1
|
Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M, Yang B. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol Rev 2024; 48:fuae028. [PMID: 39537200 PMCID: PMC11644481 DOI: 10.1093/femsre/fuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that infects humans by colonizing the large intestine. Upon reaching the large intestine, EHEC mediates local signal recognition and the transcriptional regulation of virulence genes to promote adherence and colonization in a highly site-specific manner. Two-component systems (TCSs) represent an important strategy used by EHEC to couple external stimuli with the regulation of gene expression, thereby allowing EHEC to rapidly adapt to changing environmental conditions. An increasing number of studies published in recent years have shown that EHEC senses a variety of host- and microbiota-derived signals present in the human intestinal tract and coordinates the expression of virulence genes via multiple TCS-mediated signal transduction pathways to initiate the disease-causing process. Here, we summarize how EHEC detects a wide range of intestinal signals and precisely regulates virulence gene expression through multiple signal transduction pathways during the initial stages of infection, with a particular emphasis on the key roles of TCSs. This review provides valuable insights into the importance of TCSs in EHEC pathogenesis, which has relevant implications for the development of antibacterial therapies against EHEC infection.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
2
|
Lally P, Tierrafría V, Gómez-Romero L, Stringer A, Collado-Vides J, Wade J, Galagan J. A Cryptic Prophage Transcription Factor Drives Phenotypic Changes via Host Gene Regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614188. [PMID: 39345586 PMCID: PMC11430063 DOI: 10.1101/2024.09.21.614188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cryptic prophages (CPs) are elements of bacterial genomes acquired from bacteriophage that infect the host cell and ultimately become stably integrated within the host genome. While some proteins encoded by CPs can modulate host phenotypes, the potential for Transcription Factors (TFs) encoded by CPs to impact host physiology by regulating host genes has not been thoroughly investigated. In this work, we report hundreds of host genes regulated by DicC, a DNA-binding TF encoded in the Qin prophage of Esherichia coli. We identified host-encoded regulatory targets of DicC that could be linked to known phenotypes of its induction. We also demonstrate that a DicC-induced growth defect is largely independent of other Qin prophage genes. Our data suggest a greater role for cryptic prophage TFs in controlling bacterial host gene expression than previously appreciated.
Collapse
Affiliation(s)
- P. Lally
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - V.H. Tierrafría
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, México
| | - L. Gómez-Romero
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Ciudad de México 14610, México
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Ciudad de México, México
| | - A. Stringer
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - J. Collado-Vides
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, México
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - J.T. Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, USA
| | - J.E. Galagan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
- Bioinformatics Program, Boston University, 24 Cummington Mall, Boston, MA 02215
| |
Collapse
|
3
|
Gorelik MG, Yakhnin H, Pannuri A, Walker AC, Pourciau C, Czyz D, Romeo T, Babitzke P. Multitier regulation of the E. coli extreme acid stress response by CsrA. J Bacteriol 2024; 206:e0035423. [PMID: 38319100 PMCID: PMC11210196 DOI: 10.1128/jb.00354-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
CsrA is an RNA-binding protein that regulates processes critical for growth and survival, including central carbon metabolism, motility, biofilm formation, stress responses, and expression of virulence factors in pathogens. Transcriptomics studies in Escherichia coli suggested that CsrA repressed genes involved in surviving extremely acidic conditions. Here, we examine the effects of disrupting CsrA-dependent regulation on the expression of genes and circuitry for acid stress survival and demonstrate CsrA-mediated repression at multiple levels. We show that this repression is critical for managing the trade-off between growth and survival; overexpression of acid stress genes caused by csrA disruption enhances survival under extreme acidity but is detrimental for growth under mildly acidic conditions. In vitro studies confirmed that CsrA binds specifically to mRNAs of structural and regulatory genes for acid stress survival, causing translational repression. We also found that translation of the top-tier acid stress regulator, evgA, is coupled to that of a small leader peptide, evgL, which is repressed by CsrA. Unlike dedicated acid stress response genes, csrA and its sRNA antagonists, csrB and csrC, did not exhibit a substantial response to acid shock. Furthermore, disruption of CsrA regulation of acid stress genes impacted host-microbe interactions in Caenorhabditis elegans, alleviating GABA deficiencies. This study expands the known regulon of CsrA to genes of the extreme acid stress response of E. coli and highlights a new facet of the global role played by CsrA in balancing the opposing physiological demands of stress resistance with the capacity for growth and modulating host interactions.IMPORTANCETo colonize/infect the mammalian intestinal tract, bacteria must survive exposure to the extreme acidity of the stomach. E. coli does this by expressing proteins that neutralize cytoplasmic acidity and cope with molecular damage caused by low pH. Because of the metabolic cost of these processes, genes for surviving acid stress are tightly regulated. Here, we show that CsrA negatively regulates the cascade of expression responsible for the acid stress response. Increased expression of acid response genes due to csrA disruption improved survival at extremely low pH but inhibited growth under mildly acidic conditions. Our findings define a new layer of regulation in the acid stress response of E. coli and a novel physiological function for CsrA.
Collapse
Affiliation(s)
- Mark G. Gorelik
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Alyssa C. Walker
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel Czyz
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Rojano-Nisimura AM, Grismore KB, Ruzek JS, Avila JL, Contreras LM. The Post-Transcriptional Regulatory Protein CsrA Amplifies Its Targetome through Direct Interactions with Stress-Response Regulatory Hubs: The EvgA and AcnA Cases. Microorganisms 2024; 12:636. [PMID: 38674581 PMCID: PMC11052181 DOI: 10.3390/microorganisms12040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Global rewiring of bacterial gene expressions in response to environmental cues is mediated by regulatory proteins such as the CsrA global regulator from E. coli. Several direct mRNA and sRNA targets of this protein have been identified; however, high-throughput studies suggest an expanded RNA targetome for this protein. In this work, we demonstrate that CsrA can extend its network by directly binding and regulating the evgA and acnA transcripts, encoding for regulatory proteins. CsrA represses EvgA and AcnA expression and disrupting the CsrA binding sites of evgA and acnA, results in broader gene expression changes to stress response networks. Specifically, altering CsrA-evgA binding impacts the genes related to acidic stress adaptation, and disrupting the CsrA-acnA interaction affects the genes involved in metal-induced oxidative stress responses. We show that these interactions are biologically relevant, as evidenced by the improved tolerance of evgA and acnA genomic mutants depleted of CsrA binding sites when challenged with acid and metal ions, respectively. We conclude that EvgA and AcnA are intermediate regulatory hubs through which CsrA can expand its regulatory role. The indirect CsrA regulation of gene networks coordinated by EvgA and AcnA likely contributes to optimizing cellular resources to promote exponential growth in the absence of stress.
Collapse
Affiliation(s)
| | - Kobe B. Grismore
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Josie S. Ruzek
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Jacqueline L. Avila
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Lydia M. Contreras
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St. Stop A5000, Austin, TX 78712, USA;
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| |
Collapse
|
5
|
Zhang R, Wang Y. EvgS/EvgA, the unorthodox two-component system regulating bacterial multiple resistance. Appl Environ Microbiol 2023; 89:e0157723. [PMID: 38019025 PMCID: PMC10734491 DOI: 10.1128/aem.01577-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE EvgS/EvgA, one of the five unorthodox two-component systems in Escherichia coli, plays an essential role in adjusting bacterial behaviors to adapt to the changing environment. Multiple resistance regulated by EvgS/EvgA endows bacteria to survive in adverse conditions such as acidic pH, multidrug, and heat. In this minireview, we summarize the specific structures and regulation mechanisms of EvgS/EvgA and its multiple resistance. By discussing several unresolved issues and proposing our speculations, this review will be helpful and enlightening for future directions about EvgS/EvgA.
Collapse
Affiliation(s)
- Ruizhen Zhang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yan Wang
- MoE Key Laboratory of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Yang W, Sun H, Yan J, Kang C, Wu J, Yang B. Enterohemorrhagic Escherichia coli senses microbiota-derived nicotinamide to increase its virulence and colonization in the large intestine. Cell Rep 2023; 42:112638. [PMID: 37294635 DOI: 10.1016/j.celrep.2023.112638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/11/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a foodborne pathogen that specifically colonizes and infects the human large intestine. EHEC O157:H7 engages intricate regulatory pathways to detect host intestinal signals and regulate virulence-related gene expression during colonization and infection. However, the overall EHEC O157:H7 virulence regulatory network in the human large intestine remains incompletely understood. Here, we report a complete signal regulatory pathway where the EvgSA two-component system responds to high-nicotinamide levels produced by microbiota in the large intestine and directly activates loci of enterocyte effacement genes to promote EHEC O157:H7 adherence and colonization. This EvgSA-mediated nicotinamide signaling regulatory pathway is conserved and widespread among several other EHEC serotypes. Moreover, disruption of this virulence-regulating pathway by the deletion of evgS or evgA significantly decreased EHEC O157:H7 adherence and colonization in the mouse intestinal tract, indicating that these genes could be potential targets for the development of new therapeutics for EHEC O157:H7 infection.
Collapse
Affiliation(s)
- Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Junli Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin 300457, P.R. China; The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300071, P.R. China.
| |
Collapse
|
7
|
Yamasaki S, Zwama M, Yoneda T, Hayashi-Nishino M, Nishino K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001322. [PMID: 37319001 PMCID: PMC10333786 DOI: 10.1099/mic.0.001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/18/2023] [Indexed: 06/17/2023]
Abstract
Drug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.
Collapse
Affiliation(s)
- Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, 2-8 Yamadaoka, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Gomes R, Denison Kroschel A, Day S, Jansen R. High variation across E. coli hybrid isolates identified in metabolism-related biological pathways co-expressed with virulent genes. Gut Microbes 2023; 15:2228042. [PMID: 37417543 PMCID: PMC10332235 DOI: 10.1080/19490976.2023.2228042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Virulent genes present in Escherichia coli (E. coli) can cause significant human diseases. These enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC) isolates with virulent genes show different expression levels when grown under diverse laboratory conditions. In this research, we have performed differential gene expression analysis using publicly available RNA-seq data on three pathogenic E. coli hybrid isolates in an attempt to characterize the variation in gene interactions that are altered by the presence or absence of virulent factors within the genome. Almost 26.7% of the common genes across these strains were found to be differentially expressed. Out of the 88 differentially expressed genes with virulent factors identified from PATRIC, nine were common in all these strains. A combination of Weighted Gene Co-Expression Network Analysis and Gene Ontology Enrichment Analysis reveals significant differences in gene co-expression involving virulent genes common among the three investigated strains. The co-expression pattern is observed to be especially variable among biological pathways involving metabolism-related genes. This suggests a potential difference in resource allocation or energy generation across the three isolates based on genomic variation.
Collapse
Affiliation(s)
- Rahul Gomes
- Department of Computer Science, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | | | - Stephanie Day
- Department of Earth, Environment, and Geospatial Sciences, North Dakota State University, Fargo, ND, USA
| | - Rick Jansen
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
9
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
10
|
Real-time detection of response regulator phosphorylation dynamics in live bacteria. Proc Natl Acad Sci U S A 2022; 119:e2201204119. [PMID: 35994658 PMCID: PMC9436347 DOI: 10.1073/pnas.2201204119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria utilize two-component system (TCS) signal transduction pathways to sense and adapt to changing environments. In a typical TCS, a stimulus induces a sensor histidine kinase (SHK) to phosphorylate a response regulator (RR), which then dimerizes and activates a transcriptional response. Here, we demonstrate that oligomerization-dependent depolarization of excitation light by fused mNeonGreen fluorescent protein probes enables real-time monitoring of RR dimerization dynamics in live bacteria. Using inducible promoters to independently express SHKs and RRs, we detect RR dimerization within seconds of stimulus addition in several model pathways. We go on to combine experiments with mathematical modeling to reveal that TCS phosphosignaling accelerates with SHK expression but decelerates with RR expression and SHK phosphatase activity. We further observe pulsatile activation of the SHK NarX in response to addition and depletion of the extracellular electron acceptor nitrate when the corresponding TCS is expressed from both inducible systems and the native chromosomal operon. Finally, we combine our method with polarized light microscopy to enable single-cell measurements of RR dimerization under changing stimulus conditions. Direct in vivo characterization of RR oligomerization dynamics should enable insights into the regulation of bacterial physiology.
Collapse
|
11
|
Li G, Yao Y. TorR/TorS Two-Component system resists extreme acid environment by regulating the key response factor RpoS in Escherichia coli. Gene 2022; 821:146295. [PMID: 35181503 DOI: 10.1016/j.gene.2022.146295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/26/2021] [Accepted: 02/04/2022] [Indexed: 01/23/2023]
Abstract
Response to acid stress is critical for Escherichia coli to successfully complete its life-cycle. Acid resistance is an indispensable mechanism that allows neutralophilic bacteria, such as E. coli, to survive in the gastrointestinal tract. Escherichia coli acid tolerance has been extensively studied over the past decades, and most studies have focused on mechanisms of gene regulation. Bacterial two-component signal transduction systems sense and respond to external environmental changes through regulating genes expression. However, there has been little research on the mechanism of the TorR/TorS system in acid resistance, and how TorR/TorS regulate the expression ofacid-resistantgenes is still unclear. We found that TorR/TorS deletion in E. coli cells led to a growth defect in extreme acid conditions,andthis defectmightdepend on the nutritional conditionsand growth phase.TorS/TorR sensed an extremely acidic environment, and this TorR phosphorylation process might not be entirely dependent on TorS.RNA-seqand RT-qPCR results suggested that TorR regulated expressions of gadB, gadC, hdeA, gadE, mdtE, mdtF, gadX, and slp acid-resistant genes. Compared with wild-type cells, the stress response factor RpoSlevels and itsexpressions were significantly decreased in Δ torR cellsstimulated by extreme acid. And under these circumstances, the expression of iraM was significantly reduced to 0.6-fold inΔ torR cells. Electrophoreticmobility shift assay showed that TorR-His6 could interact with the rpoS promoter sequence in vitro. β-galactosidase activity assayresultsapprovedthat TorR might bind the rpoS promoter region in vivo. After the mutation of the TorR-box in the rpoS promoter region, these interactions were no longer observed. Taken together, we propose thatTorS and potential Hanks model Ser/Thr kinase received an external acid stress signal and then phosphorylated TorR, which guided the expressions of a variety of acid resistance genes. Moreover,TorRcoped with extreme acid environmentsthroughRpoS, levels of which might be maintained byIraM. Finally,TorR may confer E. coli with the abilityto resist gastric acid, allowing the bacterium to reach the surface of the terminal ileum and large intestine mucosal epithelial cells through the gastric acid barrier, andestablishcolonization and pathogenicity.
Collapse
Affiliation(s)
- Guotao Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Yuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China.
| |
Collapse
|
12
|
Bhowmik P, Rajagopal S, Hmar RV, Singh P, Saxena P, Amar P, Thomas T, Ravishankar R, Nagaraj S, Katagihallimath N, Sarangapani RK, Ramachandran V, Datta S. Validated In Silico Model for Biofilm Formation in Escherichia coli. ACS Synth Biol 2022; 11:713-731. [PMID: 35025506 DOI: 10.1021/acssynbio.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using Escherichia coli as the representative biofilm former, we report here the development of an in silico model built by simulating events that transform a free-living bacterial entity into self-encased multicellular biofilms. Published literature on ∼300 genes associated with pathways involved in biofilm formation was curated, static maps were created, and suitably interconnected with their respective metabolites using ordinary differential equations. Precise interplay of genetic networks that regulate the transitory switching of bacterial growth pattern in response to environmental changes and the resultant multicomponent synthesis of the extracellular matrix were appropriately represented. Subsequently, the in silico model was analyzed by simulating time-dependent changes in the concentration of components by using the R and python environment. The model was validated by simulating and verifying the impact of key gene knockouts (KOs) and systematic knockdowns on biofilm formation, thus ensuring the outcomes were comparable with the reported literature. Similarly, specific gene KOs in laboratory and pathogenic E. coli were constructed and assessed. MiaA, YdeO, and YgiV were found to be crucial in biofilm development. Furthermore, qRT-PCR confirmed the elevation of expression in biofilm-forming clinical isolates. Findings reported in this study offer opportunities for identifying biofilm inhibitors with applications in multiple industries. The application of this model can be extended to the health care sector specifically to develop novel adjunct therapies that prevent biofilms in medical implants and reduce emergence of biofilm-associated resistant polymicrobial-chronic infections. The in silico framework reported here is open source and accessible for further enhancements.
Collapse
Affiliation(s)
- Purnendu Bhowmik
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Sreenath Rajagopal
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Rothangamawi Victoria Hmar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Purnima Singh
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Pragya Saxena
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Prakruthi Amar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Teby Thomas
- St. John’s Research Institute, Bengaluru, Karnataka 560034, India
| | - Rajani Ravishankar
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Savitha Nagaraj
- St. John’s Medical College, Bengaluru, Karnataka 560034, India
| | - Nainesh Katagihallimath
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Ramanujan Kadambi Sarangapani
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Vasanthi Ramachandran
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka 560064, India
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd., Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences, GKVK, Bellary Road, Bengaluru, Karnataka 560065, India
| |
Collapse
|
13
|
Ali S, Alam M, Hasan GM, Hassan MI. Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective. Brief Funct Genomics 2021; 21:63-77. [PMID: 34448478 DOI: 10.1093/bfgp/elab038] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
The multidrug resistance developed in many organisms due to the prolonged use of antibiotics has been an increasing global health crisis. Klebsiella pneumoniae is a causal organism for various infections, including respiratory, urinary tract and biliary diseases. Initially, immunocompromised individuals are primarily affected by K. pneumoniae. Due to the emergence of hypervirulent strains recently, both healthy and immunocompetent individuals are equally susceptible to K. pneumoniae infections. The infections caused by multidrug-resistant and hypervirulent K. pneumoniae strains are complicated to treat, illustrating an urgent need to develop novel and more practical approaches to combat the pathogen. We focused on the previously performed high-throughput analyses by other groups to discover several novel enzymes that may be considered attractive drug targets of K. pneumoniae. These targets qualify most of the selection criteria for drug targeting, including an absence of its homolog's gene in the host. The capsule, lipopolysaccharide, fimbriae, siderophores and essential virulence factors facilitate the pathogen entry, infection and survival inside the host. This review discusses K. pneumoniae pathophysiology, including its virulence determinants and further the potential drug targets that might facilitate the discovery of novel drugs and effective treatment regimens shortly.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| |
Collapse
|
14
|
Sheikh SW, Ali A, Ahsan A, Shakoor S, Shang F, Xue T. Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic Escherichia coli. Antibiotics (Basel) 2021; 10:522. [PMID: 34063307 PMCID: PMC8147483 DOI: 10.3390/antibiotics10050522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
The emergence of multidrug-resistant pathogens presents a global challenge for treating and preventing disease spread through zoonotic transmission. The water and foodborne Enterohaemorrhagic Escherichia coli (EHEC) are capable of causing intestinal and systemic diseases. The root cause of the emergence of these strains is their metabolic adaptation to environmental stressors, especially acidic pH. Acid treatment is desired to kill pathogens, but the protective mechanisms employed by EHECs cross-protect against antimicrobial peptides and thus facilitate opportunities for survival and pathogenesis. In this review, we have discussed the correlation between acid tolerance and antibiotic resistance, highlighting the identification of novel targets for potential production of antimicrobial therapeutics. We have also summarized the molecular mechanisms used by acid-adapted EHECs, such as the two-component response systems mediating structural modifications, competitive inhibition, and efflux activation that facilitate cross-protection against antimicrobial compounds. Moving beyond the descriptive studies, this review highlights low pH stress as an emerging player in the development of cross-protection against antimicrobial agents. We have also described potential gene targets for innovative therapeutic approaches to overcome the risk of multidrug-resistant diseases in healthcare and industry.
Collapse
Affiliation(s)
- Salma Waheed Sheikh
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Ahmad Ali
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China;
| | - Asma Ahsan
- Faculty of Life Sciences, University of Central Punjab, Lahore 54000, Punjab, Pakistan;
| | - Sidra Shakoor
- Station de Neucfchateau, CIRAD, 97130 Sainte-Marie, Capesterre Belle Eau, Guadeloupe, France;
| | - Fei Shang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Ting Xue
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| |
Collapse
|
15
|
Zhu T, Wang Z, McMullen LM, Raivio T, Simpson DJ, Gänzle MG. Contribution of the Locus of Heat Resistance to Growth and Survival of Escherichia coli at Alkaline pH and at Alkaline pH in the Presence of Chlorine. Microorganisms 2021; 9:701. [PMID: 33800639 PMCID: PMC8067161 DOI: 10.3390/microorganisms9040701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
The locus of heat resistance (LHR) confers resistance to extreme heat, chlorine and oxidative stress in Escherichia coli. This study aimed to determine the function of the LHR in maintaining bacterial cell envelope homeostasis, the regulation of the genes comprising the LHR and the contribution of the LHR to alkaline pH response. The presence of the LHR did not affect the activity of the Cpx two-component regulatory system in E. coli, which was measured to quantify cell envelope stress. The LHR did not alter E. coli MG1655 growth rate in the range of pH 6.9 to 9.2. However, RT-qPCR results indicated that the expression of the LHR was elevated at pH 8.0 when CpxR was absent. The LHR did not improve survival of E. coli MG1655 at extreme alkaline pH (pH = 11.0 to 11.2) but improved survival at pH 11.0 in the presence of chlorine. Therefore, we conclude that the LHR confers resistance to extreme alkaline pH in the presence of oxidizing agents. Resistance to alkaline pH is regulated by an endogenous mechanism, including the Cpx envelope stress response, whereas the LHR confers resistance to extreme alkaline pH only in the presence of additional stress such as chlorine.
Collapse
Affiliation(s)
- Tongbo Zhu
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Zhiying Wang
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Lynn M. McMullen
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Tracy Raivio
- Department of Biological Science, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| | - David J. Simpson
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| | - Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada; (T.Z.); (Z.W.); (L.M.M.); (D.J.S.)
| |
Collapse
|
16
|
Teelucksingh T, Thompson LK, Cox G. The Evolutionary Conservation of Escherichia coli Drug Efflux Pumps Supports Physiological Functions. J Bacteriol 2020; 202:e00367-20. [PMID: 32839176 PMCID: PMC7585057 DOI: 10.1128/jb.00367-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria harness an impressive repertoire of resistance mechanisms to evade the inhibitory action of antibiotics. One such mechanism involves efflux pump-mediated extrusion of drugs from the bacterial cell, which significantly contributes to multidrug resistance. Intriguingly, most drug efflux pumps are chromosomally encoded components of the intrinsic antibiotic resistome. In addition, in terms of xenobiotic detoxification, bacterial efflux systems often exhibit significant levels of functional redundancy. Efflux pumps are also considered to be highly conserved; however, the extent of conservation in many bacterial species has not been reported and the majority of genes that encode efflux pumps appear to be dispensable for growth. These observations, in combination with an increasing body of experimental evidence, imply alternative roles in bacterial physiology. Indeed, the ability of efflux pumps to facilitate antibiotic resistance could be a fortuitous by-product of ancient physiological functions. Using Escherichia coli as a model organism, we here evaluated the evolutionary conservation of drug efflux pumps and we provide phylogenetic analysis of the major efflux families. We show the E. coli drug efflux system has remained relatively stable and the majority (∼80%) of pumps are encoded in the core genome. This analysis further supports the importance of drug efflux pumps in E. coli physiology. In this review, we also provide an update on the roles of drug efflux pumps in the detoxification of endogenously synthesized substrates and pH homeostasis. Overall, gaining insight into drug efflux pump conservation, common evolutionary ancestors, and physiological functions could enable strategies to combat these intrinsic and ancient elements.
Collapse
Affiliation(s)
- Tanisha Teelucksingh
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
17
|
Pranavathiyani G, Prava J, Rajeev AC, Pan A. Novel Target Exploration from Hypothetical Proteins of Klebsiella pneumoniae MGH 78578 Reveals a Protein Involved in Host-Pathogen Interaction. Front Cell Infect Microbiol 2020; 10:109. [PMID: 32318354 PMCID: PMC7146069 DOI: 10.3389/fcimb.2020.00109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
The opportunistic pathogen Klebsiella pneumoniae is a causative agent of several hospital-acquired infections. It has become resistant to a wide range of currently available antibiotics, leading to high mortality rates among patients; this has further led to a demand for novel therapeutic intervention to treat such infections. Using a series of in silico analyses, the present study aims to explore novel drug/vaccine candidates from the hypothetical proteins of K. pneumoniae. A total of 540 proteins were found to be hypothetical in this organism. Analysis of these 540 hypothetical proteins revealed 30 pathogen-specific proteins essential for pathogen survival. A motifs/domain family analysis, similarity search against known proteins, gene ontology, and protein–protein interaction analysis of the shortlisted 30 proteins led to functional assignment for 17 proteins. They were mainly cataloged as enzymes, lipoproteins, stress-induced proteins, transporters, and other proteins (viz., two-component proteins, skeletal proteins and toxins). Among the annotated proteins, 16 proteins, located in the cytoplasm, periplasm, and inner membrane, were considered as potential drug targets, and one extracellular protein was considered as a vaccine candidate. A druggability analysis indicated that the identified 17 drug/vaccine candidates were “novel”. Furthermore, a host–pathogen interaction analysis of these identified target candidates revealed a betaine/carnitine/choline transporters (BCCT) family protein showing interactions with five host proteins. Structure prediction and validation were carried out for this protein, which could aid in structure-based inhibitor design.
Collapse
Affiliation(s)
- G Pranavathiyani
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Jyoti Prava
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Athira C Rajeev
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Archana Pan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
18
|
Leimkühler S. The biosynthesis of the molybdenum cofactors in Escherichia coli. Environ Microbiol 2020; 22:2007-2026. [PMID: 32239579 DOI: 10.1111/1462-2920.15003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/29/2022]
Abstract
The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5'-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.
Collapse
Affiliation(s)
- Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| |
Collapse
|
19
|
Mahmud R, Shehreen S, Shahriar S, Rahman MS, Akhteruzzaman S, Sajib AA. Non-Caloric Artificial Sweeteners Modulate the Expression of Key Metabolic Genes in the Omnipresent Gut Microbe Escherichia coli. J Mol Microbiol Biotechnol 2019; 29:43-56. [PMID: 31851990 DOI: 10.1159/000504511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/31/2019] [Indexed: 11/19/2022] Open
Abstract
The human gut is inhabited by several hundred different bacterial species. These bacteria are closely associated with our health and well-being. The composition of these diverse commensals is influenced by our dietary intakes. Non-caloric artificial sweeteners (NAS) have gained global popularity, particularly among diabetic patients, due to their perceived health benefits, such as reduction of body weight and maintenance of blood glucose level compared to caloric sugars. Recent studies have reported that these artificial sweeteners can alter the composition of gut microbiota and, thus, affect our normal physiological state. Here, we investigated the effect of aspartame and acesulfame potassium (ace-K), two popular NAS, in a commercial formulation on the growth and metabolic pathways of omnipresent gut commensal Escherichia coliby analyzing the relative expression levels of the key genes, which control over twenty important metabolic pathways. Treatment with NAS preparation (aspartame and ace-K) modulates the growth of E. colias well as inducing the expression of important metabolic genes associated with glucose (pfkA, sucA, aceE, pfkB, lpdA), nucleotide (tmk, adk, tdk, thyA), and fatty acid (fabI) metabolisms, among others. Several of the affected geneswere previously reported to be important for the colonization of the microbes in the gut. These findings may shed light on the mechanism of alteration of gut microbes and their metabolism by NAS.
Collapse
Affiliation(s)
- Rizwan Mahmud
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Saadlee Shehreen
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Shayan Shahriar
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Md Siddiqur Rahman
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Sharif Akhteruzzaman
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Abu Ashfaqur Sajib
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh,
| |
Collapse
|
20
|
Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli. Amino Acids 2019; 51:1103-1127. [DOI: 10.1007/s00726-019-02757-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/27/2019] [Indexed: 11/26/2022]
|
21
|
Deletion of the major Escherichia coli multidrug transporter AcrB reveals transporter plasticity and redundancy in bacterial cells. PLoS One 2019; 14:e0218828. [PMID: 31251753 PMCID: PMC6599122 DOI: 10.1371/journal.pone.0218828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/11/2019] [Indexed: 12/28/2022] Open
Abstract
Multidrug Transporters (MDTs) are major contributors to the acquisition and maintenance of Antimicrobial Resistance (AMR), a growing public health threat of broad concern. Despite the large number of MDTs, the overwhelming majority of the studies performed thus far in Gram-negative bacteria emphasize the supremacy of the AcrAB-TolC complex. To unveil the potential role of other MDTs we studied the behavior of a null AcrB Escherichia coli strain when challenged with chloramphenicol, a bacteriostatic antibiotic. We found that such a strain developed an extremely high-level of resistance to chloramphenicol, cross resistance to quinolones and erythromycin and displayed high levels of expression of the single component MFS transporter MdfA and multiple TolC-dependent transporters. The results suggest that the high versatility of the whole ensemble of transporters, the bacterial Effluxome, is an essential part of a strategy of survival in everchanging, at times noxious, environments. The concept of a functional Effluxome presents an alternative to the existing paradigms in the field and provides novel targets for the search for inhibitors of transporters as adjuvants of existing antibiotics.
Collapse
|
22
|
Xu J, Li T, Gao Y, Deng J, Gu J. MgrB affects the acid stress response of Escherichia coli by modulating the expression of iraM. FEMS Microbiol Lett 2019; 366:fnz123. [PMID: 31158277 DOI: 10.1093/femsle/fnz123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/01/2019] [Indexed: 10/18/2023] Open
Abstract
Although MgrB is established to be a feedback inhibitor of the PhoP/Q system in Escherichia coli, the biological functions of MgrB remain largely unknown. To explore new functions of MgrB, a comparative transcriptome analysis was performed (E. coli K-12 W3110 ΔmgrB vs E. coli K-12 W3110). The results showed that many genes involved in acid stress are upregulated, suggesting that MgrB is related to acid sensitivity in E. coli. The survival rates under acid stress of the ΔmgrB mutant and wild-type showed that deletion of mgrB resulted in acid resistance. According to previous research, we deleted phoP, phoQ and iraM in the ΔmgrB mutant, and found that further deletion of phoP/phoQ only partially restored acid sensitivity. Additionally, we found that deletion of mgrB resulted in increased accumulation of RpoS during the exponential growth phase, which could be blocked by further deletion of iraM. Mutation of iraM or rpoS completely suppressed the effect of mgrB mutation on acid resistance. Taken together, the data suggest that MgrB affects the acid resistance of E. coli by modulating the expression of iraM, but not completely through PhoP/Q. This indicates that MgrB may have other protein interactors aside from PhoQ, which merits further investigation.
Collapse
Affiliation(s)
- Jintian Xu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ting Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yunrong Gao
- The Joint Center of Translational Precision Medicine, Guangzhou Institute of Pediatrics, Guangzhou Women and Children Medical Center, Guangzhou 510623, China
| | - Jiaoyu Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- Guangdong Province Key Laboratory of TB Systems Biology and Translational Medicine, Foshan Institude of Industrial Technology, Chinese Academic of Sciences, Foshan 528000, China
| | - Jing Gu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
23
|
Lee HS, Lee S, Kim JS, Lee HR, Shin HC, Lee MS, Jin KS, Kim CH, Ku B, Ryu CM, Kim SJ. Structural and Physiological Exploration of Salmonella Typhi YfdX Uncovers Its Dual Function in Bacterial Antibiotic Stress and Virulence. Front Microbiol 2019; 9:3329. [PMID: 30692978 PMCID: PMC6339873 DOI: 10.3389/fmicb.2018.03329] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
YfdX is a prokaryotic protein encoded by several pathogenic bacteria including Salmonella enterica serovar Typhi, which causes one of the most fatal infectious diseases, typhoid fever. YfdX is a product of the yfdXWUVE operon and is known to be under the control of EvgA, a regulator protein controlling the expression of several proteins involved in response to environmental stress, in Escherichia coli. Nevertheless, unlike other proteins encoded by the same operon, the structural and physiological aspects of YfdX have been poorly characterized. Here, we identified a previously unknown pH-dependent stoichiometric conversion of S. Typhi YfdX between dimeric and tetrameric states; this conversion was further analyzed via determining its structure by X-ray crystallography at high resolution and by small-angle X-ray scattering in a solution state and via structure-based mutant studies. Biologically, YfdX was proven to be critically involved in Salmonella susceptibility to two β-lactam antibiotics, penicillin G and carbenicillin, as bacterial growth significantly impaired by its deficiency upon treatment with each of the two antibiotics was recovered by chromosomal complementation. Furthermore, by using Galleria mellonella larvae as an in vivo model of Salmonella infection, we demonstrated that Salmonella virulence was remarkably enhanced by YfdX deficiency, which was complemented by a transient expression of the wild-type or dimeric mutant but not by that of the monomeric mutant. The present study work provides direct evidence regarding the participation of YfdX in Salmonella antibiotic susceptibility and in the modulation of bacterial virulence, providing a new insight into this pathogen's strategies for survival and growth.
Collapse
Affiliation(s)
- Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Soohyun Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jun-Seob Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Hae-Ran Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Moo-Seung Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Biotechnology, University of Science and Technology KRIBB School, Daejeon, South Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, South Korea
| |
Collapse
|
24
|
Zhao H, Zhou F, Xing Q, Cao Z, Liu J, Zhu G. The soluble transhydrogenase UdhA affecting the glutamate-dependent acid resistance system of Escherichia coli under acetate stress. Biol Open 2018; 7:7/9/bio031856. [PMID: 30201831 PMCID: PMC6176936 DOI: 10.1242/bio.031856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The soluble transhydrogenase (UdhA) is one of two transhydrogenases that play a role in maintaining the balance between NAD(H) pools and NADP(H) pools in Escherichia coli. Although UdhA has been extensively used in metabolic engineering and biocatalysis for cofactor regeneration, its role in acid resistance has not been reported. Here we used DNA microarray to explore the impact of UdhA on transcript levels. We demonstrated that during growth on acetate, the expression of genes involved in the respiratory chain and Gad acid resistance system was inhibited in the udhA-knockout strain. The deletion of udhA significantly repressed the expression of six genes (gadA, gadB, gadC, gadE, hdeA and hdeB) which are involved in Gad acid resistance and resulted in low survival of the bacterium at a low pH of 4.9. Moreover, UdhA was essential for NADH production which is important for the adaptive growth of E. coli on acetate, while NADH concentration in the udhA-knockout strain was quite low and supplemental NADH significantly increased the expression of acid resistance genes and survival of the udhA-knockout strain. These results demonstrated that UdhA is an important source of NADH of E. coli growth on acetate and affects Gad acid resistance system under acetate stress. Summary: UdhA function stated in this study helps us to understand the physiological roles of UdhA affecting NADH production and Gad acid resistance system in E.coli in acetate environment.
Collapse
Affiliation(s)
- Hanjun Zhao
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Feng Zhou
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Quan Xing
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Zhengyu Cao
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Jie Liu
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| | - Guoping Zhu
- The Research Center of Life Omics and Health, College of Life Sciences, Anhui Normal University, No.1 Beijing East Road, Wuhu 241000, Anhui, China
| |
Collapse
|
25
|
Zhang B, Ran L, Wu M, Li Z, Jiang J, Wang Z, Cheng S, Fu J, Liu X. Shigellaflexneri Regulator SlyA Controls Bacterial Acid Resistance by Directly Activating the Glutamate Decarboxylation System. Front Microbiol 2018; 9:2071. [PMID: 30233544 PMCID: PMC6128205 DOI: 10.3389/fmicb.2018.02071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/14/2018] [Indexed: 01/02/2023] Open
Abstract
Shigella flexneri is an important foodborne bacterial pathogen with infectious dose as low as 10–100 cells. SlyA, a transcriptional regulator of the MarR family, has been shown to regulate virulence in a closely related bacterial pathogen, Salmonella Typhimurium. However, the regulatory role of SlyA in S. flexneri is less understood. Here we applied unbiased proteomic profiling to define the SlyA regulon in S. flexneri. We found that the genetic ablation of slyA led to the alteration of 18 bacterial proteins among over 1400 identifications. Intriguingly, most down-regulated proteins (whose expression is SlyA-dependent) were associated with bacterial acid resistance such as the glutamate decarboxylation system. We further demonstrated that SlyA directly regulates the expression of GadA, a glutamate decarboxylase, by binding to the promotor region of its coding gene. Importantly, overexpression of GadA was able to rescue the survival defect of the ΔslyA mutant under acid stress. Therefore, our study highlights a major role of SlyA in controlling S. flexneri acid resistance and provides a molecular mechanism underlying such regulation as well.
Collapse
Affiliation(s)
- Buyu Zhang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Longhao Ran
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zezhou Li
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiezhang Jiang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhen Wang
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Sen Cheng
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiaqi Fu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
26
|
Pulmonary Surfactant Promotes Virulence Gene Expression and Biofilm Formation in Klebsiella pneumoniae. Infect Immun 2018; 86:IAI.00135-18. [PMID: 29712730 DOI: 10.1128/iai.00135-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
The interactions between Klebsiella pneumoniae and the host environment at the site of infection are largely unknown. Pulmonary surfactant serves as an initial point of contact for inhaled bacteria entering the lung and is thought to contain molecular cues that aid colonization and pathogenesis. To gain insight into this ecological transition, we characterized the transcriptional response of K. pneumoniae MGH 78578 to purified pulmonary surfactant. This work revealed changes within the K. pneumoniae transcriptome that likely contribute to host colonization, adaptation, and virulence in vivo Notable transcripts expressed under these conditions include genes involved in capsule synthesis, lipopolysaccharide modification, antibiotic resistance, biofilm formation, and metabolism. In addition, we tested the contributions of other surfactant-induced transcripts to K. pneumoniae survival using engineered isogenic KPPR1 deletion strains in a murine model of acute pneumonia. In these infection studies, we identified the MdtJI polyamine efflux pump and the ProU glycine betaine ABC transporter to be significant mediators of K. pneumoniae survival within the lung and confirmed previous evidence for the importance of de novo leucine synthesis to bacterial survival during infection. Finally, we determined that pulmonary surfactant promoted type 3 fimbria-mediated biofilm formation in K. pneumoniae and identified two surfactant constituents, phosphatidylcholine and cholesterol, that drive this response. This study provides novel insight into the interactions occurring between K. pneumoniae and the host at an important infection site and demonstrates the utility of purified lung surfactant preparations for dissecting host-lung pathogen interactions in vitro.
Collapse
|
27
|
Transcriptome Profiling Reveals Interplay of Multifaceted Stress Response in Escherichia coli on Exposure to Glutathione and Ciprofloxacin. mSystems 2018; 3:mSystems00001-18. [PMID: 29468195 PMCID: PMC5811628 DOI: 10.1128/msystems.00001-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/22/2018] [Indexed: 12/16/2022] Open
Abstract
The emergence and spread of multidrug-resistant bacterial strains have serious medical and clinical consequences. In addition, the rate of discovery of new therapeutic antibiotics has been inadequate in last few decades. Fluoroquinolone antibiotics such as ciprofloxacin represent a precious therapeutic resource in the fight against bacterial pathogens. However, these antibiotics have been gradually losing their appeal due to the emergence and buildup of resistance to them. In this report, we shed light on the genome-level expression changes in bacteria with respect to glutathione (GSH) exposure which act as a trigger for fluoroquinolone antibiotic resistance. The knowledge about different bacterial stress response pathways under conditions of exposure to the conditions described above and potential points of cross talk between them could help us in understanding and formulating the conditions under which buildup and spread of antibiotic resistance could be minimized. Our findings are also relevant because GSH-induced genome-level expression changes have not been reported previously for E. coli. We have previously reported that supplementation of exogenous glutathione (GSH) promotes ciprofloxacin resistance in Escherichia coli by neutralizing antibiotic-induced oxidative stress and by enhancing the efflux of antibiotic. In the present study, we used a whole-genome microarray as a tool to analyze the system-level transcriptomic changes of E. coli on exposure to GSH and/or ciprofloxacin. The microarray data revealed that GSH supplementation affects redox function, transport, acid shock, and virulence genes of E. coli. The data further highlighted the interplay of multiple underlying stress response pathways (including those associated with the genes mentioned above and DNA damage repair genes) at the core of GSH, offsetting the effect of ciprofloxacin in E. coli. The results of a large-scale validation of the transcriptomic data using reverse transcription-quantitative PCR (RT-qPCR) analysis for 40 different genes were mostly in agreement with the microarray results. The altered growth profiles of 12 different E. coli strains carrying deletions in the specific genes mentioned above with GSH and/or ciprofloxacin supplementation implicate these genes in the GSH-mediated phenotype not only at the molecular level but also at the functional level. We further associated GSH supplementation with increased acid shock survival of E. coli on the basis of our transcriptomic data. Taking the data together, it can be concluded that GSH supplementation influences the expression of genes of multiple stress response pathways apart from its effect(s) at the physiological level to counter the action of ciprofloxacin in E. coli. IMPORTANCE The emergence and spread of multidrug-resistant bacterial strains have serious medical and clinical consequences. In addition, the rate of discovery of new therapeutic antibiotics has been inadequate in last few decades. Fluoroquinolone antibiotics such as ciprofloxacin represent a precious therapeutic resource in the fight against bacterial pathogens. However, these antibiotics have been gradually losing their appeal due to the emergence and buildup of resistance to them. In this report, we shed light on the genome-level expression changes in bacteria with respect to glutathione (GSH) exposure which act as a trigger for fluoroquinolone antibiotic resistance. The knowledge about different bacterial stress response pathways under conditions of exposure to the conditions described above and potential points of cross talk between them could help us in understanding and formulating the conditions under which buildup and spread of antibiotic resistance could be minimized. Our findings are also relevant because GSH-induced genome-level expression changes have not been reported previously for E. coli.
Collapse
|
28
|
Roggiani M, Yadavalli SS, Goulian M. Natural variation of a sensor kinase controlling a conserved stress response pathway in Escherichia coli. PLoS Genet 2017; 13:e1007101. [PMID: 29140975 PMCID: PMC5706723 DOI: 10.1371/journal.pgen.1007101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 11/29/2017] [Accepted: 11/03/2017] [Indexed: 12/02/2022] Open
Abstract
Previous studies have shown that exponentially growing Escherichia coli can detect mild acidity (~pH 5.5) and, in response, synthesize enzymes that protect against severe acid shock. This adaptation is controlled by the EvgS/EvgA phosphorelay, a signal transduction system present in virtually every E. coli isolate whose genome has been sequenced. Here we show that, despite this high level of conservation, the EvgS/EvgA system displays a surprising natural variation in pH-sensing capacity, with some strains entirely non-responsive to low pH stimulus. In most cases that we have tested, however, activation of the EvgA regulon still confers acid resistance. From analyzing selected E. coli isolates, we find that the natural variation results from polymorphisms in the sensor kinase EvgS. We further show that this variation affects the pH response of a second kinase, PhoQ, which senses pH differently from the closely related PhoQ in Salmonella enterica. The within-species diversification described here suggests EvgS likely responds to additional input signals that may be correlated with acid stress. In addition, this work highlights the fact that even for highly conserved sensor kinases, the activities identified from a subset of isolates may not necessarily generalize to other members of the same bacterial species. Bacteria employ a class of proteins, sensor kinases, to sense environmental cues and initiate cellular responses through phosphorylation of partner response regulator proteins. Individual kinases are generally assumed to have the same sensory activity across members of a bacterial species. In this work, we report an unexpected counterexample in which the well-established capacity of the kinase EvgS to sense mild acidity is limited to a subset of Escherichia coli isolates. Despite this natural variation, EvgS activation still confers resistance to acid stress in strains that have lost EvgS pH-sensing activity. Thus, most E. coli share a conserved output of the Evg system but do not require identical sensory functions. This work highlights the potential for significant functional divergence of a sensor kinase within a species and also indicates that there are additional input signals for the highly conserved EvgS protein.
Collapse
Affiliation(s)
- Manuela Roggiani
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Srujana S. Yadavalli
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
29
|
Guo S, Yi X, Zhang W, Wu M, Xin F, Dong W, Zhang M, Ma J, Wu H, Jiang M. Inducing hyperosmotic stress resistance in succinate-producing Escherichia coli by using the response regulator DR1558 from Deinococcus radiodurans. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Engineering a riboswitch-based genetic platform for the self-directed evolution of acid-tolerant phenotypes. Nat Commun 2017; 8:411. [PMID: 28871084 PMCID: PMC5583362 DOI: 10.1038/s41467-017-00511-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 07/05/2017] [Indexed: 12/12/2022] Open
Abstract
Environmental pH is a fundamental signal continuously directing the metabolism and behavior of living cells. Programming the precise cellular response toward environmental pH is, therefore, crucial for engineering cells for increasingly sophisticated functions. Herein, we engineer a set of riboswitch-based pH-sensing genetic devices to enable the control of gene expression according to differential environmental pH. We next develop a digital pH-sensing system to utilize the analogue-sensing behavior of these devices for high-resolution recording of host cell exposure to discrete external pH levels. The application of this digital pH-sensing system is demonstrated in a genetic program that autonomously regulated the evolutionary engineering of host cells for improved tolerance to a broad spectrum of organic acids, a valuable phenotype for metabolic engineering and bioremediation applications. Cells are exposed to shifts in environmental pH, which direct their metabolism and behavior. Here the authors design pH-sensing riboswitches to create a gene expression program, digitalize the system to respond to a narrow pH range and apply it to evolve host cells with improved tolerance to a variety of organic acids.
Collapse
|
31
|
Structural and Functional Analysis of the Escherichia coli Acid-Sensing Histidine Kinase EvgS. J Bacteriol 2017; 199:JB.00310-17. [PMID: 28674068 PMCID: PMC5573083 DOI: 10.1128/jb.00310-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/19/2017] [Indexed: 01/31/2023] Open
Abstract
The EvgS/EvgA two-component system of Escherichia coli is activated in response to low pH and alkali metals and regulates many genes, including those for the glutamate-dependent acid resistance system and a number of efflux pumps. EvgS, the sensor kinase, is one of five unconventional histidine kinases (HKs) in E. coli and has a large periplasmic domain and a cytoplasmic PAS domain in addition to phospho-acceptor, HK and dimerization, internal receiver, and phosphotransfer domains. Mutations that constitutively activate the protein at pH 7 map to the PAS domain. Here, we built a homology model of the periplasmic region of EvgS, based on the structure of the equivalent region of the BvgS homologue, to guide mutagenesis of potential key residues in this region. We show that histidine 226 is required for induction and that it is structurally colocated with a proline residue (P522) at the top of the predicted transmembrane helix that is expected to play a key role in passing information to the cytoplasmic domains. We also show that the constitutive mutations in the PAS domain can be further activated by low external pH. Expression of the cytoplasmic part of the protein alone also gives constitutive activation, which is lost if the constitutive PAS mutations are present. These findings are consistent with a model in which EvgS senses both external and internal pH and is activated by a shift from a tight inactive to a weak active dimer, and we present an analysis of the purified cytoplasmic portion of EvgS that supports this. IMPORTANCE One of the ways bacteria sense their environment is through two-component systems, which have one membrane-bound protein to do the sensing and another inside the cell to turn genes on or off in response to what the membrane-bound protein has detected. The membrane-bound protein must thus be able to detect the stress and signal this detection event to the protein inside the cell. To understand this process, we studied a protein that helps E. coli to survive exposure to low pH, which it must do before taking up residence in the gastrointestinal tract. We describe a predicted structure for the main sensing part of the protein and identify some key residues within it that are involved in the sensing and signaling processes. We propose a mechanism for how the protein may become activated and present some evidence to support our proposal.
Collapse
|
32
|
Afzal M, Kuipers OP, Shafeeq S. Niacin-mediated Gene Expression and Role of NiaR as a Transcriptional Repressor of niaX, nadC, and pnuC in Streptococcus pneumoniae. Front Cell Infect Microbiol 2017; 7:70. [PMID: 28337428 PMCID: PMC5343564 DOI: 10.3389/fcimb.2017.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022] Open
Abstract
NAD (Nicotinamide Adenine Dinucleotide) biosynthesis is vital for bacterial physiology and plays an important role in cellular metabolism. A naturally occurring vitamin B complex, niacin (nicotinic acid), is a precursor of coenzymes NAD and NADP. Here, we study the impact of niacin on global gene expression of Streptococcus pneumoniae D39 and elucidate the role of NiaR as a transcriptional regulator of niaX, nadC, and pnuC. Transcriptome comparison of the D39 wild-type grown in chemically defined medium (CDM) with 0 to 10 mM niacin revealed elevated expression of various genes, including niaX, nadC, pnuC, fba, rex, gapN, pncB, gap, adhE, and adhB2 that are putatively involved in the transport and utilization of niacin. Niacin-dependent expression of these genes is confirmed by promoter lacZ-fusion studies. Moreover, the role of transcriptional regulator NiaR in the regulation of these genes is explored by DNA microarray analysis. Our transcriptomic comparison of D39 ΔniaR to D39 wild-type revealed that the transcriptional regulator NiaR acts as a transcriptional repressor of niaX, pnuC, and nadC. NiaR-dependent regulation of niaX, nadC, and pnuC is further confirmed by promoter lacZ-fusion studies. The putative operator site of NiaR (5′-TACWRGTGTMTWKACASYTRWAW-3′) in the promoter regions of niaX, nadC, and pnuC is predicted and further confirmed by promoter mutational experiments.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
33
|
Tramonti A, De Santis F, Pennacchietti E, De Biase D. The yhiM gene codes for an inner membrane protein involved in GABA export in Escherichia coli. AIMS Microbiol 2017; 3:71-87. [PMID: 31294150 PMCID: PMC6604978 DOI: 10.3934/microbiol.2017.1.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/08/2017] [Indexed: 01/11/2023] Open
Abstract
In order to survive the exposure to acid pH, Escherichia coli activates molecular circuits leading from acid tolerance to extreme acid resistance (AR). The activation of the different circuits involves several global and specific regulators affecting the expression of membrane, periplasmic and cytosolic proteins acting at different levels to dampen the harmful consequences of the uncontrolled entry of protons intracellularly. Many genes coding for the structural components of the AR circuits (protecting from pH ≤ 2.5) and their specific transcriptional regulators cluster in a genomic region named AFI (acid fitness island) and respond in the same way to global regulators (such as RpoS and H-NS) as well as to anaerobiosis, alkaline, cold and respiratory stresses, in addition to the acid stress. Notably some genes coding for structural components of AR, though similarly regulated, are non-AFI localised. Amongst these the gadBC operon, coding for the major structural components of the glutamate-based AR system, and the ybaS gene, coding for a glutaminase required for the glutamine-based AR system. The yhiM gene, a non-AFI gene, appears to belong to this group. We mapped the transcription start of the 1.1 kb monocistronic yhiM transcript: it is an adenine residue located 22 nt upstream a GTG start codon. By real-time PCR we show that GadE and GadX equally affect the expression of yhiM under oxidative growth conditions. While YhiM is partially involved in the RpoS-dependent AR, we failed to detect a significant involvement in the glutamate- or glutamine-dependent AR at pH ≤ 2.5. However, when grown in EG at pH 5.0, the yhiM mutant displays impaired GABA export, whereas when YhiM is overexpressed, an increases of GABA export in EG medium in the pH range 2.5-5.5 is observed. Our data suggest that YhiM is a GABA transporter with a physiological role more relevant at mildly acidic pH, but not a key component of AR at pH < 2.5.
Collapse
Affiliation(s)
- Angela Tramonti
- Institute of Molecular Biology and Pathology, CNR, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Fiorenzo De Santis
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| | - Eugenia Pennacchietti
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| | - Daniela De Biase
- Department of medico-surgical Sciences and Biotechnologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
34
|
Li H, Gänzle M. Some Like It Hot: Heat Resistance of Escherichia coli in Food. Front Microbiol 2016; 7:1763. [PMID: 27857712 PMCID: PMC5093140 DOI: 10.3389/fmicb.2016.01763] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/20/2016] [Indexed: 11/13/2022] Open
Abstract
Heat treatment and cooking are common interventions for reducing the numbers of vegetative cells and eliminating pathogenic microorganisms in food. Current cooking method requires the internal temperature of beef patties to reach 71°C. However, some pathogenic Escherichia coli such as the beef isolate E. coli AW 1.7 are extremely heat resistant, questioning its inactivation by current heat interventions in beef processing. To optimize the conditions of heat treatment for effective decontaminations of pathogenic E. coli strains, sufficient estimations, and explanations are necessary on mechanisms of heat resistance of target strains. The heat resistance of E. coli depends on the variability of strains and properties of food formulations including salt and water activity. Heat induces alterations of E. coli cells including membrane, cytoplasm, ribosome and DNA, particularly on proteins including protein misfolding and aggregations. Resistant systems of E. coli act against these alterations, mainly through gene regulations of heat response including EvgA, heat shock proteins, σE and σS, to re-fold of misfolded proteins, and achieve antagonism to heat stress. Heat resistance can also be increased by expression of key proteins of membrane and stabilization of membrane fluidity. In addition to the contributions of the outer membrane porin NmpC and overcome of osmotic stress from compatible solutes, the new identified genomic island locus of heat resistant performs a critical role to these highly heat resistant strains. This review aims to provide an overview of current knowledge on heat resistance of E. coli, to better understand its related mechanisms and explore more effective applications of heat interventions in food industry.
Collapse
Affiliation(s)
- Hui Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAB, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, EdmontonAB, Canada
- College of Bioengineering and Food Science, Hubei University of TechnologyHubei, China
| |
Collapse
|
35
|
Gao X, Jiang L, Zhu L, Xu Q, Xu X, Huang H. Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs. J Biotechnol 2016; 224:55-63. [PMID: 26971973 DOI: 10.1016/j.jbiotec.2016.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 03/02/2016] [Accepted: 03/08/2016] [Indexed: 11/17/2022]
Abstract
Bioconversion processes of organic acid or acid hydrolysis of raw material for microbial metabolism often suffer limitations as a result of microbial sensitivity in low-pH conditions. We adopted a three-step method called RAndom Insertional-deletional Strand Exchange mutagenesis (RAISE) to engineer the components of global regulator Sigma D factor (RpoD) of Escherichia coli to improve its acid tolerance. The best strain Mutant VII was identified from random mutagenesis libraries based on the growth performance, which exhibited much higher growth rate than the control (0.22h(-1) vs. 0.15h(-1)) at pH as low as 3.17. Combined transcriptome and phenome analysis of E. coli was carried out to better understand the global effects of RpoD on the regulatory networks. Our analysis showed that 95 (2.1%) of all E. coli genes were induced and 178 (4.0%) genes were repressed, including those for trehalose biosynthesis, nucleotides biosynthesis, carbon metabolism, amino acid utilization, except for acid resistance. Also regulated were the master regulators (ArcA, EvgA, H-NS and RpoS) and gene/operon-specific transcription factors (GadX, GadW, AppY, YdeO, KdgR). These results demonstrated that RpoD acts as global regulator in the growth phase of E. coli and consequently improves acid tolerances.
Collapse
Affiliation(s)
- Xi Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liying Zhu
- College of Sciences, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Xian Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
36
|
Saha P, Manna C, Das S, Ghosh M. Antibiotic binding of STY3178, a yfdX protein from Salmonella Typhi. Sci Rep 2016; 6:21305. [PMID: 26892637 PMCID: PMC4759549 DOI: 10.1038/srep21305] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/19/2016] [Indexed: 01/18/2023] Open
Abstract
The yfdX family proteins are known for long time to occur in various virulent bacteria including their multidrug resistant (MDR) strains, without any direct assigned function for them. However, yfdX protein along with other proteins involved in acid tolerance response is reported to be up regulated by the multidrug response regulatory system in E. coli. Hence, molecular and functional characterization of this protein is important for understanding of key cellular processes in bacterial cells. Here we study STY3178, a yfdX protein from a MDR strain of typhoid fever causing Salmonella Typhi. Our experimental results indicate that STY3178 is a helical protein existing in a trimeric oligomerization state in solution. We also observe many small antibiotics, like ciprofloxacin, rifampin and ampicillin viably interact with this protein. The dissociation constants from the quenching of steady state fluorescence and isothermal titration calorimetry show that ciprofloxacin binding is stronger than rifampin followed by ampicillin.
Collapse
Affiliation(s)
- Paramita Saha
- Department of Chemical, Biological And Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt lake, Kolkata 700098, India
| | - Camelia Manna
- Department of Chemical, Biological And Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt lake, Kolkata 700098, India
| | - Santasabuj Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM Beleghata, Kolkata 700 010, India
| | - Mahua Ghosh
- Department of Chemical, Biological And Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt lake, Kolkata 700098, India
| |
Collapse
|
37
|
Saha P, Sikdar S, Chakrabarti J, Ghosh M. Response to chemical induced changes and their implication in yfdX proteins. RSC Adv 2016. [DOI: 10.1039/c6ra21913f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
38
|
Engineering Synthetic Multistress Tolerance in Escherichia coli by Using a Deinococcal Response Regulator, DR1558. Appl Environ Microbiol 2015; 82:1154-1166. [PMID: 26655758 DOI: 10.1128/aem.03371-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/20/2015] [Indexed: 12/15/2022] Open
Abstract
Cellular robustness is an important trait for industrial microbes, because the microbial strains are exposed to a multitude of different stresses during industrial processes, such as fermentation. Thus, engineering robustness in an organism in order to push the strains toward maximizing yield has become a significant topic of research. We introduced the deinococcal response regulator DR1558 into Escherichia coli (strain Ec-1558), thereby conferring tolerance to hydrogen peroxide (H2O2). The reactive oxygen species (ROS) level in strain Ec-1558 was reduced due to the increased KatE catalase activity. Among four regulators of the oxidative-stress response, OxyR, RpoS, SoxS, and Fur, we found that the expression of rpoS increased in Ec-1558, and we confirmed this increase by Western blot analysis. Electrophoretic mobility shift assays showed that DR1558 bound to the rpoS promoter. Because the alternative sigma factor RpoS regulates various stress resistance-related genes, we performed stress survival analysis using an rpoS mutant strain. Ec-1558 was able to tolerate a low pH, a high temperature, and high NaCl concentrations in addition to H2O2, and the multistress tolerance phenotype disappeared in the absence of rpoS. Microarray analysis clearly showed that a variety of stress-responsive genes that are directly or indirectly controlled by RpoS were upregulated in strain Ec-1558. These findings, taken together, indicate that the multistress tolerance conferred by DR1558 is likely routed through RpoS. In the present study, we propose a novel strategy of employing an exogenous response regulator from polyextremophiles for strain improvement.
Collapse
|
39
|
Abstract
This review considers the pathways for the degradation of amino acids and a few related compounds (agmatine, putrescine, ornithine, and aminobutyrate), along with their functions and regulation. Nitrogen limitation and an acidic environment are two physiological cues that regulate expression of several amino acid catabolic genes. The review considers Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella species. The latter is included because the pathways in Klebsiella species have often been thoroughly characterized and also because of interesting differences in pathway regulation. These organisms can essentially degrade all the protein amino acids, except for the three branched-chain amino acids. E. coli, Salmonella enterica serovar Typhimurium, and Klebsiella aerogenes can assimilate nitrogen from D- and L-alanine, arginine, asparagine, aspartate, glutamate, glutamine, glycine, proline, and D- and L-serine. There are species differences in the utilization of agmatine, citrulline, cysteine, histidine, the aromatic amino acids, and polyamines (putrescine and spermidine). Regardless of the pathway of glutamate synthesis, nitrogen source catabolism must generate ammonia for glutamine synthesis. Loss of glutamate synthase (glutamineoxoglutarate amidotransferase, or GOGAT) prevents utilization of many organic nitrogen sources. Mutations that create or increase a requirement for ammonia also prevent utilization of most organic nitrogen sources.
Collapse
|
40
|
Ardeshir A, Narayan NR, Méndez-Lagares G, Lu D, Rauch M, Huang Y, Van Rompay KKA, Lynch SV, Hartigan-O'Connor DJ. Breast-fed and bottle-fed infant rhesus macaques develop distinct gut microbiotas and immune systems. Sci Transl Med 2015; 6:252ra120. [PMID: 25186175 DOI: 10.1126/scitranslmed.3008791] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diet has a strong influence on the intestinal microbiota in both humans and animal models. It is well established that microbial colonization is required for normal development of the immune system and that specific microbial constituents prompt the differentiation or expansion of certain immune cell subsets. Nonetheless, it has been unclear how profoundly diet might shape the primate immune system or how durable the influence might be. We show that breast-fed and bottle-fed infant rhesus macaques develop markedly different immune systems, which remain different 6 months after weaning when the animals begin receiving identical diets. In particular, breast-fed infants develop robust populations of memory T cells as well as T helper 17 (TH17) cells within the memory pool, whereas bottle-fed infants do not. These findings may partly explain the variation in human susceptibility to conditions with an immune basis, as well as the variable protection against certain infectious diseases.
Collapse
Affiliation(s)
- Amir Ardeshir
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Nicole R Narayan
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA. Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Gema Méndez-Lagares
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA. Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Ding Lu
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA. Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Marcus Rauch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Yong Huang
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dennis J Hartigan-O'Connor
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA. Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616, USA. Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
41
|
Dupré E, Herrou J, Lensink MF, Wintjens R, Vagin A, Lebedev A, Crosson S, Villeret V, Locht C, Antoine R, Jacob-Dubuisson F. Virulence regulation with Venus flytrap domains: structure and function of the periplasmic moiety of the sensor-kinase BvgS. PLoS Pathog 2015; 11:e1004700. [PMID: 25738876 PMCID: PMC4352136 DOI: 10.1371/journal.ppat.1004700] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/14/2015] [Indexed: 11/23/2022] Open
Abstract
Two-component systems (TCS) represent major signal-transduction pathways for adaptation to environmental conditions, and regulate many aspects of bacterial physiology. In the whooping cough agent Bordetella pertussis, the TCS BvgAS controls the virulence regulon, and is therefore critical for pathogenicity. BvgS is a prototypical TCS sensor-kinase with tandem periplasmic Venus flytrap (VFT) domains. VFT are bi-lobed domains that typically close around specific ligands using clamshell motions. We report the X-ray structure of the periplasmic moiety of BvgS, an intricate homodimer with a novel architecture. By combining site-directed mutagenesis, functional analyses and molecular modeling, we show that the conformation of the periplasmic moiety determines the state of BvgS activity. The intertwined structure of the periplasmic portion and the different conformation and dynamics of its mobile, membrane-distal VFT1 domains, and closed, membrane-proximal VFT2 domains, exert a conformational strain onto the transmembrane helices, which sets the cytoplasmic moiety in a kinase-on state by default corresponding to the virulent phase of the bacterium. Signaling the presence of negative signals perceived by the periplasmic domains implies a shift of BvgS to a distinct state of conformation and activity, corresponding to the avirulent phase. The response to negative modulation depends on the integrity of the periplasmic dimer, indicating that the shift to the kinase-off state implies a concerted conformational transition. This work lays the bases to understand virulence regulation in Bordetella. As homologous sensor-kinases control virulence features of diverse bacterial pathogens, the BvgS structure and mechanism may pave the way for new modes of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elian Dupré
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Julien Herrou
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Marc F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, University Lille North of France, Villeneuve d’Ascq, France
| | - René Wintjens
- Laboratory of Biopolymers and Supramolecular Nanomaterials, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexey Vagin
- Structural Biology Laboratory, University of York, York, England, United Kingdom
| | - Andrey Lebedev
- Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Didcot, England, United Kingdom
| | - Sean Crosson
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Vincent Villeret
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, University Lille North of France, Villeneuve d’Ascq, France
| | - Camille Locht
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Rudy Antoine
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Françoise Jacob-Dubuisson
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| |
Collapse
|
42
|
De Biase D, Lund PA. The Escherichia coli Acid Stress Response and Its Significance for Pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2015; 92:49-88. [PMID: 26003933 DOI: 10.1016/bs.aambs.2015.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli has a remarkable ability to survive low pH and possesses a number of different genetic systems that enable it to do this. These may be expressed constitutively, typically in stationary phase, or induced by growth under a variety of conditions. The activities of these systems have been implicated in the ability of E. coli to pass the acidic barrier of the stomach and to become established in the gastrointestinal tract, something causing serious infections. However, much of the work characterizing these systems has been done on standard laboratory strains of E. coli and under conditions which do not closely resemble those found in the human gut. Here we review what is known about acid resistance in E. coli as a model laboratory organism and in the context of its lifestyle as an inhabitant-sometimes an unwelcome one-of the human gut.
Collapse
|
43
|
Yamanaka Y, Oshima T, Ishihama A, Yamamoto K. Characterization of the YdeO regulon in Escherichia coli. PLoS One 2014; 9:e111962. [PMID: 25375160 PMCID: PMC4222967 DOI: 10.1371/journal.pone.0111962] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 10/09/2014] [Indexed: 11/23/2022] Open
Abstract
Enterobacteria are able to survive under stressful conditions within animals, such as acidic conditions in the stomach, bile salts during transfer to the intestine and anaerobic conditions within the intestine. The glutamate-dependent (GAD) system plays a major role in acid resistance in Escherichia coli, and expression of the GAD system is controlled by the regulatory cascade consisting of EvgAS > YdeO > GadE. To understand the YdeO regulon in vivo, we used ChIP-chip to interrogate the E. coli genome for candidate YdeO binding sites. All of the seven operons identified by ChIP-chip as being potentially regulated by YdeO were confirmed as being under the direct control of YdeO using RT-qPCR, EMSA, DNaseI-footprinting and reporter assays. Within this YdeO regulon, we identified four stress-response transcription factors, DctR, NhaR, GadE, and GadW and enzymes for anaerobic respiration. Both GadE and GadW are involved in regulation of the GAD system and NhaR is an activator for the sodium/proton antiporter gene. In conjunction with co-transcribed Slp, DctR is involved in protection against metabolic endoproducts under acidic conditions. Taken all together, we suggest that YdeO is a key regulator of E. coli survival in both acidic and anaerobic conditions.
Collapse
Affiliation(s)
- Yuki Yamanaka
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Taku Oshima
- Graduate School of Information Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Akira Ishihama
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- Micro-Nano Technology Research Center, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
44
|
Yun S, Lee EG, Kim SY, Shin JM, Jung WS, Oh DB, Lee SY, Kwon O. The CpxRA two-component system is involved in the maintenance of the integrity of the cell envelope in the rumen bacterium Mannheimia succiniciproducens. Curr Microbiol 2014; 70:103-9. [PMID: 25231942 DOI: 10.1007/s00284-014-0686-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/29/2014] [Indexed: 11/28/2022]
Abstract
In this study, we characterized the CpxRA two-component signal transduction system of the rumen bacterium Mannheimia succiniciproducens. The truncated form of the CpxA sensor kinase protein without its transmembrane domain was able to autophosphorylate and transphosphorylate the CpxR response regulator protein in vitro. We identified 152 putative target genes for the Cpx system in M. succiniciproducens, which were differentially expressed by more than twofold upon overexpression of the CpxR protein. Genes of a putative 16-gene operon related to the cell wall and lipopolysaccharide biosynthesis were induced strongly upon CpxR overexpression. The promoter region of the first gene of this operon, wecC encoding UDP-N-acetyl-D-mannosaminuronate dehydrogenase, was analyzed and found to contain a sequence homologous to the CpxR box of Escherichia coli. An electrophoretic mobility shift assay showed that the phosphorylated CpxR proteins were able to bind specifically to PCR-amplified DNA fragments containing the promoter sequence of wecC. Furthermore, a cpxR-disrupted mutant strain exhibited increased envelope permeability compared with a wild-type strain. These results suggest that the Cpx system of M. succiniciproducens is involved in the maintenance of the integrity of the cell envelope.
Collapse
Affiliation(s)
- Seulgi Yun
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Johnson MD, Bell J, Clarke K, Chandler R, Pathak P, Xia Y, Marshall RL, Weinstock GM, Loman NJ, Winn PJ, Lund PA. Characterization of mutations in the PAS domain of the EvgS sensor kinase selected by laboratory evolution for acid resistance in Escherichia coli. Mol Microbiol 2014; 93:911-27. [PMID: 24995530 PMCID: PMC4283999 DOI: 10.1111/mmi.12704] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2014] [Indexed: 01/25/2023]
Abstract
Laboratory-based evolution and whole-genome sequencing can link genotype and phenotype. We used evolution of acid resistance in exponential phase Escherichia coli to study resistance to a lethal stress. Iterative selection at pH 2.5 generated five populations that were resistant to low pH in early exponential phase. Genome sequencing revealed multiple mutations, but the only gene mutated in all strains was evgS, part of a two-component system that has already been implicated in acid resistance. All these mutations were in the cytoplasmic PAS domain of EvgS, and were shown to be solely responsible for the resistant phenotype, causing strong upregulation at neutral pH of genes normally induced by low pH. Resistance to pH 2.5 in these strains did not require the transporter GadC, or the sigma factor RpoS. We found that EvgS-dependent constitutive acid resistance to pH 2.5 was retained in the absence of the regulators GadE or YdeO, but was lost if the oxidoreductase YdeP was also absent. A deletion in the periplasmic domain of EvgS abolished the response to low pH, but not the activity of the constitutive mutants. On the basis of these results we propose a model for how EvgS may become activated by low pH.
Collapse
Affiliation(s)
- Matthew D Johnson
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK; Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, 3062, Vic., Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
47
|
Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli. J Bacteriol 2014; 196:3140-9. [PMID: 24957621 DOI: 10.1128/jb.01742-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception.
Collapse
|
48
|
Molecular Mechanism of Transcriptional Cascade Initiated by the EvgS/EvgA System inEscherichia coliK-12. Biosci Biotechnol Biochem 2014; 73:870-8. [DOI: 10.1271/bbb.80795] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Genomics and Proteomics of Foodborne Microorganisms. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Engineering of transcriptional regulators enhances microbial stress tolerance. Biotechnol Adv 2013; 31:986-91. [DOI: 10.1016/j.biotechadv.2013.02.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/17/2013] [Accepted: 02/25/2013] [Indexed: 11/20/2022]
|