1
|
Karve S. Evolutionary Novelties in Bacteria and the Missing Backdrop of the Environment. Environ Microbiol 2025; 27:e70044. [PMID: 39868647 DOI: 10.1111/1462-2920.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
Evolutionary novelty has been one of the central themes in the field of evolutionary biology for many years. Structural and functional innovations such as scales in the reptiles, fins in the fishes and mammary glands in the mammals have been the focus of the studies. Insights obtained from these studies have shaped the criterion for the identification of novelty as well as provide the framework for studying novelty. In this article, I argue that unicellular organisms present an excellent opportunity for the investigation of evolutionary novelty. Even though bacteria share some fundamental aspects of novelty with higher organisms, there are definite departures. Here, I outline these departures in four different contexts: criterion for the identification of novelty, types of evolutionary novelties, level of biological complexity that bacteria embody and, most importantly, the role of the environment. Identifying the role of the environment allows the categorisation of novelty as probable or improbable and adaptive or latent. This categorisation of novel traits, based on the role of the environment, can facilitate the study of novelty in bacteria. Insights obtained from such studies are crucial for understanding the fundamental aspects of evolutionary novelty.
Collapse
Affiliation(s)
- Shraddha Karve
- Trivedi School of BioSciences and Koita Centre for Digital Health, Ashoka University, Sonipat, India
| |
Collapse
|
2
|
Gomberg AF, Grossman AD. It's complicated: relationships between integrative and conjugative elements and their bacterial hosts. Curr Opin Microbiol 2024; 82:102556. [PMID: 39423563 PMCID: PMC11625472 DOI: 10.1016/j.mib.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Integrative and conjugative elements (ICEs) are typically found integrated in a bacterial host chromosome. They can excise, replicate, and transfer from cell to cell. Many contain genes that confer phenotypes to host cells, including antibiotic resistances, specialized metabolisms, phage defense, and symbiosis or pathogenesis determinants. Recent studies revealed that at least three ICEs (ICEclc, Tn916, and TnSmu1) cause growth arrest or death of host cells upon element activation. This review highlights the complex interactions between ICEs and their hosts, including the recent examples of the significant costs to host cells. We contrast two examples of killing, ICEclc and Tn916, in which killing, respectively, benefits or impairs conjugation and emphasize the importance of understanding the impacts of ICE-host relationships on conjugation. ICEs are typically only active in a small fraction of cells in a population, and we discuss how phenotypes normally occurring in a small subset of host cells can be uncovered.
Collapse
Affiliation(s)
- Alexa Fs Gomberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
3
|
Matsumoto S, Kishida K, Nonoyama S, Sakai K, Tsuda M, Nagata Y, Ohtsubo Y. Evolution of the Tn 4371 ICE family: traR-mediated coordination of cargo gene upregulation and horizontal transfer. Microbiol Spectr 2024; 12:e0060724. [PMID: 39264161 PMCID: PMC11448139 DOI: 10.1128/spectrum.00607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
ICEKKS102Tn4677 carries a bph operon for the mineralization of polychlorinated biphenyls (PCBs)/biphenyl and belongs to the Tn4371 ICE (integrative and conjugative element) family. In this study, we investigated the role of the traR gene in ICE transfer. The traR gene encodes a LysR-type transcriptional regulator, which is conserved in sequence, positioning, and directional orientation among Tn4371 family ICEs. The traR belongs to the bph operon, and its overexpression on solid medium resulted in modest upregulation of traG (threefold), marked upregulation of xis (80-fold), enhanced ICE excision and, most notably, ICE transfer frequency. We propose the evolutional roles of traR, which upon insertion to its current position, might have connected the cargo gene activation and ICE transfer. This property of ICE, i.e., undergoing transfer under environmental conditions that lead to cargo gene activation, would instantly confer fitness advantages to bacteria newly acquiring this ICE, thereby resulting in efficient dissemination of the Tn4371 family ICEs.IMPORTANCEOnly ICEKKS102Tn4677 is proven to transfer among the widely disseminating Tn4371 family integrative and conjugative elements (ICEs) from β and γ-proteobacteria. We showed that the traR gene in ICEKKS102Tn4677, which is conserved in the ICE family with fixed location and direction, is co-transcribed with the cargo gene and activates ICE transfer. We propose that capturing of traR by an ancestral ICE to the current position established the Tn4371 family of ICEs. Our findings provide insights into the evolutionary processes that led to the widespread distribution of the Tn4371 family of ICEs across bacterial species.
Collapse
Affiliation(s)
- Satoshi Matsumoto
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kouhei Kishida
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shouta Nonoyama
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Keiichiro Sakai
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masataka Tsuda
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuji Nagata
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshiyuki Ohtsubo
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Sulser S, Vucicevic A, Bellini V, Moritz R, Delavat F, Sentchilo V, Carraro N, van der Meer JR. A bistable prokaryotic differentiation system underlying development of conjugative transfer competence. PLoS Genet 2022; 18:e1010286. [PMID: 35763548 PMCID: PMC9286271 DOI: 10.1371/journal.pgen.1010286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/15/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022] Open
Abstract
The mechanisms and impact of horizontal gene transfer processes to distribute gene functions with potential adaptive benefit among prokaryotes have been well documented. In contrast, little is known about the life-style of mobile elements mediating horizontal gene transfer, whereas this is the ultimate determinant for their transfer fitness. Here, we investigate the life-style of an integrative and conjugative element (ICE) within the genus Pseudomonas that is a model for a widespread family transmitting genes for xenobiotic compound metabolism and antibiotic resistances. Previous work showed bimodal ICE activation, but by using single cell time-lapse microscopy coupled to combinations of chromosomally integrated single copy ICE promoter-driven fluorescence reporters, RNA sequencing and mutant analysis, we now describe the complete regulon leading to the arisal of differentiated dedicated transfer competent cells. The regulon encompasses at least three regulatory nodes and five (possibly six) further conserved gene clusters on the ICE that all become expressed under stationary phase conditions. Time-lapse microscopy indicated expression of two regulatory nodes (i.e., bisR and alpA-bisDC) to precede that of the other clusters. Notably, expression of all clusters except of bisR was confined to the same cell subpopulation, and was dependent on the same key ICE regulatory factors. The ICE thus only transfers from a small fraction of cells in a population, with an estimated proportion of between 1.7–4%, which express various components of a dedicated transfer competence program imposed by the ICE, and form the centerpiece of ICE conjugation. The components mediating transfer competence are widely conserved, underscoring their selected fitness for efficient transfer of this class of mobile elements. Horizontal gene transfer processes among prokaryotes have raised wide interest, which is attested by broad public health concern of rapid spread of antibiotic resistances. However, we typically take for granted that horizontal transfer is the result of some underlying spontaneous low frequency event, but this is not necessarily the case. As we show here, mobile genetic elements from the class of integrative and conjugative elements (ICEs) impose a coordinated program on the host cell in order to transfer, leading to an exclusive differentiated set of transfer competent cells. We base our conclusions on single cell microscopy studies to compare the rare activation of ICE promoters in individual cells in bacterial populations, and on mutant and RNA-seq analysis to show their dependency on ICE factors. This is an important finding because it implies that conjugation itself is subject to natural selection, which would lead to selection of fitter elements that transfer better or become more widespread.
Collapse
Affiliation(s)
- Sandra Sulser
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Andrea Vucicevic
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Veronica Bellini
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Roxane Moritz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - François Delavat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
5
|
Maucourt B, Vuilleumier S, Bringel F. Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiol Rev 2020; 44:189-207. [PMID: 32011697 DOI: 10.1093/femsre/fuaa002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Organohalides are organic molecules formed biotically and abiotically, both naturally and through industrial production. They are usually toxic and represent a health risk for living organisms, including humans. Bacteria capable of degrading organohalides for growth express dehalogenase genes encoding enzymes that cleave carbon-halogen bonds. Such bacteria are of potential high interest for bioremediation of contaminated sites. Dehalogenase genes are often part of gene clusters that may include regulators, accessory genes and genes for transporters and other enzymes of organohalide degradation pathways. Organohalides and their degradation products affect the activity of regulatory factors, and extensive genome-wide modulation of gene expression helps dehalogenating bacteria to cope with stresses associated with dehalogenation, such as intracellular increase of halides, dehalogenase-dependent acid production, organohalide toxicity and misrouting and bottlenecks in metabolic fluxes. This review focuses on transcriptional regulation of gene clusters for dehalogenation in bacteria, as studied in laboratory experiments and in situ. The diversity in gene content, organization and regulation of such gene clusters is highlighted for representative organohalide-degrading bacteria. Selected examples illustrate a key, overlooked role of regulatory processes, often strain-specific, for efficient dehalogenation and productive growth in presence of organohalides.
Collapse
Affiliation(s)
- Bruno Maucourt
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Françoise Bringel
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
6
|
Sub-Inhibitory concentrations of SOS-Response inducing antibiotics stimulate integrase expression and excision of pathogenicity islands in uropathogenic Escherichia coli strain 536. Int J Med Microbiol 2019; 310:151361. [PMID: 31640923 DOI: 10.1016/j.ijmm.2019.151361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/26/2019] [Accepted: 09/29/2019] [Indexed: 01/24/2023] Open
Abstract
Urinary tract infections are one of the most common bacterial infections and a major public health problem. The predominant causative agents are uropathogenic Escherichia coli. These strains differ from commensal E. coli by the presence of additional horizontally acquired chromosomal material, so-called pathogenicity islands, which encode traits that promote efficient bacterial colonization of the urinary tract. Uropathogenic model strain E. coli 536 possesses six archetypal pathogenicity islands. Bacteriophage-like integrases encoded by each pathogenicity island contribute to island instability. To learn more about the stability of these six islands and factors controlling their stability we constructed two chromosomal reporter systems for the measurement of island loss, as well as for the measurement of the promoter activity of the six island-associated integrase genes at the population level. We used these reporter gene modules to analyze the role of SOS response in island instability. Tests with subinhibitory concentrations of different antibiotics, including many drugs commonly used for the treatment of urinary tract infection, indicated that only SOS response-inducing antibiotics led to an increased loss of islands which was always associated with an increase in the bacterial subpopulations showing high integrase promoter activity. This suggests that island excision correlates with the expression of the cognate integrase. Our reporter modules are valuable tools to investigate the impact of various growth conditions on genome plasticity. Furthermore, a better understanding of the conditions, which affect bacterial integrase expression may open ways to specifically manipulate the genome content of bacterial pathogens by increasing pathogenicity island deletion rates in infecting or colonizing bacteria, thus leading to the attenuation of bacterial pathogens.
Collapse
|
7
|
Transient Replication in Specialized Cells Favors Transfer of an Integrative and Conjugative Element. mBio 2019; 10:mBio.01133-19. [PMID: 31186329 PMCID: PMC6561031 DOI: 10.1128/mbio.01133-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial evolution is driven to a large extent by horizontal gene transfer (HGT)—the processes that distribute genetic material between species rather than by vertical descent. The different elements and processes mediating HGT have been characterized in great molecular detail. In contrast, very little is known on adaptive features selecting HGT evolvability and fitness optimization. By studying the molecular behavior of an integrated mobile DNA of the class of integrative and conjugative elements in individual Pseudomonas putida donor bacteria, we report here how transient replication of the element after its excision from the chromosome is favorable for its transfer success. Since successful transfer into a new recipient is a measure of the element’s fitness, transient replication may have been selected as an adaptive benefit for more-optimal transfer. Integrative and conjugative elements (ICEs) are widespread mobile DNA within bacterial genomes, whose lifestyle is relatively poorly understood. ICEs transmit vertically through donor cell chromosome replication, but in order to transfer, they have to excise from the chromosome. The excision step makes ICEs prone to loss, in case the donor cell divides and the ICE is not replicated. By adapting the system of LacI-cyan fluorescent protein (CFP) binding to lacO operator arrays, we analyze here the process of excision and transfer of the ICE for 3-chlorobenzoate degradation (ICEclc) in individual cells of the bacterium Pseudomonas putida. We provide evidence that ICEclc excises exclusively in a subset of specialized transfer-competent cells. ICEclc copy numbers in transfer-competent cells were higher than in regular nontransferring cells but were reduced in mutants lacking the ICE oriT1 origin of transfer, the ICE DNA relaxase, or the excision recombination sites. Consistently, transfer-competent cells showed a higher proportion without any observable LacI-CFP foci, suggesting ICEclc loss, but this proportion was independent of the ICE relaxase or the ICE origins of transfer. Our results thus indicated that the excised ICE becomes transiently replicated in transfer-competent cells, with up to six observable copies from LacI-CFP fluorescent focus measurements. Most of the observed ICEclc transfer to ICE-free P. putida recipients occurred from donors displaying 3 to 4 ICE copies, which constitute a minority among all transfer-competent cells. This finding suggests, therefore, that replication of the excised ICEclc in donors is beneficial for transfer fitness to recipient cells.
Collapse
|
8
|
Hirose J, Fujihara H, Watanabe T, Kimura N, Suenaga H, Futagami T, Goto M, Suyama A, Furukawa K. Biphenyl/PCB Degrading bph Genes of Ten Bacterial Strains Isolated from Biphenyl-Contaminated Soil in Kitakyushu, Japan: Comparative and Dynamic Features as Integrative Conjugative Elements (ICEs). Genes (Basel) 2019; 10:genes10050404. [PMID: 31137913 PMCID: PMC6563109 DOI: 10.3390/genes10050404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 11/21/2022] Open
Abstract
We sequenced the entire genomes of ten biphenyl/PCB degrading bacterial strains (KF strains) isolated from biphenyl-contaminated soil in Kitakyushu, Japan. All the strains were Gram-negative bacteria belonging to β- and γ-proteobacteria. Out of the ten strains, nine strains carried a biphenyl catabolic bph gene cluster as integrative conjugative elements (ICEs), and they were classified into four groups based on the structural features of the bph genes. Group I (five strains) possessed bph genes that were very similar to the ones in Pseudomonasfurukawaii KF707 (formerly Pseudomonas pseudoalcaligenes KF707), which is one of the best characterized biphenyl-utilizing strains. This group of strains carried salicylate catabolic sal genes that were approximately 6-kb downstream of the bph genes. Group II (two strains) possessed bph and sal genes similar to the ones in KF707, but these strains lacked the bphX region between bphC and bphD, which is involved in the downstream catabolism of biphenyl. These bph-sal clusters in groups I and II were located on an integrative conjugative element that was larger than 110 kb, and they were named ICEbph-sal. Our previous study demonstrated that the ICEbph-sal of Pseudomonas putida KF715 in group II existed both in an integrated form in the chromosome (referred to as ICEbph-salKF715 (integrated)) and in a extrachromosomal circular form (referred to as ICEbph-sal (circular)) (previously called pKF715A, 483 kb) in the stationary culture. The ICEbph-sal was transferred from KF715 into P. putida AC30 and P. putida KT2440 with high frequency, and it was maintained stably as an extrachromosomal circular form. The ICEbph-salKF715 (circular) in these transconjugants was further transferred to P. putida F39/D and then integrated into the chromosome in one or two copies. Meanwhile, group III (one strain) possessed bph genes, but not sal genes. The nucleotide sequences of the bph genes in this group were less conserved compared to the genes of the strains belonging to groups I and II. Currently, there is no evidence to indicate that the bph genes in group III are carried by a mobile element. Group IV (two strains) carried bph genes as ICEs (59–61 kb) that were similar to the genes found in Tn4371 from Cupriavidus oxalacticus A5 and ICEKKS1024677 from the Acidovorax sp. strain KKS102. Our study found that bph gene islands have integrative functions, are transferred among soil bacteria, and are diversified through modification.
Collapse
Affiliation(s)
- Jun Hirose
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan.
| | - Hidehiko Fujihara
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu 874-8501, Japan.
| | - Takahito Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan.
| | - Nobutada Kimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan.
| | - Hikaru Suenaga
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan.
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan.
| | - Masatoshi Goto
- Faculty of Agriculture, Saga University, Saga 840-8502, Japan.
| | - Akiko Suyama
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu 874-8501, Japan.
| | - Kensuke Furukawa
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu 874-8501, Japan.
| |
Collapse
|
9
|
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512-537. [PMID: 28369623 PMCID: PMC5812530 DOI: 10.1093/femsre/fux008] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE-host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE 'fitness'). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells.
Collapse
Affiliation(s)
- François Delavat
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | | |
Collapse
|
10
|
Bañuelos-Vazquez LA, Torres Tejerizo G, Brom S. Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid 2017; 91:82-89. [DOI: 10.1016/j.plasmid.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 10/25/2022]
|
11
|
Wright LD, Grossman AD. Autonomous Replication of the Conjugative Transposon Tn916. J Bacteriol 2016; 198:3355-3366. [PMID: 27698087 PMCID: PMC5116939 DOI: 10.1128/jb.00639-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/29/2016] [Indexed: 01/14/2023] Open
Abstract
Integrative and conjugative elements (ICEs), also known as conjugative transposons, are self-transferable elements that are widely distributed among bacterial phyla and are important drivers of horizontal gene transfer. Many ICEs carry genes that confer antibiotic resistances to their host cells and are involved in the dissemination of these resistance genes. ICEs reside in host chromosomes but under certain conditions can excise to form a plasmid that is typically the substrate for transfer. A few ICEs are known to undergo autonomous replication following activation. However, it is not clear if autonomous replication is a general property of many ICEs. We found that Tn916, the first conjugative transposon identified, replicates autonomously via a rolling-circle mechanism. Replication of Tn916 was dependent on the relaxase encoded by orf20 of Tn916 The origin of transfer of Tn916, oriT(916), also functioned as an origin of replication. Using immunoprecipitation and mass spectrometry, we found that the relaxase (Orf20) and the two putative helicase processivity factors (Orf22 and Orf23) encoded by Tn916 likely interact in a complex and that the Tn916 relaxase contains a previously unidentified conserved helix-turn-helix domain in its N-terminal region that is required for relaxase function and replication. Lastly, we identified a functional single-strand origin of replication (sso) in Tn916 that we predict primes second-strand synthesis during rolling-circle replication. Together these results add to the emerging data that show that several ICEs replicate via a conserved, rolling-circle mechanism. IMPORTANCE Integrative and conjugative elements (ICEs) drive horizontal gene transfer and the spread of antibiotic resistances in bacteria. ICEs reside integrated in a host genome but can excise to create a plasmid that is the substrate for transfer to other cells. Here we show that Tn916, an ICE with broad host range, undergoes autonomous rolling-circle replication when in the plasmid form. We found that the origin of transfer functions as a double-stranded origin of replication and identified a single-stranded origin of replication. It was long thought that ICEs do not undergo autonomous replication. Our work adds to the evidence that ICEs replicate autonomously as part of their normal life cycle and indicates that diverse ICEs use the same replicative mechanism.
Collapse
Affiliation(s)
- Laurel D Wright
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Highly variable individual donor cell fates characterize robust horizontal gene transfer of an integrative and conjugative element. Proc Natl Acad Sci U S A 2016; 113:E3375-83. [PMID: 27247406 DOI: 10.1073/pnas.1604479113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer is an important evolutionary mechanism for bacterial adaptation. However, given the typical low transfer frequencies in a bacterial population, little is known about the fate and interplay of donor cells and the mobilized DNA during transfer. Here we study transfer of an integrative and conjugative element (ICE) among individual live bacterial cells. ICEs are widely distributed mobile DNA elements that are different than plasmids because they reside silent in the host chromosome and are maintained through vertical descent. Occasionally, ICEs become active, excise, and transmit their DNA to a new recipient, where it is reintegrated. We develop a fluorescent tool to differentiate excision, transfer, and reintegration of a model ICE named ICEclc (for carrying the clc genes for chlorocatechol metabolism) among single Pseudomonas cells by using time-lapse microscopy. We find that ICEclc activation is initiated in stationary phase cells, but excision and transfer predominantly occur only when such cells have been presented with new nutrients. Donors with activated ICE develop a number of different states, characterized by reduced cell division rates or growth arrest, persistence, or lysis, concomitant with ICE excision, and likely, ICE loss or replication. The donor cell state transitions can be described by using a stochastic model, which predicts that ICE fitness is optimal at low initiation rates in stationary phase. Despite highly variable donor cell fates, ICE transfer is remarkably robust overall, with 75% success after excision. Our results help to better understand ICE behavior and shed a new light on bacterial cellular differentiation during horizontal gene transfer.
Collapse
|
13
|
Soil metaproteomics reveals an inter-kingdom stress response to the presence of black truffles. Sci Rep 2016; 6:25773. [PMID: 27161395 PMCID: PMC4861934 DOI: 10.1038/srep25773] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023] Open
Abstract
For some truffle species of the Tuber genus, the symbiotic phase is often associated with the presence of an area of scant vegetation, commonly known as the brûlé, around the host tree. Previous metagenomics studies have identified the microorganisms present inside and outside the brûlé of a Tuber melanosporum truffle-ground, but the molecular mechanisms that operate in this ecological niche remain to be clarified. To elucidate the metabolic pathways present in the brûlé, we conducted a metaproteomics analysis on the soil of a characterized truffle-ground and cross-referenced the resulting proteins with a database we constructed, incorporating the metagenomics data for the organisms previously identified in this soil. The soil inside the brûlé contained a larger number of proteins and, surprisingly, more proteins from plants, compared with the soil outside the brûlé. In addition, Fisher's Exact Tests detected more biological processes inside the brûlé; these processes were related to responses to multiple types of stress. Thus, although the brûlé has a reduced diversity of plant and microbial species, the organisms in the brûlé show strong metabolic activity. Also, the combination of metagenomics and metaproteomics provides a powerful tool to reveal soil functioning.
Collapse
|
14
|
Abbott ZD, Flynn KJ, Byrne BG, Mukherjee S, Kearns DB, Swanson MS. csrT Represents a New Class of csrA-Like Regulatory Genes Associated with Integrative Conjugative Elements of Legionella pneumophila. J Bacteriol 2016; 198:553-64. [PMID: 26598366 PMCID: PMC4719454 DOI: 10.1128/jb.00732-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/12/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Bacterial evolution is accelerated by mobile genetic elements. To spread horizontally and to benefit the recipient bacteria, genes encoded on these elements must be properly regulated. Among the legionellae are multiple integrative conjugative elements (ICEs) that each encode a paralog of the broadly conserved regulator csrA. Using bioinformatic analyses, we deduced that specific csrA paralogs are coinherited with particular lineages of the type IV secretion system that mediates horizontal spread of its ICE, suggesting a conserved regulatory interaction. As a first step to investigate the contribution of csrA regulators to this class of mobile genetic elements, we analyzed here the activity of the csrA paralog encoded on Legionella pneumophila ICE-βox. Deletion of this gene, which we name csrT, had no observed effect under laboratory conditions. However, ectopic expression of csrT abrogated the protection to hydrogen peroxide and macrophage degradation that ICE-βox confers to L. pneumophila. When ectopically expressed, csrT also repressed L. pneumophila flagellin production and motility, a function similar to the core genome's canonical csrA. Moreover, csrT restored the repression of motility to csrA mutants of Bacillus subtilis, a finding consistent with the predicted function of CsrT as an mRNA binding protein. Since all known ICEs of legionellae encode coinherited csrA-type IV secretion system pairs, we postulate that CsrA superfamily proteins regulate ICE activity to increase their horizontal spread, thereby expanding L. pneumophila versatility. IMPORTANCE ICEs are mobile DNA elements whose type IV secretion machineries mediate spread among bacterial populations. All surveyed ICEs within the Legionella genus also carry paralogs of the essential life cycle regulator csrA. It is striking that the csrA loci could be classified into distinct families based on either their sequence or the subtype of the adjacent type IV secretion system locus. To investigate whether ICE-encoded csrA paralogs are bona fide regulators, we analyzed ICE-βox as a model system. When expressed ectopically, its csrA paralog inhibited multiple ICE-βox phenotypes, as well as the motility of not only Legionella but also Bacillus subtilis. Accordingly, we predict that CsrA regulators equip legionellae ICEs to promote their spread via dedicated type IV secretion systems.
Collapse
Affiliation(s)
- Zachary D Abbott
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kaitlin J Flynn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brenda G Byrne
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Abstract
Horizontal gene transfer plays a major role in microbial evolution, allowing microbes to acquire new genes and phenotypes. Integrative and conjugative elements (ICEs, a.k.a. conjugative transposons) are modular mobile genetic elements integrated into a host genome and are passively propagated during chromosomal replication and cell division. Induction of ICE gene expression leads to excision, production of the conserved conjugation machinery (a type IV secretion system), and the potential to transfer DNA to appropriate recipients. ICEs typically contain cargo genes that are not usually related to the ICE life cycle and that confer phenotypes to host cells. We summarize the life cycle and discovery of ICEs, some of the regulatory mechanisms, and how the types of cargo have influenced our view of ICEs. We discuss how ICEs can acquire new cargo genes and describe challenges to the field and various perspectives on ICE biology.
Collapse
Affiliation(s)
- Christopher M Johnson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; ,
| | | |
Collapse
|
16
|
Vanga BR, Ramakrishnan P, Butler RC, Toth IK, Ronson CW, Jacobs JME, Pitman AR. Mobilization of horizontally acquired island 2 is induced in planta in the phytopathogen Pectobacterium atrosepticum SCRI1043 and involves the putative relaxase ECA0613 and quorum sensing. Environ Microbiol 2015; 17:4730-44. [PMID: 26271942 DOI: 10.1111/1462-2920.13024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 01/30/2023]
Abstract
Integrative and conjugative elements (ICEs) contribute to the rapid evolution of bacterial pathogens via horizontal gene transfer of virulence determinants. ICEs have common mechanisms for transmission, yet the cues triggering this process under natural environmental or physiological conditions are largely unknown. In this study, mobilization of the putative ICE horizontally acquired island 2 (HAI2), present in the chromosome of the phytopathogen Pectobacterium atrosepticum SCRI1043, was examined during infection of the host plant potato. Under these conditions, mobilization of HAI2 increased markedly compared with in vitro cultures. In planta-induced mobilization of HAI2 was regulated by quorum sensing and involved the putative ICE-encoded relaxase ECA0613. Disruption of ECA0613 also reduced transcription of genes involved in production of coronafacic acid (Cfa), the major virulence factor harboured on HAI2, whereas their expression was unaffected in the quorum-sensing (expI) mutant. Thus, suppression of cfa gene expression was not regulated by the mobilization of the ICE per se, but was due directly to inactivation of the relaxase. The identification of genetic factors associated solely with in planta mobilization of an ICE demonstrates that this process is highly adapted to the natural environment of the bacterial host and can influence the expression of virulence determinants.
Collapse
Affiliation(s)
- Bhanupratap R Vanga
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand.,Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Pavithra Ramakrishnan
- Bioprotection Research Centre, Lincoln University, PO Box 84, Canterbury, 7647, New Zealand
| | - Ruth C Butler
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Ian K Toth
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Clive W Ronson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Jeanne M E Jacobs
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand.,Bioprotection Research Centre, Lincoln University, PO Box 84, Canterbury, 7647, New Zealand
| | - Andrew R Pitman
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, 8140, New Zealand.,Bioprotection Research Centre, Lincoln University, PO Box 84, Canterbury, 7647, New Zealand
| |
Collapse
|
17
|
Miyazaki R, van der Meer JR. How can a dual oriT system contribute to efficient transfer of an integrative and conjugative element? Mob Genet Elements 2014; 1:82-84. [PMID: 22016851 DOI: 10.4161/mge.1.1.15744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are particularly interesting model systems for horizontal gene transfer, because they normally reside in an integrated state in the host chromosome but can excise and self-transfer under particular conditions, typically requiring exquisite regulatory cascades. Despite important advances in our understanding of the transfer mechanisms of a number of ICE, many essential details are lacking. Recently we reported that ICEclc, a 103 kb ICE of Pseudomonas knackmussii B13, has two active origins of transfer (oriTs), which is very much unlike conjugative plasmids that usually employ a single oriT. We discuss here how this dual oriT system could function and how it actually could have presented an evolutionary advantage for ICEclc distribution.
Collapse
Affiliation(s)
- Ryo Miyazaki
- Department of Fundamental Microbiology; University of Lausanne; Bâtiment Biophore; Quartier UNIL-Sorge; Lausanne, Switzerland
| | | |
Collapse
|
18
|
Pradervand N, Sulser S, Delavat F, Miyazaki R, Lamas I, van der Meer JR. An operon of three transcriptional regulators controls horizontal gene transfer of the integrative and conjugative element ICEclc in Pseudomonas knackmussii B13. PLoS Genet 2014; 10:e1004441. [PMID: 24945944 PMCID: PMC4063739 DOI: 10.1371/journal.pgen.1004441] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/30/2014] [Indexed: 11/18/2022] Open
Abstract
The integrative and conjugative element ICEclc is a mobile genetic element in Pseudomonas knackmussii B13, and an experimental model for a widely distributed group of elements in Proteobacteria. ICEclc is transferred from specialized transfer competent cells, which arise at a frequency of 3-5% in a population at stationary phase. Very little is known about the different factors that control the transfer frequency of this ICE family. Here we report the discovery of a three-gene operon encoded by ICEclc, which exerts global control on transfer initiation. The operon consists of three consecutive regulatory genes, encoding a TetR-type repressor MfsR, a MarR-type regulator and a LysR-type activator TciR. We show that MfsR autoregulates expression of the operon, whereas TciR is a global activator of ICEclc gene expression, but no clear role was yet found for MarR. Deletion of mfsR increases expression of tciR and marR, causing the proportion of transfer competent cells to reach almost 100% and transfer frequencies to approach 1 per donor. mfsR deletion also caused a two orders of magnitude loss in population viability, individual cell growth arrest and loss of ICEclc. This indicates that autoregulation is an important feature maintaining ICE transfer but avoiding fitness loss. Bioinformatic analysis showed that the mfsR-marR-tciR operon is unique for ICEclc and a few highly related ICE, whereas tciR orthologues occur more widely in a large variety of suspected ICE among Proteobacteria. Integrative and conjugative elements (ICEs) are a relatively newly recognized class of mobile elements in bacteria, which integrate at one or more positions in a host chromosome, can be excised, circularized, and transfer by conjugation to a new recipient cell. Genome sequencing indicated that ICEs often carry genes with potential adaptive functions for the host. Various ICE-types have been described and ICEclc is a useful model for a wide class of elements found in Beta- and Gammaproteobacteria. Because ICEs normally remain “silent” in the host chromosome and often lack selectable markers, their lifestyle is difficult to study. One of the characteristics of ICEclc is that transfer is initiated in only 3-5% of donor cells in a population during stationary phase. Here, we describe an operon of three regulatory genes, two of which control the transfer initiation of ICEclc. Our findings suggest that the low transfer rate results from the repression of an activator and that this is essential to minimize the deleterious effect of hyper-activation of transfer initiation. While the individual regulatory genes are quite common on ICEs, they rarely occur in this configuration.
Collapse
Affiliation(s)
- Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sandra Sulser
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - François Delavat
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ryo Miyazaki
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Iker Lamas
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Life history analysis of integrative and conjugative element activation in growing microcolonies of Pseudomonas. J Bacteriol 2014; 196:1425-34. [PMID: 24464463 DOI: 10.1128/jb.01333-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Integrative and conjugative elements (ICE) are in some ways parasitic mobile DNA that propagate vertically through replication with the bacterial host chromosome but at low frequencies can excise and invade new recipient cells through conjugation and reintegration (horizontal propagation). The factors that contribute to successful horizontal propagation are not very well understood. Here, we study the influence of host cell life history on the initiation of transfer of a model ICE named ICEclc in bacteria of the genus Pseudomonas. We use time-lapse microscopy of growing and stationary-phase microcolonies of ICEclc bearing cells in combination with physiological staining and gene reporter analysis in stationary-phase suspended cells. We provide evidence that cell age and cell lineage are unlikely to play a role in the decision to initiate the ICEclc transfer program. In contrast, cells activating ICEclc show more often increased levels of reactive oxygen species and membrane damage than nonactivating cells, suggesting that some form of biochemical damage may make cells more prone to ICEclc induction. Finally, we find that ICEclc active cells appear spatially at random in a microcolony, which may have been a selective advantage for maximizing ICEclc horizontal transmission to new recipient species.
Collapse
|
20
|
Reinhard F, van der Meer JR. Improved statistical analysis of low abundance phenomena in bimodal bacterial populations. PLoS One 2013; 8:e78288. [PMID: 24205184 PMCID: PMC3813492 DOI: 10.1371/journal.pone.0078288] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/10/2013] [Indexed: 01/10/2023] Open
Abstract
Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods’ resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R.
Collapse
Affiliation(s)
- Friedrich Reinhard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
21
|
Juhas M, Dimopoulou I, Robinson E, Elamin A, Harding R, Hood D, Crook D. Identification of another module involved in the horizontal transfer of the Haemophilus genomic island ICEHin1056. Plasmid 2013; 70:277-83. [PMID: 23764277 PMCID: PMC3739013 DOI: 10.1016/j.plasmid.2013.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 12/04/2022]
Abstract
The investigated module on the 5′ extremity of ICEHin1056 consists of 15 genes. Genes of this module are homologues of DNA replication and stabilization genes. This module is well conserved in a number of genomic islands. This module is important for the conjugal transfer of ICEHin1056.
A significant part of horizontal gene transfer is facilitated by genomic islands. Haemophilus influenzae genomic island ICEHin1056 is an archetype of a genomic island that accounts for pandemic spread of antibiotics resistance. ICEHin1056 has modular structure and harbors modules involved in type IV secretion and integration. Previous studies have shown that ICEHin1056 encodes a functional type IV secretion system; however, other modules have not been characterized yet. Here we show that the module on the 5′ extremity of ICEHin1056 consists of 15 genes that are well conserved in a number of related genomic islands. Furthermore by disrupting six genes of the investigated module of ICEHin1056 by site-specific mutagenesis we demonstrate that in addition to type IV secretion system module, the investigated module is also important for the successful conjugal transfer of ICEHin1056 from donor to recipient cells.
Collapse
Affiliation(s)
- Mario Juhas
- Clinical Microbiology and Infectious Diseases, NDCLS, University of Oxford, OX3 9DU, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
A new large-DNA-fragment delivery system based on integrase activity from an integrative and conjugative element. Appl Environ Microbiol 2013; 79:4440-7. [PMID: 23686268 DOI: 10.1128/aem.00711-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
During the past few decades, numerous plasmid vectors have been developed for cloning, gene expression analysis, and genetic engineering. Cloning procedures typically rely on PCR amplification, DNA fragment restriction digestion, recovery, and ligation, but increasingly, procedures are being developed to assemble large synthetic DNAs. In this study, we developed a new gene delivery system using the integrase activity of an integrative and conjugative element (ICE). The advantage of the integrase-based delivery is that it can stably introduce a large DNA fragment (at least 75 kb) into one or more specific sites (the gene for glycine-accepting tRNA) on a target chromosome. Integrase recombination activity in Escherichia coli is kept low by using a synthetic hybrid promoter, which, however, is unleashed in the final target host, forcing the integration of the construct. Upon integration, the system is again silenced. Two variants with different genetic features were produced, one in the form of a cloning vector in E. coli and the other as a mini-transposable element by which large DNA constructs assembled in E. coli can be tagged with the integrase gene. We confirmed that the system could successfully introduce cosmid and bacterial artificial chromosome (BAC) DNAs from E. coli into the chromosome of Pseudomonas putida in a site-specific manner. The integrase delivery system works in concert with existing vector systems and could thus be a powerful tool for synthetic constructions of new metabolic pathways in a variety of host bacteria.
Collapse
|
23
|
Reinhard F, Miyazaki R, Pradervand N, van der Meer J. Cell Differentiation to “Mating Bodies” Induced by an Integrating and Conjugative Element in Free-Living Bacteria. Curr Biol 2013; 23:255-9. [DOI: 10.1016/j.cub.2012.12.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 12/18/2022]
|
24
|
Stability of a Pseudomonas putida KT2440 bacteriophage-carried genomic island and its impact on rhizosphere fitness. Appl Environ Microbiol 2012; 78:6963-74. [PMID: 22843519 DOI: 10.1128/aem.00901-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stability of seven genomic islands of Pseudomonas putida KT2440 with predicted potential for mobilization was studied in bacterial populations associated with the rhizosphere of corn plants by multiplex PCR. DNA rearrangements were detected for only one of them (GI28), which was lost at high frequency. This genomic island of 39.4 kb, with 53 open reading frames, shows the characteristic organization of genes belonging to tailed phages. We present evidence indicating that it corresponds to the lysogenic state of a functional bacteriophage that we have designated Pspu28. Integrated and rarely excised forms of Pspu28 coexist in KT2440 populations. Pspu28 is self-transmissible, and an excisionase is essential for its removal from the bacterial chromosome. The excised Pspu28 forms a circular element that can integrate into the chromosome at a specific location, att sites containing a 17-bp direct repeat sequence. Excision/insertion of Pspu28 alters the promoter sequence and changes the expression level of PP_1531, which encodes a predicted arsenate reductase. Finally, we show that the presence of Pspu28 in the lysogenic state has a negative effect on bacterial fitness in the rhizosphere under conditions of intraspecific competition, thus explaining why clones having lost this mobile element are recovered from that environment.
Collapse
|
25
|
Cellular variability of RpoS expression underlies subpopulation activation of an integrative and conjugative element. PLoS Genet 2012; 8:e1002818. [PMID: 22807690 PMCID: PMC3395598 DOI: 10.1371/journal.pgen.1002818] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 05/23/2012] [Indexed: 01/12/2023] Open
Abstract
Conjugative transfer of the integrative and conjugative element ICEclc in the bacterium Pseudomonas knackmussii is the consequence of a bistable decision taken in some 3% of cells in a population during stationary phase. Here we study the possible control exerted by the stationary phase sigma factor RpoS on the bistability decision. The gene for RpoS in P. knackmussii B13 was characterized, and a loss-of-function mutant was produced and complemented. We found that, in absence of RpoS, ICEclc transfer rates and activation of two key ICEclc promoters (Pint and PinR) decrease significantly in cells during stationary phase. Microarray and gene reporter analysis indicated that the most direct effect of RpoS is on PinR, whereas one of the gene products from the PinR-controlled operon (InrR) transmits activation to Pint and other ICEclc core genes. Addition of a second rpoS copy under control of its native promoter resulted in an increase of the proportion of cells expressing the Pint and PinR promoters to 18%. Strains in which rpoS was replaced by an rpoS-mcherry fusion showed high mCherry fluorescence of individual cells that had activated Pint and PinR, whereas a double-copy rpoS-mcherry–containing strain displayed twice as much mCherry fluorescence. This suggested that high RpoS levels are a prerequisite for an individual cell to activate PinR and thus ICEclc transfer. Double promoter–reporter fusions confirmed that expression of PinR is dominated by extrinsic noise, such as being the result of cellular variability in RpoS. In contrast, expression from Pint is dominated by intrinsic noise, indicating it is specific to the ICEclc transmission cascade. Our results demonstrate how stochastic noise levels of global transcription factors can be transduced to a precise signaling cascade in a subpopulation of cells leading to ICE activation. Horizontal gene transfer is one of the amazing phenomena in the prokaryotic world, by which DNA can be moved between species with means of a variety of specialized “elements” and/or specific host cell mechanisms. In particular the molecular decisions that have to be made in order to transfer DNA from one cell to another are fascinating, but very little is known about this at a cellular basis. Here we study a member of a widely distributed type of mobile DNA called “integrative and conjugative elements” or ICE. ICEclc normally resides in the chromosome of its bacterial host, but can excise from the chromosome and prepare for conjugation. Interestingly, the decision to excise ICEclc is made in only 3%–5% of cells in a clonal population in stationary phase. We focus specifically on the question of which mechanism may be responsible for setting this threshold level of ICEclc activation. We find that ICEclc activation is dependent on the individual cell level of the stationary phase sigma factor RpoS. The noise in RpoS expression across a population of cells thus sets the “threshold” for ICEclc to excise and prepare transfer.
Collapse
|
26
|
Liang B, Jiang J, Zhang J, Zhao Y, Li S. Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role. Crit Rev Microbiol 2011; 38:95-110. [DOI: 10.3109/1040841x.2011.618114] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol 2011; 2:158. [PMID: 21845185 PMCID: PMC3145257 DOI: 10.3389/fmicb.2011.00158] [Citation(s) in RCA: 376] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/11/2011] [Indexed: 01/21/2023] Open
Abstract
Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT.
Collapse
Affiliation(s)
- Rustam I Aminov
- Rowett Institute of Nutrition and Health, University of Aberdeen Aberdeen, UK
| |
Collapse
|
28
|
Abstract
Pseudomonas aeruginosa strains exhibit significant variability in pathogenicity and ecological flexibility. Such interstrain differences reflect the dynamic nature of the P. aeruginosa genome, which is composed of a relatively invariable "core genome" and a highly variable "accessory genome." Here we review the major classes of genetic elements comprising the P. aeruginosa accessory genome and highlight emerging themes in the acquisition and functional importance of these elements. Although the precise phenotypes endowed by the majority of the P. aeruginosa accessory genome have yet to be determined, rapid progress is being made, and a clearer understanding of the role of the P. aeruginosa accessory genome in ecology and infection is emerging.
Collapse
|
29
|
Li M, Shen X, Yan J, Han H, Zheng B, Liu D, Cheng H, Zhao Y, Rao X, Wang C, Tang J, Hu F, Gao GF. GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2. Mol Microbiol 2011; 79:1670-83. [PMID: 21244532 PMCID: PMC3132442 DOI: 10.1111/j.1365-2958.2011.07553.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Pathogenicity islands (PAIs), a distinct type of genomic island (GI), play important roles in the rapid adaptation and increased virulence of pathogens. 89K is a newly identified PAI in epidemic Streptococcus suis isolates that are related to the two recent large-scale outbreaks of human infection in China. However, its mechanism of evolution and contribution to the epidemic spread of S. suis 2 remain unknown. In this study, the potential for mobilization of 89K was evaluated, and its putative transfer mechanism was investigated. We report that 89K can spontaneously excise to form an extrachromosomal circular product. The precise excision is mediated by an 89K-borne integrase through site-specific recombination, with help from an excisionase. The 89K excision intermediate acts as a substrate for lateral transfer to non-89K S. suis 2 recipients, where it reintegrates site-specifically into the target site. The conjugal transfer of 89K occurred via a GI type IV secretion system (T4SS) encoded in 89K, at a frequency of 10(-6) transconjugants per donor. This is the first demonstration of horizontal transfer of a Gram-positive PAI mediated by a GI-type T4SS. We propose that these genetic events are important in the emergence, pathogenesis and persistence of epidemic S. suis 2 strains.
Collapse
Affiliation(s)
- Ming Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Miyazaki R, van der Meer JR. A dual functional origin of transfer in the ICEclc genomic island of Pseudomonas knackmussii B13. Mol Microbiol 2010; 79:743-58. [DOI: 10.1111/j.1365-2958.2010.07484.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Wozniak RAF, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010; 8:552-63. [PMID: 20601965 DOI: 10.1038/nrmicro2382] [Citation(s) in RCA: 552] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrative and conjugative elements (ICEs) are a diverse group of mobile genetic elements found in both Gram-positive and Gram-negative bacteria. These elements primarily reside in a host chromosome but retain the ability to excise and to transfer by conjugation. Although ICEs use a range of mechanisms to promote their core functions of integration, excision, transfer and regulation, there are common features that unify the group. This Review compares and contrasts the core functions for some of the well-studied ICEs and discusses them in the broader context of mobile-element and genome evolution.
Collapse
|
32
|
Gaillard M, Pradervand N, Minoia M, Sentchilo V, Johnson DR, van der Meer JR. Transcriptome analysis of the mobile genome ICEclc in Pseudomonas knackmussii B13. BMC Microbiol 2010; 10:153. [PMID: 20504315 PMCID: PMC2892462 DOI: 10.1186/1471-2180-10-153] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/26/2010] [Indexed: 11/28/2022] Open
Abstract
Background Integrative and conjugative elements (ICE) form a diverse group of DNA elements that are integrated in the chromosome of the bacterial host, but can occasionally excise and horizontally transfer to a new host cell. ICE come in different families, typically with a conserved core for functions controlling the element's behavior and a variable region providing auxiliary functions to the host. The ICEclc element of Pseudomonas knackmussii strain B13 is representative for a large family of chromosomal islands detected by genome sequencing approaches. It provides the host with the capacity to degrade chloroaromatics and 2-aminophenol. Results Here we study the transcriptional organization of the ICEclc core region. By northern hybridizations, reverse-transcriptase polymerase chain reaction (RT-PCR) and Rapid Amplification of cDNA Ends (5'-RACE) fifteen transcripts were mapped in the core region. The occurrence and location of those transcripts were further confirmed by hybridizing labeled cDNA to a semi-tiling micro-array probing both strands of the ICEclc core region. Dot blot and semi-tiling array hybridizations demonstrated most of the core transcripts to be upregulated during stationary phase on 3-chlorobenzoate, but not on succinate or glucose. Conclusions The transcription analysis of the ICEclc core region provides detailed insights in the mode of regulatory organization and will help to further understand the complex mode of behavior of this class of mobile elements. We conclude that ICEclc core transcription is concerted at a global level, more reminiscent of a phage program than of plasmid conjugation.
Collapse
Affiliation(s)
- Muriel Gaillard
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
33
|
Arsène-Ploetze F, Koechler S, Marchal M, Coppée JY, Chandler M, Bonnefoy V, Brochier-Armanet C, Barakat M, Barbe V, Battaglia-Brunet F, Bruneel O, Bryan CG, Cleiss-Arnold J, Cruveiller S, Erhardt M, Heinrich-Salmeron A, Hommais F, Joulian C, Krin E, Lieutaud A, Lièvremont D, Michel C, Muller D, Ortet P, Proux C, Siguier P, Roche D, Rouy Z, Salvignol G, Slyemi D, Talla E, Weiss S, Weissenbach J, Médigue C, Bertin PN. Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 2010; 6:e1000859. [PMID: 20195515 PMCID: PMC2829063 DOI: 10.1371/journal.pgen.1000859] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 01/25/2010] [Indexed: 11/19/2022] Open
Abstract
Bacteria of the Thiomonas genus are ubiquitous in extreme environments, such as arsenic-rich acid mine drainage (AMD). The genome of one of these strains, Thiomonas sp. 3As, was sequenced, annotated, and examined, revealing specific adaptations allowing this bacterium to survive and grow in its highly toxic environment. In order to explore genomic diversity as well as genetic evolution in Thiomonas spp., a comparative genomic hybridization (CGH) approach was used on eight different strains of the Thiomonas genus, including five strains of the same species. Our results suggest that the Thiomonas genome has evolved through the gain or loss of genomic islands and that this evolution is influenced by the specific environmental conditions in which the strains live.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Sandrine Koechler
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Marie Marchal
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Jean-Yves Coppée
- Genopole, Plate-forme puces à ADN, Institut Pasteur, Paris, France
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR5100, Toulouse, France
| | - Violaine Bonnefoy
- Laboratoire de Chimie Bactérienne, UPR9043 CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Céline Brochier-Armanet
- Laboratoire de Chimie Bactérienne, UPR9043 CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Mohamed Barakat
- Institut de Biologie Environnementale et de Biotechnologie, CEA-CNRS-Université Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Valérie Barbe
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
| | | | - Odile Bruneel
- Laboratoire Hydrosciences Montpellier, UMR 5569 CNRS, IRD and Universités Montpellier I and II, Montpellier, France
| | - Christopher G. Bryan
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Jessica Cleiss-Arnold
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Stéphane Cruveiller
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
- Génomique Métabolique, Laboratoire de Génomique Comparative, CNRS UMR8030, Evry, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Audrey Heinrich-Salmeron
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Florence Hommais
- Unité Microbiologie, Adaptation, Pathogénie, CNRS-INSA-UCB UMR 5240, Université Lyon 1, Villeurbanne, France
| | | | - Evelyne Krin
- Génétique des Génomes Bactériens, URA2171, Institut Pasteur, Paris, France
| | - Aurélie Lieutaud
- Laboratoire de Chimie Bactérienne, UPR9043 CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Didier Lièvremont
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Caroline Michel
- Environnement et Procédés, Ecotechnologie, BRGM, Orléans, France
| | - Daniel Muller
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Philippe Ortet
- Institut de Biologie Environnementale et de Biotechnologie, CEA-CNRS-Université Aix-Marseille II, Saint-Paul-lez-Durance, France
| | - Caroline Proux
- Genopole, Plate-forme puces à ADN, Institut Pasteur, Paris, France
| | - Patricia Siguier
- Laboratoire de Microbiologie et Génétique Moléculaire, UMR5100, Toulouse, France
| | - David Roche
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
- Génomique Métabolique, Laboratoire de Génomique Comparative, CNRS UMR8030, Evry, France
| | - Zoé Rouy
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
| | - Grégory Salvignol
- Génomique Métabolique, Laboratoire de Génomique Comparative, CNRS UMR8030, Evry, France
| | - Djamila Slyemi
- Laboratoire de Chimie Bactérienne, UPR9043 CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Emmanuel Talla
- Laboratoire de Chimie Bactérienne, UPR9043 CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Stéphanie Weiss
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
| | - Jean Weissenbach
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
- Génomique Métabolique, Laboratoire de Génomique Comparative, CNRS UMR8030, Evry, France
| | - Claudine Médigue
- Institut de Génomique, CEA-DSV, Génoscope, Evry, France
- Génomique Métabolique, Laboratoire de Génomique Comparative, CNRS UMR8030, Evry, France
| | - Philippe N. Bertin
- Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
34
|
Sentchilo V, Czechowska K, Pradervand N, Minoia M, Miyazaki R, van der Meer JR. Intracellular excision and reintegration dynamics of the ICEclcgenomic island ofPseudomonas knackmussiisp. strain B13. Mol Microbiol 2009; 72:1293-306. [DOI: 10.1111/j.1365-2958.2009.06726.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Conjugative transfer of the integrative conjugative elements ICESt1 and ICESt3 from Streptococcus thermophilus. J Bacteriol 2009; 191:2764-75. [PMID: 19181800 DOI: 10.1128/jb.01412-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrative and conjugative elements (ICEs), also called conjugative transposons, are genomic islands that excise, self-transfer by conjugation, and integrate in the genome of the recipient bacterium. The current investigation shows the intraspecies conjugative transfer of the first described ICEs in Streptococcus thermophilus, ICESt1 and ICESt3. Mitomycin C, a DNA-damaging agent, derepresses ICESt3 conjugative transfer almost 25-fold. The ICESt3 host range was determined using various members of the Firmicutes as recipients. Whereas numerous ICESt3 transconjugants of Streptococcus pyogenes and Enterococcus faecalis were recovered, only one transconjugant of Lactococcus lactis was obtained. The newly incoming ICEs, except the one from L. lactis, are site-specifically integrated into the 3' end of the fda gene and are still able to excise in these transconjugants. Furthermore, ICESt3 was retransferred from E. faecalis to S. thermophilus. Recombinant plasmids carrying different parts of the ICESt1 recombination module were used to show that the integrase gene is required for the site-specific integration and excision of the ICEs, whereas the excisionase gene is required for the site-specific excision only.
Collapse
|
36
|
Stochasticity and bistability in horizontal transfer control of a genomic island in Pseudomonas. Proc Natl Acad Sci U S A 2008; 105:20792-7. [PMID: 19098098 DOI: 10.1073/pnas.0806164106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Genomic islands (GEI) comprise a recently recognized large family of potentially mobile DNA elements and play an important role in the rapid differentiation and adaptation of bacteria. Most importantly, GEIs have been implicated in the acquisition of virulence factors, antibiotic resistances or toxic compound metabolism. Despite detailed information on coding capacities of GEIs, little is known about the regulatory decisions in individual cells controlling GEI transfer. Here, we show how self-transfer of ICEclc, a GEI in Pseudomonas knackmussii B13 is controlled by a series of stochastic processes, the result of which is that only a few percent of cells in a population will excise ICEclc and launch transfer. Stochastic processes have been implicated before in producing bistable phenotypic transitions, such as sporulation and competence development, but never before in horizontal gene transfer (HGT). Bistability is instigated during stationary phase at the level of expression of an activator protein InrR that lays encoded on ICEclc, and then faithfully propagated to a bistable expression of the IntB13 integrase, the enzyme responsible for excision and integration of the ICEclc. Our results demonstrate how GEI of a very widespread family are likely to control their transfer rates. Furthermore, they help to explain why HGT is typically confined to few members within a population of cells. The finding that, despite apparent stochasticity, HGT rates can be modulated by external environmental conditions provides an explanation as to why selective conditions can promote DNA exchange.
Collapse
|
37
|
Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 2008; 33:376-93. [PMID: 19178566 PMCID: PMC2704930 DOI: 10.1111/j.1574-6976.2008.00136.x] [Citation(s) in RCA: 615] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital ‘superbugs’, as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteria.
Collapse
Affiliation(s)
- Mario Juhas
- Clinical Microbiology and Infectious Diseases, Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Klockgether J, Würdemann D, Wiehlmann L, Tümmler B. Transcript profiling of the Pseudomonas aeruginosa genomic islands PAGI-2 and pKLC102. Microbiology (Reading) 2008; 154:1599-1604. [DOI: 10.1099/mic.0.2007/014340-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jens Klockgether
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Dieco Würdemann
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Lutz Wiehlmann
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| | - Burkhard Tümmler
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
| |
Collapse
|
39
|
Host and invader impact of transfer of the clc genomic island into Pseudomonas aeruginosa PAO1. Proc Natl Acad Sci U S A 2008; 105:7058-63. [PMID: 18448680 DOI: 10.1073/pnas.0801269105] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomic islands, large potentially mobile regions of bacterial chromosomes, are a major contributor to bacteria evolution. Here, we investigated the fitness cost and phenotypic differences between the bacterium Pseudomonas aeruginosa PAO1 and a derivative carrying one integrated copy of the clc element, a 103-kb genomic island [and integrative and conjugative element (ICE)] originating in Pseudomonas sp. strain B13 and a close relative of genomic islands found in clinical and environmental isolates of P. aeruginosa. By using a combination of whole genome transcriptome profiling, phenotypic arrays, competition experiments, and biofilm formation studies, only few differences became apparent, such as reduced biofilm growth and fourfold stationary phase repression of genes involved in acetoin metabolism in PAO1 containing the clc element. In contrast, PAO1 carrying the clc element acquired the capacity to grow on 3-chlorobenzoate and 2-aminophenol as sole carbon and energy substrates. No fitness loss >1% was detectable in competition experiments between PAO1 and PAO1 carrying the clc element. The genes from the clc element were not silent in PAO1, and excision was observed, although transfer of clc from PAO1 to other recipient bacteria was reduced by two orders of magnitude. Our results indicate that newly acquired mobile DNA not necessarily invoke an important fitness cost on their host. Absence of immediate detriment to the host may have contributed to the wide distribution of genomic islands like clc in bacterial genomes.
Collapse
|
40
|
Urakawa H, Matsumoto J, Inaba K, Tsuneda S. DNA microarray mediated transcriptional profiling of Nitrosomonas europaea in response to linear alkylbenzene sulfonates. FEMS Microbiol Lett 2008; 282:166-73. [DOI: 10.1111/j.1574-6968.2008.01111.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Bellanger X, Morel C, Decaris B, Guédon G. Regulation of excision of integrative and potentially conjugative elements from Streptococcus thermophilus: role of the arp1 repressor. J Mol Microbiol Biotechnol 2008; 14:16-21. [PMID: 17957106 DOI: 10.1159/000106078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The integrative and conjugative elements (ICEs) excise by site-specific recombination between attL and attR flanking sites, self-transfer the resulting circular form and integrate into the genome of the recipient cell. Two putative ICEs, ICESt1 and ICESt3, are integrated in the same locus in 2 strains of Streptococcusthermophilus. ICESt1 is a composite element harbouring an internal recombination site, attL'. The recombination between attL' and attR leads to the excision of a shorter putative ICE, ICESt2. ICESt1/ICESt2 and ICESt3 carry related regulation modules sharing the open reading frame arp1 that encodes a protein related to the cI repressor of the phage lambda. The repressors belonging to this family autoproteolyse in the presence of damaged DNA. Treatments with mitomycin C induce an increase in the excision of ICESt1, ICESt2 and ICESt3. Furthermore, the arp1 deletion leads to a 1,000-fold increase in the excision of ICESt1 and ICESt2 and to a decrease in the excision induction by mitomycin C. Thus, all together, these results suggest that the autocleavage of the arp1 repressor is involved in derepression of the S. thermophilus putative ICE excision by mitomycin C.
Collapse
Affiliation(s)
- Xavier Bellanger
- Laboratoire de Génétique et Microbiologie UMR 1128, INRA, IFR110, Faculté des Sciences et Techniques, Nancy-Université, Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
42
|
He X, Ou HY, Yu Q, Zhou X, Wu J, Liang J, Zhang W, Rajakumar K, Deng Z. Analysis of a genomic island housing genes for DNA S-modification system in Streptomyces lividans 66 and its counterparts in other distantly related bacteria. Mol Microbiol 2007; 65:1034-48. [PMID: 17640271 DOI: 10.1111/j.1365-2958.2007.05846.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The complete sequence (92 770 bp) of a genomic island (GI) named SLG from Streptomyces lividans 66, encoding a novel DNA S-modification system (dnd), was determined. Its overall G+C content was 67.8%, lower than those of three sequenced Streptomyces genomes. Among 85 predicted open reading frames (ORFs) in SLG, 22 ORFs showed little homology with previously known proteins. SLG displays a mosaic structure composed of four modules, indicative of multiple recombination events in its formation. Spontaneous excision and circularization of SLG was observed, and the excision rate appeared to be induced at least fivefold by MNNG exposure. Using constructed mini-islands of SLG, we demonstrated that Slg01, a P4-like integrase, was sufficient to promote SLG integration, excision and circularization. Eleven counterpart dnd clusters, which also mapped to GIs in 10 chromosomes and a plasmid, were found in taxonomically unrelated bacterial species from various geographic niches. Additionally, c. 10% of actinomycetes were found to possess a dnd cluster in a survey involving 74 strains. Comparison of dnd clusters in the 12 bacteria strongly suggests that these dnd-bearing elements might have evolved from a common ancestor similar to plasmid-originated chromosome II of Pseudoalteromonas haloplanktis TAC125.
Collapse
Affiliation(s)
- Xinyi He
- Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Klockgether J, Würdemann D, Reva O, Wiehlmann L, Tümmler B. Diversity of the abundant pKLC102/PAGI-2 family of genomic islands in Pseudomonas aeruginosa. J Bacteriol 2007; 189:2443-59. [PMID: 17194795 PMCID: PMC1899365 DOI: 10.1128/jb.01688-06] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 01/08/2007] [Indexed: 12/27/2022] Open
Abstract
The known genomic islands of Pseudomonas aeruginosa clone C strains are integrated into tRNA(Lys) (pKLC102) or tRNA(Gly) (PAGI-2 and PAGI-3) genes and differ from their core genomes by distinctive tetranucleotide usage patterns. pKLC102 and the related island PAPI-1 from P. aeruginosa PA14 were spontaneously mobilized from their host chromosomes at frequencies of 10% and 0.3%, making pKLC102 the most mobile genomic island known with a copy number of 30 episomal circular pKLC102 molecules per cell. The incidence of islands of the pKLC102/PAGI-2 type was investigated in 71 unrelated P. aeruginosa strains from diverse habitats and geographic origins. pKLC102- and PAGI-2-like islands were identified in 50 and 31 strains, respectively, and 15 and 10 subtypes were differentiated by hybridization on pKLC102 and PAGI-2 macroarrays. The diversity of PAGI-2-type islands was mainly caused by one large block of strain-specific genes, whereas the diversity of pKLC102-type islands was primarily generated by subtype-specific combination of gene cassettes. Chromosomal loss of PAGI-2 could be documented in sequential P. aeruginosa isolates from individuals with cystic fibrosis. PAGI-2 was present in most tested Cupriavidus metallidurans and Cupriavidus campinensis isolates from polluted environments, demonstrating the spread of PAGI-2 across habitats and species barriers. The pKLC102/PAGI-2 family is prevalent in numerous beta- and gammaproteobacteria and is characterized by high asymmetry of the cDNA strands. This evolutionarily ancient family of genomic islands retained its oligonucleotide signature during horizontal spread within and among taxa.
Collapse
Affiliation(s)
- Jens Klockgether
- Klinische Forschergruppe, OE 6710, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
44
|
Bellanger X, Morel C, Decaris B, Guédon G. Derepression of excision of integrative and potentially conjugative elements from Streptococcus thermophilus by DNA damage response: implication of a cI-related repressor. J Bacteriol 2006; 189:1478-81. [PMID: 17114247 PMCID: PMC1797353 DOI: 10.1128/jb.01125-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A DNA-damaging agent, mitomycin C, derepresses the site-specific excision of two integrative and potentially conjugative elements from Streptococcus thermophilus, ICESt1 and ICESt3. The regulation pathway involves a repressor related to phage lambda cI repressor. It could also involve a putative regulator related to another type of phage repressors, the "cI-like" repressors.
Collapse
Affiliation(s)
- Xavier Bellanger
- Laboratoire de Génétique et Microbiologie UMR1128, INRA, Faculté des Sciences et Techniques, Université Henri Poincaré Nancy 1, 1 Bd des Aiguillettes, BP239, F-54506 Vandoeuvre-lès-Nancy, France
| | | | | | | |
Collapse
|
45
|
Gaillard M, Vallaeys T, Vorhölter FJ, Minoia M, Werlen C, Sentchilo V, Pühler A, van der Meer JR. The clc element of Pseudomonas sp. strain B13, a genomic island with various catabolic properties. J Bacteriol 2006; 188:1999-2013. [PMID: 16484212 PMCID: PMC1426575 DOI: 10.1128/jb.188.5.1999-2013.2006] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas sp. strain B13 is a bacterium known to degrade chloroaromatic compounds. The properties to use 3- and 4-chlorocatechol are determined by a self-transferable DNA element, the clc element, which normally resides at two locations in the cell's chromosome. Here we report the complete nucleotide sequence of the clc element, demonstrating the unique catabolic properties while showing its relatedness to genomic islands and integrative and conjugative elements rather than to other known catabolic plasmids. As far as catabolic functions, the clc element harbored, in addition to the genes for chlorocatechol degradation, a complete functional operon for 2-aminophenol degradation and genes for a putative aromatic compound transport protein and for a multicomponent aromatic ring dioxygenase similar to anthranilate hydroxylase. The genes for catabolic functions were inducible under various conditions, suggesting a network of catabolic pathway induction. For about half of the open reading frames (ORFs) on the clc element, no clear functional prediction could be given, although some indications were found for functions that were similar to plasmid conjugation. The region in which these ORFs were situated displayed a high overall conservation of nucleotide sequence and gene order to genomic regions in other recently completed bacterial genomes or to other genomic islands. Most notably, except for two discrete regions, the clc element was almost 100% identical over the whole length to a chromosomal region in Burkholderia xenovorans LB400. This indicates the dynamic evolution of this type of element and the continued transition between elements with a more pathogenic character and those with catabolic properties.
Collapse
Affiliation(s)
- Muriel Gaillard
- Department of Fundamental Microbiology, Bātiment Biophore, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Smits WK, Kuipers OP, Veening JW. Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 2006; 4:259-71. [PMID: 16541134 DOI: 10.1038/nrmicro1381] [Citation(s) in RCA: 366] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To survive in rapidly changing environmental conditions, bacteria have evolved a diverse set of regulatory pathways that govern various adaptive responses. Recent research has reinforced the notion that bacteria use feedback-based circuitry to generate population heterogeneity in natural situations. Using artificial gene networks, it has been shown that a relatively simple 'wiring' of a bacterial genetic system can generate two or more stable subpopulations within an overall genetically homogeneous population. This review discusses the ubiquity of these processes throughout nature, as well as the presumed molecular mechanisms responsible for the heterogeneity observed in a selection of bacterial species.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
47
|
Tecon R, van der Meer JR. Information from single-cell bacterial biosensors: what is it good for? Curr Opin Biotechnol 2006; 17:4-10. [PMID: 16326092 DOI: 10.1016/j.copbio.2005.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/10/2005] [Accepted: 11/23/2005] [Indexed: 11/26/2022]
Abstract
Bacterial reporter cells (i.e. strains engineered to produce easily measurable signals in response to one or more chemical targets) can principally be used to quantify chemical signals and analytes, physicochemical conditions and gradients on a microscale (i.e. micrometer to submillimeter distances), when the reporter signal is determined in individual cells. This makes sense, as bacterial life essentially thrives in microheterogenic environments and single-cell reporter information can help us to understand the microphysiology of bacterial cells and its importance for macroscale processes like pollutant biodegradation, beneficial bacteria-eukaryote interactions, and infection. Recent findings, however, showed that clonal bacterial populations are essentially always physiologically, phenotypically and genotypically heterogeneous, thus emphasizing the need for sound statistical approaches for the interpretation of reporter response in individual bacterial cells. Serious attempts have been made to measure and interpret single-cell reporter gene expression and to understand variability in reporter expression among individuals in a population.
Collapse
Affiliation(s)
- Robin Tecon
- Department of Fundamental Microbiology, Bâtiment Biophore, Quartier UNIL-Sorge, University of Lausanne, CH 1015 Lausanne, Switzerland
| | | |
Collapse
|
48
|
Lesic B, Carniel E. Horizontal transfer of the high-pathogenicity island of Yersinia pseudotuberculosis. J Bacteriol 2005; 187:3352-8. [PMID: 15866919 PMCID: PMC1112006 DOI: 10.1128/jb.187.10.3352-3358.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The horizontal transfer of genetic elements plays a major role in bacterial evolution. The high-pathogenicity island (HPI), which codes for an iron uptake system, is present and highly conserved in various Enterobacteriaceae, suggesting its recent acquisition by lateral gene transfer. The aim of this work was to determine whether the HPI has kept its ability to be transmitted horizontally. We demonstrate here that the HPI is indeed transferable from a donor to a recipient Yersinia pseudotuberculosis strain. This transfer was observable only when the donor and recipient bacteria were cocultured at low temperatures in a liquid medium. When optimized conditions were used (bacteria actively growing in an iron-deprived medium at 4 degrees C), the frequency of HPI transfer reached approximately 10(-8). The island was transferable to various serotype I strains of Y. pseudotuberculosis and to Yersinia pestis, but not to Y. pseudotuberculosis strains of serotypes II and IV or to Yersinia enterocolitica. Upon transfer, the HPI was inserted almost systematically into the asn3 tRNA locus. Acquisition of the HPI resulted in the loss of the resident island, suggesting an incompatibility between two copies of the HPI within the same strain. Transfer of the island did not require a functional HPI-borne insertion-excision machinery and was RecA dependent in the recipient but not the donor strain, suggesting that integration of the island into the recipient chromosome occurs via a mechanism of homologous recombination. This lateral transfer also involved the HPI-adjacent sequences, leading to the mobilization of a chromosomal region at least 46 kb in size.
Collapse
Affiliation(s)
- Biliana Lesic
- Yersinia Research Unit, Institut Pasteur, 75724 Paris Cedex 15, France
| | | |
Collapse
|
49
|
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 2004; 67:170-91. [PMID: 15614564 DOI: 10.1007/s00253-004-1810-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/10/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively studied in recent years. The genetic organization of biphenyl catabolic genes has been elucidated in various groups of microorganisms, their structures have been analyzed with respect to their evolutionary relationships, and new information on mobile elements has become available. Key enzymes, specifically biphenyl 2,3-dioxygenases, have been intensively characterized, structure/sequence relationships have been determined and enzymes optimized for PCB transformation. However, due to the complex metabolic network responsible for PCB degradation, optimizing degradation by single bacterial species is necessarily limited. As PCBs are usually not mineralized by biphenyl-degrading organisms, and cometabolism can result in the formation of toxic metabolites, the degradation of chlorobenzoates has received special attention. A broad set of bacterial strategies to degrade chlorobenzoates has recently been elucidated, including new pathways for the degradation of chlorocatechols as central intermediates of various chloroaromatic catabolic pathways. To optimize PCB degradation in the environment beyond these metabolic limitations, enhancing degradation in the rhizosphere has been suggested, in addition to the application of surfactants to overcome bioavailability barriers. However, further research is necessary to understand the complex interactions between soil/sediment, pollutant, surfactant and microorganisms in different environments.
Collapse
Affiliation(s)
- Dietmar H Pieper
- Department of Environmental Microbiology, German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany.
| |
Collapse
|
50
|
Sajjaphan K, Shapir N, Wackett LP, Palmer M, Blackmon B, Tomkins J, Sadowsky MJ. Arthrobacter aurescens TC1 atrazine catabolism genes trzN, atzB, and atzC are linked on a 160-kilobase region and are functional in Escherichia coli. Appl Environ Microbiol 2004; 70:4402-7. [PMID: 15240330 PMCID: PMC444770 DOI: 10.1128/aem.70.7.4402-4407.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arthrobacter aurescens strain TC1 metabolizes atrazine to cyanuric acid via TrzN, AtzB, and AtzC. The complete sequence of a 160-kb bacterial artificial chromosome clone indicated that trzN, atzB, and atzC are linked on the A. aurescens genome. TrzN, AtzB, and AtzC were shown to be functional in Escherichia coli. Hybridization studies localized trzN, atzB, and atzC to a 380-kb plasmid in A. aurescens strain TC1.
Collapse
Affiliation(s)
- Kannika Sajjaphan
- Department of Soil, Water, and Climate, Center for Microbial and Plant Genomics, 439 Borlaug Hall, 1991 Upper Buford Cir., University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|