1
|
Acetylation of PhoP K88 Is Involved in Regulating Salmonella Virulence. Infect Immun 2021; 89:IAI.00588-20. [PMID: 33318137 DOI: 10.1128/iai.00588-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
The PhoP-PhoQ two-component regulation system of Salmonella enterica serovar Typhimurium is involved in the response to various environmental stresses and is essential for bacterial virulence. Our previous studies showed that acetylation plays an important role in regulating the activity of PhoP, which consequently mediates the change in virulence of S Typhimurium. Here, we demonstrate that a conserved lysine residue, K88, is crucial for the function of PhoP and its acetylation-downregulated PhoP activities. K88 could be specifically acetylated by acetyl phosphate (AcP), and the acetylation level of K88 decreased significantly after phagocytosis of S Typhimurium by macrophages. Acetylation of K88 inhibited PhoP dimerization and DNA-binding abilities. In addition, mutation of K88 to glutamine, mimicking the acetylated form, dramatically attenuated intestinal inflammation and systemic infection of S Typhimurium in the mouse model. These findings indicate that nonenzymatic acetylation of PhoP by AcP is a fine-tuned mechanism for the virulence of S Typhimurium and highlights that virulence and metabolism in the host are closely linked.
Collapse
|
2
|
Abstract
Response regulators function as the output components of two-component systems, which couple the sensing of environmental stimuli to adaptive responses. Response regulators typically contain conserved receiver (REC) domains that function as phosphorylation-regulated switches to control the activities of effector domains that elicit output responses. This modular design is extremely versatile, enabling different regulatory strategies tuned to the needs of individual signaling systems. This review summarizes structural features that underlie response regulator function. An abundance of atomic resolution structures and complementary biochemical data have defined the mechanisms for response regulator enzymatic activities, revealed trends in regulatory strategies utilized by response regulators of different subfamilies, and provided insights into interactions of response regulators with their cognate histidine kinases. Among the hundreds of thousands of response regulators identified, variations abound. This article provides a framework for understanding structural features that enable function of canonical response regulators and a basis for distinguishing noncanonical configurations.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| | - Sophie Bouillet
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA; , ,
| |
Collapse
|
3
|
Kou X, Liu Y, Li C, Liu M, Jiang L. Dimerization and Conformational Exchanges of the Receiver Domain of Response Regulator PhoB from Escherichia coli. J Phys Chem B 2018; 122:5749-5757. [DOI: 10.1021/acs.jpcb.8b01034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinhui Kou
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- Graduate University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Yixiang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Characterization of a temperature-responsive two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii. Sci Rep 2016; 6:24278. [PMID: 27052690 PMCID: PMC4823666 DOI: 10.1038/srep24278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/23/2016] [Indexed: 01/18/2023] Open
Abstract
Cold environments dominate the Earth’s biosphere and the resident microorganisms play critical roles in fulfilling global biogeochemical cycles. However, only few studies have examined the molecular basis of thermosensing; an ability that microorganisms must possess in order to respond to environmental temperature and regulate cellular processes. Two component regulatory systems have been inferred to function in thermal regulation of gene expression, but biochemical studies assessing these systems in Bacteria are rare, and none have been performed in Archaea or psychrophiles. Here we examined the LtrK/LtrR two component regulatory system from the Antarctic archaeon, Methanococcoides burtonii, assessing kinase and phosphatase activities of wild-type and mutant proteins. LtrK was thermally unstable and had optimal phosphorylation activity at 10 °C (the lowest optimum activity for any psychrophilic enzyme), high activity at 0 °C and was rapidly thermally inactivated at 30 °C. These biochemical properties match well with normal environmental temperatures of M. burtonii (0–4 °C) and the temperature this psychrophile is capable of growing at in the laboratory (−2 to 28 °C). Our findings are consistent with a role for LtrK in performing phosphotransfer reactions with LtrR that could lead to temperature-dependent gene regulation.
Collapse
|
5
|
Maule AF, Wright DP, Weiner JJ, Han L, Peterson FC, Volkman BF, Silvaggi NR, Ulijasz AT. The aspartate-less receiver (ALR) domains: distribution, structure and function. PLoS Pathog 2015; 11:e1004795. [PMID: 25875291 PMCID: PMC4395418 DOI: 10.1371/journal.ppat.1004795] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 03/09/2015] [Indexed: 01/07/2023] Open
Abstract
Two-component signaling systems are ubiquitous in bacteria, Archaea and plants and play important roles in sensing and responding to environmental stimuli. To propagate a signaling response the typical system employs a sensory histidine kinase that phosphorylates a Receiver (REC) domain on a conserved aspartate (Asp) residue. Although it is known that some REC domains are missing this Asp residue, it remains unclear as to how many of these divergent REC domains exist, what their functional roles are and how they are regulated in the absence of the conserved Asp. Here we have compiled all deposited REC domains missing their phosphorylatable Asp residue, renamed here as the Aspartate-Less Receiver (ALR) domains. Our data show that ALRs are surprisingly common and are enriched for when attached to more rare effector outputs. Analysis of our informatics and the available ALR atomic structures, combined with structural, biochemical and genetic data of the ALR archetype RitR from Streptococcus pneumoniae presented here suggest that ALRs have reorganized their active pockets to instead take on a constitutive regulatory role or accommodate input signals other than Asp phosphorylation, while largely retaining the canonical post-phosphorylation mechanisms and dimeric interface. This work defines ALRs as an atypical REC subclass and provides insights into shared mechanisms of activation between ALR and REC domains.
Collapse
Affiliation(s)
- Andrew F. Maule
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - David P. Wright
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Joshua J. Weiner
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Lanlan Han
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Francis C. Peterson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Nicholas R. Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
- * E-mail: (ATU); (NRS)
| | - Andrew T. Ulijasz
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
- * E-mail: (ATU); (NRS)
| |
Collapse
|
6
|
Ulyanova V, Vershinina V, Ilinskaya O, Harwood CR. Binase-like guanyl-preferring ribonucleases are new members of Bacillus PhoP regulon. Microbiol Res 2014; 170:131-8. [PMID: 25238955 DOI: 10.1016/j.micres.2014.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/24/2014] [Indexed: 11/18/2022]
Abstract
Extracellular low-molecular weight guanyl-preferring ribonucleases (LMW RNases) of Bacillus sp. comprise a group of hydrolytic enzymes that share highly similar structural and catalytic characteristics with barnase, a ribonuclease from Bacillus amyloliquefaciens, and binase, a ribonuclease from Bacillus intermedius. Although the physical-chemical and catalytic properties of Bacillus guanyl-preferring ribonucleases are very similar, there is considerably more variation in the environmental conditions that lead to the induction of the genes encoding these RNases. Based on structural differences of their genes the guanyl-preferring ribonucleases have been sub-divided into binase-like and barnase-like groups. Here we show the ability of the key regulator of phosphate deficiency response, PhoP, to direct the transcription of the binase-like RNases but not barnase-like RNases. These results, together with our demonstration that binase-like RNases are induced in response to phosphate starvation, allow us to categorise this group of ribonucleases as new members of Bacillus PhoP regulon. In contrast, the barnase-like ribonucleases are relatively insensitive to the phosphate concentration and the environmental conditions that are responsible for their induction, and the regulatory elements involved, are currently unknown.
Collapse
Affiliation(s)
- Vera Ulyanova
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom; Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russian Federation.
| | - Valentina Vershinina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russian Federation.
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russian Federation.
| | - Colin R Harwood
- Institute for Cell and Molecular Biosciences, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
7
|
Luo SC, Lou YC, Rajasekaran M, Chang YW, Hsiao CD, Chen C. Structural basis of a physical blockage mechanism for the interaction of response regulator PmrA with connector protein PmrD from Klebsiella pneumoniae. J Biol Chem 2013; 288:25551-25561. [PMID: 23861396 PMCID: PMC3757216 DOI: 10.1074/jbc.m113.481978] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In bacteria, the two-component system is the most prevalent for sensing and transducing environmental signals into the cell. The PmrA-PmrB two-component system, responsible for sensing external stimuli of high Fe(3+) and mild acidic conditions, can control the genes involved in lipopolysaccharide modification and polymyxin resistance in pathogens. In Klebsiella pneumoniae, the small basic connector protein PmrD protects phospho-PmrA and prolongs the expression of PmrA-activated genes. We previously determined the phospho-PmrA recognition mode of PmrD. However, how PmrA interacts with PmrD and prevents its dephosphorylation remains unknown. To address this question, we solved the x-ray crystal structure of the N-terminal receiver domain of BeF3(-)-activated PmrA (PmrA(N)) at 1.70 Å. With this structure, we applied the data-driven docking method based on NMR chemical shift perturbation to generate the complex model of PmrD-PmrA(N), which was further validated by site-directed spin labeling experiments. In the complex model, PmrD may act as a blockade to prevent phosphatase from contacting with the phosphorylation site on PmrA.
Collapse
Affiliation(s)
| | | | | | - Yi-Wei Chang
- Molecular Biology, Academia Sinica, Taipei 115, Taiwan and
| | | | - Chinpan Chen
- From the Institutes of Biomedical Sciences and ,Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, To whom correspondence should be addressed: Institute of Biomedical Sciences, Academia Sinica, 128 Academia Rd., Section 2, Taipei 115, Taiwan. Tel.: 886-2-2652-3035; Fax: 886-2-2788-7641; E-mail:
| |
Collapse
|
8
|
Cimino M, Thomas C, Namouchi A, Dubrac S, Gicquel B, Gopaul DN. Identification of DNA binding motifs of the Mycobacterium tuberculosis PhoP/PhoR two-component signal transduction system. PLoS One 2012; 7:e42876. [PMID: 22880126 PMCID: PMC3413638 DOI: 10.1371/journal.pone.0042876] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 07/13/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Mycobacterium tuberculosis PhoP/PhoR two-component signal transduction system controls the expression of about 2% of the genome and plays a major role in pathogenicity. However, its regulon has not been well characterized. METHODOLOGY/PRINCIPAL FINDINGS The binding site of PhoP transcription regulator was identified in the upstream regions of msl3, pks2, lipF and fadD21 genes, by using gene fusions, electrophoretic mobility shift assays and DNase I footprinting experiments. A consensus sequence for PhoP binding was deduced. It consists of two direct repeats, DR1/DR2, associated with a third repeat, DR3, important in some cases for PhoP binding to DR1/DR2 but located at a variable distance from these direct repeats. DR1/DR2 and DR3 consensus sequences were used to screen the whole-genome sequence for other putative binding sites potentially corresponding to genes directly regulated by PhoP. The identified 87 genes, encoding transcription regulators, and proteins involved in secondary metabolites biosynthesis, transport and catabolism are proposed to belong to the PhoP regulon. CONCLUSIONS/SIGNIFICANCE A consensus sequence derived from the analysis of PhoP binding to four gene promoter regions is proposed. We show for the first time the involvement of a third direct repeat motif in this binding reaction. The consensus sequence was instrumented to study the global regulation mediated by PhoP in M. tuberculosis. This analysis leads to the identification of several genes that are potentially regulated by this key player.
Collapse
Affiliation(s)
- Mena Cimino
- Unité de Génétique Mycobacterienne, Institut Pasteur, Paris, France
| | - Christophe Thomas
- Unité de Plasticité du Génome bactérien, Institut Pasteur, CNRS UMR 3525, Paris, France
| | - Amine Namouchi
- Unité de Génétique Mycobacterienne, Institut Pasteur, Paris, France
| | - Sarah Dubrac
- Unité de Recherche Biologie des Bactéries pathogènes à Gram-positif, Institut Pasteur, Paris, France
| | - Brigitte Gicquel
- Unité de Génétique Mycobacterienne, Institut Pasteur, Paris, France
- * E-mail:
| | - Deshmukh N. Gopaul
- Unité de Plasticité du Génome bactérien, Institut Pasteur, CNRS UMR 3525, Paris, France
| |
Collapse
|
9
|
Transcriptomic studies of phosphate control of primary and secondary metabolism in Streptomyces coelicolor. Appl Microbiol Biotechnol 2012; 95:61-75. [PMID: 22622839 DOI: 10.1007/s00253-012-4129-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/20/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
Phosphate controls the biosynthesis of many classes of secondary metabolites that belong to different biosynthetic groups, indicating that phosphate control is a general mechanism governing secondary metabolism. We refer in this article to the molecular mechanisms of regulation, mediated by the two-component system PhoR-PhoP, of the primary metabolism and the biosynthesis of antibiotics. The two-component PhoR-PhoP system is conserved in all Streptomyces and related actinobacteria sequenced so far, and involves a third component PhoU that modulates the signal transduction cascade. The PhoP DNA-binding sequence is well characterized in Streptomyces coelicolor. It comprises at least two direct repeat units of 11 nt, the first seven of which are highly conserved. Other less conserved direct repeats located adjacent to the core ones can also be bound by PhoP through cooperative protein-protein interactions. The phoR-phoP operon is self-activated and requires phosphorylated PhoP to mediate the full response. About 50 up-regulated PhoP-dependent genes have been identified by comparative transcriptomic studies between the parental S. coelicolor M145 and the ΔphoP mutant strains. The PhoP regulation of several of these genes has been studied in detail using EMSA and DNase I footprinting studies as well as in vivo expression studies with reporter genes and RT-PCR transcriptomic analyses.
Collapse
|
10
|
Swapna LS, Srikeerthana K, Srinivasan N. Extent of structural asymmetry in homodimeric proteins: prevalence and relevance. PLoS One 2012; 7:e36688. [PMID: 22629324 PMCID: PMC3358323 DOI: 10.1371/journal.pone.0036688] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/11/2012] [Indexed: 11/21/2022] Open
Abstract
Most homodimeric proteins have symmetric structure. Although symmetry is known to confer structural and functional advantage, asymmetric organization is also observed. Using a non-redundant dataset of 223 high-resolution crystal structures of biologically relevant homodimers, we address questions on the prevalence and significance of asymmetry. We used two measures to quantify global and interface asymmetry, and assess the correlation of several molecular and structural parameters with asymmetry. We have identified rare cases (11/223) of biologically relevant homodimers with pronounced global asymmetry. Asymmetry serves as a means to bring about 2∶1 binding between the homodimer and another molecule; it also enables cellular signalling arising from asymmetric macromolecular ligands such as DNA. Analysis of these cases reveals two possible mechanisms by which possible infinite array formation is prevented. In case of homodimers associating via non-topologically equivalent surfaces in their tertiary structures, ligand-dependent mechanisms are used. For stable dimers binding via large surfaces, ligand-dependent structural change regulates polymerisation/depolymerisation; for unstable dimers binding via smaller surfaces that are not evolutionarily well conserved, dimerisation occurs only in the presence of the ligand. In case of homodimers associating via interaction surfaces with parts of the surfaces topologically equivalent in the tertiary structures, steric hindrance serves as the preventive mechanism of infinite array. We also find that homodimers exhibiting grossly symmetric organization rarely exhibit either perfect local symmetry or high local asymmetry. Binding of small ligands at the interface does not cause any significant variation in interface asymmetry. However, identification of biologically relevant interface asymmetry in grossly symmetric homodimers is confounded by the presence of similar small magnitude changes caused due to artefacts of crystallisation. Our study provides new insights regarding accommodation of asymmetry in homodimers.
Collapse
|
11
|
Singh V, Ekka MK, Kumaran S. Second monomer binding is the rate-limiting step in the formation of the dimeric PhoP-DNA complex. Biochemistry 2012; 51:1346-56. [PMID: 22268791 DOI: 10.1021/bi201257d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PhoP, the response regulator of the PhoP/PhoQ system, regulates Mg(2+) homeostasis in Salmonella typhimurium. Dimerization of PhoP on the DNA is necessary for its regulatory function, and PhoP regulates the expression of genes in a phosphorylation-dependent manner. Higher PhoP concentrations, however, can activate PhoP and substitute for phosphorylation-dependent gene regulation. Activation of PhoP by phosphorylation is explained by self-assembly of phosphorylated PhoP (PhoP-p) in solution and binding of the PhoP-p dimer to the promoter. To understand the mechanism of PhoP dimerization on the DNA, we examined the interactions of PhoP with double-stranded DNAs containing the canonical PhoP box (PB). We present results from multiple biophysical methods, demonstrating that PhoP is a monomer in solution over a range of concentrations and binds to PB in a stepwise manner with a second PhoP molecule binding weakly. The affinity for the binding of the first PhoP molecule to PB is more than ∼17-fold higher than the affinity of the second PhoP monomer for PB. Kinetic analyses of PhoP binding reveal that the on rate of the second PhoP monomer binding is the rate-limiting step during the formation of the (PhoP)(2)-DNA complex. Results show that a moderate increase in PhoP concentration can promote dimerization of PhoP on the DNA, which otherwise could be achieved by PhoP-p at much lower protein concentrations. Detailed analyses of PhoP-DNA interactions have revealed the existence of a kinetic barrier that is the key for specificity in the formation of the productive (PhoP)(2)-DNA complex.
Collapse
Affiliation(s)
- Vijay Singh
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | | | | |
Collapse
|
12
|
Menon S, Wang S. Structure of the response regulator PhoP from Mycobacterium tuberculosis reveals a dimer through the receiver domain. Biochemistry 2011; 50:5948-57. [PMID: 21634789 DOI: 10.1021/bi2005575] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The PhoP protein from Mycobacterium tuberculosis is a response regulator of the OmpR/PhoB subfamily, whose structure consists of an N-terminal receiver domain and a C-terminal DNA-binding domain. How the DNA-binding activities are regulated by phosphorylation of the receiver domain remains unclear due to a lack of structural information on the full-length proteins. Here we report the crystal structure of the full-length PhoP of M. tuberculosis. Unlike other known structures of full-length proteins of the same subfamily, PhoP forms a dimer through its receiver domain with the dimer interface involving α4-β5-α5, a common interface for activated receiver domain dimers. However, the switch residues, Thr99 and Tyr118, are in a conformation resembling those of nonactivated receiver domains. The Tyr118 side chain is involved in the dimer interface interactions. The receiver domain is tethered to the DNA-binding domain through a flexible linker and does not impose structural constraints on the DNA-binding domain. This structure suggests that phosphorylation likely facilitates/stabilizes receiver domain dimerization, bringing the DNA-binding domains to close proximity, thereby increasing their binding affinity for direct repeat DNA sequences.
Collapse
Affiliation(s)
- Smita Menon
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | | |
Collapse
|
13
|
The BatR/BatS two-component regulatory system controls the adaptive response of Bartonella henselae during human endothelial cell infection. J Bacteriol 2010; 192:3352-67. [PMID: 20418395 DOI: 10.1128/jb.01676-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the first comprehensive study of Bartonella henselae gene expression during infection of human endothelial cells. Expression of the main cluster of upregulated genes, comprising the VirB type IV secretion system and its secreted protein substrates, is shown to be under the positive control of the transcriptional regulator BatR. We demonstrate binding of BatR to the promoters of the virB operon and a substrate-encoding gene and provide biochemical evidence that BatR and BatS constitute a functional two-component regulatory system. Moreover, in contrast to the acid-inducible (pH 5.5) homologs ChvG/ChvI of Agrobacterium tumefaciens, BatR/BatS are optimally activated at the physiological pH of blood (pH 7.4). By conservation analysis of the BatR regulon, we show that BatR/BatS are uniquely adapted to upregulate a genus-specific virulence regulon during hemotropic infection in mammals. Thus, we propose that BatR/BatS two-component system homologs represent vertically inherited pH sensors that control the expression of horizontally transmitted gene sets critical for the diverse host-associated life styles of the alphaproteobacteria.
Collapse
|
14
|
High-resolution protein complexes from integrating genomic information with molecular simulation. Proc Natl Acad Sci U S A 2009; 106:22124-9. [PMID: 20018738 DOI: 10.1073/pnas.0912100106] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria use two-component signal transduction systems (TCS) extensively to sense and react to external stimuli. In these, a membrane-bound sensor histidine kinase (SK) autophosphorylates in response to an environmental stimulus and transfers the phosphoryl group to a transcription factor/response regulator (RR) that mediates the cellular response. The complex between these two proteins is ruled by transient interactions, which provides a challenge to experimental structure determination techniques. The functional and structural homolog of an SK/RR pair Spo0B/Spo0F, however, has been structurally resolved. Here, we describe a method capable of generating structural models of such transient protein complexes. By using existing structures of the individual proteins, our method combines bioinformatically derived contact residue information with molecular dynamics simulations. We find crystal resolution accuracy with existing crystallographic data when reconstituting the known system Spo0B/Spo0F. Using this approach, we introduce a complex structure of TM0853/TM0468 as an exemplary SK/RR TCS, consistent with all experimentally available data.
Collapse
|
15
|
Mycobacterium tuberculosis PhoP recognizes two adjacent direct-repeat sequences to form head-to-head dimers. J Bacteriol 2009; 191:7466-76. [PMID: 19820095 DOI: 10.1128/jb.00669-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis PhoP of the PhoP-PhoR two-component signaling system orchestrates a complex transcription program and is essential for the growth and virulence of the tubercle bacillus. PhoP comprises a phosphorylation domain at the amino-terminal half and a DNA-binding domain in the carboxy-terminal half of the protein. We show here that the protein recognizes a 23-bp sequence of the phoP upstream region comprising two adjacent direct repeat motifs believed to promote transcription regulation. DNA binding, which involves the recruitment of two monomeric PhoP molecules, was dependent on conserved adenines of the repeat sequences and the orientation of the repeat motifs relative to each other. Although response regulators such as PhoB and FixJ dimerize upon phosphorylation, we demonstrate here that PhoP dimerization can also be stimulated by DNA binding. Using the established asymmetric tandem binding model by members of the OmpR/PhoB protein family as a guide, we set out to examine intermolecular interactions between PhoP dimers by protein cross-linking. Our results are consistent with a model in which two PhoP protomers bind the duplex DNA with a symmetric head-to-head orientation to project their N termini toward one another, arguing against previously proposed head-to-tail tandem dimer formation for members of the OmpR/PhoB protein subfamily.
Collapse
|
16
|
Mack TR, Gao R, Stock AM. Probing the roles of the two different dimers mediated by the receiver domain of the response regulator PhoB. J Mol Biol 2009; 389:349-64. [PMID: 19371748 DOI: 10.1016/j.jmb.2009.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/08/2009] [Accepted: 04/08/2009] [Indexed: 12/28/2022]
Abstract
Structural analysis of the Escherichia coli response regulator transcription factor PhoB indicates that the protein dimerizes in two different orientations that are both mediated by the receiver domain. The two dimers exhibit 2-fold rotational symmetry: one involves the alpha 4-beta 5-alpha 5 surface and the other involves the alpha1/alpha 5 surface. The alpha 4-beta 5-alpha 5 dimer is observed when the protein is crystallized in the presence of the phosphoryl analog BeF(3)(-), while the alpha1/alpha 5 dimer is observed in its absence. From these studies, a model of the inactive and active states of PhoB has been proposed that involves the formation of two distinct dimers. In order to gain further insight into the roles of these dimers, we have engineered a series of mutations in PhoB intended to perturb each of them selectively. Our results indicate that perturbation of the alpha 4-beta 5-alpha 5 surface disrupts phosphorylation-dependent dimerization and DNA binding as well as PhoB-mediated transcriptional activation of phoA, while perturbations to the alpha1/alpha 5 surface do not. Furthermore, experiments with a GCN4 leucine zipper/PhoB chimera protein indicate that PhoB is activated through an intermolecular mechanism. Together, these results support a model of activation of PhoB in which phosphorylation promotes dimerization via the alpha 4-beta 5-alpha 5 face, which enhances DNA binding and thus the ability of PhoB to regulate transcription.
Collapse
Affiliation(s)
- Timothy R Mack
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
17
|
Abstract
Two-component signal transduction based on phosphotransfer from a histidine protein kinase to a response regulator protein is a prevalent strategy for coupling environmental stimuli to adaptive responses in bacteria. In both histidine kinases and response regulators, modular domains with conserved structures and biochemical activities adopt different conformational states in the presence of stimuli or upon phosphorylation, enabling a diverse array of regulatory mechanisms based on inhibitory and/or activating protein-protein interactions imparted by different domain arrangements. This review summarizes some of the recent structural work that has provided insight into the functioning of bacterial histidine kinases and response regulators. Particular emphasis is placed on identifying features that are expected to be conserved among different two-component proteins from those that are expected to differ, with the goal of defining the extent to which knowledge of previously characterized two-component proteins can be applied to newly discovered systems.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School and Howard Hughes Medical Institute, Piscataway, New Jersey 08854-5627
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry, UMDNJ-Robert Wood Johnson Medical School and Howard Hughes Medical Institute, Piscataway, New Jersey 08854-5627
| |
Collapse
|
18
|
Yamada S, Shiro Y. Structural Basis of the Signal Transduction in the Two-Component System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:22-39. [DOI: 10.1007/978-0-387-78885-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Dasgupta J, Dattagupta JK. Structural determinants of V. cholerae CheYs that discriminate them in FliM binding: comparative modeling and MD simulation studies. J Biomol Struct Dyn 2008; 25:495-503. [PMID: 18282004 DOI: 10.1080/07391102.2008.10507196] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Chemotaxis of Vibrio cholerae is a complex process where multiple paralogues of various chemotaxis genes participate. V. cholerae contains five copies of the response regulator protein CheY (CheYV) and the role played by these CheY homologs in chemotaxis and virulence are investigated only through a few in vivo studies. As identification of the molecular features that discriminate CheYVs in terms of FliM binding is necessary for the detailed understanding of chemotaxis and pathogenesis, we built the models of CheYVs through comparative modeling and MD simulation was performed on each model in their phosphorylated and Mg+2 bound state. Our analysis identified the key structural elements, unique to CheY3V, which complement the N-terminal part of FliMV and we explained how the structure, shape, and surface properties of the FliM binding pocket of other CheYVs abrogate this function. Furthermore, we have provided the structural basis of a putative cross species interaction between CheYE and FliMV, identified in a recent in vivo study.
Collapse
Affiliation(s)
- Jhimli Dasgupta
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | | |
Collapse
|
20
|
Kojetin DJ, Sullivan DM, Thompson RJ, Cavanagh J. Classification of response regulators based on their surface properties. Methods Enzymol 2008; 422:141-69. [PMID: 17628138 DOI: 10.1016/s0076-6879(06)22007-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The two-component signal transduction system is a ubiquitous signaling module present in most prokaryotic and some eukaryotic systems. Two conserved components, a histidine protein kinase (HPK) protein and a response regulator (RR) protein, function as a biological switch, sensing and responding to changes in the environment, thereby eliciting a specific response. Extensive studies have classified the HPK and RR proteins using primary sequence characteristics, domain identity, domain organization, and biological function. We propose that structural analysis of the surface properties of the highly conserved receiver domain of RRs can be used to build on previous classification methods. Our studies of the OmpR subfamily RRs in Bacillus subtilis and Escherichia coli reveal a notable correlation between the RR receiver domain surface classification and previous classification of cognate HPK proteins. We have extended these studies to analyze the receiver domains of all predicted RR proteins in the marine-dwelling bacterium Vibrio vulnificus.
Collapse
Affiliation(s)
- Douglas J Kojetin
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
21
|
Lacal J, Guazzaroni ME, Busch A, Krell T, Ramos JL. Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter. J Mol Biol 2007; 376:325-37. [PMID: 18166197 DOI: 10.1016/j.jmb.2007.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 11/30/2007] [Accepted: 12/04/2007] [Indexed: 11/27/2022]
Abstract
The TodS and TodT proteins form a highly specific two-component regulatory system that controls the expression of genes involved in the degradation of toluene, benzene, and ethylbenzene via the toluene dioxygenase pathway. The catabolic genes of the toluene dioxygenase pathway are transcribed from a single promoter called P(todX) once the response regulator TodT is phosphorylated by the TodS sensor kinase in response to pathway substrates. We show here that TodT is a monomer in solution and that it binds to three specific sites in the P(todX) promoter, centered at -57, -85, and -106 with respect to the transcription start site. The -85 and -106 sites are pseudopalindromic, whereas the -57 site is half a palindrome. TodT binding to its target sites is sequential, as shown by electrophoresis mobility gel shift assays and footprinting. The binding affinity values of TodT, as determined by isothermal titration calorimetry, are 1.8+/-0.2, 5+/-0.4, and 6.3+/-0.8 microM for the -106, -85, and -57 sites, respectively, and the binding stoichiometry is one monomer per half-palindromic element. Mutational analysis revealed that all three sites contribute to P(todX) strength, although the most relevant site is the distal one with respect to the -10 extended element of the downstream promoter element. The C-TodT [C-terminal TodT fragment (amino acids 154-206)], a truncated variant of TodT that contains the C-terminal half of the protein bearing the DNA binding domain, binds in vitro to all three sites with affinity similar to that of the full-length protein. However, C-TodT, in contrast to the full-length regulator, does not activate in vitro transcription from P(todX). We discuss the consequences of the organization of the binding sites on transcriptional control and propose that the N-terminal domain of TodT is necessary for appropriate interactions with other transcriptional elements.
Collapse
Affiliation(s)
- Jesús Lacal
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda, 1, E-18008 Granada, Spain
| | | | | | | | | |
Collapse
|
22
|
Wang S, Engohang-Ndong J, Smith I. Structure of the DNA-binding domain of the response regulator PhoP from Mycobacterium tuberculosis. Biochemistry 2007; 46:14751-61. [PMID: 18052041 DOI: 10.1021/bi700970a] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The PhoP-PhoR two-component signaling system from Mycobacterium tuberculosis is essential for the virulence of the tubercle bacillus. The response regulator, PhoP, regulates expression of over 110 genes. In order to elucidate the regulatory mechanism of PhoP, we determined the crystal structure of its DNA-binding domain (PhoPC). PhoPC exhibits a typical fold of the winged helix-turn-helix subfamily of response regulators. The structure starts with a four-stranded antiparallel beta-sheet, followed by a three-helical bundle of alpha-helices, and then a C-terminal beta-hairpin, which together with a short beta-strand between the first and second helices forms a three-stranded antiparallel beta-sheet. Structural elements are packed through a hydrophobic core, with the first helix providing a scaffold for the rest of the domain to pack. The second and third helices and the long, flexible loop between them form the helix-turn-helix motif, with the third helix being the recognition helix. The C-terminal beta-hairpin turn forms the wing motif. The molecular surfaces around the recognition helix and the wing residues show strong positive electrostatic potential, consistent with their roles in DNA binding and nucleotide sequence recognition. The crystal packing of PhoPC gives a hexamer ring, with neighboring molecules interacting in a head-to-tail fashion. This packing interface suggests that PhoPC could bind DNA in a tandem association. However, this mode of DNA binding is likely to be nonspecific because the recognition helix is partially blocked and would be prevented from inserting into the major groove of DNA. Detailed structural analysis and implications with respect to DNA binding are discussed.
Collapse
Affiliation(s)
- Shuishu Wang
- Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
23
|
Bachhawat P, Stock AM. Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllofluoride. J Bacteriol 2007; 189:5987-95. [PMID: 17545283 PMCID: PMC1952025 DOI: 10.1128/jb.00049-07] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response regulator PhoP is part of the PhoQ/PhoP two-component system involved in responses to depletion of extracellular Mg(2+). Here, we report the crystal structures of the receiver domain of Escherichia coli PhoP determined in the absence and presence of the phosphoryl analog beryllofluoride. In the presence of beryllofluoride, the active receiver domain forms a twofold symmetric dimer similar to that seen in structures of other regulatory domains from the OmpR/PhoB family, providing further evidence that members of this family utilize a common mode of dimerization in the active state. In the absence of activating agents, the PhoP receiver domain crystallizes with a similar structure, consistent with the previous observation that high concentrations can promote an active state of PhoP independent of phosphorylation.
Collapse
Affiliation(s)
- Priti Bachhawat
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854-5627, USA
| | | |
Collapse
|
24
|
Friedland N, Mack TR, Yu M, Hung LW, Terwilliger TC, Waldo GS, Stock AM. Domain orientation in the inactive response regulator Mycobacterium tuberculosis MtrA provides a barrier to activation. Biochemistry 2007; 46:6733-43. [PMID: 17511470 PMCID: PMC2528954 DOI: 10.1021/bi602546q] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The structure of MtrA, an essential gene product for the human pathogen Mycobacterium tuberculosis, has been solved to a resolution of 2.1 A. MtrA is a member of the OmpR/PhoB family of response regulators and represents the fourth family member for which a structure of the protein in its inactive state has been determined. As is true for all OmpR/PhoB family members, MtrA possesses an N-terminal regulatory domain and a C-terminal winged helix-turn-helix DNA-binding domain, with phosphorylation of the regulatory domain modulating the activity of the protein. In the inactive form of MtrA, these two domains form an extensive interface that is composed of the alpha4-beta5-alpha5 face of the regulatory domain and the C-terminal end of the positioning helix, the trans-activation loop, and the recognition helix of the DNA-binding domain. This domain orientation suggests a mechanism of mutual inhibition by the two domains. Activation of MtrA would require a disruption of this interface to allow the alpha4-beta5-alpha5 face of the regulatory domain to form the intermolecule interactions that are associated with the active state and to allow the recognition helix to interact with DNA. Furthermore, the interface appears to stabilize the inactive conformation of MtrA, potentially reducing the rate of phosphorylation of the N-terminal domain. This combination of effects may form a switch, regulating the activity of MtrA. The domain orientation exhibited by MtrA also provides a rationale for the variation in linker length that is observed within the OmpR/PhoB family of response regulators.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ann M. Stock
- To whom correspondence should be addressed at Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, NJ 08854. Telephone: (732) 235−4844. Fax (732) 235−5289. E-mail:
| |
Collapse
|
25
|
Arribas-Bosacoma R, Kim SK, Ferrer-Orta C, Blanco AG, Pereira PJ, Gomis-Rüth FX, Wanner BL, Coll M, Solà M. The X-ray crystal structures of two constitutively active mutants of the Escherichia coli PhoB receiver domain give insights into activation. J Mol Biol 2007; 366:626-41. [PMID: 17182055 PMCID: PMC1855202 DOI: 10.1016/j.jmb.2006.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 11/07/2006] [Accepted: 11/09/2006] [Indexed: 11/22/2022]
Abstract
The PhoR/PhoB two-component system is a key regulatory protein network enabling Escherichia coli to respond to inorganic phosphate (Pi) starvation conditions by turning on Pho regulon genes for more efficient Pi uptake and use of alternative phosphorus sources. Under environmental Pi depletion, the response regulator (RR) component, PhoB, is phosphorylated at the receiver domain (RD), a process that requires Mg(2+) bound at the active site. Phosphorylation of the RD relieves the inhibition of the PhoB effector domain (ED), a DNA-binding region that binds to Pho regulon promoters to activate transcription. The molecular details of the activation are proposed to involve dimerization of the RD and a conformational change in the RD detected by the ED. The structure of the PhoB RD shows a symmetrical interaction involving alpha1, loop beta5alpha5 and N terminus of alpha5 elements, also seen in the complex of PhoB RD with Mg(2+), in which helix alpha4 highly increases its flexibility. PhoB RD in complex with Mg(2+) and BeF(3) (an emulator of the phosphate moiety) undergoes a dramatic conformational change on helix alpha4 and shows another interaction involving alpha4, beta5 and alpha5 segments. We have selected a series of constitutively active PhoB mutants (PhoB(CA)) that are able to turn on the Pho regulon promoters in the absence phosphorylation and, as they cannot be inactivated, should therefore mimic the active RD state of PhoB and its functional oligomerisation. We have analysed the PhoB(CA) RD crystal structures of two such mutants, Asp53Ala/Tyr102Cys and Asp10Ala/Asp53Glu. Interestingly, both mutants reproduce the homodimeric arrangement through the symmetric interface encountered in the unbound and magnesium-bound wild-type PhoB RD structures. Besides, the mutant RD structures show a modified active site organization as well as changes at helix alpha4 that correlate with repositioning of surrounding residues, like the active-site events indicator Trp54, putatively redifining the interaction with the ED in the full-length protein.
Collapse
Affiliation(s)
- Raquel Arribas-Bosacoma
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Soo-Ki Kim
- Department of Biological Sciences; Purdue University; West Lafayette; Indiana 47907 USA
| | - Cristina Ferrer-Orta
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Alexandre G. Blanco
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Pedro J.B. Pereira
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - F. Xavier Gomis-Rüth
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Barry L. Wanner
- Department of Biological Sciences; Purdue University; West Lafayette; Indiana 47907 USA
| | - Miquel Coll
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Maria Solà
- Institut de Biologia Molecular de Barcelona (CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain, and IRB - Parc Científic de Barcelona, c/Josep Samitier 1-5, 08028 Barcelona, Spain
| |
Collapse
|
26
|
Zhao Q, Qin L, Jiang F, Wu B, Yue W, Xu F, Rong Z, Yuan H, Xie X, Gao Y, Bai C, Bartlam M, Pei X, Rao Z. Structure of Human Spindlin1. J Biol Chem 2007; 282:647-56. [PMID: 17082182 DOI: 10.1074/jbc.m604029200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spindlin1, a meiotic spindle-binding protein that is highly expressed in ovarian cancer cells, was first identified as a gene involved in gametogenesis. It appeared to be a target for cell cycle-dependent phosphorylation and was demonstrated to disturb the cell cycle. Here we report the crystal structure of human spindlin1 to 2.2A of resolution, representing the first three-dimensional structure from the spin/ssty (Y-linked spermiogenesis-specific transcript) gene family. The refined structure, containing three repeats of five/four anti-parallel beta-strands, exhibits a novel arrangement of tandem Tudor-like domains. Two phosphate ions, chelated by Thr-95 and other residues, appear to stabilize the long loop between domains I and II, which might mediate the cell cycle regulation activity of spindlin1. Flow cytometry experiments indicate that cells expressing spindlin1 display a different cell cycle distribution in mitosis, whereas those expressing a T95A mutant, which had a great decrease in phosphorous content, have little effect on the cell cycle. We further identified associations of spindlin1 with nucleic acid to provide a biochemical basis for its cell cycle regulation and other functions.
Collapse
Affiliation(s)
- Qiang Zhao
- Tsinghua-Institute of Biophysics Joint Research Group for Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rogov VV, Rogova NY, Bernhard F, Koglin A, Löhr F, Dötsch V. A New Structural Domain in the Escherichia coli RcsC Hybrid Sensor Kinase Connects Histidine Kinase and Phosphoreceiver Domains. J Mol Biol 2006; 364:68-79. [PMID: 17005198 DOI: 10.1016/j.jmb.2006.07.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/20/2006] [Accepted: 07/24/2006] [Indexed: 01/11/2023]
Abstract
The Rcs signalling pathway controls a variety of physiological functions like capsule synthesis, cell division or motility in prokaryotes. The Rcs regulation cascade, involving a multi-step phosphorelay between the two membrane-bound hybrid sensor kinases RcsC and RcsD and the global regulator RcsB, is, up to now, one of the most complicated regulatory systems in bacteria. To understand the structural basis of Rcs signal transduction, NMR spectroscopy was employed to determine the solution structure of the RcsC C terminus, possessing a phosphoreceiver domain (RcsC-PR), and a region previously described as a long linker between the histidine kinase domain of RcsC (RcsC-HK) and the RcsC-PR. We have found that the linker region comprises an independent structural domain of a new alpha/beta organization, which we named RcsC-ABL domain (Alpha/Beta/Loop). The ABL domain appears to be a conserved and unique structural element of RcsC-like kinases with no significant sequence homology to other proteins. The second domain of the C terminus, the RcsC-PR domain, represents a well-folded CheY-like phosphoreceiver domain with the central parallel beta-sheet covered with two alpha-helical layers on both sides. We have mapped the interaction of RcsC-ABL and RcsC-PR with the histidine phosphotransfer domain (HPt) of RcsD. In addition we have characterized the interaction with and the conformational effects of Mg2+ and the phosphorylation mimetic BeF(-)(3) on RcsC-ABL and RcsC-PR.
Collapse
Affiliation(s)
- Vladimir V Rogov
- Institute of Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, JW Goethe-University, Frankfurt-am-Main, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Gao R, Mukhopadhyay A, Fang F, Lynn DG. Constitutive activation of two-component response regulators: characterization of VirG activation in Agrobacterium tumefaciens. J Bacteriol 2006; 188:5204-11. [PMID: 16816192 PMCID: PMC1539974 DOI: 10.1128/jb.00387-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Response regulators are the ultimate modulators in two-component signal transduction pathways. The N-terminal receiver domains generally accept phosphates from cognate histidine kinases to control output. VirG for example, the response regulator of the VirA/VirG two-component system in Agrobacterium tumefaciens, mediates the expression of virulence genes in response to plant host signals. Response regulators have a highly conserved structure and share a similar conformational activation upon phosphorylation, yet the sequence and structural features that determine or perturb the cooperative activation events are ill defined. Here we use VirG and the unique features of the Agrobacterium system to extend our understanding of the response regulator activation. Two previously isolated constitutive VirG mutants, VirGN54D and VirGI77V/D52E, provide the foundation for our studies. In vivo phosphorylation patterns establish that VirGN54D is able to accumulate phosphates from small-molecule phosphate donors, such as acetyl phosphate, while the VirGI77V/D52E allele carries conformational changes mimicking the active conformation. Further structural alterations on these two alleles begin to reveal the changes necessary for response regulator activation.
Collapse
Affiliation(s)
- Rong Gao
- Center for Fundamental and Applied Molecular Evolution, Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
29
|
Nowak E, Panjikar S, Konarev P, Svergun DI, Tucker PA. The Structural Basis of Signal Transduction for the Response Regulator PrrA from Mycobacterium tuberculosis. J Biol Chem 2006; 281:9659-66. [PMID: 16434396 DOI: 10.1074/jbc.m512004200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure of the two-domain response regulator PrrA from Mycobacterium tuberculosis shows a compact structure in the crystal with a well defined interdomain interface. The interface, which does not include the interdomain linker, makes the recognition helix and the trans-activation loop of the effector domain inaccessible for interaction with DNA. Part of the interface involves hydrogen-bonding interactions of a tyrosine residue in the receiver domain that is believed to be involved in signal transduction, which, if disrupted, would destabilize the interdomain interface, allowing a more extended conformation of the molecule, which would in turn allow access to the recognition helix. In solution, there is evidence for an equilibrium between compact and extended forms of the protein that is far toward the compact form when the protein is inactivated but moves toward a more extended form when activated by the cognate sensor kinase PrrB.
Collapse
Affiliation(s)
- Elzbieta Nowak
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|
30
|
Bachhawat P, Swapna GVT, Stock AM. Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Structure 2005; 13:1353-63. [PMID: 16154092 PMCID: PMC3685586 DOI: 10.1016/j.str.2005.06.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 06/14/2005] [Accepted: 06/15/2005] [Indexed: 10/25/2022]
Abstract
Response regulators (RRs), which undergo phosphorylation/dephosphorylation at aspartate residues, are highly prevalent in bacterial signal transduction. RRs typically contain an N-terminal receiver domain that regulates the activities of a C-terminal DNA binding domain in a phosphorylation-dependent manner. We present crystallography and solution NMR data for the receiver domain of Escherichia coli PhoB which show distinct 2-fold symmetric dimers in the inactive and active states. These structures, together with the previously determined structure of the C-terminal domain of PhoB bound to DNA, define the conformation of the active transcription factor and provide a model for the mechanism of activation in the OmpR/PhoB subfamily, the largest group of RRs. In the active state, the receiver domains dimerize with 2-fold rotational symmetry using their alpha4-beta5-alpha5 faces, while the effector domains bind to DNA direct repeats with tandem symmetry, implying a loss of intramolecular interactions.
Collapse
Affiliation(s)
- Priti Bachhawat
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
| | - GVT Swapna
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey – Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Howard Hughes Medical Institute, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Correspondence: ()
| |
Collapse
|
31
|
O'Connor TJ, Nodwell JR. Pivotal roles for the receiver domain in the mechanism of action of the response regulator RamR of Streptomyces coelicolor. J Mol Biol 2005; 351:1030-47. [PMID: 16051268 DOI: 10.1016/j.jmb.2005.06.053] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/21/2005] [Accepted: 06/22/2005] [Indexed: 11/26/2022]
Abstract
The response regulator RamR activates expression of the ramCSAB operon, the source of the morphogenetic peptide SapB, and is therefore important for morphogenesis of the bacterium Streptomyces coelicolor. Like most response regulators, RamR consists of an amino-terminal receiver domain and a carboxy-terminal DNA binding domain. Four of five highly conserved active site residues known to be important in other response regulators are present in RamR: D12, D56 (the predicted site of phosphorylation), T84 and K105. Here, we show that in spite of this, RamR did not demonstrate an ability to autophosphorylate in vitro in the presence of small molecule phosphodonors. The unphosphorylated protein behaved as a dimer and bound cooperatively to three sites in the ramC promoter, one with very high affinity and two with lower affinity. On its own, the RamR DNA binding domain could not bind DNA but was able to interfere with the action of full length RamR in a manner suggesting direct protein-protein contact. Surprisingly, substitution of residues D12 or T84 had no effect on RamR function in vivo. In contrast, D56A and K105A substitutions caused defects in both dimer formation and DNA binding while the more conservative substitution, D56N permitted dimer formation but not DNA binding. L102 in RamR corresponds to a well-conserved tyrosine (or aromatic) residue that is important for function in the other response regulators. While a L102Y variant, which introduced the aromatic side-chain usually found at this position, functioned normally, L102A and L102W substitutions blocked RamR function in vivo. We show that these substitutions specifically impaired cooperative DNA binding by RamR at the lower affinity recognition sequences. The biochemical properties of RamR therefore differ markedly from those of other well-characterized response regulators.
Collapse
Affiliation(s)
- Tamara J O'Connor
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, 1200 Main St W. Hamilton, Ont., Canada L8N 3Z5
| | | |
Collapse
|
32
|
Abdel-Fattah WR, Chen Y, Eldakak A, Hulett FM. Bacillus subtilis phosphorylated PhoP: direct activation of the E(sigma)A- and repression of the E(sigma)E-responsive phoB-PS+V promoters during pho response. J Bacteriol 2005; 187:5166-78. [PMID: 16030210 PMCID: PMC1196004 DOI: 10.1128/jb.187.15.5166-5178.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phoB gene of Bacillus subtilis encodes an alkaline phosphatase (PhoB, formerly alkaline phosphatase III) that is expressed from separate promoters during phosphate deprivation in a PhoP-PhoR-dependent manner and at stage two of sporulation under phosphate-sufficient conditions independent of PhoP-PhoR. Isogenic strains containing either the complete phoB promoter or individual phoB promoter fusions were used to assess expression from each promoter under both induction conditions. The phoB promoter responsible for expression during sporulation, phoB-P(S), was expressed in a wild-type strain during phosphate deprivation, but induction occurred >3 h later than induction of Pho regulon genes and the levels were approximately 50-fold lower than that observed for the PhoPR-dependent promoter, phoB-P(V). E(sigma)E was necessary and sufficient for P(S) expression in vitro. P(S) expression in a phoPR mutant strain was delayed 2 to 3 h compared to the expression in a wild-type strain, suggesting that expression or activation of sigma(E) is delayed in a phoPR mutant under phosphate-deficient conditions, an observation consistent with a role for PhoPR in spore development under these conditions. Phosphorylated PhoP (PhoP approximately P) repressed P(S) in vitro via direct binding to the promoter, the first example of an E(sigma)E-responsive promoter that is repressed by PhoP approximately P. Whereas either PhoP or PhoP approximately P in the presence of E(sigma)A was sufficient to stimulate transcription from the phoB-P(V) promoter in vitro, roughly 10- and 17-fold-higher concentrations of PhoP than of PhoP approximately P were required for P(V) promoter activation and maximal promoter activity, respectively. The promoter for a second gene in the Pho regulon, ykoL, was also activated by elevated concentrations of unphosphorylated PhoP in vitro. However, because no Pho regulon gene expression was observed in vivo during P(i)-replete growth and PhoP concentrations increased only threefold in vivo during phoPR autoinduction, a role for unphosphorylated PhoP in Pho regulon activation in vivo is not likely.
Collapse
Affiliation(s)
- Wael R Abdel-Fattah
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue (M/C 567), Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
33
|
Maris AE, Walthers D, Mattison K, Byers N, Kenney LJ. The Response Regulator OmpR Oligomerizes via β-Sheets to Form Head-to-head Dimers. J Mol Biol 2005; 350:843-56. [PMID: 15979641 DOI: 10.1016/j.jmb.2005.05.057] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/18/2005] [Accepted: 05/24/2005] [Indexed: 11/29/2022]
Abstract
In Escherichia coli, the EnvZ/OmpR two-component regulatory system regulates expression of the porin genes ompF and ompC in response to changes in osmolarity. It has recently become apparent that OmpR functions as a global regulator, by regulating the expression of many genes in addition to the porin genes. OmpR consists of two domains; phosphorylation of the N-terminal receiver domain increases DNA binding affinity of the C-terminal domain and vice versa. Many response regulators including PhoB and FixJ dimerize upon phosphorylation. Here, we demonstrate that OmpR dimerization is stimulated by phosphorylation or by DNA binding. The dimerization interface revealed here was unanticipated and had previously not been predicted. Using the accepted head-to-tail tandem-binding model as a guide, we set out to examine the intermolecular interactions between OmpR dimers bound to DNA by protein-protein cross-linking methods. Surprisingly, amino acid positions that we expected to form cross-linked dimers did not. Conversely, positions predicted not to form dimers did. Because of these results, we designed a series of 23 cysteine-substituted OmpR mutants that were used to investigate dimer interfaces formed via the beta-sheet region. This four-stranded beta-sheet is a unique feature of the OmpR group of winged helix-turn-helix proteins. Many of the cysteine-substituted mutants are dominant to wild-type OmpR, are phosphorylated by acetyl phosphate as well as the cognate kinase EnvZ, and the cross-linked proteins are capable of binding to DNA. Our results are consistent with a model in which OmpR binds to DNA in a head-to-head orientation, in contrast to the previously proposed asymmetric head-to-tail model. They also raise the possibility that OmpR may be capable of adopting more than one orientation as it binds to a vast array of genes to activate or repress transcription.
Collapse
Affiliation(s)
- Ann E Maris
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | | | | | | | | |
Collapse
|
34
|
Toro-Roman A, Mack TR, Stock AM. Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the alpha4-beta5-alpha5 face. J Mol Biol 2005; 349:11-26. [PMID: 15876365 PMCID: PMC3690759 DOI: 10.1016/j.jmb.2005.03.059] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 03/20/2005] [Accepted: 03/22/2005] [Indexed: 12/24/2022]
Abstract
Escherichia coli react to changes from aerobic to anaerobic conditions of growth using the ArcA-ArcB two-component signal transduction system. This system, in conjunction with other proteins, regulates the respiratory metabolic pathways in the organism. ArcA is a member of the OmpR/PhoB subfamily of response regulator transcription factors that are known to regulate transcription by binding in tandem to target DNA direct repeats. It is still unclear in this subfamily how activation by phosphorylation of the regulatory domain of response regulators stimulates DNA binding by the effector domain and how dimerization and domain orientation, as well as intra- and intermolecular interactions, affect this process. In order to address these questions we have solved the crystal structures of the regulatory domain of ArcA in the presence and absence of the phosphoryl analog, BeF3-. In the crystal structures, the regulatory domain of ArcA forms a symmetric dimer mediated by the alpha4-beta5-alpha5 face of the protein and involving a number of residues that are highly conserved in the OmpR/PhoB subfamily. It is hypothesized that members of this subfamily use a common mechanism of regulation by dimerization. Additional biophysical studies were employed to probe the oligomerization state of ArcA, as well as its individual domains, in solution. The solution studies show the propensity of the individual domains to associate into oligomers larger than the dimer observed for the intact protein, and suggest that the C-terminal DNA-binding domain also plays a role in oligomerization.
Collapse
Affiliation(s)
- Alejandro Toro-Roman
- Department of Chemistry and Chemical Biology, Rutgers University
- Center for Advanced Biotechnology and Medicine
| | - Timothy R. Mack
- Center for Advanced Biotechnology and Medicine
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School
| | - Ann M. Stock
- Center for Advanced Biotechnology and Medicine
- Department of Biochemistry, University of Medicine and Dentistry of New Jersey - Robert Wood Johnson Medical School
- Howard Hughes Medical Institute, 679 Hoes Lane, Piscataway, New Jersey 08854, USA
- Corresponding author:
| |
Collapse
|
35
|
Bent CJ, Isaacs NW, Mitchell TJ, Riboldi-Tunnicliffe A. Crystal structure of the response regulator 02 receiver domain, the essential YycF two-component system of Streptococcus pneumoniae in both complexed and native states. J Bacteriol 2004; 186:2872-9. [PMID: 15090529 PMCID: PMC387779 DOI: 10.1128/jb.186.9.2872-2879.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of bacterial cellular responses to environmental signals are mediated by two-component signal transduction systems comprising a membrane-associated histidine protein kinase and a cytoplasmic response regulator (RR), which interpret specific stimuli and produce a measured physiological response. In RR activation, transient phosphorylation of a highly conserved aspartic acid residue drives the conformation changes needed for full activation of the protein. Sequence homology reveals that RR02 from Streptococcus pneumoniae belongs to the OmpR subfamily of RRs. The structures of the receiver domains from four members of this family, DrrB and DrrD from Thermotoga maritima, PhoB from Escherichia coli, and PhoP from Bacillus subtilis, have been elucidated. These domains are globally very similar in that they are composed of a doubly wound alpha(5)beta(5); however, they differ remarkably in the fine detail of the beta4-alpha4 and alpha4 regions. The structures presented here reveal a further difference of the geometry in this region. RR02 is has been shown to be the essential RR in the gram-positive bacterium S. pneumoniae R. Lange, C. Wagner, A. de Saizieu, N. Flint, J. Molnos, M. Stieger, P. Caspers, M. Kamber, W. Keck, and K. E. Amrein, Gene 237:223-234, 1999; J. P. Throup, K. K. Koretke, A. P. Bryant, K. A. Ingraham, A. F. Chalker, Y. Ge, A. Marra, N. G. Wallis, J. R. Brown, D. J. Holmes, M. Rosenberg, and M. K. Burnham, Mol. Microbiol. 35:566-576, 2000). RR02 functions as part of a phosphotransfer system that ultimately controls the levels of competence within the bacteria. Here we report the native structure of the receiver domain of RR02 from serotype 4 S. pneumoniae (as well as acetate- and phosphate-bound forms) at different pH levels. Two native structures at 2.3 A, phased by single-wavelength anomalous diffraction (xenon SAD), and 1.85 A and a third structure at pH 5.9 revealed the presence of a phosphate ion outside the active site. The fourth structure revealed the presence of an acetate molecule in the active site.
Collapse
Affiliation(s)
- Colin J Bent
- Department of Chemistry, Division of Infection and Immunity, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | |
Collapse
|
36
|
Geng H, Nakano S, Nakano MM. Transcriptional activation by Bacillus subtilis ResD: tandem binding to target elements and phosphorylation-dependent and -independent transcriptional activation. J Bacteriol 2004; 186:2028-37. [PMID: 15028686 PMCID: PMC374413 DOI: 10.1128/jb.186.7.2028-2037.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of genes involved in nitrate respiration in Bacillus subtilis is regulated by the ResD-ResE two-component signal transduction system. The membrane-bound ResE sensor kinase perceives a redox-related signal(s) and phosphorylates the cognate response regulator ResD, which enables interaction of ResD with ResD-dependent promoters to activate transcription. Hydroxyl radical footprinting analysis revealed that ResD tandemly binds to the -41 to -83 region of hmp and the -46 to -92 region of nasD. In vitro runoff transcription experiments showed that ResD is necessary and sufficient to activate transcription of the ResDE regulon. Although phosphorylation of ResD by ResE kinase greatly stimulated transcription, unphosphorylated ResD, as well as ResD with a phosphorylation site (Asp57) mutation, was able to activate transcription at a low level. The D57A mutant was shown to retain the activity in vivo to induce transcription of the ResDE regulon in response to oxygen limitation, suggesting that ResD itself, in addition to its activation through phosphorylation-mediated conformation change, senses oxygen limitation via an unknown mechanism leading to anaerobic gene activation.
Collapse
Affiliation(s)
- Hao Geng
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
37
|
Chen Y, Abdel-Fattah WR, Hulett FM. Residues required for Bacillus subtilis PhoP DNA binding or RNA polymerase interaction: alanine scanning of PhoP effector domain transactivation loop and alpha helix 3. J Bacteriol 2004; 186:1493-502. [PMID: 14973033 PMCID: PMC344424 DOI: 10.1128/jb.186.5.1493-1502.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis PhoP is a member of the OmpR family of response regulators that activates or represses genes of the Pho regulon upon phosphorylation by PhoR in response to phosphate deficiency. Because PhoP binds DNA and is a dimer in solution independent of its phosphorylation state, phosphorylation of PhoP may optimize DNA binding or the interaction with RNA polymerase. We describe alanine scanning mutagenesis of the PhoP alpha loop and alpha helix 3 region of PhoPC (Val190 to E214) and functional analysis of the mutated proteins. Eight residues important for DNA binding were clustered between Val202 and Arg210. Using in vivo and in vitro functional analyses, we identified three classes of mutated proteins. Class I proteins (PhoP(I206A), PhoP(R210A), PhoP(L209A), and PhoP(H208A)) were phosphorylation proficient and could dimerize but could not bind DNA or activate transcription in vivo or in vitro. Class II proteins (PhoP(H205A) and PhoP(V204A)) were phosphorylation proficient and could dimerize but could not bind DNA prior to phosphorylation. Members of this class had higher transcription activation in vitro than in vivo. The class III mutants, PhoP(V202A) and PhoP(D203A), had a reduced rate of phosphotransfer and could dimerize but could not bind DNA or activate transcription in vivo or in vitro. Seven alanine substitutions in PhoP (PhoP(V190A), PhoP(W191A), PhoP(Y193A), PhoP(F195A), PhoP(G197A,) PhoP(T199A), and PhoP(R200A)) that specifically affected transcription activation were broadly distributed throughout the transactivation loop extending from Val190 to as far toward the C terminus as Arg200. PhoP(W191A) and PhoP(R200A) could not activate transcription, while the other five mutant proteins showed decreased transcription activation in vivo or in vitro or both. The mutagenesis studies may indicate that PhoP has a long transactivation loop and a short alpha helix 3, more similar to OmpR than to PhoB of Escherichia coli.
Collapse
Affiliation(s)
- Yinghua Chen
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
38
|
Kojetin DJ, Thompson RJ, Cavanagh J. Sub-classification of response regulators using the surface characteristics of their receiver domains. FEBS Lett 2003; 554:231-6. [PMID: 14623071 DOI: 10.1016/s0014-5793(03)01167-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The omnipresent bacterial switch known as a two-component system is comprised of a response regulator and a sensor kinase with which it interacts. Sensor kinases have been classified and further sub-classified into groups based on their sequence similarity, loop lengths and domain organization. Response regulators have been classified predominantly by the identity and function of their output domains. Here, comparative based homology modeling of the receiver domains of the OmpR sub-family of response regulators in Bacillus subtilis and Escherichia coli suggests further sub-classification is possible. A color-coded scale is used to show trends in surface hydrophobicity. For the OmpR receiver domains modeled these trends allow further sub-classification. The specific surface regions used for this sub-classification procedure correlate with clusters of residues that are important for interaction with cognate four helix bundle HisKA/Hpt domains.
Collapse
Affiliation(s)
- Douglas J Kojetin
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall, Campus Box 7622, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
39
|
Howell A, Dubrac S, Andersen KK, Noone D, Fert J, Msadek T, Devine K. Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach. Mol Microbiol 2003; 49:1639-55. [PMID: 12950927 DOI: 10.1046/j.1365-2958.2003.03661.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The YycG/YycF two-component system, originally identified in Bacillus subtilis, is very highly conserved and appears to be specific to low G + C Gram-positive bacteria. This system is required for cell viability, although the basis for this and the nature of the YycF regulon remained elusive. Using a combined hybrid regulator/transcriptome approach involving the inducible expression of a PhoP'-'YycF chimerical protein in B. subtilis, we have shown that expression of yocH, which encodes a potential autolysin, is specifically activated by YycF. Gel mobility shift and DNase I footprinting assays were used to show direct binding in vitro of purified YycF to the regulatory regions of yocH as well as ftsAZ, previously reported to be controlled by YycF. Nucleotide sequence analysis and site-directed mutagenesis allowed us to define a potential consensus recognition sequence for the YycF response regulator, composed of two direct repeats: 5'-TGT A/T A A/T/C-N5-TGT A/T A A/T/C-3'. A DNA-motif analysis indicates that there are potentially up to 10 genes within the B. subtilis YycG/YycF regulon, mainly involved in cell wall metabolism and membrane protein synthesis. Among these, YycF was shown to bind directly to the region upstream from the ykvT gene, encoding a potential cell wall hydrolase, and the intergenic region of the tagAB/tagDEF divergon, encoding essential components of teichoic acid biosynthesis. Definition of a potential YycF recognition sequence allowed us to identify likely members of the YycF regulon in other low G + C Gram-positive bacteria, including several pathogens such as Listeria monocytogenes, Staphylococcus aureus and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Alistair Howell
- Department of Genetics, Smurfit Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
40
|
Robinson VL, Wu T, Stock AM. Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. J Bacteriol 2003; 185:4186-94. [PMID: 12837793 PMCID: PMC164896 DOI: 10.1128/jb.185.14.4186-4194.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The N-terminal regulatory domains of bacterial response regulator proteins catalyze phosphoryl transfer and function as phosphorylation-dependent regulatory switches to control the output activities of C-terminal effector domains. Structures of numerous isolated regulatory and effector domains have been determined. However, a detailed understanding of regulatory interactions among these domains has been limited by the relative paucity of structural data for intact multidomain response regulator proteins. The first multidomain structures determined, those of transcription factor NarL and methylesterase CheB, both revealed extensive interdomain interfaces. The regulatory domains obstruct access to the functional sites of the effector domains, indicating a regulatory mechanism based on inhibition. In contrast, the recently determined structure of the OmpR/PhoB homologue DrrD revealed no significant interdomain interface, suggesting that the domains are tethered by a flexible linker and lack a fixed orientation relative to each other. To address the generality of this feature, we have determined the 1.8-A resolution crystal structure of Thermotoga maritima DrrB, providing a second structure of a multidomain response regulator of the OmpR/PhoB subfamily. The structure reveals an extensive domain interface of 751 A(2) and therefore differs greatly from that observed in DrrD. Residues that are crucial players in defining the activation state of the regulatory domain contribute to this interface, implying that conformational changes associated with phosphorylation will influence these intramolecular contacts. The DrrB and DrrD structures are suggestive of different signaling mechanisms, with intramolecular communication between N- and C-terminal domains making substantially different contributions to effector domain regulation in individual members of the OmpR/PhoB family.
Collapse
Affiliation(s)
- Victoria L Robinson
- Howard Hughes Medical Institute, Center for Advanced Biotechnology and Medicine, and Department of Biochemistry, Robert Wood Johnson Medical School, The University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
41
|
Leoni L, Ascenzi P, Bocedi A, Rampioni G, Castellini L, Zennaro E. Styrene-catabolism regulation in Pseudomonas fluorescens ST: phosphorylation of StyR induces dimerization and cooperative DNA-binding. Biochem Biophys Res Commun 2003; 303:926-31. [PMID: 12670500 DOI: 10.1016/s0006-291x(03)00450-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Styrene is an important chemical extensively used in the petrochemical and polymer industries. In Pseudomonas fluorescens ST, styrene metabolism is controlled by a two-component regulatory system, very uncommon in the degradation of aromatic compounds. The two-component regulatory proteins StyS and StyR regulate the expression of the styABCD operon, which codes for styrene degradation. StyS corresponds to the sensor kinase and StyR to the response regulator, which is essential for the activation of PstyA, the promoter of the catabolic operon. In two-component systems, the response regulator is phosphorylated by the cognate sensor kinase. Phosphorylation activates the response regulator, inducing DNA-binding. The mechanism underlying this activation has been reported only for a very few response regulators. Here, the effect of phosphorylation on the oligomeric state and on the DNA-binding properties of StyR has been investigated. Phosphorylation induces dimerization of StyR, the affinity of dimeric StyR for the target DNA is higher than that of the monomer, moreover dimeric StyR binding to the DNA target is cooperative. Furthermore, StyR oligomerization may be driven by the DNA target. This is the first direct demonstration that StyR response regulator binds to the PstyA promoter.
Collapse
Affiliation(s)
- Livia Leoni
- Dipartimento di Biologia, Università Roma Tre, Viale G. Marconi 446, I-00146 Rome, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Chen Y, Birck C, Samama JP, Hulett FM. Residue R113 is essential for PhoP dimerization and function: a residue buried in the asymmetric PhoP dimer interface determined in the PhoPN three-dimensional crystal structure. J Bacteriol 2003; 185:262-73. [PMID: 12486063 PMCID: PMC141829 DOI: 10.1128/jb.185.1.262-273.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis PhoP is a member of the OmpR/PhoB family of response regulators that is directly required for transcriptional activation or repression of Pho regulon genes in conditions under which P(i) is growth limiting. Characterization of the PhoP protein has established that phosphorylation of the protein is not essential for PhoP dimerization or DNA binding but is essential for transcriptional regulation of Pho regulon genes. DNA footprinting studies of PhoP-regulated promoters showed that there was cooperative binding between PhoP dimers at PhoP-activated promoters and/or extensive PhoP oligomerization 3' of PhoP-binding consensus repeats in PhoP-repressed promoters. The crystal structure of PhoPN described in the accompanying paper revealed that the dimer interface between two PhoP monomers involves nonidentical surfaces such that each monomer in a dimer retains a second surface that is available for further oligomerization. A salt bridge between R113 on one monomer and D60 on another monomer was judged to be of major importance in the protein-protein interaction. We describe the consequences of mutation of the PhoP R113 codon to a glutamate or alanine codon and mutation of the PhoP D60 codon to a lysine codon. In vivo expression of either PhoP(R113E), PhoP(R113A), or PhoP(D60K) resulted in a Pho-negative phenotype. In vitro analysis showed that PhoP(R113E) was phosphorylated by PhoR (the cognate histidine kinase) but was unable to dimerize. Monomeric PhoP(R113E) approximately P was deficient in DNA binding, contributing to the PhoP(R113E) in vivo Pho-negative phenotype. While previous studies emphasized that phosphorylation was essential for PhoP function, data reported here indicate that phosphorylation is not sufficient as PhoP dimerization or oligomerization is also essential. Our data support the physiological relevance of the residues of the asymmetric dimer interface in PhoP dimerization and function.
Collapse
Affiliation(s)
- Yinghua Chen
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|