1
|
Rivara-Espasandín M, Palumbo MC, Sosa EJ, Radío S, Turjanski AG, Sotelo-Silveira J, Fernandez Do Porto D, Smircich P. Omics data integration facilitates target selection for new antiparasitic drugs against TriTryp infections. Front Pharmacol 2023; 14:1136321. [PMID: 37089958 PMCID: PMC10115950 DOI: 10.3389/fphar.2023.1136321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Introduction:Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., commonly referred to as TriTryps, are a group of protozoan parasites that cause important human diseases affecting millions of people belonging to the most vulnerable populations worldwide. Current treatments have limited efficiencies and can cause serious side effects, so there is an urgent need to develop new control strategies. Presently, the identification and prioritization of appropriate targets can be aided by integrative genomic and computational approaches.Methods: In this work, we conducted a genome-wide multidimensional data integration strategy to prioritize drug targets. We included genomic, transcriptomic, metabolic, and protein structural data sources, to delineate candidate proteins with relevant features for target selection in drug development.Results and Discussion: Our final ranked list includes proteins shared by TriTryps and covers a range of biological functions including essential proteins for parasite survival or growth, oxidative stress-related enzymes, virulence factors, and proteins that are exclusive to these parasites. Our strategy found previously described candidates, which validates our approach as well as new proteins that can be attractive targets to consider during the initial steps of drug discovery.
Collapse
Affiliation(s)
- Martin Rivara-Espasandín
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Miranda Clara Palumbo
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel J. Sosa
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Santiago Radío
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Adrián G. Turjanski
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN) CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Dario Fernandez Do Porto
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Dario Fernandez Do Porto, ; Pablo Smircich,
| |
Collapse
|
2
|
Petrenko DE, Timofeev VI, Britikov VV, Britikova EV, Kleymenov SY, Vlaskina AV, Kuranova IP, Mikhailova AG, Rakitina TV. First Crystal Structure of Bacterial Oligopeptidase B in an Intermediate State: The Roles of the Hinge Region Modification and Spermine. BIOLOGY 2021; 10:biology10101021. [PMID: 34681120 PMCID: PMC8533160 DOI: 10.3390/biology10101021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Oligopeptidase B is a two-domain, trypsin-like peptidase from parasitic protozoa and bacteria which belongs to the least studied group of prolyloligopeptidases. In this study, we describe for the first time a crystal structure of bacterial oligopeptidase B and compare it with those of protozoan oligopeptidases B and related prolyloligopeptidases. The enzyme was crystallized in the presence of spermine and contained a modified sequence of the interdomain linker. Both factors were key for crystallization. The structure showed an uncommon intermediate conformation with a domain arrangement intermediate between open and closed conformations found in the crystals of ligand-free and inhibitor-bound prolyloligopeptidases, respectively. To evaluate the impact of the modification and spermine in the obtained conformation, small-angle X-ray scattering was applied, which showed that in solution wild-type enzymes adopt the open conformation and spermine causes a transition to the intermediate state, while the modification is associated with a partial transition. We suggest that spermine-dependent conformational transition replicates the behavior of the enzyme in bacterial cells and the intermediate state, which is rarely detected in vitro, and might be widely distributed in vivo, and so should be considered during computational studies, including those aimed wanting to develop the small molecule inhibitors targeting prolyloligopeptidases. Abstract Oligopeptidase B (OpB) is a two-domain, trypsin-like serine peptidase belonging to the S9 prolyloligopeptidase (POP) family. Two domains are linked by a hinge region that participates in the transition of the enzyme between two major states—closed and open—in which domains and residues of the catalytic triad are located close to each other and separated, respectively. In this study, we described, for the first time, a structure of OpB from bacteria obtained for an enzyme from Serratia proteomaculans with a modified hinge region (PSPmod). PSPmod was crystallized in a conformation characterized by a disruption of the catalytic triad together with a domain arrangement intermediate between open and closed states found in crystals of ligand-free and inhibitor-bound POP, respectively. Two additional derivatives of PSPmod were crystallized in the same conformation. Neither wild-type PSP nor its corresponding mutated variants were susceptible to crystallization, indicating that the hinge region modification was key in the crystallization process. The second key factor was suggested to be polyamine spermine since all crystals were grown in its presence. The influences of the hinge region modification and spermine on the conformational state of PSP in solution were evaluated by small-angle X-ray scattering. SAXS showed that, in solution, wild-type PSP adopted the open state, spermine caused the conformational transition to the intermediate state, and spermine-free PSPmod contained molecules in the open and intermediate conformations in dynamic equilibrium.
Collapse
Affiliation(s)
- Dmitry E. Petrenko
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (D.E.P.); (A.V.V.)
| | - Vladimir I. Timofeev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 117997 Moscow, Russia;
- Federal Scientific Research Center “Crystallography and Photonics”, RAS, 119333 Moscow, Russia;
- Correspondence: (V.I.T.); (T.V.R.)
| | - Vladimir V. Britikov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (V.V.B.); (E.V.B.)
| | - Elena V. Britikova
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141 Minsk, Belarus; (V.V.B.); (E.V.B.)
| | - Sergey Y. Kleymenov
- Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology”, RAS, 119071 Moscow, Russia;
- Koltzov Institute of Developmental Biology, RAS, 119334 Moscow, Russia
| | - Anna V. Vlaskina
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (D.E.P.); (A.V.V.)
| | - Inna P. Kuranova
- Federal Scientific Research Center “Crystallography and Photonics”, RAS, 119333 Moscow, Russia;
| | - Anna G. Mikhailova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 117997 Moscow, Russia;
| | - Tatiana V. Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, 117997 Moscow, Russia;
- Correspondence: (V.I.T.); (T.V.R.)
| |
Collapse
|
3
|
Motta FN, Azevedo CDS, Neves BP, Araújo CND, Grellier P, Santana JMD, Bastos IMD. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases. Biochimie 2019; 167:207-216. [DOI: 10.1016/j.biochi.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022]
|
4
|
Petrenko DE, Mikhailova AG, Timofeev VI, Agapova YК, Karlinsky DM, Komolov AS, Korzhenevskiy DA, Vlaskina AV, Rumsh LD, Rakitina TV. Molecular dynamics complemented by site-directed mutagenesis reveals significant difference between the interdomain salt bridge networks stabilizing oligopeptidases B from bacteria and protozoa in their active conformations. J Biomol Struct Dyn 2019; 38:4868-4882. [PMID: 31724904 DOI: 10.1080/07391102.2019.1692694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Oligopeptidases B (OpdBs) are trypsin-like peptidases from protozoa and bacteria that belong to the prolyl oligopeptidase (POP) family. All POPs consist of C-terminal catalytic domain and N-terminal β-propeller domain and exist in two major conformations: closed (active), where the domains and residues of the catalytic triad are positioned close to each other, and open (non-active), where two domains and residues of the catalytic triad are separated. The interdomain interface, particularly, one of its salt bridges (SB1), plays a role in the transition between these two conformations. However, due to double amino acid substitution (E/R and R/Q), this functionally important SB1 is absent in γ-proteobacterial OpdBs including peptidase from Serratia proteamaculans (PSP). In this study, molecular dynamics was used to analyze inter- and intradomain interactions stabilizing PSP in the closed conformation, in which catalytic H652 is located close to other residues of the catalytic triad. The 3D models of either wild-type PSP or of mutant PSPs carrying activating mutations E125A and D649A in complexes with peptide-substrates were subjected to the analysis. The mechanism that regulates transition of H652 from active to non-active conformation upon domain separation in PSP and other γ-proteobacterial OpdB was proposed. The complex network of polar interactions within H652-loop/C-terminal α-helix and between these areas and β-propeller domain, established in silico, was in a good agreement with both previously published results on the effects of single-residue mutations and new data on the effects of the activating mutations on each other and on the low active mutant PSP-K655A.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dmitry E Petrenko
- National Research Center "Kurchatov Institute", Moscow, Russian Federation
| | - Anna G Mikhailova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir I Timofeev
- National Research Center "Kurchatov Institute", Moscow, Russian Federation.,Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russian Federation
| | - Yulia К Agapova
- National Research Center "Kurchatov Institute", Moscow, Russian Federation
| | - David M Karlinsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Aleksandr S Komolov
- National Research Center "Kurchatov Institute", Moscow, Russian Federation.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, Russian Federation
| | | | - Anna V Vlaskina
- National Research Center "Kurchatov Institute", Moscow, Russian Federation
| | - Lev D Rumsh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatiana V Rakitina
- National Research Center "Kurchatov Institute", Moscow, Russian Federation.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
5
|
Agapova YK, Talyzina AA, Zeifman YS, Fateeva TV, Timofeev VI, Mikhailova AG, Rakitina TV. Molecular Dynamics Study of Binding of Substrates Bearing Two Positively Charged Residues to Oligopeptidase B from Serratia proteamaculans. CRYSTALLOGR REP+ 2019. [DOI: 10.1134/s106377451905002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Ovchinnikova MV, Mikhailova AG, Karlinsky DM, Gorlenko VA, Rumsh LD. Reversible Cyclic Thermal Inactivation of Oligopeptidase B from Serratia proteamaculans. Acta Naturae 2018; 10:65-70. [PMID: 30116617 PMCID: PMC6087823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A unique property was found for oligopeptidase B from Serratia proteamaculans (PSP) as well as its mutants: they can undergo reversible thermal inactivation at 37°C, with activity being restored or even increased with respect to the initial one upon subsequent cooling. The process can be repeated several times, with the same results achieved (up to 5 cycles). This effect can be explained by a shift in the equilibrium between the inactive open form of the enzyme and the active closed one upon variation of the incubation temperature.
Collapse
Affiliation(s)
- M. V. Ovchinnikova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia ,Moscow State Pedagogical University, M. Pirogovskaya Str. 1, bldg. 1, Moscow, 119991, Russia
| | - A. G. Mikhailova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - D. M. Karlinsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| | - V. A. Gorlenko
- Moscow State Pedagogical University, M. Pirogovskaya Str. 1, bldg. 1, Moscow, 119991, Russia
| | - L. D. Rumsh
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, Moscow, 117997, Russia
| |
Collapse
|
7
|
Mikhailova AG, Rakitina TV, Timofeev VI, Karlinsky DM, Korzhenevskiy DA, Agapova YК, Vlaskina AV, Ovchinnikova MV, Gorlenko VA, Rumsh LD. Activity modulation of the oligopeptidase B from Serratia proteamaculans by site-directed mutagenesis of amino acid residues surrounding catalytic triad histidine. Biochimie 2017; 139:125-136. [DOI: 10.1016/j.biochi.2017.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022]
|
8
|
Mikhailova AG, Nekrasov AN, Zinchenko AA, Rakitina TV, Korzhenevsky DA, Lipkin AV, Razguljaeva OA, Ovchinnikova MV, Gorlenko VA, Rumsh LD. Truncated Variants of Serratia proteamaculans Oligopeptidase B Having Different Activities. BIOCHEMISTRY (MOSCOW) 2016; 80:1331-43. [PMID: 26567578 DOI: 10.1134/s0006297915100156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment of native psychrophilic oligopeptidase B from Serratia proteamaculans (PSP, 78 kDa) with chymotrypsin (soluble or immobilized on modified porous glass MPG-PA) in the presence of 50% glycerol leads to production of a truncated enzyme form (PSP-Chtr, ~66 kDa), which retains activity toward the low molecular weight substrate of PSP, BAPNA, but in contrast to PSP, is active toward the protein substrate azocasein. It has been shown by MALDI-TOF mass-spectrometry that PSP-Chtr lacks the N-terminal region of the molecule that envelops the catalytic domain of PSP and supposedly prevents hydrolysis of high molecular weight substrates. It has also been established that the lacking fragment corresponds to the N-terminal highest rank element of the informational structure of PSP. This finding confirms the usefulness of the method of informational structure analysis for protein engineering of enzymes. A similar treatment of PSP with immobilized trypsin also led to production of a stable truncated enzyme form (PSP-Tr, ~75 kDa) which lacked 22 C-terminal amino acid residues and completely lost enzymatic activity, presumably because of changes in the nearest environment of His652 of the catalytic triad.
Collapse
Affiliation(s)
- A G Mikhailova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bastos IMD, Motta FN, Grellier P, Santana JM. Parasite prolyl oligopeptidases and the challenge of designing chemotherapeuticals for Chagas disease, leishmaniasis and African trypanosomiasis. Curr Med Chem 2014; 20:3103-15. [PMID: 23514419 PMCID: PMC3778648 DOI: 10.2174/0929867311320250006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/16/2012] [Indexed: 11/22/2022]
Abstract
The trypanosomatids Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp. cause Chagas disease, leishmaniasis and human African trypanosomiasis, respectively. It is estimated that over 10 million people worldwide suffer from these neglected diseases, posing enormous social and economic problems in endemic areas. There are no vaccines to prevent these infections and chemotherapies are not adequate. This picture indicates that new chemotherapeutic agents must be developed to treat these illnesses. For this purpose, understanding the biology of the pathogenic trypanosomatid-host cell interface is fundamental for molecular and functional characterization of virulence factors that may be used as targets for the development of inhibitors to be used for effective chemotherapy. In this context, it is well known that proteases have crucial functions for both metabolism and infectivity of pathogens and are thus potential drug targets. In this regard, prolyl oligopeptidase and oligopeptidase B, both members of the S9 serine protease family, have been shown to play important roles in the interactions of pathogenic protozoa with their mammalian hosts and may thus be considered targets for drug design. This review aims to discuss structural and functional properties of these intriguing enzymes and their potential as targets for the development of drugs against Chagas disease, leishmaniasis and African trypanosomiasis.
Collapse
Affiliation(s)
- I M D Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasília, Brasília, Brazil
| | | | | | | |
Collapse
|
10
|
Mikhailova AG, Khairullin RF, Demidyuk IV, Kostrov SV, Grinberg NV, Burova TV, Grinberg VY, Rumsh LD. Cloning, sequencing, expression, and characterization of thermostability of oligopeptidase B from Serratia proteamaculans, a novel psychrophilic protease. Protein Expr Purif 2014; 93:63-76. [DOI: 10.1016/j.pep.2013.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 11/30/2022]
|
11
|
Fukumoto J, Ismail NIM, Kubo M, Kinoshita K, Inoue M, Yuasa K, Nishimoto M, Matsuki H, Tsuji A. Possible role of inter-domain salt bridges in oligopeptidase B from Trypanosoma brucei: critical role of Glu172 of non-catalytic -propeller domain in catalytic activity and Glu490 of catalytic domain in stability of OPB. J Biochem 2013; 154:465-73. [PMID: 23946505 DOI: 10.1093/jb/mvt077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Junki Fukumoto
- Department of Biological Science and Technology, The University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan; Faculty of Science, Universiti Tunku Abdul Rahman, Jalam Universiti, Bandar Barat, 31900 Kampar, Perak D.R., Malaysia; and Department of Parasitology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka 830-0011, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kaszuba K, Róg T, Danne R, Canning P, Fülöp V, Juhász T, Szeltner Z, St. Pierre JF, García-Horsman A, Männistö PT, Karttunen M, Hokkanen J, Bunker A. Molecular dynamics, crystallography and mutagenesis studies on the substrate gating mechanism of prolyl oligopeptidase. Biochimie 2012; 94:1398-411. [DOI: 10.1016/j.biochi.2012.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/13/2012] [Indexed: 01/10/2023]
|
13
|
Mikhailova AG, Khairullin RF, Kolomijtseva GY, Rumsh LD. Oligopeptidase B from Serratia proteamaculans. III. Inhibition analysis. Specific interactions with metalloproteinase inhibitors. BIOCHEMISTRY (MOSCOW) 2012; 77:300-6. [DOI: 10.1134/s0006297912030091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Mikhailova AG, Khairullin RF, Demidyuk IV, Gromova TY, Kostrov SV, Rumsh LD. Oligopeptidase B from Serratia proteamaculans. II. Enzymatic characteristics: Substrate analysis, influence of calcium ions, pH and temperature dependences. BIOCHEMISTRY (MOSCOW) 2011; 76:480-90. [DOI: 10.1134/s0006297911040122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
McLuskey K, Paterson NG, Bland ND, Isaacs NW, Mottram JC. Crystal structure of Leishmania major oligopeptidase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J Biol Chem 2010; 285:39249-59. [PMID: 20926390 PMCID: PMC2998157 DOI: 10.1074/jbc.m110.156679] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/20/2010] [Indexed: 11/06/2022] Open
Abstract
Oligopeptidase B (OPB) is a serine peptidase with dibasic substrate specificity. It is found in bacteria, plants, and trypanosomatid pathogens, where it has been identified as a virulence factor and potential drug target. In this study we expressed active recombinant Leishmania major OPB and provide the first structure of an oligopeptidase B at high resolution. The crystallographic study reveals that OPB comprises two domains, a catalytic and a propeller domain, linked together by a hinge region. The structure has been determined in complex with the oligopeptide, protease-inhibitor antipain, giving detailed information on the enzyme active site and extended substrate binding pockets. It shows that Glu-621 plays a critical role in the S1 binding pocket and, along with Phe-603, is largely responsible for the enzyme substrate specificity in P1. In the S2 binding pocket, Tyr-499 was shown to be important for substrate stability. The structure also allowed an investigation into the function of residues highlighted in other studies including Glu-623, which was predicted to be involved in the S1 binding pocket but is found forming an inter-domain hydrogen bond. Additional important salt bridges/hydrogen bonds between the two domains were observed, highlighting the significance of the domain interface in OPB. This work provides a foundation for the study of the role of OPBs as virulence factors in trypanosomatids. It could facilitate the development of specific OPB inhibitors with therapeutic potential by exploiting its unique substrate recognition properties as well as providing a model for OPBs in general.
Collapse
Affiliation(s)
- Karen McLuskey
- Westchem School of Chemistry, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom.
| | | | | | | | | |
Collapse
|
16
|
Harmat V, Domokos K, Menyhárd DK, Palló A, Szeltner Z, Szamosi I, Beke-Somfai T, Náray-Szabó G, Polgár L. Structure and catalysis of acylaminoacyl peptidase: closed and open subunits of a dimer oligopeptidase. J Biol Chem 2010; 286:1987-98. [PMID: 21084296 DOI: 10.1074/jbc.m110.169862] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investigated the structure and the kinetics of two mutant enzymes in which the aspartic acid of the catalytic triad was changed to alanine or asparagine. Using different substrates, we have determined the pH dependence of specificity rate constants, the rate-limiting step of catalysis, and the binding of substrates and inhibitors. The catalysis considerably depended both on the kind of mutation and on the nature of the substrate. The results were interpreted in terms of alterations in the position of the catalytic histidine side chain as demonstrated with crystal structure determination of the native and two mutant structures (D524N and D524A). Unexpectedly, in the homodimeric structures, only one subunit displayed the closed form of the enzyme. The other subunit exhibited an open gate to the catalytic site, thus revealing the structural basis that controls the oligopeptidase activity. The open form of the native enzyme displayed the catalytic triad in a distorted, inactive state. The mutations affected the closed, active form of the enzyme, disrupting its catalytic triad. We concluded that the two forms are at equilibrium and the substrates bind by the conformational selection mechanism.
Collapse
Affiliation(s)
- Veronika Harmat
- Laboratory of Structural Chemistry and Biology and HAS-ELTE Protein Modeling Group, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Munday JC, McLuskey K, Brown E, Coombs GH, Mottram JC. Oligopeptidase B deficient mutants of Leishmania major. Mol Biochem Parasitol 2010; 175:49-57. [PMID: 20883728 DOI: 10.1016/j.molbiopara.2010.09.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 08/27/2010] [Accepted: 09/11/2010] [Indexed: 01/02/2023]
Abstract
Oligopeptidase B is a clan SC, family S9 serine peptidase found in gram positive bacteria, plants and trypanosomatids. Evidence suggests it is a virulence factor and thus therapeutic target in both Trypanosoma cruzi and T. brucei, but little is known about its function in Leishmania. In this study L. major OPB-deficient mutants (Δopb) were created. These grew normally as promastigotes, had a small deficiency in their ability to undergo differentiation to metacyclic promastigotes, were significantly less able to infect and survive within macrophages in vitro, but were virulent to mice. These data suggest that L. major OPB itself is not an important virulence factor, indicating functional differences between trypanosomes and Leishmania in their interaction with the mammalian host. The possibility that an OPB-like enzyme (designated OPB2) in L. major might compensate for the loss of OPB in Δopb was investigated via by mapping its sequence onto the 1.6Å structure of L. major OPB. This suggested that the residues involved in the S1 and S2 subsites of OPB2 are identical to OPB and hence the substrate specificity would be similar. Consequently there may be redundancy between the two enzymes.
Collapse
Affiliation(s)
- Jane C Munday
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, UK
| | | | | | | | | |
Collapse
|
18
|
Prolyl oligopeptidase of Trypanosoma brucei hydrolyzes native collagen, peptide hormones and is active in the plasma of infected mice. Microbes Infect 2010; 12:457-66. [DOI: 10.1016/j.micinf.2010.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 11/19/2022]
|
19
|
Khairullin RF, Mikhailova AG, Sebyakina TY, Lubenets NL, Ziganshin RH, Demidyuk IV, Gromova TY, Kostrov SV, Rumsh LD. Oligopeptidase B from Serratia proteamaculans. I. Determination of primary structure, isolation, and purification of wild-type and recombinant enzyme variants. BIOCHEMISTRY (MOSCOW) 2009; 74:1164-72. [DOI: 10.1134/s0006297909100137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Abstract
Phylogenomics reveals extreme gene loss in typhus group (TG) rickettsiae relative to the levels for other rickettsial lineages. We report here a curious protease-encoding gene (ppcE) that is conserved only in TG rickettsiae. As a possible determinant of host pathogenicity, ppcE warrants consideration in the development of therapeutics against epidemic and murine typhus.
Collapse
|
21
|
Mohd Ismail NI, Yuasa T, Yuasa K, Nambu Y, Nisimoto M, Goto M, Matsuki H, Inoue M, Nagahama M, Tsuji A. A critical role for highly conserved Glu(610) residue of oligopeptidase B from Trypanosoma brucei in thermal stability. J Biochem 2009; 147:201-11. [PMID: 19819899 DOI: 10.1093/jb/mvp156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oligopeptidase B from Trypanosoma brucei (Tb OPB) is a virulence factor and therapeutic target in African sleeping sickness. Three glutamic acid residues at positions 607, 609 and 610 of the catalytic domain are highly conserved in the OPB subfamily. In this study, the roles of Glu(607), Glu(609) and Glu(610) in Tb OPB were investigated by site-directed mutagenesis. A striking effect on k(cat)/K(m) was obtained following mutation of Glu(607) to glutamine. In contrast, the heat stability of Tb OPB decreased markedly following the single mutation of Glu(610) to glutamine, although this mutation had significantly less effect on catalytic properties compared with the Glu(607) mutation. Although no differences were found in the tertiary and secondary structures between wild-type (WT) OPB and the E610Q mutant prior to heat treatment, the E610Q mutant is inactivated more rapidly than WT OPB following heat treatment in a manner correlating with its attendant structural changes. Trypsin digestion showed that the boundary regions between the beta-propeller and catalytic domain of the E610Q mutant are unfolded with heat treatment. It is concluded that Glu(607) is essential for the catalytic activity of Tb OPB and that Glu(610) plays a critical role in stabilization rather than catalytic activity despite their close proximity.
Collapse
Affiliation(s)
- Nor Ismaliza Mohd Ismail
- Department of Biological Science and Technology, University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima 770-8506, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bastos I, Grellier P, Martins N, Cadavid-Restrepo G, de Souza-Ault M, Augustyns K, Teixeira A, Schrével J, Maigret B, da Silveira J, Santana J. Molecular, functional and structural properties of the prolyl oligopeptidase of Trypanosoma cruzi (POP Tc80), which is required for parasite entry into mammalian cells. Biochem J 2009; 388:29-38. [PMID: 15581422 PMCID: PMC1186690 DOI: 10.1042/bj20041049] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have demonstrated that the 80 kDa POP Tc80 (prolyl oligopeptidase of Trypanosoma cruzi) is involved in the process of cell invasion, since specific inhibitors block parasite entry into non-phagocytic mammalian host cells. In contrast with other POPs, POP Tc80 is capable of hydrolysing large substrates, such as fibronectin and native collagen. In this study, we present the cloning of the POPTc80 gene, whose deduced amino acid sequence shares considerable identity with other members of the POP family, mainly within its C-terminal portion that forms the catalytic domain. Southern-blot analysis indicated that POPTc80 is present as a single copy in the genome of the parasite. These results are consistent with mapping of POPTc80 to a single chromosome. The active recombinant protein (rPOP Tc80) displayed kinetic properties comparable with those of the native enzyme. Novel inhibitors were assayed with rPOP Tc80, and the most efficient ones presented values of inhibition coefficient Ki < or = 1.52 nM. Infective parasites treated with these specific POP Tc80 inhibitors attached to the surface of mammalian host cells, but were incapable of infecting them. Structural modelling of POP Tc80, based on the crystallized porcine POP, suggested that POP Tc80 is composed of an alpha/beta-hydrolase domain containing the catalytic triad Ser548-Asp631-His667 and a seven-bladed beta-propeller non-catalytic domain. Docking analysis suggests that triple-helical collagen access to the catalytic site of POP Tc80 occurs in the vicinity of the interface between the two domains.
Collapse
Affiliation(s)
- Izabela M. D. Bastos
- *Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970, Brasília, DF, Brazil
| | - Philippe Grellier
- †USM 0504, Département Régulations, Développement, Diversité Moléculaire, Muséum National d'Histoire Naturelle, 61 rue Buffon, 75231, Paris Cedex 05, France
| | - Natalia F. Martins
- ‡Embrapa, Genetic Resources and Biotechnology, CP 02372, Brasília, DF, Brazil
| | - Gloria Cadavid-Restrepo
- *Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970, Brasília, DF, Brazil
| | - Marian R. de Souza-Ault
- *Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970, Brasília, DF, Brazil
| | - Koen Augustyns
- §Department of Medicinal Chemistry, The University of Antwerp, Belgium
| | - Antonio R. L. Teixeira
- *Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970, Brasília, DF, Brazil
| | - Joseph Schrével
- †USM 0504, Département Régulations, Développement, Diversité Moléculaire, Muséum National d'Histoire Naturelle, 61 rue Buffon, 75231, Paris Cedex 05, France
| | - Bernard Maigret
- ∥Laboratoire de Chimie Théorique, Université de Nancy, 54506 Vandoeuvre-les-Nancy, France
| | - José F. da Silveira
- ¶Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, R. Botucatu 862, CEP 04023-062, São Paulo, SP, Brazil
| | - Jaime M. Santana
- *Laboratório Multidisciplinar de Pesquisa em Doença de Chagas (CP 04536), Universidade de Brasília, 70919-970, Brasília, DF, Brazil
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Oligopeptidase B: A processing peptidase involved in pathogenesis. Biochimie 2008; 90:336-44. [DOI: 10.1016/j.biochi.2007.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Accepted: 10/25/2007] [Indexed: 11/20/2022]
|
24
|
Yu WY, Yang LX, Xie JS, Zhou L, Jiang XY, Zhu DX, Muramatsu M, Wang MW. Derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide as new antibacterial agents: synthesis and bioactivity. Acta Pharmacol Sin 2008; 29:267-77. [PMID: 18215358 DOI: 10.1111/j.1745-7254.2008.00720.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM The aim of the present study was to design, synthesize, and evaluate novel antibacterial agents, derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide. METHODS A total of 44 derivatives of aryl-4-guanidin-omethylbenzoate (series A) and N-aryl-4-guanidinomethylbenzamide (series B) were synthesized and their antibacterial activities were assessed in vitro against a variety of Gram-positive and Gram-negative bacteria by an agar dilution method. RESULTS Twelve compounds showed potent bactericidal effects against a panel of Gram-positive germs, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), vancomycin-intermediate Staphylococcus aureus (VISA), and methicillin-resistant coagulase-negative staphylococci (MRCNS), with minimum inhibitory concentrations (MIC) ranging between 0.5 and 8 microg/mL, which were comparable to the MIC values of several marketed antibiotics. They exhibited weak or no activity on the Gram-negative bacteria tested. In addition, these compounds displayed high inhibitory activities towards oligopeptidase B of bacterial origin. CONCLUSION In comparison with the previously reported MIC values of several known antibiotics, the derivatives of aryl-4-guanidinomethylbenzoate and N-aryl-4-guanidinomethylbenzamide showed comparable in vitro bactericidal activities against VRE and VISA as linezolid. Their growth inhibitory effects on MRSA were similar to vancomycin, but were less potent than linezolid and vancomycin against MRCNS. This class of compounds may have the potential to be developed into narrow spectrum antibacterial agents against certain drug-resistant strains of bacteria.
Collapse
Affiliation(s)
- Wen-yuan Yu
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Oligopeptidase B from Leishmania amazonensis: molecular cloning, gene expression analysis and molecular model. Parasitol Res 2008; 101:865-75. [PMID: 18074461 DOI: 10.1007/s00436-007-0630-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Serine oligopeptidases of trypanosomatids are emerging as important virulence factors and therapeutic targets in trypanosome infections. A complete open reading frame of oligopeptidase B from Leishmania amazonensis was amplified with polymerase chain reaction with gradient annealing temperatures using primers designed for the oligopeptidase B gene from L. major. The 2,196-bp fragment coded for a protein of 731 amino acids with a predicted molecular mass of 83.49 KDa. The encoded protein (La_OpB) shares a 90% identity with oligopeptidases of L. major and L. infantum, 84% with L. braziliensis, and approximately 62% identity with Trypanosoma peptidases. The oligopeptidase B gene is expressed in all cycle stages of L. amazonensis. The three dimensional model of La_OpB was obtained by homology modeling based on the structure of prolyl oligopeptidases. We mapped a La_OpB model that presents a greater negative charge than prolyl oligopeptidases; our results suggest a difference in the S2 subsite when compared to oligopeptidases B from Trypanosoma and bacterial oligopeptidases B. The La_OpB model serves as a starting point for its exploration as a potential target source for a rational chemotherapy.
Collapse
|
26
|
Gorrão SS, Hemerly JP, Lima AR, Melo RL, Szeltner Z, Polgár L, Juliano MA, Juliano L. Fluorescence resonance energy transfer (FRET) peptides and cycloretro-inverso peptides derived from bradykinin as substrates and inhibitors of prolyl oligopeptidase. Peptides 2007; 28:2146-54. [PMID: 17904692 DOI: 10.1016/j.peptides.2007.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/17/2007] [Accepted: 08/17/2007] [Indexed: 10/22/2022]
Abstract
Prolyl oligopeptidase (POP, EC 3.4.21.26) is a member of a family of serine peptidases with post-proline cleaving activity towards peptides. It is located in the cytosol in active form but without hydrolytic activity on proteins or peptides higher than 30 amino acids. Its function is not well defined, but it is involved in central nervous system disorders. Here, we studied the substrate specificity of wild type POP (POPwt) and its C255T variant lacking the non-catalytic Cys(255). This residue is located in the seven-bladed beta-propeller domain that regulates the activity of POP. Fluorescence resonance energy transfer (FRET) peptides were used with sequences derived from bradykinin-containing region of human kininogen and flanked by Abz (ortho-aminobenzoic acid) and EDDnp [N-ethylenediamine-(2,4-dinitrophenyl)]. The peptide Abz-GFSPFRQ-EDDnp was taken as leader substrate for the synthesis of five series of peptides modified at the P(3), P(2), P'(1), P'(2) and P'(3) residues. The optimal amino acids in each position for POPwt resulted in the sequence RRPYIR that is very similar to the C-terminal sequence of neurotensin. The cyclic peptides c(G((n))FSPFR) (n=1-4) were hydrolyzed by POP; their cycloretro and cycloretro-inverso analogues were inhibitors in the micromolar range. The differences between POPwt and its C255T mutant in the hydrolysis of the series derived from Abz-GFSPFRQ-EDDnp were restricted to the non-prime site of the substrates. The kinetic data of hydrolysis and inhibition by the cyclic peptides are consistent with the structures of POP-substrate/inhibitor complexes and with the substrate specificity data obtained with linear FRET peptides. All together, these results give information about the POP-substrate/inhibitor interactions that further complete knowledge of this important oligopeptidase.
Collapse
Affiliation(s)
- Silvia S Gorrão
- Department of Biophysics, Escola Paulista de Medicina, Rua Três de Maio 100, São Paulo--SP 04044-020, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
de Matos Guedes HL, Carneiro MPD, Gomes DCDO, Rossi-Bergmanmn B, Giovanni de Simone S. Oligopeptidase B from L. amazonensis: molecular cloning, gene expression analysis and molecular model. Parasitol Res 2007; 101:853-63. [PMID: 17530480 DOI: 10.1007/s00436-007-0552-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 04/17/2007] [Indexed: 11/25/2022]
Abstract
Serine oligopeptidases of trypanosomatids are emerging as important virulence factors and therapeutic targets in trypanosome infections. A complete open reading frame of oligopeptidase B from Leishmania amazonensis was amplified with polymerase chain reaction with gradient annealing temperatures using primers designed for the oligopeptidase B gene from L. major. The 2,196-bp fragment coded for a protein of 731 amino acids with a predicted molecular mass of 83.49 KDa. The encoded protein (La_OpB) shares a 90% identity with oligopeptidases of L. major and L. infantum, 84% with L. braziliensis, and approximately 62 identity with Trypanosoma peptidases. The oligopeptidase B gene is expressed in all cycle stages of L. amazonensis. The three dimensional model of La_OpB was obtained by homology modeling based on the structure of prolyl oligopeptidases. We mapped a La_OpB model that presents a greater negative charge than prolyl oligopeptidases; our results suggest a difference in the S2 subsite when compared to oligopeptidases B from Trypanosoma and bacterial oligopeptidases B. The La_OpB model serves as a starting point for its exploration as a potential target source for a rational chemotherapy.
Collapse
Affiliation(s)
- Herbert Leonel de Matos Guedes
- Laboratório de Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
28
|
Rea D, Hazell C, Andrews NW, Morty RE, Fülöp V. Expression, purification and preliminary crystallographic analysis of oligopeptidase B from Trypanosoma brucei. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:808-10. [PMID: 16880564 PMCID: PMC2242912 DOI: 10.1107/s1744309106027874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 07/18/2006] [Indexed: 11/22/2022]
Abstract
Recombinant oligopeptidase B from T. brucei has been prepared and crystallized. Data were collected to 2.7 Å. Heavy-atom soaks and preparation of selenomethionine-substituted protein are in progress for structure determination by MAD or MIR. African sleeping sickness, also called trypanosomiasis, is a significant cause of morbidity and mortality in sub-Saharan Africa. Peptidases from Trypanosoma brucei, the causative agent, include the serine peptidase oligopeptidase B, a documented virulence factor and therapeutic target. Determination of the three-dimensional structure of oligopeptidase B is desirable to facilitate the development of novel inhibitors. Oligopeptidase B was overexpressed in Escherichia coli as an N-terminally hexahistidine-tagged fusion protein, purified using metal-affinity chromatography and crystallized using the hanging-drop vapour-diffusion technique in 7%(w/v) polyethylene glycol 6000, 1 M LiCl, 0.1 M bis-tris propane pH 7.5. Diffraction data to 2.7 Å resolution were collected using synchrotron radiation. The crystals belong to space group P3121 or P3221, with unit-cell parameters a = b = 124.5, c = 249.9 Å. A complete data set to 2.7 Å was collected using synchrotron radiation.
Collapse
Affiliation(s)
- Dean Rea
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England
| | - Carole Hazell
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England
| | - Norma W. Andrews
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Rory E. Morty
- Department of Internal Medicine, University of Giessen Medical Centre, Aulweg 123 (Room 6-11), D-35392 Giessen, Germany
| | - Vilmos Fülöp
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England
- Correspondence e-mail:
| |
Collapse
|
29
|
Yan JB, Wang GQ, Du P, Zhu DX, Wang MW, Jiang XY. High-level expression and purification of Escherichia coli oligopeptidase B. Protein Expr Purif 2006; 47:645-50. [PMID: 16515865 DOI: 10.1016/j.pep.2006.01.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/21/2006] [Accepted: 01/23/2006] [Indexed: 10/25/2022]
Abstract
Oligopeptidase B (OpdB) of Escherichia coli, previously called protease II, has a trypsin-like specificity, cleaving peptides at lysine and arginine residues and belongs to the prolyl oligopeptidase family of new serine peptidases. In this study, we report the fusion expression of E. coli oligopeptidase B with an N-terminal histidine tag using pET28a as the expression vector. Although most of the recombinant OpdB was produced as inclusion bodies, the solubility of the recombinant protease increased significantly when the expression temperature shifted from 37 to 30 degrees C. Recombinant OpdB (approximately 10 mg) could be purified from the soluble fraction of the crude extract of 1L log-phase E. coli culture containing 1.5 g wet bacterial cells. The purified OpdB has a molecular weight of approximately 80 kDa and a specific activity of 4.8 x 10(4) U/mg. OpdB could also be purified from the inclusion bodies with a lower yield. The recombinant enzyme was very stable under 40 degrees C. By comparison of the substrate specificity of the purified OpdB with that of OpdA, another trypsin-like protease in E. coli, we found that Boc-Glu-Lys-Lys-MCA is a specific substrate for E. coli OpdB. We also found that compared to OpdA, OpdB is much more sensitive to GMCHA-OPh(t)Bu, a synthetic trypsin inhibitor that can retard the growth of E. coli.
Collapse
Affiliation(s)
- Jian-Bin Yan
- Department of Biochemistry and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, PR China
| | | | | | | | | | | |
Collapse
|
30
|
Juhász T, Szeltner Z, Polgár L. Properties of the prolyl oligopeptidase homologue from Pyrococcus furiosus. FEBS Lett 2006; 580:3493-7. [PMID: 16714022 DOI: 10.1016/j.febslet.2006.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/02/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
Prolyl oligopeptidase (POP), the paradigm of a serine peptidase family, hydrolyses peptides, but not proteins. The thermophilic POP from Pyrococcus furiosus (Pfu) appeared to be an exception, since it hydrolysed large proteins. Here we demonstrate that the Pfu POP does not display appreciable activity against azocasein. The autolysis observed earlier was an artefact. We have also found that the pH-rate profile is different from that of the mammalian enzyme and the low pK(a) extracted from the curve represents the ionization of the catalytic histidine. We conclude that some oligopeptidases may be true endopeptidases, cleaving at disordered segments of proteins, but with very low efficacy.
Collapse
Affiliation(s)
- Tünde Juhász
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest
| | | | | |
Collapse
|
31
|
Chitlaru T, Gat O, Gozlan Y, Ariel N, Shafferman A. Differential proteomic analysis of the Bacillus anthracis secretome: distinct plasmid and chromosome CO2-dependent cross talk mechanisms modulate extracellular proteolytic activities. J Bacteriol 2006; 188:3551-71. [PMID: 16672610 PMCID: PMC1482852 DOI: 10.1128/jb.188.10.3551-3571.2006] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 02/19/2006] [Indexed: 12/17/2022] Open
Abstract
The secretomes of a virulent Bacillus anthracis strain and of avirulent strains (cured of the virulence plasmids pXO1 and pXO2), cultured in rich and minimal media, were studied by a comparative proteomic approach. More than 400 protein spots, representing the products of 64 genes, were identified, and a unique pattern of protein relative abundance with respect to the presence of the virulence plasmids was revealed. In minimal medium under high CO(2) tension, conditions considered to simulate those encountered in the host, the presence of the plasmids leads to enhanced expression of 12 chromosome-carried genes (10 of which could not be detected in the absence of the plasmids) in addition to expression of 5 pXO1-encoded proteins. Furthermore, under these conditions, the presence of the pXO1 and pXO2 plasmids leads to the repression of 14 chromosomal genes. On the other hand, in minimal aerobic medium not supplemented with CO(2), the virulent and avirulent B. anthracis strains manifest very similar protein signatures, and most strikingly, two proteins (the metalloproteases InhA1 and NprB, orthologs of gene products attributed to the Bacillus cereus group PlcR regulon) represent over 90% of the total secretome. Interestingly, of the 64 identified gene products, at least 31 harbor features characteristic of virulence determinants (such as toxins, proteases, nucleotidases, sulfatases, transporters, and detoxification factors), 22 of which are differentially regulated in a plasmid-dependent manner. The nature and the expression patterns of proteins in the various secretomes suggest that distinct CO(2)-responsive chromosome- and plasmid-encoded regulatory factors modulate the secretion of potential novel virulence factors, most of which are associated with extracellular proteolytic activities.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | | | | | | | | |
Collapse
|
32
|
Tsuji A, Yoshimoto T, Yuasa K, Matsuda Y. Protamine: a unique and potent inhibitor of oligopeptidase B. J Pept Sci 2006; 12:65-71. [PMID: 15948139 DOI: 10.1002/psc.683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Oligopeptidase B is a serine endopeptidase found in prokaryotes, unicellular eukaryotes and higher plants. The enzyme has been shown recently to play a central role in the pathogenesis of several parasitic diseases such as African trypanosomiasis, and to be a potential therapeutic target. This study reports that protamine, a basic peptide rich in arginine, is a potent inhibitor at the nanomolar level of oligopeptidase B from E. coli and wheat. Protamines 1B, 2C, 3A and TP17 displayed similar inhibitory activities and were capable of binding strongly to oligopeptidase B without proteolytic cleavage. The concentration of protamine needed for 50% inhibition (IC50) of oligopeptidase B was 10(4)-fold lower than the IC50 of trypsin. Oligopeptidase B was highly sensitive to inhibition by protamines even in the presence of serum (IC50, 1 microM). These data indicate that protamines might provide information useful for the design of more specific synthetic oligopeptidase B inhibitors.
Collapse
Affiliation(s)
- Akihiko Tsuji
- Department of Biological Science and Technology, The faculty of Engineering, The University of Tokushima, 2-1 Minamijosanjima, Tokushima 770-8506, Japan.
| | | | | | | |
Collapse
|
33
|
Jaeken J, Martens K, Francois I, Eyskens F, Lecointre C, Derua R, Meulemans S, Slootstra JW, Waelkens E, de Zegher F, Creemers JWM, Matthijs G. Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia-cystinuria syndrome. Am J Hum Genet 2006; 78:38-51. [PMID: 16385448 PMCID: PMC1380222 DOI: 10.1086/498852] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 10/06/2005] [Indexed: 11/03/2022] Open
Abstract
In 11 patients with a recessive congenital disorder, which we refer to as "the hypotonia-cystinuria syndrome," microdeletion of part of the SLC3A1 and PREPL genes on chromosome 2p21 was found. Patients present with generalized hypotonia at birth, nephrolithiasis, growth hormone deficiency, minor facial dysmorphism, and failure to thrive, followed by hyperphagia and rapid weight gain in late childhood. Since loss-of-function mutations in SLC3A1 are known to cause isolated cystinuria type I, and since the expression of the flanking genes, C2orf34 and PPM1B, was normal, the extended phenotype can be attributed to the deletion of PREPL. PREPL is localized in the cytosol and shows homology with prolyl endopeptidase and oligopeptidase B. Substitution of the predicted catalytic residues (Ser470, Asp556, and His601) by alanines resulted in loss of reactivity with a serine hydrolase-specific probe. In sharp contrast to prolyl oligopeptidase and oligopeptidase B, which require both aminoterminal and carboxyterminal sequences for activity, PREPL activity appears to depend only on the carboxyterminal domain. Taken together, these results suggest that PREPL is a novel oligopeptidase, with unique structural and functional characteristics, involved in hypotonia-cystinuria syndrome.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Transport Systems, Basic/genetics
- Amino Acid Transport Systems, Neutral/genetics
- Base Sequence
- Biotin/analogs & derivatives
- Biotin/metabolism
- Blotting, Northern
- Chromosomes, Human, Pair 2/genetics
- Cystinuria/genetics
- Electrophoresis, Polyacrylamide Gel
- Gene Deletion
- Genes, Recessive
- Humans
- Immunohistochemistry
- Infant
- Infant, Newborn
- Molecular Sequence Data
- Muscle Hypotonia/genetics
- Mutagenesis, Site-Directed
- Organophosphorus Compounds/metabolism
- Prolyl Oligopeptidases
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Substrate Specificity
- Syndrome
Collapse
Affiliation(s)
- Jaak Jaeken
- Department of Paediatrics, University Hospitals Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Morty RE, Shih AY, Fülöp V, Andrews NW. Identification of the reactive cysteine residues in oligopeptidase B from Trypanosoma brucei. FEBS Lett 2005; 579:2191-6. [PMID: 15811340 DOI: 10.1016/j.febslet.2005.03.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 03/07/2005] [Accepted: 03/07/2005] [Indexed: 11/28/2022]
Abstract
Oligopeptidase B (OpdB) from Trypanosoma brucei is a candidate therapeutic target in African trypanosomiasis. OpdB is an atypical serine peptidase, since activity is inhibited by thiol-blocking reagents and enhanced by reducing agents. We have identified C256 as the reactive cysteine residue that mediates OpdB inhibition by N-ethylmaleimide and iodoacetic acid. Modeling studies suggest that C256 adducts occlude the P(1) substrate-binding site, preventing substrate binding. We further demonstrate that C559 and C597 are responsible for the thiol-enhancement of OpdB activity. These studies may facilitate the development of specific OpdB inhibitors with therapeutic potential, by exploiting these unique properties of this enzyme.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University of Giessen School of Medicine, Aulweg 123 (Room 6-11), D-35392 Giessen, Germany.
| | | | | | | |
Collapse
|
35
|
Morty RE, Pellé R, Vadász I, Uzcanga GL, Seeger W, Bubis J. Oligopeptidase B from Trypanosoma evansi. J Biol Chem 2005; 280:10925-37. [PMID: 15644339 DOI: 10.1074/jbc.m410066200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine oligopeptidases of trypanosomatids are emerging as important virulence factors and therapeutic targets in trypanosome infections. We report here the isolation and characterization of oligopeptidase B (OpdB) and its corresponding gene from Trypanosoma evansi, a pathogen of significant veterinary importance. The T. evansi opdB gene was present as a single copy per haploid genome containing an open reading frame of 2148 bp encoding a protein of 80.664 kDa. Purified OpdB hydrolyzed substrates with basic residues in P1 (k(cat)/K(m) for carbobenzyloxy-L-arginyl-L-arginyl-7-amido-4-methylcoumarin, 337 s(-1) x microm(-1)) and exhibited potent arginyl carboxypeptidase activity (k(cat)/K(m) for Val-Lys-Arg Arg-OH, 231 s(-1) x mM(-1)). While not secreted, T. evansi released OpdB into the plasma of infected hosts where it retained catalytic activity. Plasma OpdB levels correlated with blood parasitemia. In vitro, OpdB cleaved the peptide hormone atrial natriuretic factor (ANF) at four sites: Arg3 Arg4, Arg4 Ser5, Arg11 Ile12, and Arg27 Tyr28, thereby abrogating smooth muscle relaxant and prohypotensive properties of ANF. Circulating plasma ANF levels in T. evansi-infected rats were depressed from 130 to 8 pg x ml(-1), and plasma ANF levels inversely correlated with plasma OpdB activity. The in vitro half-life of ANF in rat plasma was reduced 300-fold in plasma from T. evansi-infected rodents, which contains high levels of OpdB activity. Addition of OpdB inhibitors to cell-free plasma from infected rodents significantly abrogated this ANF hydrolysis. Furthermore the in vivo ANF half-life was reduced 5-fold in T. evansi-infected rats. Thus, we propose a role for OpdB in peptide hormone dysregulation in trypanosomiasis, specifically in generating the depressed plasma levels of ANF in mammals infected with T. evansi.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Internal Medicine, University of Giessen Medical Centre, Aulweg 123 (Raum 6-11), D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Hemerly JP, Oliveira V, Del Nery E, Morty RE, Andrews NW, Juliano MA, Juliano L. Subsite specificity (S3, S2, S1', S2' and S3') of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity. Biochem J 2003; 373:933-9. [PMID: 12737623 PMCID: PMC1223545 DOI: 10.1042/bj20030342] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 05/02/2003] [Accepted: 05/09/2003] [Indexed: 11/17/2022]
Abstract
We characterized the extended substrate binding site of recombinant oligopeptidase B enzymes from Trypanosoma cruzi (Tc-OP) and Trypanosoma brucei (Tb-OP), evaluating the specificity of their S3, S2, S1', S2' and S3' subsites. Five series of internally quenched fluorescent peptides based on the substrate Abz-AGGRGAQ-EDDnp [where Abz is o -aminobenzoic acid and EDDnp is N -(2,4-dinitrophenyl)ethylenediamine] were designed to contain amino acid residues with side chains of a minimum size, and each residue position of this substrate was modified. Synthetic peptides of different lengths derived from the human kininogen sequence were also examined, and peptides of up to 17 amino acids were found to be hydrolysed by Tc-OP and Tb-OP. These two oligopeptidases were essentially arginyl hydrolases, since for all peptides examined the only cleavage site was the Arg-Xaa bond. We also demonstrated that Tc-OP and Tb-OP have a very specific carboxypeptidase activity for basic amino acids, which depends on the presence of at least of a pair of basic amino acids at the C-terminal end of the substrate. The peptide with triple Arg residues (Abz-AGRRRAQ-EDDnp) was an efficient substrate for Tc-OP and Tb-OP: the Arg-Ala peptide bond was cleaved first and then two C-terminal Arg residues were successively removed. The S1' subsite seems to be an important determinant of the specificity of both enzymes, showing a preference for Tyr, Ser, Thr and Gln as hydrogen donors. The presence of these amino acids at P1' resulted in substrates that were hydrolysed with K (m) values in the sub-micromolar range. Taken together, this work supports the view that oligopeptidase B is a specialized protein-processing enzyme with a specific carboxypeptidase activity. Excellent substrates were obtained for Tb-OP and Tc-OP (Abz-AMRRTISQ-EDDnp and Abz-AHKRYSHQ-EDDnp respectively), which were hydrolysed with remarkably high k (cat) and low K (m) values.
Collapse
Affiliation(s)
- Jefferson P Hemerly
- Department of Biophysics, Escola Paulista de Medicina, Rua Três de Maio 100, São Paulo SP 04044-020, Brazil
| | | | | | | | | | | | | |
Collapse
|