1
|
Zhang J, Fang H, Du G, Zhang D. Metabolic Regulation and Engineering Strategies of Carbon and Nitrogen Metabolism in Escherichia coli. ACS Synth Biol 2025; 14:1367-1380. [PMID: 40243912 DOI: 10.1021/acssynbio.5c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The intricacies of carbon and nitrogen metabolism in Escherichia coli indeed present both challenges and opportunities for metabolic engineering aimed at optimizing microbial production processes. Carbon is the primary energy source and building block for biomolecules at the cellular level, while nitrogen is vital for synthesizing amino acids, nucleotides, and other nitrogen-containing compounds. This review provides a comprehensive summary of the metabolic regulation of central metabolism and outlines engineering strategies for carbon and nitrogen metabolism in E. coli. This perspective enhances our understanding of the molecular mechanisms involved and enables the development of rational metabolic engineering strategies. One key aspect of metabolic engineering consists of understanding the regulatory networks that govern these processes. Both carbon and nitrogen metabolisms are tightly regulated to ensure cellular homeostasis. By elucidating the interconnected nature of carbon and nitrogen metabolism, this review serves not just to better inform the academic community but also to stimulate advancements in biotechnological applications. Metabolic engineering in E. coli, targeting these complex networks, holds immense promise for the sustainable production of chemicals, biofuels, and pharmaceuticals.
Collapse
Affiliation(s)
- Jijiao Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Food Science, Dalian University of Technology, Dalian 116034, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Food Science, Dalian University of Technology, Dalian 116034, China
| |
Collapse
|
2
|
Aparecida Gonçalves AC, de Mello Damasco Nunes T, Parize E, Marques Gerhardt EC, Antônio de Souza G, Scholl J, Forchhammer K, Huergo LF. The activity of the ribonucleotide monophosphatase UmpH is controlled by interaction with the GlnK signaling protein in Escherichia coli. J Biol Chem 2024; 300:107931. [PMID: 39454949 PMCID: PMC11617674 DOI: 10.1016/j.jbc.2024.107931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024] Open
Abstract
The PII signaling proteins are ubiquitous in prokaryotes serving as crucial metabolic hubs in different metabolic pathways because of their ability to sense and integrate signals of the cellular nitrogen, carbon, and energy levels. In this study, we used ligand fishing assays to identify the ribonucleotide monophosphatase UmpH enzyme as a novel target of the PII signaling protein GlnK in Escherichia coli. In vitro analyses showed that UmpH interacts specifically with the PII protein GlnK but not with its paralog protein GlnB. The UmpH-GlnK complex is modulated by the GlnK uridylylation status and by the levels of the GlnK allosteric effectors ATP, ADP, and 2-oxoglutarate. Upon engaging interaction with GlnK, UmpH becomes less active toward its substrate uridine 5'-monophosphate. We suggest a model where GlnK will physically interact to reduce the UmpH activity during the transition from N-starvation to N-sufficient conditions. Such a mechanism may help the cells to reprogram the fate of uridine 5'-monophosphate from catabolism to anabolism avoiding futile cycling of key nutrients.
Collapse
Affiliation(s)
| | | | - Erick Parize
- Programa de Pós-Graduação em Ciências - Bioquímica, UFPR Curitiba, Paraná, Brazil
| | | | - Gustavo Antônio de Souza
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Jörg Scholl
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin der Eberhard-Karls Universität Tübingen, Tübingen, Germany
| | - Luciano Fernandes Huergo
- Setor Litoral, UFPR Matinhos, Paraná, Brazil; Programa de Pós-Graduação em Ciências - Bioquímica, UFPR Curitiba, Paraná, Brazil.
| |
Collapse
|
3
|
Tang Y, Qin D, Tian Z, Chen W, Ma Y, Wang J, Yang J, Yan D, Dixon R, Wang YP. Diurnal switches in diazotrophic lifestyle increase nitrogen contribution to cereals. Nat Commun 2023; 14:7516. [PMID: 37980355 PMCID: PMC10657418 DOI: 10.1038/s41467-023-43370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Uncoupling of biological nitrogen fixation from ammonia assimilation is a prerequisite step for engineering ammonia excretion and improvement of plant-associative nitrogen fixation. In this study, we have identified an amino acid substitution in glutamine synthetase, which provides temperature sensitive biosynthesis of glutamine, the intracellular metabolic signal of the nitrogen status. As a consequence, negative feedback regulation of genes and enzymes subject to nitrogen regulation, including nitrogenase is thermally controlled, enabling ammonia excretion in engineered Escherichia coli and the plant-associated diazotroph Klebsiella oxytoca at 23 °C, but not at 30 °C. We demonstrate that this temperature profile can be exploited to provide diurnal oscillation of ammonia excretion when variant bacteria are used to inoculate cereal crops. We provide evidence that diurnal temperature variation improves nitrogen donation to the plant because the inoculant bacteria have the ability to recover and proliferate at higher temperatures during the daytime.
Collapse
Affiliation(s)
- Yuqian Tang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Debin Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Zhexian Tian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Wenxi Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Yuanxi Ma
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Jilong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Jianguo Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China
| | - Dalai Yan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences & School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Park J, Lee SM, Ebrahim A, Scott-Nevros Z, Kim J, Yang L, Sastry A, Seo S, Palsson BO, Kim D. Model-driven experimental design workflow expands understanding of regulatory role of Nac in Escherichia coli. NAR Genom Bioinform 2023; 5:lqad006. [PMID: 36685725 PMCID: PMC9853098 DOI: 10.1093/nargab/lqad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
The establishment of experimental conditions for transcriptional regulator network (TRN) reconstruction in bacteria continues to be impeded by the limited knowledge of activating conditions for transcription factors (TFs). Here, we present a novel genome-scale model-driven workflow for designing experimental conditions, which optimally activate specific TFs. Our model-driven workflow was applied to elucidate transcriptional regulation under nitrogen limitation by Nac and NtrC, in Escherichia coli. We comprehensively predict alternative nitrogen sources, including cytosine and cytidine, which trigger differential activation of Nac using a model-driven workflow. In accordance with the prediction, genome-wide measurements with ChIP-exo and RNA-seq were performed. Integrative data analysis reveals that the Nac and NtrC regulons consist of 97 and 43 genes under alternative nitrogen conditions, respectively. Functional analysis of Nac at the transcriptional level showed that Nac directly down-regulates amino acid biosynthesis and restores expression of tricarboxylic acid (TCA) cycle genes to alleviate nitrogen-limiting stress. We also demonstrate that both TFs coherently modulate α-ketoglutarate accumulation stress due to nitrogen limitation by co-activating amino acid and diamine degradation pathways. A systems-biology approach provided a detailed and quantitative understanding of both TF's roles and how nitrogen and carbon metabolic networks respond complementarily to nitrogen-limiting stress.
Collapse
Affiliation(s)
- Joon Young Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang-Mok Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ali Ebrahim
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zoe K Scott-Nevros
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaehyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Laurence Yang
- Department of Chemical Engineering, Queen's University, Kingston, Canada
| | - Anand Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sang Woo Seo
- School of Chemical and Biological Engineering, and Interdisciplinary Program in Bioengineering, and Institute of Chemical Processes, and Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
- The Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, 6 Kogle Alle, Hørsholm, Denmark
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
5
|
Iskhakova ZI, Zhuravleva DE, Heim C, Hartmann MD, Laykov AV, Forchhammer K, Kayumov AR. PotN represents a novel energy‐state sensing PII subfamily, occurring in firmicutes. FEBS J 2022; 289:5305-5321. [DOI: 10.1111/febs.16431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 01/19/2023]
Affiliation(s)
| | | | - Christopher Heim
- Department of Protein Evolution Max Planck Institute for Developmental Biology Tübingen Germany
| | - Marcus D. Hartmann
- Department of Protein Evolution Max Planck Institute for Developmental Biology Tübingen Germany
| | | | - Karl Forchhammer
- Institut für Mikrobiologie Eberhard‐Karls‐Universität Tübingen Germany
| | | |
Collapse
|
6
|
Bowlin MQ, Long AR, Huffines JT, Gray MJ. The role of nitrogen-responsive regulators in controlling inorganic polyphosphate synthesis in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001185. [PMID: 35482529 PMCID: PMC10233264 DOI: 10.1099/mic.0.001185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/10/2022] [Indexed: 12/22/2022]
Abstract
Inorganic polyphosphate (polyP) is synthesized by bacteria under stressful environmental conditions and acts by a variety of mechanisms to promote cell survival. While the kinase that synthesizes polyP (PPK, encoded by the ppk gene) is well known, ppk transcription is not activated by environmental stress and little is understood about how environmental stress signals lead to polyP accumulation. Previous work has shown that the transcriptional regulators DksA, RpoN (σ54) and RpoE (σ24) positively regulate polyP production, but not ppk transcription, in Escherichia coli. In this work, we examine the role of the alternative sigma factor RpoN and nitrogen starvation stress response pathways in controlling polyP synthesis. We show that the RpoN enhancer binding proteins GlnG and GlrR impact polyP production, and uncover a new role for the nitrogen phosphotransferase regulator PtsN (EIIANtr) as a positive regulator of polyP production, acting upstream of DksA, downstream of RpoN and apparently independently of RpoE. However, neither these regulatory proteins nor common nitrogen metabolites appear to act directly on PPK, and the precise mechanism(s) by which polyP production is modulated after stress remain(s) unclear. Unexpectedly, we also found that the genes that impact polyP production vary depending on the composition of the rich media in which the cells were grown before exposure to polyP-inducing stress. These results constitute progress towards deciphering the regulatory networks driving polyP production under stress, and highlight the remarkable complexity of this regulation and its connections to a broad range of stress-sensing pathways.
Collapse
Affiliation(s)
- Marvin Q. Bowlin
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Abagail Renee Long
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joshua T. Huffines
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael Jeffrey Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Liu G, Vijayaraman SB, Dong Y, Li X, Andongmaa BT, Zhao L, Tu J, He J, Lin L. Bacillus velezensis LG37: transcriptome profiling and functional verification of GlnK and MnrA in ammonia assimilation. BMC Genomics 2020; 21:215. [PMID: 32143571 PMCID: PMC7060608 DOI: 10.1186/s12864-020-6621-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/25/2020] [Indexed: 11/14/2022] Open
Abstract
Background In recent years, interest in Bacillus velezensis has increased significantly due to its role in many industrial water bioremediation processes. In this study, we isolated and assessed the transcriptome of Bacillus velezensis LG37 (from an aquaculture pond) under different nitrogen sources. Since Bacillus species exhibit heterogeneity, it is worth investigating the molecular mechanism of LG37 through ammonia nitrogen assimilation, where nitrogen in the form of molecular ammonia is considered toxic to aquatic organisms. Results Here, a total of 812 differentially expressed genes (DEGs) from the transcriptomic sequencing of LG37 grown in minimal medium supplemented with ammonia (treatment) or glutamine (control) were obtained, from which 56 had Fold Change ≥2. BLAST-NCBI and UniProt databases revealed 27 out of the 56 DEGs were potentially involved in NH4+ assimilation. Among them, 8 DEGs together with the two-component regulatory system GlnK/GlnL were randomly selected for validation by quantitative real-time RT-PCR, and the results showed that expression of all the 8 DEGs are consistent with the RNA-seq data. Moreover, the transcriptome and relative expression analysis were consistent with the transporter gene amtB and it is not involved in ammonia transport, even in the highest ammonia concentrations. Besides, CRISPR-Cas9 knockout and overexpression glnK mutants further evidenced the exclusion of amtB regulation, suggesting the involvement of alternative transporter. Additionally, in the transcriptomic data, a novel ammonium transporter mnrA was expressed significantly in increased ammonia concentrations. Subsequently, OEmnrA and ΔmnrA LG37 strains showed unique expression pattern of specific genes compared to that of wild-LG37 strain. Conclusion Based on the transcriptome data, regulation of nitrogen related genes was determined in the newly isolated LG37 strain to analyse the key regulating factors during ammonia assimilation. Using genomics tools, the novel MnrA transporter of LG37 became apparent in ammonia transport instead of AmtB, which transports ammonium nitrogen in other Bacillus strains. Collectively, this study defines heterogeneity of B. velezensis LG37 through comprehensive transcriptome analysis and subsequently, by genome editing techniques, sheds light on the enigmatic mechanisms controlling the functional genes under different nitrogen sources also reveals the need for further research.
Collapse
Affiliation(s)
- Guangxin Liu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Sarath Babu Vijayaraman
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yanjun Dong
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Binda Tembeng Andongmaa
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Li Lin
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China. .,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China.
| |
Collapse
|
8
|
Identification of an Autorepressing Two-Component Signaling System That Modulates Virulence in Streptococcus suis Serotype 2. Infect Immun 2019; 87:IAI.00377-19. [PMID: 31285250 DOI: 10.1128/iai.00377-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
Streptococcus suis is one of the most important pathogens affecting the swine industry and is also an emerging zoonotic agent for humans. Two-component signaling systems (TCSs) play important roles in the adaptation of pathogenic bacteria to host environments. In this study, we identified a novel TCS, named TCS09HKRR, which facilitated Streptococcus suis serotype 2 (SS2) resistance to clearance by the host immune system and contributed to bacterial pathogenicity. Furthermore, RNA-sequencing analyses identified 79 genes that were differentially expressed between the wild-type (WT) and ΔTCS09HKRR strains, among which half of the 39 downregulated genes belonged to the capsular biosynthesis clusters. Transmission electron microscopy confirmed that the capsule of the ΔTCS09HKRR strain was thinner than that of the WT strain. Electrophoretic mobility shift assays (EMSA) showed that the regulator of TCS09HKRR (TCS09RR) could not bind the promoter regions of cps and neu clusters, which suggested that TCS09HKRR regulates capsule biosynthesis by indirect pathways. Unexpectedly, the TCS09HKRR operon was upregulated when TCS09HKRR was deleted. A specific region, ATGACATTTGTCAC, which extends from positions -193 to -206 upstream of the TCS09HKRR operon, was further identified as the TCS09RR-binding site using EMSA. These results suggested the involvement of a negative feedback loop in this regulation. In addition, TCS09RR was significantly upregulated by more than 18-fold when coincubated with RAW264.7 macrophages. Our data suggested that autorepression renders TCS09HKRR more sensitive to host stimuli, which optimizes the regulatory network of capsular biosynthesis in SS2.
Collapse
|
9
|
Maeda T, Horinouchi T, Sakata N, Sakai A, Furusawa C. High-throughput identification of the sensitivities of an Escherichia coli ΔrecA mutant strain to various chemical compounds. J Antibiot (Tokyo) 2019; 72:566-573. [DOI: 10.1038/s41429-019-0160-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/03/2023]
|
10
|
Fatty acid biosynthesis is enhanced in Escherichia coli strains with deletion in genes encoding the PII signaling proteins. Arch Microbiol 2018; 201:209-214. [PMID: 30506165 DOI: 10.1007/s00203-018-1603-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/08/2018] [Accepted: 11/24/2018] [Indexed: 10/27/2022]
Abstract
The committed and rate-limiting step in fatty acid biosynthesis is catalyzed by acetyl-CoA carboxylase (ACC). In previous studies we showed that ACC activity is inhibited through interactions with the PII signaling proteins in vitro. Here we provide in vivo support for that model; we noted that PII proteins are able to reduce malonyl-CoA levels in vivo in Escherichia coli. Furthermore, we show that fatty acid biosynthesis is strongly enhanced in E. coli strains carrying deletions in PII coding genes. Given that PII proteins act as conserved negative regulators of ACC in Bacteria, our findings may be explored to engineer other prokaryotes to improve fatty acid yields, thereby turning microbial biofuel production economically competitive in the future.
Collapse
|
11
|
Global investigation of an engineered nitrogen-fixing Escherichia coli strain reveals regulatory coupling between host and heterologous nitrogen-fixation genes. Sci Rep 2018; 8:10928. [PMID: 30026566 PMCID: PMC6053447 DOI: 10.1038/s41598-018-29204-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/06/2018] [Indexed: 11/08/2022] Open
Abstract
Transfer of nitrogen fixation (nif) genes from diazotrophs to amenable heterologous hosts is of increasing interest to genetically engineer nitrogen fixation. However, how the non-diazotrophic host maximizes opportunities to fine-tune the acquired capacity for nitrogen fixation has not been fully explored. In this study, a global investigation of an engineered nitrogen-fixing Escherichia coli strain EN-01 harboring a heterologous nif island from Pseudomonas stutzeri was performed via transcriptomics and proteomics analyses. A total of 1156 genes and 206 discriminative proteins were found to be significantly altered when cells were incubated under nitrogen-fixation conditions. Pathways for regulation, metabolic flux and oxygen protection to nitrogenase were particularly discussed. An NtrC-dependent regulatory coupling between E. coli nitrogen regulation system and nif genes was established. Additionally, pentose phosphate pathway was proposed to serve as the primary route for glucose catabolism and energy supply to nitrogenase. Meanwhile, HPLC analysis indicated that organic acids produced by EN-01 might have negative effects on nitrogenase activity. This study provides a global view of the complex network underlying the acquired nif genes in the recombinant E. coli and also provides clues for the optimization and redesign of robust nitrogen-fixing organisms to improve nitrogenase efficiency by overcoming regulatory or metabolic obstacles.
Collapse
|
12
|
Zhang JJ, Hu WL, Yang Y, Li H, Picardeau M, Yan J, Yang XF. The sigma factor σ 54 is required for the long-term survival of Leptospira biflexa in water. Mol Microbiol 2018; 109:10.1111/mmi.13967. [PMID: 29633391 PMCID: PMC6174002 DOI: 10.1111/mmi.13967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 12/21/2022]
Abstract
Leptospira spp. comprise both pathogenic and free-living saprophytic species. Little is known about the environmental adaptation and survival mechanisms of Leptospira. Alternative sigma factor, σ54 (RpoN) is known to play an important role in environmental and host adaptation in many bacteria. In this study, we constructed an rpoN mutant by allele exchange, and the complemented strain in saprophytic L. biflexa. Transcriptome analysis revealed that expression of several genes involved in nitrogen uptake and metabolism, including amtB1, glnB-amtB2, ntrX and narK, were controlled by σ54 . While wild-type L. biflexa could not grow under nitrogen-limiting conditions but was able to survive under such conditions and recover rapidly, the rpoN mutant was not. The rpoN mutant also had dramatically reduced ability to survive long-term in water. σ54 appears to regulate expression of amtB1, glnK-amtB2, ntrX and narK in an indirect manner. However, we identified a novel nitrogen-related gene, LEPBI_I1011, whose expression was directly under the control of σ54 (herein renamed as rcfA for RpoN-controlled factor A). Taken together, our data reveal that the σ54 regulatory network plays an important role in the long-term environmental survival of Leptospira spp.
Collapse
Affiliation(s)
- Jun-Jie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wei-Lin Hu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Youyun Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hongxia Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
13
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
14
|
García-Mauriño SM, Pérez-Martínez I, Amador CI, Canosa I, Santero E. Transcriptional activation of the CrcZ and CrcY regulatory RNAs by the CbrB response regulator in Pseudomonas putida. Mol Microbiol 2013; 89:189-205. [PMID: 23692431 DOI: 10.1111/mmi.12270] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2013] [Indexed: 11/30/2022]
Abstract
The CbrAB two-component system has been described as a high-ranked element in the regulatory hierarchy of Pseudomonas putida that controls a variety of metabolic and behavioural traits required for adaptation to changing environmental conditions. We show that the response regulatory protein CbrB, an activator of σ(N) -dependent promoters, directly controls the expression of the small RNAs CrcZ and CrcY in P. putida. These two RNAs sequester the protein Crc, which is a translational repressor of multiple pathways linked to carbon catabolite repression. We characterized the in vivo and in vitro activation by CbrB at both crcZ and crcY promoters, and identified new DNA sequences where the protein binds. IHF, a co-activator at many σ(N) -dependent promoters, also binds to the promoter regions and contributes to the activation of the sRNAs. CbrB phosphorylation is necessary at physiological activation conditions, but a higher dose of the protein allows in vitro transcriptional activation in its non-phosphorylated form. We also show there is some production of CrcY coming from an upstream promoter independent of CbrB. Thus, CbrAB constitute a global signal transduction pathway integrated in a higher regulatory network that also controls catabolite repression through the expression of the two regulatory RNAs CrcZ and CrcY.
Collapse
Affiliation(s)
- Sofía Muñoz García-Mauriño
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, Carretera de Utrera, Km. 1, 41013, Seville, Spain
| | | | | | | | | |
Collapse
|
15
|
Shimizu K. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism. ISRN BIOCHEMISTRY 2013; 2013:645983. [PMID: 25937963 PMCID: PMC4393010 DOI: 10.1155/2013/645983] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Fukuoka, Iizuka 820-8502, Japan
- Institute of Advanced Bioscience, Keio University, Yamagata, Tsuruoka 997-0017, Japan
| |
Collapse
|
16
|
Jiang P, Ventura AC, Ninfa AJ. Characterization of the reconstituted UTase/UR-PII-NRII-NRI bicyclic signal transduction system that controls the transcription of nitrogen-regulated (Ntr) genes in Escherichia coli. Biochemistry 2012; 51:9045-57. [PMID: 23088566 DOI: 10.1021/bi300575j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A reconstituted UTase/UR-PII-NRII-NRI bicyclic cascade regulated PII uridylylation and NRI phosphorylation in response to glutamine. We examined the sensitivity and robustness of the responses of the individual cycles and of the bicyclic system. The sensitivity of the glutamine response of the upstream UTase/UR-PII monocycle depended upon the PII concentration, and we show that PII exerted substrate inhibition of the UTase activity of UTase/UR, potentially contributing to this dependence of sensitivity on PII. In the downstream NRII-NRI monocycle, PII controlled NRI phosphorylation state, and the response to PII was hyperbolic at both saturating and unsaturating NRI concentration. As expected from theory, the level of NRI∼P produced by the NRII-NRI monocycle was robust to changes in the NRII or NRI concentrations when NRI was in excess over NRII, as long as the NRII concentration was above a threshold value, an example of absolute concentration robustness (ACR). Because of the parameters of the system, at physiological protein levels and ratios of NRI to NRII, the level of NRI∼P depended upon both protein concentrations. In bicyclic UTase/UR-PII-NRII-NRI systems, the NRI phosphorylation state response to glutamine was always hyperbolic, regardless of the PII concentration or sensitivity of the upstream UTase/UR-PII cycle. In these bicyclic systems, NRI phosphorylation state was only robust to variation in the PII/NRII ratio within a narrow range; when PII was in excess NRI∼P was low, and when NRII was in excess NRI phosphorylation was elevated, throughout the physiological range of glutamine concentrations. Our results show that the bicyclic system produced a graded response of NRI phosphorylation to glutamine under a range of conditions, and that under most conditions the response of NRI phosphorylation state to glutamine levels depended on the concentrations of NRI, NRII, and PII.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, United States
| | | | | |
Collapse
|
17
|
Yurgel SN, Rice J, Kahn ML. Nitrogen metabolism in Sinorhizobium meliloti-alfalfa symbiosis: dissecting the role of GlnD and PII proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:355-362. [PMID: 22074345 DOI: 10.1094/mpmi-09-11-0249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To contribute nitrogen for plant growth and establish an effective symbiosis with alfalfa, Sinorhizobium meliloti Rm1021 needs normal operation of the GlnD protein, a bifunctional uridylyltransferase/uridylyl-cleavage enzyme that measures cellular nitrogen status and initiates a nitrogen stress response (NSR). However, the only two known targets of GlnD modification in Rm1021, the PII proteins GlnB and GlnK, are not necessary for effectiveness. We introduced a Tyr→Phe variant of GlnB, which cannot be uridylylated, into a glnBglnK background to approximate the expected state in a glnD-sm2 mutant, and this strain was effective. These results suggested that unmodified PII does not inhibit effectiveness. We also generated a glnBglnK-glnD triple mutant and used this and other mutants to dissect the role of these proteins in regulating the free-living NSR and nitrogen metabolism in symbiosis. The glnD-sm2 mutation was dominant to the glnBglnK mutations in symbiosis but recessive in some free-living phenotypes. The data show that the GlnD protein has a role in free-living growth and in symbiotic nitrogen exchange that does not depend on the PII proteins, suggesting that S. meliloti GlnD can communicate with the cell by alternate mechanisms.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman 99164-6340, USA.
| | | | | |
Collapse
|
18
|
Hermsen R, Erickson DW, Hwa T. Speed, sensitivity, and bistability in auto-activating signaling circuits. PLoS Comput Biol 2011; 7:e1002265. [PMID: 22125482 PMCID: PMC3219618 DOI: 10.1371/journal.pcbi.1002265] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022] Open
Abstract
Cells employ a myriad of signaling circuits to detect environmental signals and drive specific gene expression responses. A common motif in these circuits is inducible auto-activation: a transcription factor that activates its own transcription upon activation by a ligand or by post-transcriptional modification. Examples range from the two-component signaling systems in bacteria and plants to the genetic circuits of animal viruses such as HIV. We here present a theoretical study of such circuits, based on analytical calculations, numerical computations, and simulation. Our results reveal several surprising characteristics. They show that auto-activation can drastically enhance the sensitivity of the circuit's response to input signals: even without molecular cooperativity, an ultra-sensitive threshold response can be obtained. However, the increased sensitivity comes at a cost: auto-activation tends to severely slow down the speed of induction, a stochastic effect that was strongly underestimated by earlier deterministic models. This slow-induction effect again requires no molecular cooperativity and is intimately related to the bimodality recently observed in non-cooperative auto-activation circuits. These phenomena pose strong constraints on the use of auto-activation in signaling networks. To achieve both a high sensitivity and a rapid induction, an inducible auto-activation circuit is predicted to acquire low cooperativity and low fold-induction. Examples from Escherichia coli's two-component signaling systems support these predictions. Different times call for different measures. Therefore, cells adjust their protein levels depending on their environment. Upon the detection of certain environmental signals, transcription factors are activated, which activate or inhibit the production of specific sets of proteins. As it turns out, these transcription factors often also stimulate their own production. Indeed, such self-regulation is a common motif in signal–response systems of many organisms, including bacteria, animals, plants and viruses–but its function is not well understood. We have used mathematical models to study its benefits and drawbacks. On the one hand, calculations show that self-regulation can be a very useful tool if the cell needs to respond in a sensitive way to changes in its environment, or if it is supposed to respond only if the signal exceeds a threshold level. On the other hand, these benefits come at a cost: self-regulation severely slows down the cell's response to changes in the environment. We have analyzed how the cell can benefit from the advantages of self-regulation, while mitigating the drawbacks. This leads to strict design constraints that examples from the bacterium E. coli indeed seem to obey.
Collapse
Affiliation(s)
- Rutger Hermsen
- Center for Theoretical Biological Physics and Department of Physics, University of California at San Diego, La Jolla, California, USA.
| | | | | |
Collapse
|
19
|
Schmidt MC, Rocha AM, Padmanabhan K, Chen Z, Scott K, Mihelcic JR, Samatova NF. Efficient α, β-motif finder for identification of phenotype-related functional modules. BMC Bioinformatics 2011; 12:440. [PMID: 22078292 PMCID: PMC3287386 DOI: 10.1186/1471-2105-12-440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/11/2011] [Indexed: 11/26/2022] Open
Abstract
Background Microbial communities in their natural environments exhibit phenotypes that can directly cause particular diseases, convert biomass or wastewater to energy, or degrade various environmental contaminants. Understanding how these communities realize specific phenotypic traits (e.g., carbon fixation, hydrogen production) is critical for addressing health, bioremediation, or bioenergy problems. Results In this paper, we describe a graph-theoretical method for in silico prediction of the cellular subsystems that are related to the expression of a target phenotype. The proposed (α, β)-motif finder approach allows for identification of these phenotype-related subsystems that, in addition to metabolic subsystems, could include their regulators, sensors, transporters, and even uncharacterized proteins. By comparing dozens of genome-scale networks of functionally associated proteins, our method efficiently identifies those statistically significant functional modules that are in at least α networks of phenotype-expressing organisms but appear in no more than β networks of organisms that do not exhibit the target phenotype. It has been shown via various experiments that the enumerated modules are indeed related to phenotype-expression when tested with different target phenotypes like hydrogen production, motility, aerobic respiration, and acid-tolerance. Conclusion Thus, we have proposed a methodology that can identify potential statistically significant phenotype-related functional modules. The functional module is modeled as an (α, β)-clique, where α and β are two criteria introduced in this work. We also propose a novel network model, called the two-typed, divided network. The new network model and the criteria make the problem tractable even while very large networks are being compared. The code can be downloaded from http://www.freescience.org/cs/ABClique/
Collapse
Affiliation(s)
- Matthew C Schmidt
- Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Yu LJ, Wu JR, Zheng ZZ, Lin CC, Zhan XB. Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan production. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811050188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Kirkilionis M, Janus U, Sbano L. Multi-scale genetic dynamic modelling II: application to synthetic biology: an algorithmic Markov chain based approach. Theory Biosci 2011; 130:183-201. [PMID: 21509695 DOI: 10.1007/s12064-011-0126-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
We model in detail a simple synthetic genetic clock that was engineered in Atkinson et al. (Cell 113(5):597-607, 2003) using Escherichia coli as a host organism. Based on this engineered clock its theoretical description uses the modelling framework presented in Kirkilionis et al. (Theory Biosci. doi: 10.1007/s12064-011-0125-0 , 2011, this volume). The main goal of this accompanying article was to illustrate that parts of the modelling process can be algorithmically automatised once the model framework we called 'average dynamics' is accepted (Sbano and Kirkilionis, WMI Preprint 7/2007, 2008c; Kirkilionis and Sbano, Adv Complex Syst 13(3):293-326, 2010). The advantage of the 'average dynamics' framework is that system components (especially in genetics) can be easier represented in the model. In particular, if once discovered and characterised, specific molecular players together with their function can be incorporated. This means that, for example, the 'gene' concept becomes more clear, for example, in the way the genetic component would react under different regulatory conditions. Using the framework it has become a realistic aim to link mathematical modelling to novel tools of bioinformatics in the future, at least if the number of regulatory units can be estimated. This should hold in any case in synthetic environments due to the fact that the different synthetic genetic components are simply known (Elowitz and Leibler, Nature 403(6767):335-338, 2000; Gardner et al., Nature 403(6767):339-342, 2000; Hasty et al., Nature 420(6912):224-230, 2002). The paper illustrates therefore as a necessary first step how a detailed modelling of molecular interactions with known molecular components leads to a dynamic mathematical model that can be compared to experimental results on various levels or scales. The different genetic modules or components are represented in different detail by model variants. We explain how the framework can be used for investigating other more complex genetic systems in terms of regulation and feedback.
Collapse
|
22
|
Kaiser BN, Hrmova M. A glimpse at regulation of nitrogen homeostasis. Structure 2010; 18:1395-7. [PMID: 21070938 DOI: 10.1016/j.str.2010.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NrpR is a 2-oxoglutarate (2OG)-sensing transcription factor found in the archaeal phylum euryarchaetoa. When 2OG concentrations are low, NrpR transcriptionally represses expression of the nitrogen acquisition genes. Structural studies by Wisedchaisri et al. (2010) have identified the cleft region, where 2OG binds to NrpR. Their study has highlighted conservation of 2OG-binding residues among other 2OG-responsive proteins.
Collapse
Affiliation(s)
- Brent N Kaiser
- School of Agriculture, Food, and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia.
| | | |
Collapse
|
23
|
Yurgel SN, Rice J, Mulder M, Kahn ML. GlnB/GlnK PII proteins and regulation of the Sinorhizobium meliloti Rm1021 nitrogen stress response and symbiotic function. J Bacteriol 2010; 192:2473-81. [PMID: 20304991 PMCID: PMC2863565 DOI: 10.1128/jb.01657-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/10/2010] [Indexed: 11/20/2022] Open
Abstract
The Sinorhizobium meliloti Rm1021 Delta glnD-sm2 mutant, which is predicted to make a GlnD nitrogen sensor protein truncated at its amino terminus, fixes nitrogen in symbiosis with alfalfa, but the plants cannot use this nitrogen for growth (S. N. Yurgel and M. L. Kahn, Proc. Natl. Acad. Sci. U. S. A. 105:18958-18963, 2008). The mutant also has a generalized nitrogen stress response (NSR) defect. These results suggest a connection between GlnD, symbiotic metabolism, and the NSR, but the nature of this connection is unknown. In many bacteria, GlnD modifies the PII proteins, GlnB and GlnK, as it transduces a measurement of bacterial nitrogen status to a cellular response. We have now constructed and analyzed Rm1021 mutants missing GlnB, GlnK, or both proteins. Rm1021 Delta glnK Delta glnB was much more defective in its NSR than either single mutant, suggesting that GlnB and GlnK overlap in regulating the NSR in free-living Rm1021. The single mutants and the double mutant all formed an effective symbiosis, indicating that symbiotic nitrogen exchange could occur without the need for either GlnB or GlnK. N-terminal truncation of the GlnD protein interfered with PII protein modification in vitro, suggesting either that unmodified PII proteins were responsible for the glnD mutant's ineffective phenotype or that connecting GlnD and appropriate symbiotic behavior does not require the PII proteins.
Collapse
Affiliation(s)
- Svetlana N Yurgel
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164-6340, USA.
| | | | | | | |
Collapse
|
24
|
Kumar R, Shimizu K. Metabolic regulation of Escherichia coli and its gdhA, glnL, gltB, D mutants under different carbon and nitrogen limitations in the continuous culture. Microb Cell Fact 2010; 9:8. [PMID: 20105320 PMCID: PMC2827463 DOI: 10.1186/1475-2859-9-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/27/2010] [Indexed: 11/22/2022] Open
Abstract
Background It is quite important to understand how the central metabolism is regulated under nitrogen (N)- limitation as well as carbon (C)- limitation. In particular, the effect of C/N ratio on the metabolism is of practical interest for the heterologous protein production, PHB production, etc. Although the carbon and nitrogen metabolisms are interconnected and the overall mechanism is complicated, it is strongly desirable to clarify the effects of culture environment on the metabolism from the practical application point of view. Results The effect of C/N ratio on the metabolism in Escherichia coli was investigated in the aerobic continuous culture at the dilution rate of 0.2 h-1 based on fermentation data, transcriptional RNA level, and enzyme activity data. The glucose concentration was kept at 10 g/l, while ammonium sulfate concentration was varied from 5.94 to 0.594 g/l. The resultant C/N ratios were 1.68 (100%), 2.81(60%), 4.21(40%), 8.42(20%), and 16.84(10%), where the percentage values in brackets indicate the ratio of N- concentration as compared to the case of 5.94 g/l of ammonium sulfate. The mRNA levels of crp and mlc decreased, which caused ptsG transcript expression to be up-regulated as C/N ratio increased. As C/N ratio increased cra transcript expression decreased, which caused ptsH, pfkA, and pykF to be up-regulated. At high C/N ratio, transcriptional mRNA level of soxR/S increased, which may be due to the activated respiratory chain as indicated by up-regulations of such genes as cyoA, cydB, ndh as well as the increase in the specific CO2 production rate. The rpoN transcript expression increased with the increase in C/N ratio, which led glnA, L, G and gltD transcript expression to change in similar fashion. The nac transcript expression showed similar trend as rpoN, while gdhA transcript expression changed in reverse direction. The transcriptional mRNA level of glnB, which codes for PII, glnD and glnK increased as C/N ratio increases. It was shown that GS-GOGAT pathway was activated for gdhA mutant under N- rich condition. In the case of glnL mutant, GOGAT enzyme activity was reduced as compared to the wild type under N- limitation. In the case of gltB, D mutants, GDH and GS enzymes were utilized under both N- rich and N- limited conditions. In this case, the transcriptional mRNA level of gdhA and corresponding GDH enzyme activity was higher under N- limitation as compared to N- rich condition. Conclusion The metabolic regulation of E.coli was clarified under both carbon (C)- limitation and nitrogen (N)- limitation based on fermentation, transcriptional mRNA level and enzyme activities. The overall regulation mechanism was proposed. The effects of knocking out N- assimilation pathway genes were also clarified.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | | |
Collapse
|
25
|
NtrC-dependent regulatory network for nitrogen assimilation in Pseudomonas putida. J Bacteriol 2009; 191:6123-35. [PMID: 19648236 DOI: 10.1128/jb.00744-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 is a model strain for studying bacterial biodegradation processes. However, very little is known about nitrogen regulation in this strain. Here, we show that the nitrogen regulatory NtrC proteins from P. putida and Escherichia coli are functionally equivalent and that substitutions leading to partially active forms of enterobacterial NtrC provoke the same phenotypes in P. putida NtrC. P. putida has only a single P(II)-like protein, encoded by glnK, whose expression is nitrogen regulated. Two contiguous NtrC binding sites located upstream of the sigma(N)-dependent glnK promoter have been identified by footprinting analysis. In vitro experiments with purified proteins demonstrated that glnK transcription was directly activated by NtrC and that open complex formation at this promoter required integration host factor. Transcription of genes orthologous to enterobacterial codB, dppA, and ureD genes, whose transcription is dependent on sigma(70) and which are activated by Nac in E. coli, has also been analyzed for P. putida. Whereas dppA does not appear to be regulated by nitrogen via NtrC, the codB and ureD genes have sigma(N)-dependent promoters and their nitrogen regulation was exerted directly by NtrC, thus avoiding the need for Nac, which is missing in this bacterial species. Based upon these results, we propose a simplified nitrogen regulatory network in P. putida (compared to that in enterobacteria), which involves an indirect-feedback autoregulation of glnK using NtrC as an intermediary.
Collapse
|
26
|
Abstract
A wide range of Bacteria and Archaea sense cellular 2-oxoglutarate (2OG) as an indicator of nitrogen limitation. 2OG sensor proteins are varied, but most of those studied belong to the PII superfamily. Within the PII superfamily, GlnB and GlnK represent a widespread family of homotrimeric proteins (GlnB-K) that bind and respond to 2OG and ATP. In some bacterial phyla, GlnB-K proteins are covalently modified, depending on enzymes that sense cellular glutamine as an indicator of nitrogen sufficiency. GlnB-K proteins are central clearing houses of nitrogen information and bind and modulate a variety of nitrogen assimilation regulators and enzymes. NifI(1) and NifI(2) comprise a second widespread family of PII proteins (NifI) that are heteromultimeric, respond to 2OG and ATP, and bind and regulate dinitrogenase in Euryarchaeota and many Bacteria.
Collapse
Affiliation(s)
- John A Leigh
- Department of Microbiology, University of Washington, Seattle, Washington 98195-7242, USA.
| | | |
Collapse
|
27
|
Zhang Y, Wolfe DM, Pohlmann EL, Conrad MC, Roberts GP. Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum. MICROBIOLOGY-SGM 2006; 152:2075-2089. [PMID: 16804182 DOI: 10.1099/mic.0.28903-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The AmtB protein transports uncharged NH(3) into the cell, but it also interacts with the nitrogen regulatory protein P(II), which in turn regulates a variety of proteins involved in nitrogen fixation and utilization. Three P(II) homologues, GlnB, GlnK and GlnJ, have been identified in the photosynthetic bacterium Rhodospirillum rubrum, and they have roles in at least four overlapping and distinct functions, one of which is the post-translational regulation of nitrogenase activity. In R. rubrum, nitrogenase activity is tightly regulated in response to addition or energy depletion (shift to darkness), and this regulation is catalysed by the post-translational regulatory system encoded by draTG. Two amtB homologues, amtB(1) and amtB(2), have been identified in R. rubrum, and they are linked with glnJ and glnK, respectively. Mutants lacking AmtB(1) are defective in their response to both addition and darkness, while mutants lacking AmtB(2) show little effect on the regulation of nitrogenase activity. These responses to darkness and appear to involve different signal transduction pathways, and the poor response to darkness does not seem to be an indirect result of perturbation of internal pools of nitrogen. It is also shown that AmtB(1) is necessary to sequester detectable amounts GlnJ to the cell membrane. These results suggest that some element of the AmtB(1)-P(II) regulatory system senses energy deprivation and a consistent model for the integration of nitrogen, carbon and energy signals by P(II) is proposed. Other results demonstrate a degree of specificity in interaction of AmtB(1) with the different P(II) homologues in R. rubrum. Such interaction specificity might be important in explaining the way in which P(II) proteins regulate processes involved in nitrogen acquisition and utilization.
Collapse
Affiliation(s)
- Yaoping Zhang
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M Wolfe
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward L Pohlmann
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary C Conrad
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gary P Roberts
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
28
|
Connelly HM, Pelletier DA, Lu TY, Lankford PK, Hettich RL. Characterization of pII family (GlnK1, GlnK2, and GlnB) protein uridylylation in response to nitrogen availability for Rhodopseudomonas palustris. Anal Biochem 2006; 357:93-104. [PMID: 16860774 DOI: 10.1016/j.ab.2006.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 05/30/2006] [Indexed: 11/23/2022]
Abstract
The GlnK and GlnB proteins are members of the pII signal transduction protein family, which is essential in nitrogen regulation due to this protein family's ability to sense internal cellular ammonium levels and control cellular response. The role of GlnK in nitrogen regulation has been studied in a variety of bacteria but previously has been uncharacterized in the purple nonsulfur anoxygenic phototropic bacterium Rhodopseudomonas palustris. R. palustris has tremendous metabolic versatility in its modes of energy generation and carbon metabolism, and it employs a sensitive nitrogen-ammonium regulation system that may vary from that of other commonly studied bacteria. In R. palustris, there are three annotated forms of pII proteins: GlnK1, GlnK2, and GlnB. Here we describe, for the first time, the characterization of GlnK1, GlnK2, and GlnB modifications as a response to nitrogen availability, thereby providing information about how this bacterium regulates the AmtB ammonium transporter and glutamine synthetase, which controls the rate of glutamate to glutamine conversion. Using a strategy of creating C-terminally tagged GlnK and GlnB proteins followed by tandem affinity purification in combination with top-down mass spectrometry, four isoforms of the GlnK2 and GlnB proteins and two isoforms of the GlnK1 protein were characterized at high resolution and mass accuracy. Wild-type or endogenous expression of all three proteins was also examined under normal ammonium conditions and ammonium starvation to ensure that the tagging and affinity purification methods employed did not alter the natural state of the proteins. All three proteins were found to undergo uridylylation under ammonium starvation conditions, presumably to regulate the AmtB ammonium transporter and glutamine synthetase. Under high-ammonium conditions, the GlnK1, GlnK2, and GlnB proteins are unmodified. This experimental protocol involving high-resolution mass spectrometry measurements of intact proteins provides a powerful method of examining the posttranslational modifications that play a crucial role in both the regulation of the AmtB ammonium transporter and glutamine synthetase within R. palustris.
Collapse
Affiliation(s)
- Heather M Connelly
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, TN 37831, USA
| | | | | | | | | |
Collapse
|
29
|
Ninfa AJ, Jiang P. PII signal transduction proteins: sensors of alpha-ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol 2005; 8:168-73. [PMID: 15802248 DOI: 10.1016/j.mib.2005.02.011] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PII proteins are small homotrimeric signal transduction proteins that regulate the activities of metabolic enzymes and permeases, and control the activities of signal transduction enzymes. The protein family shows high conservation, with examples in eukaryota (plants and eukaryotic algae), archaea, and bacteria. This distribution indicates that PII is one of the most ancient signalling proteins known.
Collapse
Affiliation(s)
- Alexander J Ninfa
- Department of Biological Chemistry, University of Michigan Medical School, 1301 E. Catherine St., Ann Arbor, Michigan 48109-0606, USA.
| | | |
Collapse
|
30
|
Ehlers C, Weidenbach K, Veit K, Forchhammer K, Schmitz RA. Unique mechanistic features of post-translational regulation of glutamine synthetase activity inMethanosarcina mazeistrain Gö1 in response to nitrogen availability. Mol Microbiol 2005; 55:1841-54. [PMID: 15752204 DOI: 10.1111/j.1365-2958.2005.04511.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PII-like signal transduction proteins are found in all three domains of life and have been shown to play key roles in the control of bacterial nitrogen assimilation. This communication reports the first target protein of an archaeal PII-like protein, representing a novel PII receptor. The GlnK(1) protein of the methanogenic archaeon Methanosarcina mazei strain Go1 interacts and forms stable complexes with glutamine synthetase (GlnA(1)). Complex formation with GlnK(1) in the absence of metabolites inhibits the activity of GlnA(1). On the other hand, the activity of this enzyme is directly stimulated by the effector molecule 2-oxoglutarate. Moreover, 2-oxoglutarate antagonized the inhibitory effects of GlnK(1) on GlnA(1) activity but did not prevent GlnK(1)/GlnA(1) complex formation. On the basis of these findings, we hypothesize that besides the dominant effector molecule 2-oxoglutarate, the nitrogen sensor GlnK(1) allows finetuning control of the glutamine synthetase activity under changing nitrogen availabilities and propose the following model. (i) Under nitrogen limitation, increasing concentrations of 2-oxoglutarate stimulate maximal GlnA(1) activity and transform GlnA(1) into an activated conformation, which prevents inhibition by GlnK(1). (ii) Upon a shift to nitrogen sufficiency after a period of nitrogen limitation, GlnA(1) activity is reduced by decreasing internal 2-oxoglutarate concentrations through diminished direct activation and by GlnK(1) inhibition.
Collapse
Affiliation(s)
- Claudia Ehlers
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstr 8, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
31
|
Martinez-Argudo I, Little R, Dixon R. Role of the amino-terminal GAF domain of the NifA activator in controlling the response to the antiactivator protein NifL. Mol Microbiol 2004; 52:1731-44. [PMID: 15186421 DOI: 10.1111/j.1365-2958.2004.04089.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NifA protein from Azotobacter vinelandii belongs to a family of enhancer binding proteins (EBPs) that activate transcription by RNA polymerase containing the sigma factor sigma(54). These proteins have conserved AAA+ domains that catalyse ATP hydrolysis to drive conformational changes necessary for open complex formation by sigma(54)-RNA polymerase. The activity of the NifA protein is highly regulated in response to redox and fixed nitrogen through interaction with the antiactivator protein NifL. Binding of NifL to NifA inhibits the ATPase activity of NifA, and this interaction is controlled by the amino-terminal GAF domain of NifA that binds 2-oxoglutarate. Mutations conferring resistance to NifL are located in both the GAF and the AAA+ domains of NifA. To investigate the mechanism by which the GAF domain regulates the activity of the AAA+ domain, we screened for second-site mutations that suppress the NifL-resistant phenotype of mutations in the AAA+ domain. One suppressor mutation, F119S, in the GAF domain restores inhibition by NifL to an AAA+ domain mutation, E356K, in response to fixed nitrogen but not in response to oxygen. The biochemical properties of this mutant protein are consistent with the in vivo phenotype and demonstrate that interdomain suppression results in sensitivity to inhibition by NifL in the presence of the signal transduction protein GlnK, but not to the oxidized form of NifL. In the absence of an AAA+ domain mutation, the F119S mutation confers hypersensitivity to repression by NifL. Isothermal titration calorimetry demonstrates that this mutation prevents binding of 2-oxoglutarate to the GAF domain. Our data support a model in which the GAF domain plays an essential role in preventing inhibition by NifL under conditions appropriate for nitrogen fixation. These observations are of general significance in considering how the activities of EBPs are controlled in response to environmental signals.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
32
|
Ziegler C, Morbach S, Schiller D, Krämer R, Tziatzios C, Schubert D, Kühlbrandt W. Projection Structure and Oligomeric State of the Osmoregulated Sodium/Glycine Betaine Symporter BetP of Corynebacterium glutamicum. J Mol Biol 2004; 337:1137-47. [PMID: 15046983 DOI: 10.1016/j.jmb.2004.02.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Revised: 02/06/2004] [Accepted: 02/09/2004] [Indexed: 11/24/2022]
Abstract
The high-affinity glycine betaine uptake system BetP, an osmosensing and osmoregulated sodium-coupled symporter from Corynebacterium glutamicum, was overexpressed in Escherichia coli with an N-terminal StrepII-tag, solubilized in beta-dodecylmaltoside and purified by streptactin affinity chromatography. Analytical ultracentrifugation indicated that BetP forms trimers in detergent solution. Detergent-solubilized BetP can be reconstituted into proteoliposomes without loss of function, suggesting that BetP is a trimer in the bacterial membrane. Reconstitution with E.coli polar lipids produced 2D crystals with unit cell parameters of 182A x 154A, gamma=90 degrees exhibiting p22(1)2(1) symmetry. Electron cryo-microscopy yielded a projection map at 7.5A. The unit cell contains four non-crystallographic trimers of BetP. Within each monomer, ten to 12 density peaks characteristic of transmembrane alpha-helices surround low-density regions that define potential transport pathways. Small but significant differences between the three monomers indicate that the trimer does not have exact 3-fold symmetry. The observed differences may be due to crystal packing, or they may reflect different functional states of the transporter, related to osmosensing and osmoregulation. The projection map of BetP shows no clear resemblance to other secondary transporters of known structure.
Collapse
Affiliation(s)
- C Ziegler
- Department of Structural Biology, Max-Planck-Institut für Biophysik, 60528 Frankfurt am Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The Amt proteins are high affinity ammonium transporters that are conserved in all domains of life. In bacteria and archaea the Amt structural genes (amtB) are invariably linked to glnK, which encodes a member of the P(II) signal transduction protein family, proteins that regulate many facets of nitrogen metabolism. We have now shown that Escherichia coli AmtB is inactivated by formation of a membrane-bound complex with GlnK. Complex formation is reversible and occurs within seconds in response to micromolar changes in the extracellular ammonium concentration. Regulation is mediated by the uridylylation/deuridylylation of GlnK in direct response to fluctuations in the intracellular glutamine pool. Furthermore under physiological conditions AmtB activity is required for GlnK deuridylylation. Hence the transporter is an integral part of the signal transduction cascade, and AmtB can be formally considered to act as an ammonium sensor. This system provides an exquisitely sensitive mechanism to control ammonium flux into the cell, and the conservation of glnK linkage to amtB suggests that this regulatory mechanism may occur throughout prokaryotes.
Collapse
Affiliation(s)
- Arnaud Javelle
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
34
|
Zhang Y, Pohlmann EL, Roberts GP. Identification of critical residues in GlnB for its activation of NifA activity in the photosynthetic bacterium Rhodospirillum rubrum. Proc Natl Acad Sci U S A 2004; 101:2782-7. [PMID: 14970346 PMCID: PMC365697 DOI: 10.1073/pnas.0306763101] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The P(II) regulatory protein family is unusually widely distributed, being found in all three domains of life. Three P(II) homologs called GlnB, GlnK, and GlnJ have been identified in the photosynthetic bacterium Rhodospirillum rubrum. These have roles in at least four distinct functions, one of which is activation of the nitrogen fixation-specific regulatory protein NifA. The activation of NifA requires only the covalently modified (uridylylated) form of GlnB. GlnK and GlnJ are not involved. However, the basis of specificity for different P(II) homologs in different processes is poorly understood. We examined this specificity by altering GlnJ to support NifA activation. A small number of amino acid substitutions in GlnJ were important for this ability. Two (affecting residues 45 and 54) are in a loop called the T-loop, which contains the site of uridylylation and is believed to be very important for contacts with other proteins, but other critical residues lie in the C terminus (residues 95-97 and 109-112) and near the N terminus (residues 3-5 and 17). Because many of the residues important for P(II)-NifA interaction lie far from the T-loop in the known x-ray crystal structures of P(II) proteins, our results lead to the hypothesis that the T-loop of GlnB is flexible enough to come into proximity with both the C- and N-terminal regions of the protein to bind NifA. Finally, the results show that the level of P(II) accumulation is also an important factor for NifA activation.
Collapse
Affiliation(s)
- Yaoping Zhang
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
35
|
Abstract
Nitrogen limitation in Escherichia coli controls the expression of about 100 genes of the nitrogen regulated (Ntr) response, including the ammonia-assimilating glutamine synthetase. Low intracellular glutamine controls the Ntr response through several regulators, whose activities are modulated by a variety of metabolites. Ntr proteins assimilate ammonia, scavenge nitrogen-containing compounds, and appear to integrate ammonia assimilation with other aspects of metabolism, such as polyamine metabolism and glutamate synthesis. The leucine-responsive regulatory protein (Lrp) controls the synthesis of glutamate synthase, which controls the Ntr response, presumably through its effect on intracellular glutamine. Some Ntr proteins inhibit the expression of some Lrp-activated genes. Guanosine tetraphosphate appears to control Lrp synthesis. In summary, a network of interacting global regulators that senses different aspects of metabolism integrates nitrogen assimilation with other metabolic processes.
Collapse
Affiliation(s)
- Larry Reitzer
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, Texas 75080-0688, USA.
| |
Collapse
|
36
|
Burkovski A. Ammonium assimilation and nitrogen control in Corynebacterium glutamicum and its relatives: an example for new regulatory mechanisms in actinomycetes. FEMS Microbiol Rev 2004; 27:617-28. [PMID: 14638415 DOI: 10.1016/s0168-6445(03)00067-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nitrogen is an essential component of nearly all complex macromolecules in a bacterial cell, such as proteins, nucleic acids and cell wall components. Accordingly, most prokaryotes have developed elaborate control mechanisms to provide an optimal supply of nitrogen for cellular metabolism and to cope with situations of nitrogen limitation. In this review, recent advances in our knowledge of ammonium uptake, its assimilation, and related regulatory systems in Corynebacterium glutamicum, a Gram-positive soil bacterium used for the industrial production of amino acids, are summarized and discussed with respect to the situation in the bacterial model organisms, Escherichia coli and Bacillus subtilis, and in comparison to the situation in other actinomycetes, namely in mycobacteria and streptomycetes. The regulatory network of nitrogen control in C. glutamicum seems to be a patchwork of different elements. It includes proteins similar to the UTase/GlnK pathway of E. coli and expression regulation by a repressor protein as in B. subtilis, but it lacks an NtrB/NtrC two-component signal transduction system. Furthermore, the C. glutamicum regulation network has unique features, such as a new sensing mechanism. Based on its extremely well-investigated central metabolism, well-established molecular biology tools, a public genome sequence and a newly-established proteome project, C. glutamicum seems to be a suitable model organism for other corynebacteria, such as Corynebacterium diphtheriae and Corynebacterium efficiens.
Collapse
Affiliation(s)
- Andreas Burkovski
- Institut für Biochemie der Universität zu Köln, Zülpicher-Strasse 47, 50674 Cologne, Germany.
| |
Collapse
|
37
|
Maheswaran M, Forchhammer K. Carbon-source-dependent nitrogen regulation in Escherichia coli is mediated through glutamine-dependent GlnB signalling. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2163-2172. [PMID: 12904556 DOI: 10.1099/mic.0.26449-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The P(II) signal transduction proteins GlnB and GlnK are uridylylated/deuridylylated in response to the intracellular glutamine level, the primary signal of the cellular nitrogen status. Furthermore, GlnB was shown to be allosterically regulated by 2-oxoglutarate, and thus GlnB was suggested to integrate signals of the cellular carbon and nitrogen status. Receptors of GlnB signal transduction in Escherichia coli are the NtrB/NtrC two-component system and GlnE, an enzyme which adenylylates/deadenylylates glutamine synthetase. In this study, the authors investigated the effect of different carbon sources on the expression of the NtrC-dependent genes glnA and glnK and on the uridylylation status of GlnB and GlnK. With glutamine as nitrogen source, high levels of glnA and glnK expression were obtained when glucose was used as carbon source, but expression was strongly decreased when the cells were grown with poor carbon sources or when cAMP was present. This response correlated with the uridylylation status of GlnB, suggesting that the carbon/cAMP effect was mediated through GlnB uridylylation, a conclusion that was confirmed by mutants of the P(II) signalling pathway. When glutamine was replaced by low concentrations of ammonium as nitrogen source, neither glnAglnK expression nor GlnB uridylylation responded to the carbon source or to cAMP. Furthermore, glutamine synthetase could be rapidly adenylylated in vivo by the external addition of glutamine; however, this occurred only when cells were grown in the presence of cAMP, not in its absence. Together, these results suggest that poor carbon sources, through cAMP signalling, favour glutamine uptake. The cellular glutamine signal is then transduced by uridylyltransferase and GlnB to modulate NtrC-dependent gene expression.
Collapse
Affiliation(s)
- Mani Maheswaran
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Karl Forchhammer
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| |
Collapse
|
38
|
Salinas P, Contreras A. Identification and analysis of Escherichia coli proteins that interact with the histidine kinase NtrB in a yeast two-hybrid system. Mol Genet Genomics 2003; 269:574-81. [PMID: 12838411 DOI: 10.1007/s00438-003-0866-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 05/21/2003] [Indexed: 10/26/2022]
Abstract
In this work we used the yeast two-hybrid (Y2H) system to deepen our understanding of protein-protein interactions that are involved in the nitrogen regulatory network in Escherichia coli. Three different genes, encoding GlnB, GlnK and AspA, respectively, were found among 64 positive clones identified from E. coli Sau3AI Y2H libraries using the nitrogen regulator NtrB as bait. Structural and functional analysis of the prey clones provided information on library features and the degree of saturation achieved in the screens. Further analysis revealed that the C-terminal kinase domain of NtrB is required for the interaction with GlnK, while AspA(91-312) interacts specifically with the conserved histidine phosphotransfer domain of NtrB, thus providing additional evidence for the involvement of the conserved transmitter module of the histidine kinase NtrB in input sensory functions.
Collapse
Affiliation(s)
- P Salinas
- División de Genética, Facultad de Ciencias, Universidad de Alicante, Apartado 99, 03080 Alicante, Spain
| | | |
Collapse
|
39
|
Abstract
Escherichia coli AmtB is a member of the MEP/Amt family of ammonia transporters found in archaea, eubacteria, fungi, plants and animals. In prokaryotes, AmtB homologues are co-transcribed with a PII paralogue, GlnK, in response to nitrogen limitation. Here, we show that AmtB antagonizes PII signalling through NRII and that co-expression of GlnK with AmtB overcomes this antagonism. In cells lacking GlnK, expression of AmtB during nitrogen starvation prevented deinduction of Ntr gene expression when a nitrogen source became available. The absence of AmtB in cells lacking GlnK allowed rapid reduction of Ntr gene expression during this transition, indicating that one function of GlnK is to prevent AmtB-mediated antagonism of PII signalling after nitrogen starvation. Other roles of GlnK in controlling Ntr gene expression and maintaining viability during nitrogen starvation were unaffected by AmtB. Expression of AmtB from a constitutive promoter under nitrogen-rich conditions induced full expression of glnALG and elevated expression of glnK in wild-type and glnK cells; thus, the ability of AmtB to raise Ntr gene expression did not require a factor found only in nitrogen-starved cells. Experiments with intact cells showed that AmtB acted downstream of a uridylyl transferase uridylyl-removing enzyme (UTase/UR) and upstream of NRII, suggesting that the target was PII. AmtB also slowed the deuridylylation of PII approximately UMP upon ammonia addition, showing that multiple PII interactions were affected by AmtB. Our data are consistent with a hypothesis that AmtB interacts with PII and GlnK, and that co-transcription of glnK and amtB prevents titration of PII when AmtB is highly expressed.
Collapse
Affiliation(s)
- Timothy A Blauwkamp
- Department of Biological Chemistry, University of Michigan Medical School, 1301 E Catherine, Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|
40
|
Pioszak AA, Ninfa AJ. Genetic and biochemical analysis of phosphatase activity of Escherichia coli NRII (NtrB) and its regulation by the PII signal transduction protein. J Bacteriol 2003; 185:1299-315. [PMID: 12562801 PMCID: PMC142841 DOI: 10.1128/jb.185.4.1299-1315.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutant forms of Escherichia coli NRII (NtrB) were isolated that retained wild-type NRII kinase activity but were defective in the PII-activated phosphatase activity of NRII. Mutant strains were selected as mimicking the phenotype of a strain (strain BK) that lacks both of the related PII and GlnK signal transduction proteins and thus has no mechanism for activation of the NRII phosphatase activity. The selection and screening procedure resulted in the isolation of numerous mutants that phenotypically resembled strain BK to various extents. Mutations mapped to the glnL (ntrB) gene encoding NRII and were obtained in all three domains of NRII. Two distinct regions of the C-terminal, ATP-binding domain were identified by clusters of mutations. One cluster, including the Y302N mutation, altered a lid that sits over the ATP-binding site of NRII. The other cluster, including the S227R mutation, defined a small surface on the "back" or opposite side of this domain. The S227R and Y302N proteins were purified, along with the A129T (NRII2302) protein, which has reduced phosphatase activity due to a mutation in the central domain of NRII, and the L16R protein, which has a mutation in the N-terminal domain of NRII. The S227R, Y302N, and L16R proteins were specifically defective in the PII-activated phosphatase activity of NRII. Wild-type NRII, Y302N, A129T, and L16R proteins bound to PII, while the S227R protein was defective in binding PII. This suggests that the PII-binding site maps to the "back" of the C-terminal domain and that mutation of the ATP-lid, central domain, and N-terminal domain altered functions necessary for the phosphatase activity after PII binding.
Collapse
Affiliation(s)
- Augen A Pioszak
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| | | |
Collapse
|
41
|
Burkovski A. I do it my way: Regulation of ammonium uptake and ammonium assimilation in Corynebacterium glutamicum. Arch Microbiol 2003; 179:83-8. [PMID: 12560985 DOI: 10.1007/s00203-002-0505-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Revised: 11/11/2002] [Accepted: 11/16/2002] [Indexed: 02/28/2023]
Abstract
In order to utilize different nitrogen sources and to survive situations of nitrogen limitation, microorganisms have developed several mechanisms to adapt their metabolism to changes in the nitrogen supply. In this communication, recent advances in our knowledge of ammonium uptake, its assimilation, and connected regulatory systems in Corynebacterium glutamicum are discussed with respect to the situation in the bacterial model organisms Escherichia coli and Bacillus subtilis. The regulatory network of nitrogen control in C. glutamicum differs substantially from that in these bacteria, for example, by the presence of AmtR, the unique "master regulator" of nitrogen control, the absence of a NtrB/NtrC two-component signal transduction system, and a different sensing mechanism in C. glutamicum.
Collapse
Affiliation(s)
- Andreas Burkovski
- Institut für Biochemie der Universität zu Köln, Zülpicher-Strasse 47, 50674, Köln, Germany.
| |
Collapse
|
42
|
Blauwkamp TA, Ninfa AJ. Physiological role of the GlnK signal transduction protein of Escherichia coli: survival of nitrogen starvation. Mol Microbiol 2002; 46:203-14. [PMID: 12366843 DOI: 10.1046/j.1365-2958.2002.03153.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli contains two PII-like signal trans-duction proteins, PII and GlnK, involved in nitrogen assimilation. We examined the roles of PII and GlnK in controlling expression of glnALG, glnK and nac during the transition from growth on ammonia to nitrogen starvation and vice versa. The PII protein exclusively controlled glnALG expression in cells adapted to growth on ammonia, but was unable to limit nac and glnK expression under conditions of nitrogen starvation. Conversely, GlnK was unable to limit glnALG expression in cells adapted to growth on ammonia, but was required to limit expression of the glnK and nac promoters during nitrogen starvation. In the absence of GlnK, very high expression of the glnK and nac promoters occurred in nitrogen-starved cells, and the cells did not reduce glnK and nac expression when given ammonia. Thus, one specific role of GlnK is to regulate the expression of Ntr genes during nitrogen starvation. GlnK also had a dramatic effect on the ability of cells to survive nitrogen starvation and resume rapid growth when fed ammonia. After being nitrogen starved for as little as 10 h, cells lacking GlnK were unable to resume rapid growth when given ammonia. In contrast, wild-type cells that were starved immediately resumed rapid growth when fed ammonia. Cells lacking GlnK also showed faster loss of viability during extended nitrogen starvation relative to wild-type cells. This complex phenotype resulted partly from the requirement for GlnK to regulate nac expression; deletion of nac restored wild-type growth rates after ammonia starvation and refeeding to cells lacking GlnK, but did not improve viability during nitrogen starvation. The specific roles of GlnK during nitrogen starvation were not the result of a distinct function of the protein, as expression of PII from the glnK promoter in cells lacking GlnK restored the wild-type phenotypes.
Collapse
Affiliation(s)
- Timothy A Blauwkamp
- Department of Biological Chemistry, University of Michigan Medical School, 1301 E. Catherine, Ann Arbor, MI 48109-0606, USA
| | | |
Collapse
|