1
|
Advanced prokaryotic systematics: the modern face of an ancient science. New Microbes New Infect 2022; 49-50:101036. [DOI: 10.1016/j.nmni.2022.101036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
|
2
|
Ferraz Helene LC, Klepa MS, Hungria M. New Insights into the Taxonomy of Bacteria in the Genomic Era and a Case Study with Rhizobia. Int J Microbiol 2022; 2022:4623713. [PMID: 35637770 PMCID: PMC9148247 DOI: 10.1155/2022/4623713] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Since early studies, the history of prokaryotes taxonomy has dealt with many changes driven by the development of new and more robust technologies. As a result, the number of new taxa descriptions is exponentially increasing, while an increasing number of others has been subject of reclassification, demanding from the taxonomists more effort to maintain an organized hierarchical system. However, expectations are that the taxonomy of prokaryotes will acquire a more stable status with the genomic era. Other analyses may continue to be necessary to determine microbial features, but the use of genomic data might be sufficient to provide reliable taxa delineation, helping taxonomy to reach the goal of correct classification and identification. Here we describe the evolution of prokaryotes' taxonomy until the genomic era, emphasizing bacteria and taking as an example the history of rhizobia taxonomy. This example was chosen because of the importance of the symbiotic nitrogen fixation of legumes with rhizobia to the nitrogen input to both natural ecosystems and agricultural crops. This case study reports the technological advances and the methodologies used to classify and identify bacterial species and indicates the actual rules required for an accurate description of new taxa.
Collapse
Affiliation(s)
- Luisa Caroline Ferraz Helene
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
| | - Milena Serenato Klepa
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70040-020 Brasília, DF, Brazil
| | - Mariangela Hungria
- Embrapa Soja, CP 4006, 86085-981 Londrina, PR, Brazil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, DF, Brazil
- Department of Microbiology, Universidade Estadual de Londrina, CP 10011, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
3
|
Wang D, Huang Z, Billen J, Zhang G, He H, Wei C. Structural diversity of symbionts and related cellular mechanisms underlying vertical symbiont transmission in cicadas. Environ Microbiol 2021; 23:6603-6621. [PMID: 34390615 DOI: 10.1111/1462-2920.15711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022]
Abstract
Many insects depend on symbiont(s) for survival. This is particularly the case for sap-feeding hemipteran insects. In this study, we revealed that symbionts harbored in cicadas are diverse and complex, and the yeast-like fungal symbionts (YLS) are present in most cicada species but Hodgkinia is absent. During vertical transmission, Sulcia became swollen with the outer membrane drastically changed, while Hodgkinia became shrunken and changed from irregular to roughly spherical. Sulcia and/or Hodgkinia were exocytosed from the bacteriocytes to the intercellular space of bacteriomes, where they gathered together and were extruded to hemolymph. YLS and associated facultative symbiont(s) in the fat bodies were released to the hemolymph based on bacteriocyte disintegration. The obligate symbiont(s) were endocytosed and exocytosed successively by the epithelial cells of the terminal oocyte, while associated facultative symbiont(s), and possibly also YLS, may take a 'free ride' on the transmission of obligate symbiont(s) to gain entry into the oocyte. Then, the intermixed symbionts formed a characteristic 'symbiont ball' in the oocyte. Our results suggest that YLS in cicadas represent a new example of a relatively early stage of symbiogenesis in insects, and contribute to a better understanding of the diversity and transmission mechanisms of symbionts in insects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Johan Billen
- Zoological Institute, University of Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Guoyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
4
|
Hilal MG, Yu Q, Zhou R, Wang Y, Feng T, Li X, Li H. Exploring microbial communities, assessment methodologies and applications of animal's carcass decomposition: a review. FEMS Microbiol Ecol 2021; 97:6311132. [PMID: 34185048 DOI: 10.1093/femsec/fiab098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/26/2021] [Indexed: 11/14/2022] Open
Abstract
Animals are an essential part of the ecosystem, and their carcasses are the nutrient patches or hotspots where nutrients accumulate for a long time. After death, the physical and chemical properties undergo alterations inside the carcass. The animal carcass is decomposed by many decomposers such as bacteria, fungi, microeukaryotes and insects. The role of microbial symbionts in living organisms is well explored and studied, but there is a scarcity of knowledge and research related to their role in decomposing animal carcasses. Microbes play an important role in carcass decomposition. The origins of microbial communities associated with a carcass, including the internal and external microbiome, are discussed in this review. The succession and methods used for the detection and exploration of decomposition-associated microbial communities have been briefly described. Also, the applications of carcass-associated microbial taxa have been outlined. This review is intended to understand the dynamics of microbial communities associated with the carcass and pave the way to estimate postmortem interval and its role in recycling nutrients.
Collapse
Affiliation(s)
- Mian Gul Hilal
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, PR China
| | - Qiaoling Yu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rui Zhou
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yijie Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Tianshu Feng
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshui South Road #222, Lanzhou, Gansu 730000, PR China
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China.,Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Roy D, Tomo S, Purohit P, Setia P. Microbiome in Death and Beyond: Current Vistas and Future Trends. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.630397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Forensic medicine has, for a long time, been relying on biochemical, anthropologic, and histopathologic evidences in solving various investigations. However, depending on the method used, lengthy sample processing time, scanty sample, and less sensitivity and accuracy pervade these procedures. Accordingly, newer arenas such as the thanatomicrobiome have come forward to aid in its quandaries; furthermore, the parallel advances in genomic and proteomic techniques have complemented and are still emerging to be used in forensic experiments and investigations. Postmortem interval (PMI) is one of the most important aspects of medico-legal investigations. The current trend in PMI estimation is toward genomic analyses of autopsy samples. Similarly, determination of cause of death, although a domain of medical sciences, is being targeted as the next level of forensic casework. With the current trend in laboratory sciences moving to the discovery of newer disease-specific markers for diagnostic and prognostic purposes, the same is being explored for the determination of the cause of death by using techniques such as Real-Time PCR, DNA micro-array, to Next-Gen Sequencing. Establishing an individual’s biological profile has been done using medicolegal methods and anthropology as well as bar-bodies/Davidson bodies (gender determination); and in cases where the determination of age/gender is a challenge using morphological characteristics; the recent advances in the field of genomics and proteomics have played a significant role, e.g., use of mitochondrial DNA in age estimation and in maternity disputes. The major hurdle forensic medical research faces is the fact that most of the studies are conducted in animal models, which are often difficult to mimic in human and real-time scenarios. Additionally, the high accuracy required in criminal investigations to be used in a court of law as evidence has prevented these results to come out of the labs and be used to the optimum. The current review aims at giving a comprehensive and critical account of the various molecular biology techniques including “thanatogenomics,” currently being utilized in the veritable fields of forensic medicine.
Collapse
|
6
|
Starke R, Pylro VS, Morais DK. 16S rRNA Gene Copy Number Normalization Does Not Provide More Reliable Conclusions in Metataxonomic Surveys. MICROBIAL ECOLOGY 2021; 81:535-539. [PMID: 32862246 PMCID: PMC7835310 DOI: 10.1007/s00248-020-01586-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 05/11/2023]
Abstract
Sequencing 16S rRNA gene amplicons is the gold standard to uncover the composition of prokaryotic communities. The presence of multiple copies of this gene makes the community abundance data distorted and gene copy normalization (GCN) necessary for correction. Even though GCN of 16S data provided a picture closer to the metagenome before, it should also be compared with communities of known composition due to the fact that library preparation is prone to methodological biases. Here, we process 16S rRNA gene amplicon data from eleven simple mock communities with DADA2 and estimate the impact of GCN. In all cases, the mock community composition derived from the 16S sequencing differs from those expected, and GCN fails to improve the classification for most of the analysed communities. Our approach provides empirical evidence that GCN does not improve the 16S target sequencing analyses in real scenarios. We therefore question the use of GCN for metataxonomic surveys until a more comprehensive catalogue of copy numbers becomes available.
Collapse
Affiliation(s)
- Robert Starke
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic.
| | - Victor Satler Pylro
- Department of Biology, Federal University of Lavras-UFLA, Lavras, Minas Gerais, Brazil
| | - Daniel Kumazawa Morais
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
- Bioinformatics Core Facility, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| |
Collapse
|
7
|
Avni E, Snir S. A New Phylogenomic Approach For Quantifying Horizontal Gene Transfer Trends in Prokaryotes. Sci Rep 2020; 10:12425. [PMID: 32709941 PMCID: PMC7381616 DOI: 10.1038/s41598-020-62446-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/27/2020] [Indexed: 11/09/2022] Open
Abstract
It is well established nowadays that among prokaryotes, various families of orthologous genes exhibit conflicting evolutionary history. A prime factor for this conflict is horizontal gene transfer (HGT) - the transfer of genetic material not via vertical descent. Thus, the prevalence of HGT is challenging the meaningfulness of the classical Tree of Life concept. Here we present a comprehensive study of HGT representing the entire prokaryotic world. We mainly rely on a novel analytic approach for analyzing an aggregate of gene histories, by means of the quartet plurality distribution (QPD) that we develop. Through the analysis of real and simulated data, QPD is used to reveal evidence of a barrier against HGT, separating the archaea from the bacteria and making HGT between the two domains, in general, quite rare. In contrast, bacteria's confined HGT is substantially more frequent than archaea's. Our approach also reveals that despite intensive HGT, a strong tree-like signal can be extracted, corroborating several previous works. Thus, QPD, which enables one to analytically combine information from an aggregate of gene trees, can be used for understanding patterns and rates of HGT in prokaryotes, as well as for validating or refuting models of horizontal genetic transfers and evolution in general.
Collapse
Affiliation(s)
- Eliran Avni
- Department of Evolutionary Biology, University of Haifa, Haifa, 31905, Israel.
| | - Sagi Snir
- Department of Evolutionary Biology, University of Haifa, Haifa, 31905, Israel.
| |
Collapse
|
8
|
Issa E, Salloum T, Tokajian S. From Normal Flora to Brain Abscesses: A Review of Streptococcus intermedius. Front Microbiol 2020; 11:826. [PMID: 32457718 PMCID: PMC7221147 DOI: 10.3389/fmicb.2020.00826] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Streptococcus intermedius is a β-hemolytic Gram-positive member of the Streptococcus anginosus group (SAG). Despite being a part of the normal microbiota, it is one of the most common pathogens associated with brain and liver abscesses and thoracic empyema, increasing as a result the morbidity and mortality rates in affected patients. Though there are numerous published case reports on S. intermedius infections, it is still understudied compared to other SAG members. Our knowledge of the genomic factors contributing to its dissemination to the brain and abscess development is also limited to few characterized genes. In this review, we summarize our current knowledge on S. intermedius identification methods, virulence factors, and insight provided by the whole-genome and correlate patients’ metadata, symptoms, and disease outcome with S. intermedius infections in 101 recent case reports obtained from PubMed. This combined information highlights the gaps in our understanding of S. intermedius pathogenesis, suggesting future research directions to unveil the factors contributing to abscess development.
Collapse
Affiliation(s)
- Elio Issa
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
9
|
Coimbra NDR, Goes-Neto A, Azevedo V, Ouangraoua A. Reconstructing the Phylogeny of Corynebacteriales while Accounting for Horizontal Gene Transfer. Genome Biol Evol 2020; 12:381-395. [PMID: 32186700 PMCID: PMC7186787 DOI: 10.1093/gbe/evaa058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
Horizontal gene transfer is a common mechanism in Bacteria that has contributed to the genomic content of existing organisms. Traditional methods for estimating bacterial phylogeny, however, assume only vertical inheritance in the evolution of homologous genes, which may result in errors in the estimated phylogenies. We present a new method for estimating bacterial phylogeny that accounts for the presence of genes acquired by horizontal gene transfer between genomes. The method identifies and corrects putative transferred genes in gene families, before applying a gene tree-based summary method to estimate bacterial species trees. The method was applied to estimate the phylogeny of the order Corynebacteriales, which is the largest clade in the phylum Actinobacteria. We report a collection of 14 phylogenetic trees on 360 Corynebacteriales genomes. All estimated trees display each genus as a monophyletic clade. The trees also display several relationships proposed by past studies, as well as new relevant relationships between and within the main genera of Corynebacteriales: Corynebacterium, Mycobacterium, Nocardia, Rhodococcus, and Gordonia. An implementation of the method in Python is available on GitHub at https://github.com/UdeS-CoBIUS/EXECT (last accessed April 2, 2020).
Collapse
Affiliation(s)
- Nilson Da Rocha Coimbra
- Department of Computer Science, University of Sherbrooke, Quebec, Canada
- Programa Interunidades de Pós-graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aristoteles Goes-Neto
- Programa Interunidades de Pós-graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Programa Interunidades de Pós-graduação em Bioinformática, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aïda Ouangraoua
- Department of Computer Science, University of Sherbrooke, Quebec, Canada
| |
Collapse
|
10
|
Nguyen LN, Commault AS, Kahlke T, Ralph PJ, Semblante GU, Johir MAH, Nghiem LD. Genome sequencing as a new window into the microbial community of membrane bioreactors - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135279. [PMID: 31791792 DOI: 10.1016/j.scitotenv.2019.135279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Recent developed sequencing techniques have resulted in a new and unprecedented way to study biological wastewater treatment, in which most organisms are uncultivable. This review provides (i) an insight on state-of-the-art sequencing techniques and their limitations; (ii) a critical assessment of the microbial community in biological reactor and biofouling layer in a membrane bioreactor (MBR). The data from high-throughput sequencing has been used to infer microbial growth conditions and metabolisms of microorganisms present in MBRs at the time of sampling. These data shed new insight to two fundamental questions about a microbial community in the MBR process namely the microbial composition (who are they?) and the functions of each specific microbial assemblage (what are their function?). The results to date also highlight the complexity of the microbial community growing on MBRs. Environmental conditions are dynamic and diverse, and can influence the diversity and structural dynamics of any given microbial community for wastewater treatment. The benefits of understanding the structure of microbial communities on three major aspects of the MBR process (i.e. nutrient removal, biofouling control, and micropollutant removal) were symmetrically delineated. This review also indicates that the deployment of microbial community analysis for a practical engineering context, in terms of process design and system optimization, can be further realized.
Collapse
Affiliation(s)
- Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Audrey S Commault
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Galilee U Semblante
- Technical Services, Western Sydney University, Kingswood, NSW 2747, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
11
|
Saha J, Saha BK, Pal Sarkar M, Roy V, Mandal P, Pal A. Comparative Genomic Analysis of Soil Dwelling Bacteria Utilizing a Combinational Codon Usage and Molecular Phylogenetic Approach Accentuating on Key Housekeeping Genes. Front Microbiol 2019; 10:2896. [PMID: 31921071 PMCID: PMC6928123 DOI: 10.3389/fmicb.2019.02896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023] Open
Abstract
Soil is a diversified and complex ecological niche, home to a myriad of microorganisms particularly bacteria. The physico-chemical complexities of soil results in a plethora of physiological variations to exist within the different types of soil dwelling bacteria, giving rise to a wide variation in genome structure and complexity. This serves as an attractive proposition to analyze and compare the genome of a large number soil bacteria to comprehend their genome complexity and evolution. In this study a combination of codon usage and molecular phylogenetics of the whole genome and key housekeeping genes like infB (translation initiation factor 2), trpB (tryptophan synthase, beta subunit), atpD (ATP synthase, beta subunit), and rpoB (RNA polymerase, beta subunit) of 92 soil bacterial species spread across the entire eubacterial domain and residing in different soil types was performed. The results indicated the direct relationship of genome size with codon bias and coding frequency in the studied bacteria. The codon usage profile demonstrated by the gene trpB was found to be relatively different from the rest of the housekeeping genes with a large number of bacteria having a greater percentage of genes with Nc values less than the Nc of trpB. The results from the overall codon usage bias profile also depicted that the codon usage bias in the key housekeeping genes of soil bacteria was majorly due to selectional pressure and not mutation. The analysis of hydrophobicity of the gene product encoded by the rpoB coding sequences demonstrated tight clustering across all the soil bacteria suggesting conservation of protein structure for maintenance of form and function. The phylogenetic affinities inferred using 16S rRNA gene and the housekeeping genes demonstrated conflicting signals with trpB gene being the noisiest one. The housekeeping gene atpD was found to depict the least amount of evolutionary change in the soil bacteria considered in this study except in two Clostridium species. The phylogenetic and codon usage analysis of the soil bacteria consistently demonstrated the relatedness of Azotobacter chroococcum with different species of the genus Pseudomonas.
Collapse
Affiliation(s)
- Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Barnan K. Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Monalisha Pal Sarkar
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Vivek Roy
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Parimal Mandal
- Mycology & Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| |
Collapse
|
12
|
da Silva CB, Dos Santos HRM, Marbach PAS, de Souza JT, Cruz-Magalhães V, Argôlo-Filho RC, Loguercio LL. First-tier detection of intragenomic 16S rRNA gene variation in culturable endophytic bacteria from cacao seeds. PeerJ 2019; 7:e7452. [PMID: 31768299 PMCID: PMC6874854 DOI: 10.7717/peerj.7452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/10/2019] [Indexed: 11/20/2022] Open
Abstract
Background Intragenomic variability in 16S rDNA is a limiting factor for taxonomic and diversity characterization of Bacteria, and studies on its occurrence in natural/environmental populations are scarce. In this work, direct DNA amplicon sequencing coupled with frequent-cutter restriction analysis allowed detection of intragenomic 16S rDNA variation in culturable endophytic bacteria from cacao seeds in a fast and attractive manner. Methods Total genomic DNA from 65 bacterial strains was extracted and the 16S rDNA hyper variable V5-V9 regions were amplified for enzyme digestion and direct Sanger-type sequencing. The resulting electropherograms were visually inspected and compared to the corresponding AluI-restriction profiles, as well as to complete genome sequences in databases. Restriction analysis were employed to substitute the need of amplicon cloning and re-sequencing. A specifically improved polyacrylamide-gradient electrophoresis allowed to resolve 5-bp differences in restriction fragment sizes. Chi-square analysis on 2 × 2 contingency table tested for the independence between the 'number of AluI bands' and 'type of eletropherogram'. Results Two types of electropherograms were obtained: unique template, with single peaks per base (clean chromatograms), and heterogeneous template, with various levels of multiple peaks per base (mixed chromatograms). Statistics revealed significant interaction between number of restriction fragments and type of electropherogram for the same amplicons: clean or mixed ones associated to ≤5 or ≥6 bands, respectively. The mixed-template pattern combined with the AluI-restriction profiles indicated a high proportion of 49% of the culturable endophytes from a tropical environment showing evidence of intragenomic 16S rDNA heterogeneity. Conclusion The approach presented here was useful for a rapid, first-tier detection of intragenomic variation in culturable isolates, which can be applied in studies of other natural populations; a preliminary view of intragenomic heterogeneity levels can complement culture-dependent and -independent methods. Consequences of these findings in taxonomic and diversity studies in complex bacterial communities are discussed.
Collapse
Affiliation(s)
| | | | - Phellippe Arthur Santos Marbach
- Center for Agricultural, Biological and Environmental Sciences (CCAAB), Federal University of Recôncavo da Bahia (UFRB), Cruz das Almas-BA, Brazil
| | | | - Valter Cruz-Magalhães
- Dept. of Biological Sciences (DCB), State University of Santa Cruz (UESC), Ilhéus-BA, Brazil.,Dept. of Plant Pathology (DFP), Federal University of Lavras (UFLA), Lavras-MG, Brazil
| | | | - Leandro Lopes Loguercio
- Dept. of Biological Sciences (DCB), State University of Santa Cruz (UESC), Ilhéus-BA, Brazil
| |
Collapse
|
13
|
Srivastava A, Mohan S, Mauchline TH, Davies KG. Evidence for diversifying selection of genetic regions of encoding putative collagen-like host-adhesive fibers in Pasteuria penetrans. FEMS Microbiol Ecol 2019; 95:5149496. [PMID: 30380051 PMCID: PMC6238073 DOI: 10.1093/femsec/fiy217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/29/2018] [Indexed: 11/16/2022] Open
Abstract
Pasteuria spp. belong to a group of genetically diverse endospore-forming bacteria (phylum: Firmicutes) that are known to parasitize plant-parasitic nematodes and water fleas (Daphnia spp.). Collagen-like fibres form the nap on the surface of endospores and the genes encoding these sequences have been hypothesised to be involved in the adhesion of the endospores of Pasteuria spp. to their hosts. We report a group of 17 unique collagen-like genes putatively encoded by Pasteuria penetrans (strain: Res148) that formed five different phylogenetic clusters and suggest that collagen-like proteins are an important source of genetic diversity in animal pathogenic Firmicutes including Pasteuria. Additionally, and unexpectedly, we identified a putative collagen-like sequence which had a very different sequence structure to the other collagen-like proteins but was similar to the protein sequences in Megaviruses that are involved in host-parasite interactions. We, therefore, suggest that these diverse endospore surface proteins in Pasteuria are involved in biological functions, such as cellular adhesion; however, they are not of monophyletic origin and were possibly obtained de novo by mutation or possibly through selection acting upon several historic horizontal gene transfer events.
Collapse
Affiliation(s)
- Arohi Srivastava
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
| | - Sharad Mohan
- Division of Nematology, Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Tim H Mauchline
- Department of AgroEcology, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Keith G Davies
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Postboks 115, Ås-1431, Norway
- Corresponding author: Keith G Davies, Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, AL10 9AB, UK. E-mail:
| |
Collapse
|
14
|
Avni E, Snir S. A New Quartet-Based Statistical Method for Comparing Sets of Gene Trees Is Developed Using a Generalized Hoeffding Inequality. J Comput Biol 2018; 26:27-37. [PMID: 30422680 DOI: 10.1089/cmb.2018.0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extracting the strength of the tree signal that is encompassed by a collection of gene trees is an exceptionally challenging problem in phylogenomics. Often, this problem not only involves the construction of individual phylogenies based on different genes, which may be a difficult endeavor on its own, but is also exacerbated by many factors that create conflicts between the evolutionary histories of different gene families, such as duplications or losses of genes; hybridization events; incomplete lineage sorting; and horizontal gene transfer, the latter two play central roles in the evolution of eukaryotes and prokaryotes, respectively. In this work, we tackle the aforementioned problem by focusing on quartet trees, which are the most basic unit of information in the context of unrooted phylogenies. In the first part, we show how a theorem of Janson that generalizes the classical Hoeffding inequality can be used to develop a statistical test involving quartets. In the second part, we study real and simulated data using this theoretical advancement, thus demonstrating how the significance of the differences between sets of quartets can be assessed. Our results are particularly intriguing since they nonstandardly require the analysis of dependent random variables.
Collapse
Affiliation(s)
- Eliran Avni
- Department of Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Sagi Snir
- Department of Evolutionary Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
15
|
Abstract
BACKGROUND Deciphering the history of life on Earth has long been regarded as one of the most central tasks in biology. In past years, widespread discordance between the evolutionary histories of different groups of orthologous genes of prokaryotes have been revealed, primarily due to horizontal gene transfers (HGTs). Nonetheless, evidence that support a strong tree-like signal of evolution have been uncovered, despite the presence of HGT events. Therefore, a challenging task is to distill this tree-like signal from the noise induced by all sources of non-tree-like events. RESULTS In this work we tackle this question, using real and simulated data. We first tighten a recent related theoretical result in this field. In a simulation study, we infer individual quartet topologies, and then use the inferred quartets to reconstruct simulated species trees. We demonstrate that accurate tree reconstruction is feasible despite surprisingly high rates of HGT. In a real data study, we construct phylogenies of two sets of prokaryotes, and show that our tree reconstruction scheme is comparable with (and complementary better than) other commonly used methods. CONCLUSIONS Using a blend of theoretical and empirical investigations, our study proves the feasibility of accurate quartet-based phylogenetic reconstruction, the vast impact of HGT events notwithstanding.
Collapse
Affiliation(s)
- Eliran Avni
- Department of Evolutionary Biology, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 3498838, Israel
| | - Sagi Snir
- Department of Evolutionary Biology, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 3498838, Israel.
| |
Collapse
|
16
|
Sato M, Miyazaki K. Phylogenetic Network Analysis Revealed the Occurrence of Horizontal Gene Transfer of 16S rRNA in the Genus Enterobacter. Front Microbiol 2017; 8:2225. [PMID: 29180992 PMCID: PMC5688380 DOI: 10.3389/fmicb.2017.02225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/30/2017] [Indexed: 11/21/2022] Open
Abstract
Horizontal gene transfer (HGT) is a ubiquitous genetic event in bacterial evolution, but it seldom occurs for genes involved in highly complex supramolecules (or biosystems), which consist of many gene products. The ribosome is one such supramolecule, but several bacteria harbor dissimilar and/or chimeric 16S rRNAs in their genomes, suggesting the occurrence of HGT of this gene. However, we know little about whether the genes actually experience HGT and, if so, the frequency of such a transfer. This is primarily because the methods currently employed for phylogenetic analysis (e.g., neighbor-joining, maximum likelihood, and maximum parsimony) of 16S rRNA genes assume point mutation-driven tree-shape evolution as an evolutionary model, which is intrinsically inappropriate to decipher the evolutionary history for genes driven by recombination. To address this issue, we applied a phylogenetic network analysis, which has been used previously for detection of genetic recombination in homologous alleles, to the 16S rRNA gene. We focused on the genus Enterobacter, whose phylogenetic relationships inferred by multi-locus sequence alignment analysis and 16S rRNA sequences are incompatible. All 10 complete genomic sequences were retrieved from the NCBI database, in which 71 16S rRNA genes were included. Neighbor-joining analysis demonstrated that the genes residing in the same genomes clustered, indicating the occurrence of intragenomic recombination. However, as suggested by the low bootstrap values, evolutionary relationships between the clusters were uncertain. We then applied phylogenetic network analysis to representative sequences from each cluster. We found three ancestral 16S rRNA groups; the others were likely created through recursive recombination between the ancestors and chimeric descendants. Despite the large sequence changes caused by the recombination events, the RNA secondary structures were conserved. Successive intergenomic and intragenomic recombination thus shaped the evolution of 16S rRNA genes in the genus Enterobacter.
Collapse
Affiliation(s)
- Mitsuharu Sato
- Bioproduction Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Kentaro Miyazaki
- Bioproduction Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
17
|
Comparative RNA function analysis reveals high functional similarity between distantly related bacterial 16 S rRNAs. Sci Rep 2017; 7:9993. [PMID: 28855596 PMCID: PMC5577257 DOI: 10.1038/s41598-017-10214-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/07/2017] [Indexed: 11/30/2022] Open
Abstract
The 16 S rRNA sequence has long been used uncritically as a molecular clock to infer phylogenetic relationships among prokaryotes without fully elucidating the evolutionary changes that this molecule undergoes. In this study, we investigated the functional evolvability of 16 S rRNA, using comparative RNA function analyses between the 16 S rRNAs of Escherichia coli (Proteobacteria) and Acidobacteria (78% identity, 334 nucleotide differences) in the common genetic background of E. coli. While the growth phenotype of an E. coli mutant harboring the acidobacterial gene was disrupted significantly, it was restored almost completely following introduction of a 16 S rRNA sequence with a single base-pair variation in helix 44; the remaining 332 nucleotides were thus functionally similar to those of E. coli. Our results suggest that 16 S rRNAs share an inflexible cradle structure formed by ribosomal proteins and have evolved by accumulating species-specific yet functionally similar mutations. While this experimental evidence suggests the neutral evolvability of 16 S rRNA genes and hence satisfies the necessary requirements to use the sequence as a molecular clock, it also implies the promiscuous nature of the 16 S rRNA gene, i.e., the occurrence of horizontal gene transfer among bacteria.
Collapse
|
18
|
Jünemann S, Kleinbölting N, Jaenicke S, Henke C, Hassa J, Nelkner J, Stolze Y, Albaum SP, Schlüter A, Goesmann A, Sczyrba A, Stoye J. Bioinformatics for NGS-based metagenomics and the application to biogas research. J Biotechnol 2017; 261:10-23. [PMID: 28823476 DOI: 10.1016/j.jbiotec.2017.08.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Abstract
Metagenomics has proven to be one of the most important research fields for microbial ecology during the last decade. Starting from 16S rRNA marker gene analysis for the characterization of community compositions to whole metagenome shotgun sequencing which additionally allows for functional analysis, metagenomics has been applied in a wide spectrum of research areas. The cost reduction paired with the increase in the amount of data due to the advent of next-generation sequencing led to a rapidly growing demand for bioinformatic software in metagenomics. By now, a large number of tools that can be used to analyze metagenomic datasets has been developed. The Bielefeld-Gießen center for microbial bioinformatics as part of the German Network for Bioinformatics Infrastructure bundles and imparts expert knowledge in the analysis of metagenomic datasets, especially in research on microbial communities involved in anaerobic digestion residing in biogas reactors. In this review, we give an overview of the field of metagenomics, introduce into important bioinformatic tools and possible workflows, accompanied by application examples of biogas surveys successfully conducted at the Center for Biotechnology of Bielefeld University.
Collapse
Affiliation(s)
- Sebastian Jünemann
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany; Faculty of Technology, Bielefeld University, Bielefeld, Germany.
| | - Nils Kleinbölting
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Sebastian Jaenicke
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany; Bioinformatics and Systems Biology, Justus-Liebig-Universität, Gießen, Germany
| | - Christian Henke
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Johanna Nelkner
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Yvonne Stolze
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Stefan P Albaum
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, Gießen, Germany
| | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany; Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Jens Stoye
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany; Faculty of Technology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
19
|
Mechergui A, Achour W, Ben Hassen A. Genotyping of commensal Neisseria spp strains by pulsed-field gel electrophoresis and 16S rRNA gene sequencing. J Clin Lab Anal 2017; 32. [PMID: 28374932 DOI: 10.1002/jcla.22208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/22/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND We investigated the diversity of the primary sequences of the 16S rRNA genes among 46 commensal Neisseria strains and evaluated the use of this approach as a molecular typing tool in comparison with PFGE analysis. METHODS Identification to the genus was done using conventional methods and API NH (bio-Mérieux® ). Identification to species level was based on 16S rRNA gene sequencing. PFGE analysis was done using SpeI. RESULTS Fourteen, two, three and fourteen 16S rRNA sequence types were found among twenty Neisseria flavescens, two Neisseria sicca, five Neisseria macacae and nineteen Neisseria mucosa clinical isolates. Forty-three different PFGE patterns were found among the tested strains. CONCLUSION We demonstrated a high diversity among 16S rRNA genes which was reflected by PFGE analysis.
Collapse
Affiliation(s)
- Arij Mechergui
- The National Bone Marrow Transplant Centre, Tunis, Tunisia.,Faculty of Medicine of Tunis, UR12ES02, Tunis, Tunisia
| | - Wafa Achour
- The National Bone Marrow Transplant Centre, Tunis, Tunisia.,Faculty of Medicine of Tunis, UR12ES02, Tunis, Tunisia
| | - Assia Ben Hassen
- The National Bone Marrow Transplant Centre, Tunis, Tunisia.,Faculty of Medicine of Tunis, UR12ES02, Tunis, Tunisia
| |
Collapse
|
20
|
Snir S. Ordered orthology as a tool in prokaryotic evolutionary inference. Mob Genet Elements 2017; 6:e1120576. [PMID: 28090377 DOI: 10.1080/2159256x.2015.1120576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/27/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022] Open
Abstract
Molecular data is accumulated at exponentially increasing pace. This deluge of information should have brought us closer to resolving one of the most fundamental issues in biology - deciphering the history of life on Earth. So far, however, this abundance of data only seems to blur our understanding of the problem. This is largely due to horizontal gene transfer (HGT), the transfer of genetic material between evolutionarily unrelated organisms that transforms the prokaryotic tree into a network of relationships. Recently, we developed a method to infer evolutionary relationships among closely related species where the conventional evolutionary markers do not provide a strong enough signal. The method relies on the loss of synteny, gene order conservation among species that provides a stronger signal, sufficient to classify even strains of a given species. Here we elaborate on this method and suggest further uses of it in the context of detecting HGT events and genome architecture.
Collapse
Affiliation(s)
- Sagi Snir
- Department of Evolutionary Biology, University of Haifa , Haifa, Israel
| |
Collapse
|
21
|
Beligala DH, Michaels HJ, Devries M, Phuntumart V. Multilocus Sequence Analysis of Root Nodule Bacteria Associated with <i>Lupinus</i> spp. and <i>Glycine max</i>. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/aim.2017.711063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Khowal S, Siddiqui MZ, Ali S, Khan MT, Khan MA, Naqvi SH, Wajid S. A report on extensive lateral genetic reciprocation between arsenic resistant Bacillus subtilis and Bacillus pumilus strains analyzed using RAPD-PCR. Mol Phylogenet Evol 2016; 107:443-454. [PMID: 27956257 DOI: 10.1016/j.ympev.2016.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/26/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
Abstract
The study involves isolation of arsenic resistant bacteria from soil samples. The characterization of bacteria isolates was based on 16S rRNA gene sequences. The phylogenetic consanguinity among isolates was studied employing rpoB and gltX gene sequence. RAPD-PCR technique was used to analyze genetic similarity between arsenic resistant isolates. In accordance with the results Bacillus subtilis and Bacillus pumilus strains may exhibit extensive horizontal gene transfer. Arsenic resistant potency in Bacillus sonorensis and high arsenite tolerance in Bacillus pumilus strains was identified. The RAPD-PCR primer OPO-02 amplified a 0.5kb DNA band specific to B. pumilus 3ZZZ strain and 0.75kb DNA band specific to B. subtilis 3PP. These unique DNA bands may have potential use as SCAR (Sequenced Characterized Amplified Region) molecular markers for identification of arsenic resistant B. pumilus and B. subtilis strains.
Collapse
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi 110 062, India
| | - Md Zulquarnain Siddiqui
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi 110 062, India
| | - Shadab Ali
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi 110 062, India
| | - Mohd Taha Khan
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi 110 062, India
| | - Mather Ali Khan
- 247, Bond Life Sciences Centre, 1201 Rollins Street, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | - Saima Wajid
- Department of Biotechnology, Faculty of Science, Hamdard University (Jamia Hamdard), New Delhi 110 062, India.
| |
Collapse
|
23
|
Frenkel Z, Kiat Y, Izhaki I, Snir S. Convex recoloring as an evolutionary marker. Mol Phylogenet Evol 2016; 107:209-220. [PMID: 27818264 DOI: 10.1016/j.ympev.2016.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 10/16/2016] [Accepted: 10/25/2016] [Indexed: 11/27/2022]
Abstract
With the availability of enormous quantities of genetic data it has become common to construct very accurate trees describing the evolutionary history of the species under study, as well as every single gene of these species. These trees allow us to examine the evolutionary compliance of given markers (characters). A marker compliant with the history of the species investigated, has undergone mutations along the species tree branches, such that every subtree of that tree exhibits a different state. Convex recoloring (CR) uses combinatorial representation to measure the adequacy of a taxonomic classifier to a given tree. Despite its biological origins, research on CR has been almost exclusively dedicated to mathematical properties of the problem, or variants of it with little, if any, relationship to taxonomy. In this work we return to the origins of CR. We put CR in a statistical framework and introduce and learn the notion of the statistical significance of a character. We apply this measure to two data sets - Passerine birds and prokaryotes, and four examples. These examples demonstrate various applications of CR, from evolutionary relatedness, through lateral evolution, to supertree construction. The above study was done with a new software that we provide, containing algorithmic improvement with a graphical output of a (optimally) recolored tree. AVAILABILITY A code implementing the features and a README is available at http://research.haifa.ac.il/ssagi/software/convexrecoloring.zip.
Collapse
Affiliation(s)
- Zeev Frenkel
- Department of Ecology and Evolutionary Biology, University of Haifa, Israel
| | - Yosef Kiat
- Israeli Bird Ringing Center, Society for the Protection of Nature in Israel, Israel
| | - Ido Izhaki
- Department of Ecology and Evolutionary Biology, University of Haifa, Israel
| | - Sagi Snir
- Department of Ecology and Evolutionary Biology, University of Haifa, Israel
| |
Collapse
|
24
|
Abstract
Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes.
Collapse
Affiliation(s)
- Sarah E Schmedes
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Antti Sajantila
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Bruce Budowle
- Department of Molecular and Medical Genetics, Institute of Applied Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Escobar-Zepeda A, Vera-Ponce de León A, Sanchez-Flores A. The Road to Metagenomics: From Microbiology to DNA Sequencing Technologies and Bioinformatics. Front Genet 2015; 6:348. [PMID: 26734060 PMCID: PMC4681832 DOI: 10.3389/fgene.2015.00348] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/27/2015] [Indexed: 12/17/2022] Open
Abstract
The study of microorganisms that pervade each and every part of this planet has encountered many challenges through time such as the discovery of unknown organisms and the understanding of how they interact with their environment. The aim of this review is to take the reader along the timeline and major milestones that led us to modern metagenomics. This new and thriving area is likely to be an important contributor to solve different problems. The transition from classical microbiology to modern metagenomics studies has required the development of new branches of knowledge and specialization. Here, we will review how the availability of high-throughput sequencing technologies has transformed microbiology and bioinformatics and how to tackle the inherent computational challenges that arise from the DNA sequencing revolution. New computational methods are constantly developed to collect, process, and extract useful biological information from a variety of samples and complex datasets, but metagenomics needs the integration of several of these computational methods. Despite the level of specialization needed in bioinformatics, it is important that life-scientists have a good understanding of it for a correct experimental design, which allows them to reveal the information in a metagenome.
Collapse
Affiliation(s)
- Alejandra Escobar-Zepeda
- Unidad de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, México
| | - Arturo Vera-Ponce de León
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de MéxicoCuernavaca, México
| | - Alejandro Sanchez-Flores
- Unidad de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de MéxicoCuernavaca, México
| |
Collapse
|
26
|
Comparing Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Phenotypic and Molecular Methods for Identification of Species within the Streptococcus anginosus Group. J Clin Microbiol 2015; 53:3580-8. [PMID: 26354817 DOI: 10.1128/jcm.01892-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 09/01/2015] [Indexed: 11/20/2022] Open
Abstract
The heterogeneity of members of the Streptococcus anginosus group (SAG) has traditionally hampered their correct identification. Recently, the group was subdivided into 6 taxa whose prevalence among human infections is poorly described. We evaluated the accuracy of the Rapid ID32 Strep test, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), and a PCR multiplex method to identify 212 SAG isolates recovered from human infections to the species and subspecies level by using multilocus sequence analysis (MLSA) as the gold standard. We also determined the antimicrobial susceptibilities of the isolates. Representatives of all SAG taxa were found among our collection. MALDI-TOF MS and the Rapid ID32 Strep test correctly identified 92% and 68% of the isolates to the species level, respectively, but showed poor performance at the subspecies level, and the latter was responsible for major identification errors. The multiplex PCR method results were in complete agreement with the MLSA identifications but failed to distinguish the subspecies Streptococcus constellatus subsp. pharyngis and S. constellatus subsp. viborgensis. A total of 145 MLSA sequence types were present in our collection, indicating that within each taxon a number of different lineages are capable of causing infection. Significant antibiotic resistance was observed only to tetracycline, erythromycin, and clindamycin and was present in most taxa. MALDI-TOF MS is a reliable method for routine SAG species identification, while the need for identification to the subspecies level is not clearly established.
Collapse
|
27
|
Zhang W, Liu W, Song Y, Xu H, Menghe B, Zhang H, Sun Z. Multilocus sequence typing of a dairy-associated Leuconostoc mesenteroides population reveals clonal structure with intragenic homologous recombination. J Dairy Sci 2015; 98:2284-93. [DOI: 10.3168/jds.2014-9227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/31/2014] [Indexed: 11/19/2022]
|
28
|
Zhang W, Lu Z. Phylogenomic evaluation of members above the species level within the phylum Firmicutes based on conserved proteins. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:273-281. [PMID: 25403554 DOI: 10.1111/1758-2229.12241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 10/08/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Currently, numerous taxonomic units above species level of the phylum Firmicutes are ambiguously placed in the phylogeny determined by 16S rRNA gene. Here, we evaluated the use of 16S rRNA gene compared with 81 conserved proteins (CPs) or 41 ribosomal proteins (RPs) as phylogenetic markers and applied this to the analysis of the phylum Firmicutes. Results show that the phylogenetic trees constructed are in good agreement with each other; however, the protein-based trees are able to resolve the relationships between several branches where so far only ambiguous classifications are possible. Thus, the phylogeny deduced based on concatenated proteins provides significant basis for re-classifying members in this phylum. It indicates that the genera Coprothermobacter and Thermodesulfobium represent two new phyla; the families Paenibacillaceae and Alicyclobacillaceae should be elevated to order level; and the families Bacillaceae and Thermodesulfobiaceae should be separated to 2 and 3 families respectively. We also suggest that four novel families should be proposed in the orders Clostridiales and Bacillales, and 11 genera should be moved to other existing families different from the current classification status. Moreover, notably, RPs are a well-suited subset of CPs that could be applied to Firmicutes phylogenetic analysis instead of the 16S rRNA gene.
Collapse
Affiliation(s)
- Weiwei Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | | |
Collapse
|
29
|
Kitahara K, Miyazaki K. Revisiting bacterial phylogeny: Natural and experimental evidence for horizontal gene transfer of 16S rRNA. Mob Genet Elements 2014; 3:e24210. [PMID: 23734299 PMCID: PMC3661144 DOI: 10.4161/mge.24210] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/06/2013] [Indexed: 12/03/2022] Open
Abstract
Current methods used for phylogenetic classification of prokaryotes largely rely on the sequences of 16S rRNA genes that are ubiquitously present in the cell. Theoretical basis of this methodology is based on the assumption that 16S rRNA genes are only vertically inherited and are thus indigenous to each species. However, microbial genomic analysis has revealed the existence of prokaryotic species containing two types of rRNA (rrn) operons of seemingly different origins. It has also been reported that some bacteria contain 16S rRNA that are mosaics of sequences from multiple species. This suggests that horizontal gene transfer (HGT) occurred for 16S rRNA genes. In addition, a recent HGT experiment mimicking the natural HGT process has shown that a wide range of foreign 16S rRNA genes can be transferred into Escherichia coli, including those from different phylogenetic classes (with a minimum sequence identity of 80.9% to the Escherichia coli 16S rRNA gene). Thus, in contrast to the complexity hypothesis that states informational genes are rarely horizontally transferred between species, 16S rRNA is occasionally amenable to HGT. Results of the current method for rapid identification and classification of prokaryotes based on the 16S rRNA gene should thus be carefully analyzed and interpreted.
Collapse
Affiliation(s)
- Kei Kitahara
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Sapporo, Japan
| | | |
Collapse
|
30
|
Asam D, Spellerberg B. Molecular pathogenicity of Streptococcus anginosus. Mol Oral Microbiol 2014; 29:145-55. [PMID: 24848553 DOI: 10.1111/omi.12056] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2014] [Indexed: 01/21/2023]
Abstract
Streptococcus anginosus and the closely related species Streptococcus constellatus and Streptococcus intermedius, are primarily commensals of the mucosa. The true pathogenic potential of this group has been under-recognized for a long time because of difficulties in correct species identification as well as the commensal nature of these species. In recent years, streptococci of the S. anginosus group have been increasingly found as relevant microbial pathogens in abscesses and blood cultures and they play a pathogenic role in cystic fibrosis. Several international studies have shown a surprisingly high frequency of infections caused by the S. anginosus group. Recent studies and a genome-wide comparative analysis suggested the presence of multiple putative virulence factors that are well-known from other streptococcal species. However, very little is known about the molecular basis of pathogenicity in these bacteria. This review summarizes our current knowledge of pathogenicity factors and their regulation in S. anginosus.
Collapse
Affiliation(s)
- D Asam
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Ulm, Germany
| | | |
Collapse
|
31
|
Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MGI, Beiko RG. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 2014; 38:90-118. [PMID: 23909933 PMCID: PMC4298764 DOI: 10.1111/1574-6976.12035] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022] Open
Abstract
A central challenge in microbial community ecology is the delineation of appropriate units of biodiversity, which can be taxonomic, phylogenetic, or functional in nature. The term 'community' is applied ambiguously; in some cases, the term refers simply to a set of observed entities, while in other cases, it requires that these entities interact with one another. Microorganisms can rapidly gain and lose genes, potentially decoupling community roles from taxonomic and phylogenetic groupings. Trait-based approaches offer a useful alternative, but many traits can be defined based on gene functions, metabolic modules, and genomic properties, and the optimal set of traits to choose is often not obvious. An analysis that considers taxon assignment and traits in concert may be ideal, with the strengths of each approach offsetting the weaknesses of the other. Individual genes also merit consideration as entities in an ecological analysis, with characteristics such as diversity, turnover, and interactions modeled using genes rather than organisms as entities. We identify some promising avenues of research that are likely to yield a deeper understanding of microbial communities that shift from observation-based questions of 'Who is there?' and 'What are they doing?' to the mechanistically driven question of 'How will they respond?'
Collapse
Affiliation(s)
- Eva Boon
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Olson AB, Kent H, Sibley CD, Grinwis ME, Mabon P, Ouellette C, Tyson S, Graham M, Tyler SD, Van Domselaar G, Surette MG, Corbett CR. Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics 2013; 14:895. [PMID: 24341328 PMCID: PMC3897883 DOI: 10.1186/1471-2164-14-895] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/09/2013] [Indexed: 12/30/2022] Open
Abstract
Background The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. Results The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in VNTR numbers that occurred over the course of one year. Conclusions The comparative genomic analysis of the SAG clarifies the phylogenetics of these bacteria and supports the distinct species classification. Numerous potential virulence determinants were identified and provide a foundation for further studies into SAG pathogenesis. Furthermore, the data may be used to enable the development of rapid diagnostic assays and therapeutics for these pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Michael G Surette
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
| | | |
Collapse
|
33
|
Li X, Xing J, Li B, Yu F, Lan X, Liu J. Phylogenetic analysis reveals the coexistence of interfamily and interspecies horizontal gene transfer in Streptococcus thermophilus strains isolated from the same yoghurt. Mol Phylogenet Evol 2013; 69:286-92. [DOI: 10.1016/j.ympev.2013.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 01/19/2023]
|
34
|
Roch S, Snir S. Recovering the treelike trend of evolution despite extensive lateral genetic transfer: a probabilistic analysis. J Comput Biol 2013; 20:93-112. [PMID: 23383996 DOI: 10.1089/cmb.2012.0234] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lateral gene transfer (LGT) is a common mechanism of nonvertical evolution, during which genetic material is transferred between two more or less distantly related organisms. It is particularly common in bacteria where it contributes to adaptive evolution with important medical implications. In evolutionary studies, LGT has been shown to create widespread discordance between gene trees as genomes become mosaics of gene histories. In particular, the Tree of Life has been questioned as an appropriate representation of bacterial evolutionary history. Nevertheless a common hypothesis is that prokaryotic evolution is primarily treelike, but that the underlying trend is obscured by LGT. Extensive empirical work has sought to extract a common treelike signal from conflicting gene trees. Here we give a probabilistic perspective on the problem of recovering the treelike trend despite LGT. Under a model of randomly distributed LGT, we show that the species phylogeny can be reconstructed even in the presence of surprisingly many (almost linear number of) LGT events per gene tree. Our results, which are optimal up to logarithmic factors, are based on the analysis of a robust, computationally efficient reconstruction method and provides insight into the design of such methods. Finally, we show that our results have implications for the discovery of highways of gene sharing.
Collapse
Affiliation(s)
- Sebastien Roch
- Department of Mathematics and Bioinformatics Program, University of California at Los Angeles, Los Angeles, CA, USA.
| | | |
Collapse
|
35
|
Lau SKP, Curreem SOT, Lin CCN, Fung AMY, Yuen KY, Woo PCY. Streptococcus hongkongensis sp. nov., isolated from a patient with an infected puncture wound and from a marine flatfish. Int J Syst Evol Microbiol 2013; 63:2570-2576. [DOI: 10.1099/ijs.0.045120-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterium, HKU30T, was isolated from the infected tissue of a patient with wound infection after puncture by a fish fin. Cells are facultative anaerobic, non-spore-forming, non-motile, Gram-positive cocci arranged in chains. Colonies were non-haemolytic. The strain was catalase, oxidase, urease and Voges–Proskauer test negative. It reacted with Lancefield’s group G antisera and was resistant to optochin. It grew on bile aesculin agar and in 5 % NaCl. It was unidentified by three commercial identification systems. 16S rRNA gene sequence analysis indicated that the bacterium shared 98.2, 97.7, 97.4 and 97.1 % nucleotide identities with
Streptococcus iniae
,
Streptococcus pseudoporcinus
,
Streptococcus parauberis
and
Streptococcus uberis
, respectively. The DNA G+C content was 35.6±0.9 mol% (mean±sd). In view of the occupational exposure of the patient, an epidemiological study was performed to isolate the bacterium from marine fish. Two strains, with similar phenotypic and genotypic characteristics to those of HKU30T, were isolated from a three-lined tongue sole (Cynoglossus abbreviatus) and an olive flounder (Paralichthys olivaceus) respectively. Phylogenetic analysis of four additional housekeeping genes, groEL, gyrB, sodA and rpoB, showed that the three isolates formed a distinct branch among known species of the genus
Streptococcus
, being most closely related to
S. parauberis
(CCUG 39954T). DNA–DNA hybridization demonstrated ≤53.8 % DNA relatedness between the three isolates and related species of the genus
Streptococcus
. A novel species, Streptococcus hongkongensis sp. nov., is proposed. The type strain is HKU30T ( = DSM 26014T = CECT 8154T).
Collapse
Affiliation(s)
- Susanna K. P. Lau
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, PR China
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China
| | | | - Cherry C. N. Lin
- Department of Pathology, Kwong Wah Hospital, Hong Kong, PR China
| | - Ami M. Y. Fung
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Kwok-Yung Yuen
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, PR China
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
| | - Patrick C. Y. Woo
- Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, PR China
- Department of Microbiology, The University of Hong Kong, Hong Kong, PR China
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong, PR China
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
36
|
Zarraonaindia I, Smith DP, Gilbert JA. Beyond the genome: community-level analysis of the microbial world. BIOLOGY & PHILOSOPHY 2013; 28:261-282. [PMID: 23482824 PMCID: PMC3585761 DOI: 10.1007/s10539-012-9357-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 11/29/2012] [Indexed: 05/10/2023]
Abstract
The development of culture-independent strategies to study microbial diversity and function has led to a revolution in microbial ecology, enabling us to address fundamental questions about the distribution of microbes and their influence on Earth's biogeochemical cycles. This article discusses some of the progress that scientists have made with the use of so-called "omic" techniques (metagenomics, metatranscriptomics, and metaproteomics) and the limitations and major challenges these approaches are currently facing. These 'omic methods have been used to describe the taxonomic structure of microbial communities in different environments and to discover new genes and enzymes of industrial and medical interest. However, microbial community structure varies in different spatial and temporal scales and none of the 'omic techniques are individually able to elucidate the complex aspects of microbial communities and ecosystems. In this article we highlight the importance of a spatiotemporal sampling design, together with a multilevel 'omic approach and a community analysis strategy (association networks and modeling) to examine and predict interacting microbial communities and their impact on the environment.
Collapse
Affiliation(s)
- Iratxe Zarraonaindia
- Argonne National Laboratory, Institute for Genomic and Systems Biology, 9700 South Cass Avenue, Argonne, IL 60439 USA
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Daniel P. Smith
- Argonne National Laboratory, Institute for Genomic and Systems Biology, 9700 South Cass Avenue, Argonne, IL 60439 USA
| | - Jack A. Gilbert
- Argonne National Laboratory, Institute for Genomic and Systems Biology, 9700 South Cass Avenue, Argonne, IL 60439 USA
- Department of Ecology and Evolution, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 USA
| |
Collapse
|
37
|
YAMANAKA H, ARITA M, OI R, OHSAWA M, MIZUSHIMA M, TAKAGI T, KUBO N, YAMAMOTO N, TAKEMOTO T, OHSAWA K. Prevalence of an Unidentified Helicobacter Species in Laboratory Mice and its Distribution in the Hepatobiliary System and Gastrointestinal Tract. Exp Anim 2013; 62:109-16. [DOI: 10.1538/expanim.62.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Hitoki YAMANAKA
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Misato ARITA
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Ryunosuke OI
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Makiko OHSAWA
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Megumi MIZUSHIMA
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Toshikazu TAKAGI
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Quality Control Department, Bio Technical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka, Hamamatsu, Shizuoka 433-8114, Japan
| | - Noriaki KUBO
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Naoto YAMAMOTO
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Takahira TAKEMOTO
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazutaka OHSAWA
- Division of Comparative Medicine, Center for Frontier Life Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
38
|
Mutational robustness of 16S ribosomal RNA, shown by experimental horizontal gene transfer in Escherichia coli. Proc Natl Acad Sci U S A 2012; 109:19220-5. [PMID: 23112186 DOI: 10.1073/pnas.1213609109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial ribosome consists of three rRNA molecules and 57 proteins and plays a crucial role in translating mRNA-encoded information into proteins. Because of the ribosome's structural and mechanistic complexity, it is believed that each ribosomal component coevolves to maintain its function. Unlike 5S rRNA, 16S and 23S rRNAs appear to lack mutational robustness, because they form the structural core of the ribosome. However, using Escherichia coli Δ7 (null mutant of operons) as a host, we have recently shown that an active hybrid ribosome whose 16S rRNA has been specifically substituted with that from non-E. coli bacteria can be reconstituted in vivo. To investigate the mutational robustness of 16S rRNA and the structural basis for its functionality, we used a metagenomic approach to screen for 16S rRNA genes that complement the growth of E. coli Δ7. Various functional genes were obtained from the Gammaproteobacteria and Betaproteobacteria lineages. Despite the large sequence diversity (80.9-99.0% identity with E. coli 16S rRNA) of the functional 16S rRNA molecules, the doubling times (DTs) of each mutant increased only modestly with decreasing sequence identity (average increase in DT, 4.6 s per mutation). The three-dimensional structure of the 30S ribosome showed that at least 40.7% (628/1,542) of the nucleotides were variable, even at ribosomal protein-binding sites, provided that the secondary structures were properly conserved. Our results clearly demonstrate that 16S rRNA functionality largely depends on the secondary structure but not on the sequence itself.
Collapse
|
39
|
Zhang M, Yan L, Zhu G, Holifield M, Todd D, Zhang S. Streptococcus troglodytidis sp. nov., isolated from a foot abscess of a chimpanzee (Pan troglodytes). Int J Syst Evol Microbiol 2012; 63:449-453. [PMID: 22467158 DOI: 10.1099/ijs.0.038133-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A facultative anaerobic, non-motile, non-spore-forming, Gram-positive-staining, coccus-shaped bacterium was isolated from an abscess on the right foot of a chimpanzee (Pan troglodytes). The colonies were β-haemolytic. Catalase and oxidase activities were negative. The Lancefield group B antigen was expressed. On the basis of morphological and biochemical characteristics, the bacterium was tentatively identified as a streptococcal species. 16S rRNA gene sequence analysis indicated that the bacterium shared 96.7 %, 96.4 %, 96.1 %, 95.8 % and 95.7 % sequence similarities with Streptococcus gordonii, S. cristatus, S. intermedius, S. anginosus and S. constellatus, respectively. Phylogenetic analyses based on the sequences of the 16S rRNA gene and housekeeping genes encoding D-alanine : D-alanine ligase (ddl), the β-subunit of RNA polymerase (rpoB) and manganese-dependent superoxide dismutase (sodA) revealed that the bacterium represented a novel species closely related to, albeit different from, S. gordonii, S. cristatus and the anginosus streptococci. The name Streptococcus troglodytidis sp. nov. is proposed. The type strain is M09-11185(T) ( = ATCC BAA-2337(T) = KCTC 33006(T)).
Collapse
Affiliation(s)
- Michael Zhang
- Mississippi Veterinary Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Pearl, MS 39208, USA
| | - Lifang Yan
- Mississippi Veterinary Research and Diagnostic Laboratory, College of Veterinary Medicine, Mississippi State University, Pearl, MS 39208, USA
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | - Donna Todd
- The Jackson Zoological Park, Jackson, MS 39209, USA
| | - Shuping Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
40
|
Zhi XY, Zhao W, Li WJ, Zhao GP. Prokaryotic systematics in the genomics era. Antonie van Leeuwenhoek 2011; 101:21-34. [PMID: 22116211 DOI: 10.1007/s10482-011-9667-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/24/2011] [Indexed: 11/29/2022]
Abstract
As an essential and basic biological discipline, prokaryotic systematics is entering the era of genomics. This paradigmatic shift is significant not only for understanding molecular phylogeny at the whole genome level but also in revealing the genetic or epigenetic basis that accounts for the phenotypic criteria used to classify and identify species. These developments provide an opportunity and a challenge for systematists to reanalyze the molecular mechanisms underlying the taxonomic characteristics of prokaryotes by drawing the knowledge from studies of genomics and/or functional genomics employing platform technologies and related bioinformatics tools. It is expected that taxonomic books, such as Bergey's Manual of Systematic Bacteriology may evolve into a systematics library indexed by phylogenomic information with an comprehensive understanding of prokaryotic speciation and associated increasing knowledge of biological phenomena.
Collapse
Affiliation(s)
- Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | | | | | | |
Collapse
|
41
|
Zapomělová E, Hrouzek P, Řezanka T, Jezberová J, Řeháková K, Hisem D, Komárková J. POLYPHASIC CHARACTERIZATION OF DOLICHOSPERMUM SPP. AND SPHAEROSPERMOPSIS SPP. (NOSTOCALES, CYANOBACTERIA): MORPHOLOGY, 16S rRNA GENE SEQUENCES AND FATTY ACID AND SECONDARY METABOLITE PROFILES(1). JOURNAL OF PHYCOLOGY 2011; 47:1152-1163. [PMID: 27020196 DOI: 10.1111/j.1529-8817.2011.01034.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The genera Dolichospermum (Ralfs ex Bornet et Flahault) Wacklin, L. Hoffm. et Komárek and Sphaerospermopsis Zapomělová, Jezberová, Hrouzek, Hisem, K. Řeháková et Komárk.-Legn. represent a highly diversified group of planktonic cyanobacteria that have been recently separated from the traditional genus Anabaena Bory ex Bornet et Flahault. In this study, morphological diversity, phylogeny of the 16S rRNA gene, production of fatty acids, and secondary metabolite profiles were evaluated in 33 strains of 14 morphospecies isolated from the Czech Republic. Clustering of the strains based on 16S rRNA gene sequences corresponded to wider groups of species in terms of morphology. The overall secondary metabolite and fatty acid profiles, however, were not correlated to each other and neither were they correlated to the 16S rRNA phylogeny nor the morphology of the strains. Nevertheless, a minor part of the detected secondary metabolites (19% of all compounds) was present only in close relatives and can be thus considered as autapomorphic features.
Collapse
Affiliation(s)
- Eliška Zapomělová
- Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic Institute of Physical Biology, Zámek 136, CZ-37333 Nové Hrady, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech RepublicInstitute of Microbiology, AS CR, Vídeňská 1083, CZ-14220 Prague, Czech RepublicBiology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic
| | - Pavel Hrouzek
- Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic Institute of Physical Biology, Zámek 136, CZ-37333 Nové Hrady, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech RepublicInstitute of Microbiology, AS CR, Vídeňská 1083, CZ-14220 Prague, Czech RepublicBiology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic
| | - Tomáš Řezanka
- Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic Institute of Physical Biology, Zámek 136, CZ-37333 Nové Hrady, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech RepublicInstitute of Microbiology, AS CR, Vídeňská 1083, CZ-14220 Prague, Czech RepublicBiology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic
| | - Jitka Jezberová
- Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic Institute of Physical Biology, Zámek 136, CZ-37333 Nové Hrady, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech RepublicInstitute of Microbiology, AS CR, Vídeňská 1083, CZ-14220 Prague, Czech RepublicBiology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic
| | - Klára Řeháková
- Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic Institute of Physical Biology, Zámek 136, CZ-37333 Nové Hrady, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech RepublicInstitute of Microbiology, AS CR, Vídeňská 1083, CZ-14220 Prague, Czech RepublicBiology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic
| | - Daniel Hisem
- Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic Institute of Physical Biology, Zámek 136, CZ-37333 Nové Hrady, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech RepublicInstitute of Microbiology, AS CR, Vídeňská 1083, CZ-14220 Prague, Czech RepublicBiology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic
| | - Jaroslava Komárková
- Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic Institute of Physical Biology, Zámek 136, CZ-37333 Nové Hrady, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech RepublicInstitute of Microbiology, AS CR, Vídeňská 1083, CZ-14220 Prague, Czech RepublicBiology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic Institute of Microbiology, AS CR, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-379 81 Třeboň, Czech Republic University of South Bohemia, Faculty of Science, Branišovská 31, CZ-37005 České Budějovice, Czech Republic Biology Centre of AS CR, Institute of Hydrobiology, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic Institute of Botany, AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic
| |
Collapse
|
42
|
Andam CP, Fournier GP, Gogarten JP. Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. FEMS Microbiol Rev 2011; 35:756-67. [DOI: 10.1111/j.1574-6976.2011.00274.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
43
|
|
44
|
Sloan DB, Alverson AJ, Storchová H, Palmer JD, Taylor DR. Extensive loss of translational genes in the structurally dynamic mitochondrial genome of the angiosperm Silene latifolia. BMC Evol Biol 2010; 10:274. [PMID: 20831793 PMCID: PMC2942850 DOI: 10.1186/1471-2148-10-274] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 09/10/2010] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial gene loss and functional transfer to the nucleus is an ongoing process in many lineages of plants, resulting in substantial variation across species in mitochondrial gene content. The Caryophyllaceae represents one lineage that has experienced a particularly high rate of mitochondrial gene loss relative to other angiosperms. Results In this study, we report the first complete mitochondrial genome sequence from a member of this family, Silene latifolia. The genome can be mapped as a 253,413 bp circle, but its structure is complicated by a large repeated region that is present in 6 copies. Active recombination among these copies produces a suite of alternative genome configurations that appear to be at or near "recombinational equilibrium". The genome contains the fewest genes of any angiosperm mitochondrial genome sequenced to date, with intact copies of only 25 of the 41 protein genes inferred to be present in the common ancestor of angiosperms. As observed more broadly in angiosperms, ribosomal proteins have been especially prone to gene loss in the S. latifolia lineage. The genome has also experienced a major reduction in tRNA gene content, including loss of functional tRNAs of both native and chloroplast origin. Even assuming expanded wobble-pairing rules, the mitochondrial genome can support translation of only 17 of the 61 sense codons, which code for only 9 of the 20 amino acids. In addition, genes encoding 18S and, especially, 5S rRNA exhibit exceptional sequence divergence relative to other plants. Divergence in one region of 18S rRNA appears to be the result of a gene conversion event, in which recombination with a homologous gene of chloroplast origin led to the complete replacement of a helix in this ribosomal RNA. Conclusions These findings suggest a markedly expanded role for nuclear gene products in the translation of mitochondrial genes in S. latifolia and raise the possibility of altered selective constraints operating on the mitochondrial translational apparatus in this lineage.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
45
|
Tang K, Huang H, Jiao N, Wu CH. Phylogenomic analysis of marine Roseobacters. PLoS One 2010; 5:e11604. [PMID: 20657646 PMCID: PMC2904699 DOI: 10.1371/journal.pone.0011604] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/20/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Members of the Roseobacter clade which play a key role in the biogeochemical cycles of the ocean are diverse and abundant, comprising 10-25% of the bacterioplankton in most marine surface waters. The rapid accumulation of whole-genome sequence data for the Roseobacter clade allows us to obtain a clearer picture of its evolution. METHODOLOGY/PRINCIPAL FINDINGS In this study about 1,200 likely orthologous protein families were identified from 17 Roseobacter bacteria genomes. Functional annotations for these genes are provided by iProClass. Phylogenetic trees were constructed for each gene using maximum likelihood (ML) and neighbor joining (NJ). Putative organismal phylogenetic trees were built with phylogenomic methods. These trees were compared and analyzed using principal coordinates analysis (PCoA), approximately unbiased (AU) and Shimodaira-Hasegawa (SH) tests. A core set of 694 genes with vertical descent signal that are resistant to horizontal gene transfer (HGT) is used to reconstruct a robust organismal phylogeny. In addition, we also discovered the most likely 109 HGT genes. The core set contains genes that encode ribosomal apparatus, ABC transporters and chaperones often found in the environmental metagenomic and metatranscriptomic data. These genes in the core set are spread out uniformly among the various functional classes and biological processes. CONCLUSIONS/SIGNIFICANCE Here we report a new multigene-derived phylogenetic tree of the Roseobacter clade. Of particular interest is the HGT of eleven genes involved in vitamin B12 synthesis as well as key enzynmes for dimethylsulfoniopropionate (DMSP) degradation. These aquired genes are essential for the growth of Roseobacters and their eukaryotic partners.
Collapse
Affiliation(s)
- Kai Tang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hongzhan Huang
- Protein Information Resource (PIR), Georgetown University, Washington, D. C., United States of America
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Cathy H. Wu
- Protein Information Resource (PIR), Georgetown University, Washington, D. C., United States of America
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
46
|
Rajendhran J, Gunasekaran P. Microbial phylogeny and diversity: small subunit ribosomal RNA sequence analysis and beyond. Microbiol Res 2010; 166:99-110. [PMID: 20223646 DOI: 10.1016/j.micres.2010.02.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 02/09/2010] [Accepted: 02/13/2010] [Indexed: 11/19/2022]
Abstract
Small subunit ribosomal RNA (16S rRNA) gene sequence analysis is used for the identification and classification of prokaryotes. In addition, sequencing of 16S rRNA genes amplified directly from the environment is used to estimate microbial diversity. The presence of mosaicism, intra-genomic heterogeneity and the lack of a universal threshold sequence identity value limit 16S rRNA-based phylogenetic analysis. PCR-amplification bias and cloning bias can also result in an inaccurate representation of the microbial diversity. In this review, recently reported complexities of 16S rRNA gene sequence analyses and the requirement of additional tools for microbial phylogeny and diversity analyses are discussed.
Collapse
Affiliation(s)
- J Rajendhran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India
| | | |
Collapse
|
47
|
Merabet C, Martens M, Mahdhi M, Zakhia F, Sy A, Le Roux C, Domergue O, Coopman R, Bekki A, Mars M, Willems A, de Lajudie P. Multilocus sequence analysis of root nodule isolates from Lotus arabicus (Senegal), Lotus creticus, Argyrolobium uniflorum and Medicago sativa (Tunisia) and description of Ensifer numidicus sp. nov. and Ensifer garamanticus sp. nov. Int J Syst Evol Microbiol 2010; 60:664-674. [DOI: 10.1099/ijs.0.012088-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nine isolates from Argyrolobium uniflorum, Lotus creticus, Medicago sativa (Tunisia) and Lotus arabicus (Senegal) were analysed by multilocus sequence analysis (MLSA) of five housekeeping genes (recA, atpD, glnA, gltA and thrC), the 16S rRNA gene and the nodulation gene nodA. Analysis of the individual and concatenated gene sequences demonstrated that the nine new strains constituted three stable, well-supported (bootstrap and gene sequence similarity values) monophyletic clusters, A, B and C, all belonging to the branch of the genus Ensifer, regardless of the phylogenetic reconstruction method used (maximum likelihood, maximum-parsimony, neighbour-joining). The three groups were further characterized by API 100 auxanographic tests, host specificity and nodA gene sequence analysis. On the basis of these data, clusters A and C are suggested as representing two novel species within the genus Ensifer, for which the names Ensifer numidicus sp. nov. (type strain ORS 1407T=LMG 24690T=CIP 109850T) and Ensifer garamanticus sp. nov. (type strain ORS 1400T=LMG 24692T=CIP 109916T) are proposed. The cluster B strains were assigned to Ensifer adhaerens genomovar A.
Collapse
Affiliation(s)
- C. Merabet
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
- Laboratoire de Rhizobiologie, Université d'Oran, Es-Senia, Algeria
| | - M. Martens
- Laboratorium voor Microbiologie (WE10), Universiteit Gent, Belgium
| | - M. Mahdhi
- Faculté des Sciences, Gabès, Tunisia
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
| | - F. Zakhia
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
| | - A. Sy
- IRD-UCAD-ISRA, Laboratoire Commun de Microbiologie, Dakar, Senegal, West Africa
| | - C. Le Roux
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
| | - O. Domergue
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
| | - R. Coopman
- Laboratorium voor Microbiologie (WE10), Universiteit Gent, Belgium
| | - A. Bekki
- Laboratoire de Rhizobiologie, Université d'Oran, Es-Senia, Algeria
| | - M. Mars
- Faculté des Sciences, Gabès, Tunisia
| | - A. Willems
- Laboratorium voor Microbiologie (WE10), Universiteit Gent, Belgium
| | - P. de Lajudie
- IRD, UMR 113 Symbioses Tropicales et Méditerranéennes F-34398 Montpellier, France
| |
Collapse
|
48
|
Abstract
Metagenomics is a discipline that enables the genomic study of uncultured microorganisms. Faster, cheaper sequencing technologies and the ability to sequence uncultured microbes sampled directly from their habitats are expanding and transforming our view of the microbial world. Distilling meaningful information from the millions of new genomic sequences presents a serious challenge to bioinformaticians. In cultured microbes, the genomic data come from a single clone, making sequence assembly and annotation tractable. In metagenomics, the data come from heterogeneous microbial communities, sometimes containing more than 10,000 species, with the sequence data being noisy and partial. From sampling, to assembly, to gene calling and function prediction, bioinformatics faces new demands in interpreting voluminous, noisy, and often partial sequence data. Although metagenomics is a relative newcomer to science, the past few years have seen an explosion in computational methods applied to metagenomic-based research. It is therefore not within the scope of this article to provide an exhaustive review. Rather, we provide here a concise yet comprehensive introduction to the current computational requirements presented by metagenomics, and review the recent progress made. We also note whether there is software that implements any of the methods presented here, and briefly review its utility. Nevertheless, it would be useful if readers of this article would avail themselves of the comment section provided by this journal, and relate their own experiences. Finally, the last section of this article provides a few representative studies illustrating different facets of recent scientific discoveries made using metagenomics.
Collapse
Affiliation(s)
- John C. Wooley
- Community Cyberinfrastructure for Marine Microbial Ecology Research and Analysis, California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, California, United States of America
| | - Adam Godzik
- Community Cyberinfrastructure for Marine Microbial Ecology Research and Analysis, California Institute for Telecommunications and Information Technology, University of California San Diego, La Jolla, California, United States of America
- Program in Bioinformatics and Systems Biology, Burnham Institute for Medical Research, La Jolla, California, United States of America
| | - Iddo Friedberg
- Department of Microbiology, Miami University, Oxford, Ohio, United States of America
- Department of Computer Science and Software Engineering, Miami University, Oxford, Ohio, United States of America
| |
Collapse
|
49
|
Mann S, Chen YPP. Bacterial genomic G+C composition-eliciting environmental adaptation. Genomics 2010; 95:7-15. [DOI: 10.1016/j.ygeno.2009.09.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/18/2009] [Accepted: 09/01/2009] [Indexed: 01/12/2023]
|
50
|
Tailliez P, Laroui C, Ginibre N, Paule A, Pagès S, Boemare N. Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov. Int J Syst Evol Microbiol 2009; 60:1921-1937. [PMID: 19783607 DOI: 10.1099/ijs.0.014308-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used the information from a set of concatenated sequences from four genes (recA, gyrB, dnaN and gltX) to investigate the phylogeny of the genera Photorhabdus and Xenorhabdus (entomopathogenic bacteria associated with nematodes of the genera Heterorhabditis and Steinernema, respectively). The robustness of the phylogenetic tree obtained by this multigene approach was significantly better than that of the tree obtained by a single gene approach. The comparison of the topologies of single gene phylogenetic trees highlighted discrepancies which have implications for the classification of strains and new isolates; in particular, we propose the transfer of Photorhabdus luminescens subsp. thracensis to Photorhabdus temperata subsp. thracensis comb. nov. (type strain CIP 108426T =DSM 15199T). We found that, within the genus Xenorhabdus, strains or isolates that shared less than 97 % nucleotide identity (NI), calculated on the concatenated sequences of the four gene fragments (recA, gyrB, dnaN and gltX) encompassing 3395 nucleotides, did not belong to the same species. Thus, at the 97% NI cutoff, we confirm the current 20 species of the genus Xenorhabdus and propose the description of a novel species, Xenorhabdus vietnamensis sp. nov. (type strain VN01T =CIP 109945T =DSM 22392T). Within each of the three current species of the genus Photorhabdus, P. asymbiotica, P. luminescens and P. temperata, strains or isolates which shared less than 97% NI did not belong to the same subspecies. Comparisons of the four gene fragments plus the rplB gene fragment analysed separately led us to propose four novel subspecies: Photorhabdus luminescens subsp. caribbeanensis subsp. nov. (type strain HG29T =CIP 109949T =DSM 22391T), P. luminescens subsp. hainanensis subsp. nov. (type strain C8404T = CIP 109946T =DSM 22397T), P. temperata subsp. khanii subsp. nov. (type strain C1T =NC19(T) =CIP 109947T =DSM 3369T), and P. temperata subsp. tasmaniensis subsp. nov. (type strain T327T =CIP 109948T =DSM 22387T).
Collapse
Affiliation(s)
- Patrick Tailliez
- INRA and Université Montpellier 2, Unité d'Ecologie Microbienne des Insectes and Interactions hôte-Pathogène, F-34000 Montpellier, France
| | - Christine Laroui
- INRA and Université Montpellier 2, Unité d'Ecologie Microbienne des Insectes and Interactions hôte-Pathogène, F-34000 Montpellier, France
| | - Nadège Ginibre
- INRA and Université Montpellier 2, Unité d'Ecologie Microbienne des Insectes and Interactions hôte-Pathogène, F-34000 Montpellier, France
| | - Armelle Paule
- INRA and Université Montpellier 2, Unité d'Ecologie Microbienne des Insectes and Interactions hôte-Pathogène, F-34000 Montpellier, France
| | - Sylvie Pagès
- INRA and Université Montpellier 2, Unité d'Ecologie Microbienne des Insectes and Interactions hôte-Pathogène, F-34000 Montpellier, France
| | - Noël Boemare
- INRA and Université Montpellier 2, Unité d'Ecologie Microbienne des Insectes and Interactions hôte-Pathogène, F-34000 Montpellier, France
| |
Collapse
|