of the AAC(6')-Ib protein is present in the cytoplasm. A genetic fusion to phoA confirmed these results. AAC(6')-Ib was shown to be evenly distributed inside the cell's cytoplasm by fluorescent microscopy with an AAC(6')-Ib-cyan fluorescent protein fusion.
Collapse
Affiliation(s)
- Ken J Dery
- Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California 92834-6850, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Lewinson O, Adler J, Poelarends GJ, Mazurkiewicz P, Driessen AJM, Bibi E. The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions. Proc Natl Acad Sci U S A 2003; 100:1667-72. [PMID: 12578981 PMCID: PMC149890 DOI: 10.1073/pnas.0435544100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The resistance of cells to many drugs simultaneously (multidrug resistance) often involves the expression of membrane transporters (Mdrs); each recognizes and expels a broad spectrum of chemically unrelated drugs from the cell. The Escherichia coli Mdr transporter MdfA is able to transport differentially charged substrates in exchange for protons. This includes neutral compounds, namely chloramphenicol and thiamphenicol, and lipophilic cations such as tetraphenylphosphonium and ethidium. Here we show that the chloramphenicol and thiamphenicol transport reactions are electrogenic, whereas the transport of several monovalent cationic substrates is electroneutral. Therefore, unlike with positively charged substrates, the transmembrane electrical potential (negative inside) constitutes a major part of the driving force for the transport of electroneutral substrates by MdfA. These results demonstrate an unprecedented ability of a single secondary transporter to catalyze discrete transport reactions that differ in their electrogenicity and are governed by different components of the proton motive force.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|