1
|
Freed NE, Bumann D, Silander OK. Combining Shigella Tn-seq data with gold-standard E. coli gene deletion data suggests rare transitions between essential and non-essential gene functionality. BMC Microbiol 2016; 16:203. [PMID: 27599549 PMCID: PMC5011829 DOI: 10.1186/s12866-016-0818-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Gene essentiality - whether or not a gene is necessary for cell growth - is a fundamental component of gene function. It is not well established how quickly gene essentiality can change, as few studies have compared empirical measures of essentiality between closely related organisms. RESULTS Here we present the results of a Tn-seq experiment designed to detect essential protein coding genes in the bacterial pathogen Shigella flexneri 2a 2457T on a genome-wide scale. Superficial analysis of this data suggested that 481 protein-coding genes in this Shigella strain are critical for robust cellular growth on rich media. Comparison of this set of genes with a gold-standard data set of essential genes in the closely related Escherichia coli K12 BW25113 revealed that an excessive number of genes appeared essential in Shigella but non-essential in E. coli. Importantly, and in converse to this comparison, we found no genes that were essential in E. coli and non-essential in Shigella, implying that many genes were artefactually inferred as essential in Shigella. Controlling for such artefacts resulted in a much smaller set of discrepant genes. Among these, we identified three sets of functionally related genes, two of which have previously been implicated as critical for Shigella growth, but which are dispensable for E. coli growth. CONCLUSIONS The data presented here highlight the small number of protein coding genes for which we have strong evidence that their essentiality status differs between the closely related bacterial taxa E. coli and Shigella. A set of genes involved in acetate utilization provides a canonical example. These results leave open the possibility of developing strain-specific antibiotic treatments targeting such differentially essential genes, but suggest that such opportunities may be rare in closely related bacteria.
Collapse
Affiliation(s)
- Nikki E Freed
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand.,Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Olin K Silander
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand. .,Computational and Systems Biology, Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Abstract
Iteron-containing plasmids are model systems for studying the metabolism of extrachromosomal genetic elements in bacterial cells. Here we describe the current knowledge and understanding of the structure of iteron-containing replicons, the structure of the iteron plasmid encoded replication initiation proteins, and the molecular mechanisms for iteron plasmid DNA replication initiation. We also discuss the current understanding of control mechanisms affecting the plasmid copy number and how host chaperone proteins and proteases can affect plasmid maintenance in bacterial cells.
Collapse
|
3
|
Zabrocka E, Wegrzyn K, Konieczny I. Two replication initiators - one mechanism for replication origin opening? Plasmid 2014; 76:72-8. [PMID: 25454070 DOI: 10.1016/j.plasmid.2014.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/30/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022]
Abstract
DNA replication initiation has been well-characterized; however, studies in the past few years have shown that there are still important discoveries to be made. Recent publications concerning the bacterial DnaA protein have revealed how this replication initiator, via interaction with specific sequences within the origin region, causes local destabilization of double stranded DNA. Observations made in the context of this bacterial initiator have also been converging with those recently made for plasmid Rep proteins. In this mini review we discuss the relevance of new findings for the RK2 plasmid replication initiator, TrfA, with regard to new data on the structure of complexes formed by the chromosomal replication initiator DnaA. We discuss structure-function relationships of replication initiation proteins.
Collapse
Affiliation(s)
- Elzbieta Zabrocka
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| |
Collapse
|
4
|
Fernandez-Fernandez C, Grosse K, Sourjik V, Collier J. The β-sliding clamp directs the localization of HdaA to the replisome in Caulobacter crescentus. MICROBIOLOGY-SGM 2013; 159:2237-2248. [PMID: 23974073 PMCID: PMC3836487 DOI: 10.1099/mic.0.068577-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The initiation of chromosome replication is tightly regulated in bacteria to ensure that it takes place only once per cell cycle. In many proteobacteria, this process requires the ATP-bound form of the DnaA protein. The regulatory inactivation of DnaA (RIDA) facilitates the conversion of DnaA-ATP into replication-inactive DnaA-ADP, thereby preventing overinitiation. Homologues of the HdaA protein, together with the β-clamp of the DNA polymerase (DnaN), are required for this process. Here, we used fluorescence resonance energy transfer experiments to demonstrate that HdaA interacts with DnaN in live Caulobacter crescentus cells. We show that a QFKLPL motif in the N-terminal region of HdaA is required for this interaction and that this motif is also needed to recruit HdaA to the subcellular location occupied by the replisome during DNA replication. An HdaA mutant protein that cannot colocalize or interact with DnaN can also not support the essential function of HdaA. These results suggest that the recruitment of HdaA to the replisome is needed during RIDA in C. crescentus, probably as a means to sense whether chromosome replication has initiated before DnaA becomes inactivated. In addition, we show that a conserved R145 residue located in the AAA+ domain of HdaA is also needed for the function of HdaA, although it does not affect the interaction of HdaA with DnaN in vivo. The AAA+ domain of HdaA may therefore be required during RIDA after the initial recruitment of HdaA to the replisome by DnaN.
Collapse
Affiliation(s)
- Carmen Fernandez-Fernandez
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH 1015, Switzerland
| | - Karin Grosse
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH 1015, Switzerland
| |
Collapse
|
5
|
Kolatka K, Kubik S, Rajewska M, Konieczny I. Replication and partitioning of the broad-host-range plasmid RK2. Plasmid 2010; 64:119-34. [DOI: 10.1016/j.plasmid.2010.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/08/2010] [Accepted: 06/21/2010] [Indexed: 11/27/2022]
|
6
|
Xu Q, McMullan D, Abdubek P, Astakhova T, Carlton D, Chen C, Chiu HJ, Clayton T, Das D, Deller MC, Duan L, Elsliger MA, Feuerhelm J, Hale J, Han GW, Jaroszewski L, Jin KK, Johnson HA, Klock HE, Knuth MW, Kozbial P, Sri Krishna S, Kumar A, Marciano D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Trame C, van den Bedem H, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. A structural basis for the regulatory inactivation of DnaA. J Mol Biol 2008; 385:368-80. [PMID: 19000695 DOI: 10.1016/j.jmb.2008.10.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/18/2008] [Accepted: 10/22/2008] [Indexed: 11/25/2022]
Abstract
Regulatory inactivation of DnaA is dependent on Hda (homologous to DnaA), a protein homologous to the AAA+ (ATPases associated with diverse cellular activities) ATPase region of the replication initiator DnaA. When bound to the sliding clamp loaded onto duplex DNA, Hda can stimulate the transformation of active DnaA-ATP into inactive DnaA-ADP. The crystal structure of Hda from Shewanella amazonensis SB2B at 1.75 A resolution reveals that Hda resembles typical AAA+ ATPases. The arrangement of the two subdomains in Hda (residues 1-174 and 175-241) differs dramatically from that of DnaA. A CDP molecule anchors the Hda domains in a conformation that promotes dimer formation. The Hda dimer adopts a novel oligomeric assembly for AAA+ proteins in which the arginine finger, crucial for ATP hydrolysis, is fully exposed and available to hydrolyze DnaA-ATP through a typical AAA+ type of mechanism. The sliding clamp binding motifs at the N-terminus of each Hda monomer are partially buried and combine to form an antiparallel beta-sheet at the dimer interface. The inaccessibility of the clamp binding motifs in the CDP-bound structure of Hda suggests that conformational changes are required for Hda to form a functional complex with the clamp. Thus, the CDP-bound Hda dimer likely represents an inactive form of Hda.
Collapse
Affiliation(s)
- Qingping Xu
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kato JI. Regulatory Network of the Initiation of Chromosomal Replication inEscherichia coli. Crit Rev Biochem Mol Biol 2008; 40:331-42. [PMID: 16338685 DOI: 10.1080/10409230500366090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bacterial chromosome is replicated once during the division cycle, a process ensured by the tight regulation of initiation at oriC. In prokaryotes, the initiator protein DnaA plays an essential role at the initiation step, and feedback control is critical in regulating initiation. Three systems have been identified that exert feedback control in Escherichia coli, all of which are necessary for tight strict regulation of the initiation step. In particular, the ATP-dependent control of DnaA activity is essential. A missing link in initiator activity regulation has been identified, facilitating analysis of the reaction mechanism. Furthermore, key components of this regulatory network have also been described. Because the eukaryotic initiator complex, ORC, is also regulated by ATP, the bacterial system provides an important model for understanding initiation in eukaryotes. This review summarizes recent studies on the regulation of initiator activity.
Collapse
Affiliation(s)
- Jun-ichi Kato
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, Japan
| |
Collapse
|
8
|
Abstract
Escherichia coli is a model system to study the mechanism of DNA replication and its regulation during the cell cycle. One regulatory pathway ensures that initiation of DNA replication from the chromosomal origin, oriC, is synchronous and occurs at the proper time in the bacterial cell cycle. A major player in this pathway is SeqA protein and involves its ability to bind preferentially to oriC when it is hemi-methylated. The second pathway modulates DnaA activity by stimulating the hydrolysis of ATP bound to DnaA protein. The regulatory inactivation of DnaA function involves an interaction with Hda protein and the beta dimer, which functions as a sliding clamp for the replicase, DNA polymerase III holoenzyme. The datA locus represents a third mechanism, which appears to influence the availability of DnaA protein in supporting rifampicin-resistant initiations.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| |
Collapse
|
9
|
Dalrymple BP, Kongsuwan K, Wijffels G. Identification of putative DnaN-binding motifs in plasmid replication initiation proteins. Plasmid 2006; 57:82-8. [PMID: 16970990 DOI: 10.1016/j.plasmid.2006.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 11/23/2022]
Abstract
Recently the plasmid RK2 replication initiation protein, TrfA, has been shown to bind to the beta subunit of DNA Polymerase III (DnaN) via a short pentapeptide with the consensus QL[S/D]LF. A second consensus peptide, the hexapeptide QLxLxL, has also been demonstrated to mediate binding to DnaN. Here we describe the results of a comprehensive survey of replication initiation proteins encoded by bacterial plasmids to identify putative DnaN-binding sites. Both pentapeptide and hexapeptide motifs have been identified in a number of families of replication initiation proteins. The distribution of sites is sporadic and closely related families of proteins may differ in the presence, location, or type of putative DnaN-binding motif. Neither motif has been identified in replication initiation proteins encoded by plasmids that replicate via rolling circles or strand displacement. The results suggest that the recruitment of DnaN to the origin of replication of a replisome by plasmid replication initiation proteins is not generally required for plasmid replication, but that in some cases it may be beneficial for efficiency of replication initiation.
Collapse
Affiliation(s)
- Brian P Dalrymple
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Qld. 4067, Australia
| | | | | |
Collapse
|
10
|
Kongsuwan K, Josh P, Picault MJ, Wijffels G, Dalrymple B. The plasmid RK2 replication initiator protein (TrfA) binds to the sliding clamp beta subunit of DNA polymerase III: implication for the toxicity of a peptide derived from the amino-terminal portion of 33-kilodalton TrfA. J Bacteriol 2006; 188:5501-9. [PMID: 16855240 PMCID: PMC1540049 DOI: 10.1128/jb.00231-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The broad-host-range plasmid RK2 is capable of replication and stable maintenance within a wide range of gram-negative bacterial hosts. It encodes the essential replication initiation protein TrfA, which binds to the host initiation protein, DnaA, at the plasmid origin of replication (oriV). There are two versions of the TrfA protein, 44 and 33 kDa, resulting from alternate in-frame translational starts. We have shown that the smaller protein, TrfA-33, and its 64-residue amino-terminal peptide (designated T1) physically interact with the Escherichia coli beta sliding clamp (beta(2)). This interaction appears to be mediated through a QLSLF peptide motif located near the amino-terminal end of TrfA-33 and T1, which is identical to the previously described eubacterial clamp-binding consensus motif. T1 forms a stable complex with beta(2) and was found to inhibit plasmid RK2 replication in vitro. This specific interaction between T1 and beta(2) and the ability of T1 to block DNA replication have implications for the previously reported cell lethality caused by overproduction of T1. The toxicity of T1 was suppressed when wild-type T1 was replaced with mutant T1, carrying an LF deletion in the beta-binding motif. Previously, T1 toxicity has been shown to be suppressed by Hda, an intermediate regulatory protein which helps prevent over-initiation in E. coli through its interaction with the initiator protein, DnaA, and beta(2). Our results support a model in which T1 toxicity is caused by T1 binding to beta(2), especially when T1 is overexpressed, preventing beta(2) from interacting with host replication proteins such as Hda during the early events of chromosome replication.
Collapse
Affiliation(s)
- Kritaya Kongsuwan
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067, Australia.
| | | | | | | | | |
Collapse
|
11
|
Ote T, Hashimoto M, Ikeuchi Y, Su'etsugu M, Suzuki T, Katayama T, Kato JI. Involvement of the Escherichia coli folate-binding protein YgfZ in RNA modification and regulation of chromosomal replication initiation. Mol Microbiol 2006; 59:265-75. [PMID: 16359333 DOI: 10.1111/j.1365-2958.2005.04932.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Escherichia coli hda gene codes for a DnaA-related protein that is essential for the regulatory inactivation of DnaA (RIDA), a system that controls the initiation of chromosomal replication. We have identified the ygfZ gene, which encodes a folate-binding protein, as a suppressor of hda mutations. The ygfZ null mutation suppresses an hda null mutation. The over-initiation and abortive elongation phenotypes conferred by the hda mutations are partially suppressed in an hda ygfZ background. The accumulation of the active form of DnaA, ATP-DnaA, in the hda mutant is suppressed by the disruption of the ygfZ gene, indicating that YgfZ is involved in regulating the level of ATP-DnaA. Although ygfZ is not an essential gene, the ygfZ disruptant grows slowly, especially at low temperature, demonstrating that this gene is important for cellular proliferation. We have identified mnmE (trmE) as a suppressor of the ygfZ disruption. This gene encodes a GTPase involved in tRNA modification. Examination of RNA modification in the ygfZ mutant reveals reduced levels of 2-methylthio N(6)-isopentenyladenosine [corrected] indicating that YgfZ participates in the methylthio-group formation of this modified nucleoside in some tRNAs. These results suggest that YgfZ is a key factor in regulatory networks that act via tRNA modification.
Collapse
Affiliation(s)
- Tomotake Ote
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | |
Collapse
|
12
|
Kawakami H, Su'etsugu M, Katayama T. An isolated Hda-clamp complex is functional in the regulatory inactivation of DnaA and DNA replication. J Struct Biol 2006; 156:220-9. [PMID: 16603382 DOI: 10.1016/j.jsb.2006.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/20/2006] [Accepted: 02/23/2006] [Indexed: 01/17/2023]
Abstract
In Escherichia coli, a complex consisting of Hda and the DNA-loaded clamp-subunit of the DNA polymerase III holoenzyme promotes hydrolysis of DnaA-ATP. The resultant ADP-DnaA is inactive for initiation of chromosomal DNA replication, thereby repressing excessive initiations. As the cellular content of the clamp is 10-100 times higher than that of Hda, most Hda molecules might be complexed with the clamp in vivo. Although Hda predominantly forms irregular aggregates when overexpressed, in the present study we found that co-overexpression of the clamp with Hda enhances Hda solubility dramatically and we efficiently isolated the Hda-clamp complex. A single molecule of the complex appears to consist of two Hda molecules and a single clamp. The complex is competent in DnaA-ATP hydrolysis and DNA replication in the presence of DNA and the clamp deficient subassembly of the DNA polymerase III holoenzyme (pol III*). These findings indicate that the clamp contained in the complex is loaded onto DNA through an interaction with the pol III* and that the Hda activity is preserved in these processes. The complex consisting of Hda and the DNA-unloaded clamp may play a specific role in a process proceeding to the DnaA-ATP hydrolysis in vivo.
Collapse
Affiliation(s)
- Hironori Kawakami
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
13
|
Aranovich A, Gdalevsky GY, Cohen-Luria R, Fishov I, Parola AH. Membrane-catalyzed nucleotide exchange on DnaA. Effect of surface molecular crowding. J Biol Chem 2006; 281:12526-34. [PMID: 16517983 DOI: 10.1074/jbc.m510266200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DnaA is the initiator protein for chromosomal replication in bacteria; its activity plays a central role in the timing of the primary initiations within the Escherichia coli cell cycle. A controlled, reversible conversion between the active ATP-DnaA and the inactive ADP forms modulates this activity. In a DNA-dependent manner, bound ATP is hydrolyzed to ADP. Acidic phospholipids with unsaturated fatty acids are capable of reactivating ADP-DnaA by promoting the release of the tightly bound ADP. The nucleotide dissociation kinetics, measured in the present study with the fluorescent derivative 3'-O-(N-methylantraniloyl)-5'-adenosine triphosphate, was dependent on the density of DnaA on the membrane in a cooperative manner: it increased 5-fold with decreased protein density. At all surface densities the nucleotide was completely released, presumably due to protein exchange on the membrane. Distinct temperature dependences and the effect of the crowding agent Ficoll suggest that two functional states of DnaA exist at high and low membrane occupancy, ascribed to local macromolecular crowding on the membrane surface. These novel phenomena are thought to play a major role in the mechanism regulating the initiation of chromosomal replication in bacteria.
Collapse
Affiliation(s)
- Alexander Aranovich
- Department of Life Sciences, Ben-Gurion University of the Negev, P. O. B. 653, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
14
|
Banack T, Clauson N, Ogbaa N, Villar J, Oliver D, Firshein W. Overexpression of the Hda DnaA-related protein in Escherichia coli inhibits multiplication, affects membrane permeability, and induces the SOS response. J Bacteriol 2006; 187:8507-10. [PMID: 16321957 PMCID: PMC1317017 DOI: 10.1128/jb.187.24.8507-8510.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Trevor Banack
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
The importance of the cell membrane in bacterial chromosomal replication continues to emerge. Recent advances include better definition of the biochemical interaction between membrane acidic phospholipids and the replication initiator, DnaA protein, the physiological impact that an altered membrane lipid composition has on chromosomal replication and the identification and characterization of recently identified membrane-associated proteins that regulate replication and participate in chromosomal segregation.
Collapse
Affiliation(s)
- Kelly Boeneman
- Department of Biochemistry, Georgetown University Medical Center, 3900 Reservoir Road, Basic Science Building, Washington DC, 20007, USA
| | | |
Collapse
|
16
|
Li Z, Kitchen JL, Boeneman K, Anand P, Crooke E. Restoration of growth to acidic phospholipid-deficient cells by DnaA(L366K) is independent of its capacity for nucleotide binding and exchange and requires DnaA. J Biol Chem 2005; 280:9796-801. [PMID: 15642730 DOI: 10.1074/jbc.m413923200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the absence of adequate levels of cellular acidic phospholipids, Escherichia coli remain viable but are arrested for growth. Expression of a DnaA protein that contains a single amino acid substitution in the membrane-binding domain, DnaA(L366K), in concert with expression of wild-type DnaA protein, restores growth. DnaA protein has high affinity for ATP and ADP, and in vitro lipid bilayers that are fluid and contain acidic phospholipids reactivate inert ADP-DnaA by promoting an exchange of ATP for ADP. Here, nucleotide and lipid interactions and replication activity of purified DnaA(L366K) were examined to gain insight into the mechanism of how it restores growth to cells lacking acidic phospholipids. DnaA(L366K) behaved like wild-type DnaA with respect to nucleotide binding affinities and hydrolysis properties, specificity of acidic phospholipids for nucleotide release, and origin binding. Yet, DnaA(L366K) was feeble at initiating replication from oriC unless augmented with a limiting quantity of wild-type DnaA, reflecting the in vivo requirement that both wild-type and a mutant form of DnaA must be expressed and act together to restore growth to acidic phospholipid deficient cells.
Collapse
Affiliation(s)
- Zhenya Li
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Rd. NW, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
17
|
Kurz M, Dalrymple B, Wijffels G, Kongsuwan K. Interaction of the sliding clamp beta-subunit and Hda, a DnaA-related protein. J Bacteriol 2004; 186:3508-15. [PMID: 15150238 PMCID: PMC415757 DOI: 10.1128/jb.186.11.3508-3515.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, interactions between the replication initiation protein DnaA, the beta subunit of DNA polymerase III (the sliding clamp protein), and Hda, the recently identified DnaA-related protein, are required to convert the active ATP-bound form of DnaA to an inactive ADP-bound form through the accelerated hydrolysis of ATP. This rapid hydrolysis of ATP is proposed to be the main mechanism that blocks multiple initiations during cell cycle and acts as a molecular switch from initiation to replication. However, the biochemical mechanism for this crucial step in DNA synthesis has not been resolved. Using purified Hda and beta proteins in a plate binding assay and Ni-nitrilotriacetic acid pulldown analysis, we show for the first time that Hda directly interacts with beta in vitro. A new beta-binding motif, a hexapeptide with the consensus sequence QL[SP]LPL, related to the previously identified beta-binding pentapeptide motif (QL[SD]LF) was found in the amino terminus of the Hda protein. Mutants of Hda with amino acid changes in the hexapeptide motif are severely defective in their ability to bind beta. A 10-amino-acid peptide containing the E. coli Hda beta-binding motif was shown to compete with Hda for binding to beta in an Hda-beta interaction assay. These results establish that the interaction of Hda with beta is mediated through the hexapeptide sequence. We propose that this interaction may be crucial to the events that lead to the inactivation of DnaA and the prevention of excess initiation of rounds of replication.
Collapse
Affiliation(s)
- Mareike Kurz
- CSIRO Livestock Industries, Queensland Bioscience Precinct, St. Lucia Queensland Dominion 4067, Australia
| | | | | | | |
Collapse
|
18
|
Camara JE, Skarstad K, Crooke E. Controlled initiation of chromosomal replication in Escherichia coli requires functional Hda protein. J Bacteriol 2003; 185:3244-8. [PMID: 12730188 PMCID: PMC154069 DOI: 10.1128/jb.185.10.3244-3248.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulatory inactivation of DnaA helps ensure that the Escherichia coli chromosome is replicated only once per cell cycle, through accelerated hydrolysis of active replication initiator ATP-DnaA to inactive ADP-DnaA. Analysis of deltahda strains revealed that the regulatory inactivation of DnaA component Hda is necessary for maintaining controlled initiation but not for cell growth or viability.
Collapse
Affiliation(s)
- Johanna Eltz Camara
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
| | | | | |
Collapse
|