1
|
Krishnakant Kushwaha S, Wu Y, Leonardo Avila H, Anand A, Sicheritz-Pontén T, Millard A, Amol Marathe S, Nobrega FL. Comprehensive blueprint of Salmonella genomic plasticity identifies hotspots for pathogenicity genes. PLoS Biol 2024; 22:e3002746. [PMID: 39110680 PMCID: PMC11305592 DOI: 10.1371/journal.pbio.3002746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Understanding the dynamic evolution of Salmonella is vital for effective bacterial infection management. This study explores the role of the flexible genome, organised in regions of genomic plasticity (RGP), in shaping the pathogenicity of Salmonella lineages. Through comprehensive genomic analysis of 12,244 Salmonella spp. genomes covering 2 species, 6 subspecies, and 46 serovars, we uncover distinct integration patterns of pathogenicity-related gene clusters into RGP, challenging traditional views of gene distribution. These RGP exhibit distinct preferences for specific genomic spots, and the presence or absence of such spots across Salmonella lineages profoundly shapes strain pathogenicity. RGP preferences are guided by conserved flanking genes surrounding integration spots, implicating their involvement in regulatory networks and functional synergies with integrated gene clusters. Additionally, we emphasise the multifaceted contributions of plasmids and prophages to the pathogenicity of diverse Salmonella lineages. Overall, this study provides a comprehensive blueprint of the pathogenicity potential of Salmonella. This unique insight identifies genomic spots in nonpathogenic lineages that hold the potential for harbouring pathogenicity genes, providing a foundation for predicting future adaptations and developing targeted strategies against emerging human pathogenic strains.
Collapse
Affiliation(s)
- Simran Krishnakant Kushwaha
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Yi Wu
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Hugo Leonardo Avila
- Laboratory for Applied Science and Technology in Health, Instituto Carlos Chagas, FIOCRUZ Paraná, Brazil
| | - Abhirath Anand
- Department of Computer Sciences and Information Systems, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
| | - Thomas Sicheritz-Pontén
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), AIMST University, Bedong, Kedah, Malaysia
| | - Andrew Millard
- Centre for Phage Research, Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Sandhya Amol Marathe
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani, Rajasthan, India
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
2
|
De R, Jani M, Azad RK. DICEP: An integrative approach to augmenting genomic island detection. J Biotechnol 2024; 388:49-58. [PMID: 38641137 DOI: 10.1016/j.jbiotec.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/17/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Mobilization of clusters of genes called genomic islands (GIs) across bacterial lineages facilitates dissemination of traits, such as, resistance against antibiotics, virulence or hypervirulence, and versatile metabolic capabilities. Robust delineation of GIs is critical to understanding bacterial evolution that has a vast impact on different life forms. Methods for identification of GIs exploit different evolutionary features or signals encoded within the genomes of bacteria, however, the current state-of-the-art in GI detection still leaves much to be desired. Here, we have taken a combinatorial approach that accounted for GI specific features such as compositional bias, aberrant phyletic pattern, and marker gene enrichment within an integrative framework to delineate GIs in bacterial genomes. Our GI prediction tool, DICEP, was assessed on simulated genomes and well-characterized bacterial genomes. DICEP compared favorably with current GI detection tools on real and synthetic datasets.
Collapse
Affiliation(s)
- Ronika De
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, United States
| | - Mehul Jani
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, United States
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX 76203, United States; Department of Mathematics, University of North Texas, Denton, TX 76203, United States.
| |
Collapse
|
3
|
Brannon JR, Reasoner SA, Bermudez TA, Comer SL, Wiebe MA, Dunigan TL, Beebout CJ, Ross T, Bamidele A, Hadjifrangiskou M. Mapping niche-specific two-component system requirements in uropathogenic Escherichia coli. Microbiol Spectr 2024; 12:e0223623. [PMID: 38385738 PMCID: PMC10986536 DOI: 10.1128/spectrum.02236-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Sensory systems allow pathogens to differentiate between different niches and respond to stimuli within them. A major mechanism through which bacteria sense and respond to stimuli in their surroundings is two-component systems (TCSs). TCSs allow for the detection of multiple stimuli to lead to a highly controlled and rapid change in gene expression. Here, we provide a comprehensive list of TCSs important for the pathogenesis of uropathogenic Escherichia coli (UPEC). UPEC accounts for >75% of urinary tract infections (UTIs) worldwide. UTIs are most prevalent among people assigned female at birth, with the vagina becoming colonized by UPEC in addition to the gut and the bladder. In the bladder, adherence to the urothelium triggers E. coli invasion of bladder cells and an intracellular pathogenic cascade. Intracellular E. coli are safely hidden from host neutrophils, competition from the microbiota, and antibiotics that kill extracellular E. coli. To survive in these intimately connected, yet physiologically diverse niches E. coli must rapidly coordinate metabolic and virulence systems in response to the distinct stimuli encountered in each environment. We hypothesized that specific TCSs allow UPEC to sense these diverse environments encountered during infection with built-in redundant safeguards. Here, we created a library of isogenic TCS deletion mutants that we leveraged to map distinct TCS contributions to infection. We identify-for the first time-a comprehensive panel of UPEC TCSs that are critical for infection of the genitourinary tract and report that the TCSs mediating colonization of the bladder, kidneys, or vagina are distinct.IMPORTANCEWhile two-component system (TCS) signaling has been investigated at depth in model strains of Escherichia coli, there have been no studies to elucidate-at a systems level-which TCSs are important during infection by pathogenic Escherichia coli. Here, we report the generation of a markerless TCS deletion library in a uropathogenic E. coli (UPEC) isolate that can be leveraged for dissecting the role of TCS signaling in different aspects of pathogenesis. We use this library to demonstrate, for the first time in UPEC, that niche-specific colonization is guided by distinct TCS groups.
Collapse
Affiliation(s)
- John R. Brannon
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth A. Reasoner
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tomas A. Bermudez
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah L. Comer
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michelle A. Wiebe
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taryn L. Dunigan
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Connor J. Beebout
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tamia Ross
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adebisi Bamidele
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Tan J, Fu B, Zhao X, Ye L. Novel Techniques and Models for Studying the Role of the Gut Microbiota in Drug Metabolism. Eur J Drug Metab Pharmacokinet 2024; 49:131-147. [PMID: 38123834 DOI: 10.1007/s13318-023-00874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota, known as the second human genome, plays a vital role in modulating drug metabolism, significantly impacting therapeutic outcomes and adverse effects. Emerging research has elucidated that the microbiota mediates a range of modifications of drugs, leading to their activation, inactivation, or even toxication. In diverse individuals, variations in the gut microbiota can result in differences in microbe-drug interactions, underscoring the importance of personalized approaches in pharmacotherapy. However, previous studies on drug metabolism in the gut microbiota have been hampered by technical limitations. Nowadays, advances in biotechnological tools, such as microbially derived metabolism screening and microbial gene editing, have provided a deeper insight into the mechanism of drug metabolism by gut microbiota, moving us toward personalized therapeutic interventions. Given this situation, our review summarizes recent advances in the study of gut-microbiota-mediated drug metabolism and showcases techniques and models developed to navigate the challenges posed by the microbial involvement in drug action. Therefore, we not only aim at understanding the complex interaction between the gut microbiota and drugs and outline the development of research techniques and models, but we also summarize the specific applications of new techniques and models in researching gut-microbiota-mediated drug metabolism, with the expectation of providing new insights on how to study drug metabolism by gut microbiota.
Collapse
Affiliation(s)
- Jianling Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
da Silva TF, Glória RDA, de Sousa TJ, Americo MF, Freitas ADS, Viana MVC, de Jesus LCL, da Silva Prado LC, Daniel N, Ménard O, Cochet MF, Dupont D, Jardin J, Borges AD, Fernandes SOA, Cardoso VN, Brenig B, Ferreira E, Profeta R, Aburjaile FF, de Carvalho RDO, Langella P, Le Loir Y, Cherbuy C, Jan G, Azevedo V, Guédon É. Comprehensive probiogenomics analysis of the commensal Escherichia coli CEC15 as a potential probiotic strain. BMC Microbiol 2023; 23:364. [PMID: 38008714 PMCID: PMC10680302 DOI: 10.1186/s12866-023-03112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael de Assis Glória
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Jesus de Sousa
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcus Vinicius Canário Viana
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Nathalie Daniel
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Olivia Ménard
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Marie-Françoise Cochet
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Didier Dupont
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Julien Jardin
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Amanda Dias Borges
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg-August Universität Göttingen, Göttingen, Germany
| | - Enio Ferreira
- Department of general pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flavia Figueira Aburjaile
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Veterinary school, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Yves Le Loir
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Claire Cherbuy
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Gwénaël Jan
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Éric Guédon
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France.
| |
Collapse
|
6
|
Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023; 11:2169. [PMID: 37764013 PMCID: PMC10537683 DOI: 10.3390/microorganisms11092169] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections, especially among women and older adults, leading to a significant global healthcare cost burden. Uropathogenic Escherichia coli (UPEC) are the most common cause and accounts for the majority of community-acquired UTIs. Infection by UPEC can cause discomfort, polyuria, and fever. More serious clinical consequences can result in urosepsis, kidney damage, and death. UPEC is a highly adaptive pathogen which presents significant treatment challenges rooted in a complex interplay of molecular factors that allow UPEC to evade host defences, persist within the urinary tract, and resist antibiotic therapy. This review discusses these factors, which include the key genes responsible for adhesion, toxin production, and iron acquisition. Additionally, it addresses antibiotic resistance mechanisms, including chromosomal gene mutations, antibiotic deactivating enzymes, drug efflux, and the role of mobile genetic elements in their dissemination. Furthermore, we provide a forward-looking analysis of emerging alternative therapies, such as phage therapy, nano-formulations, and interventions based on nanomaterials, as well as vaccines and strategies for immunomodulation. This review underscores the continued need for research into the molecular basis of pathogenesis and antimicrobial resistance in the treatment of UPEC, as well as the need for clinically guided treatment of UTIs, particularly in light of the rapid spread of multidrug resistance.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland
| |
Collapse
|
7
|
Jalil A, Masood S, Ain Q, Andleeb S, Dudley EG, Adnan F. High resistance of fluoroquinolone and macrolide reported in avian pathogenic Escherichia coli isolates from the humid subtropical regions of Pakistan. J Glob Antimicrob Resist 2023; 33:5-17. [PMID: 36764657 DOI: 10.1016/j.jgar.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVES This study aimed to assess the antimicrobial resistance profile, virulence potential, and genetic characterization of avian pathogenic Escherichia coli (APEC) that cause colibacillosis in poultry. METHODS Antibiotic susceptibility testing (AST) was measured via the Kirby-Bauer disc diffusion method against 27 commonly used antibiotics. Phylogrouping, virulence-associated gene detection, and hybrid strain detection via multiplex polymerase chain reaction (PCR) and genetic diversity were analysed via ERIC-PCR fingertyping method. RESULTS AST analysis showed 100% of isolates were multidrug-resistant (MDR) and highest resistance was against penicillin, tetracycline, and macrolide classes of antibiotics. The mcr-1 gene was present in 40% of the isolates, though only 4% of isolates were showing phenotypic resistance. Despite the scarce use of fluoroquinolone, carbapenem, and cephalosporin in the poultry sector, resistance was evident because of the high prevalence of extended-spectrum β-lactamase (ESBL) (53.7%) and other β-lactamases in APEC isolates. β-lactamase genotyping of APEC isolates revealed that 85.7% of isolates contained either blaCTX or blaTEM and around 38% of isolates were complement resistant. Growth in human urine was evident in 67.3% of isolates. Phylogroup B1 (51%) was the most prevalent group followed by phylogroups A (30.6%), D (13.61%), and B2 (4.76%). The most prevalent virulence-associated genes were fimH, iss, and tatT. Results showed that 26 isolates (17.69%) can be termed hybrid strains and APEC/EHEC (enterohemorrhagic E. coli) was the most prevalent hybrid E. coli pathotype. ERIC-PCR fingerprinting genotype analysis clustered APEC isolates in 40 groups (E1-E40). This study provides insights into the antibiotic resistance and virulence profiling of the APEC isolates in Pakistan. CONCLUSIONS The findings of this study provide insights into that the antibiotic resistance and virulence profiling of the APEC isolates in Pakistan. This data can inform future studies designed to better estimate the severity of the colibacillosis in poultry farms.
Collapse
Affiliation(s)
- Amna Jalil
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saleha Masood
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Quratul Ain
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Edward G Dudley
- Department of Food Sciences, Pennsylvania State University, University Park, Pennsylvania; Escherichia coli Reference Centre, Pennsylvania State University, University Park, Pennsylvania
| | - Fazal Adnan
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
8
|
Brannon JR, Reasoner SA, Bermudez TA, Dunigan TL, Wiebe MA, Beebout CJ, Ross T, Bamidele A, Hadjifrangiskou M. Mapping Niche-specific Two-Component System Requirements in Uropathogenic Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541942. [PMID: 37292752 PMCID: PMC10245908 DOI: 10.1101/2023.05.23.541942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sensory systems allow pathogens to differentiate between different niches and respond to stimuli within them. A major mechanism through which bacteria sense and respond to stimuli in their surroundings is two-component systems (TCSs). TCSs allow for the detection of multiple stimuli to lead to a highly controlled and rapid change in gene expression. Here, we provide a comprehensive list of TCSs important for the pathogenesis of uropathogenic Escherichia coli (UPEC). UPEC accounts for >75% of urinary tract infections (UTIs) worldwide. UTIs are most prevalent among people assigned female at birth, with the vagina becoming colonized by UPEC in addition to the gut and the bladder. In the bladder, adherence to the urothelium triggers E. coli invasion of bladder cells and an intracellular pathogenic cascade. Intracellular E. coli are safely hidden from host neutrophils, competition from the microbiota, and antibiotics that kill extracellular E. coli. To survive in these intimately connected, yet physiologically diverse niches E. coli must rapidly coordinate metabolic and virulence systems in response to the distinct stimuli encountered in each environment. We hypothesized that specific TCSs allow UPEC to sense these diverse environments encountered during infection with built-in redundant safeguards. Here, we created a library of isogenic TCS deletion mutants that we leveraged to map distinct TCS contributions to infection. We identify - for the first time - a comprehensive panel of UPEC TCSs that are critical for infection of the genitourinary tract and report that the TCSs mediating colonization of the bladder, kidneys, or vagina are distinct.
Collapse
Affiliation(s)
- John R. Brannon
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth A. Reasoner
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tomas A. Bermudez
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taryn L. Dunigan
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michelle A. Wiebe
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Connor J. Beebout
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tamia Ross
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adebisi Bamidele
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology & Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Lee KY, Lavelle K, Huang A, Atwill ER, Pitesky M, Li X. Assessment of Prevalence and Diversity of Antimicrobial Resistant Escherichia coli from Retail Meats in Southern California. Antibiotics (Basel) 2023; 12:antibiotics12040782. [PMID: 37107144 PMCID: PMC10135137 DOI: 10.3390/antibiotics12040782] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Retail meat products may serve as reservoirs and conduits for antimicrobial resistance, which is frequently monitored using Escherichia coli as indicator bacteria. In this study, E. coli isolation was conducted on 221 retail meat samples (56 chicken, 54 ground turkey, 55 ground beef, and 56 pork chops) collected over a one-year period from grocery stores in southern California. The overall prevalence of E. coli in retail meat samples was 47.51% (105/221), with E. coli contamination found to be significantly associated with meat type and season of sampling. From antimicrobial susceptibility testing, 51 isolates (48.57%) were susceptible to all antimicrobials tested, 54 (51.34%) were resistant to at least 1 drug, 39 (37.14%) to 2 or more drugs, and 21 (20.00%) to 3 or more drugs. Resistance to ampicillin, gentamicin, streptomycin, and tetracycline were significantly associated with meat type, with poultry counterparts (chicken or ground turkey) exhibiting higher odds for resistance to these drugs compared to non-poultry meats (beef and pork). From the 52 E. coli isolates selected to undergo whole-genome sequencing (WGS), 27 antimicrobial resistance genes (ARGs) were identified and predicted phenotypic AMR profiles with an overall sensitivity and specificity of 93.33% and 99.84%, respectively. Clustering assessment and co-occurrence networks revealed that the genomic AMR determinants of E. coli from retail meat were highly heterogeneous, with a sparsity of shared gene networks.
Collapse
Affiliation(s)
- Katie Yen Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA 95616, USA
| | - Kurtis Lavelle
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA 95616, USA
| | - Anny Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Maurice Pitesky
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Xunde Li
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
10
|
Li H, Hsieh K, Wong PK, Mach KE, Liao JC, Wang TH. Single-cell pathogen diagnostics for combating antibiotic resistance. NATURE REVIEWS. METHODS PRIMERS 2023; 3:6. [PMID: 39917628 PMCID: PMC11800871 DOI: 10.1038/s43586-022-00190-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/09/2025]
Abstract
Bacterial infections and antimicrobial resistance are a major cause for morbidity and mortality worldwide. Antimicrobial resistance often arises from antimicrobial misuse, where physicians empirically treat suspected bacterial infections with broad-spectrum antibiotics until standard culture-based diagnostic tests can be completed. There has been a tremendous effort to develop rapid diagnostics in support of the transition from empirical treatment of bacterial infections towards a more precise and personalized approach. Single-cell pathogen diagnostics hold particular promise, enabling unprecedented quantitative precision and rapid turnaround times. This Primer provides a guide for assessing, designing, implementing and applying single-cell pathogen diagnostics. First, single-cell pathogen diagnostic platforms are introduced based on three essential capabilities: cell isolation, detection assay and output measurement. Representative results, common analysis methods and key applications are highlighted, with an emphasis on initial screening of bacterial infection, bacterial species identification and antimicrobial susceptibility testing. Finally, the limitations of existing platforms are discussed, with perspectives offered and an outlook towards clinical deployment. This Primer hopes to inspire and propel new platforms that can realize the vision of precise and personalized bacterial infection treatments in the near future.
Collapse
Affiliation(s)
- Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Present address: School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL, USA
- These authors contributed equally: Hui Li, Kuangwen Hsieh
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- These authors contributed equally: Hui Li, Kuangwen Hsieh
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Kathleen E. Mach
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
11
|
Yousefipour M, Rezatofighi SE, Ardakani MR. Detection and characterization of hybrid uropathogenic Escherichia coli strains among E. coli isolates causing community-acquired urinary tract infection. J Med Microbiol 2023; 72. [PMID: 36753429 DOI: 10.1099/jmm.0.001660] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Introduction. The main aetiological agent of urinary tract infection (UTI) is Escherichia coli, categorized as uropathogenic E. coli (UPEC). The genome of UPEC shows a high degree of plasticity, which leads to the emergence of 'intermediary strains' with different traits from the parental pathotypes.Gap Statement/Aim. We aimed to assess the frequency and types of the hybrid UPEC among isolates causing UTI and characterize virulence properties of these hybrid isolates molecularly and phenotypically.Methodology. After detection of intestinal pathogenic E. coli (IPEC) virulence markers among 200 UPEC isolates, they were assessed for the presence of 40 virulence genes (VGs) of extraintestinal, uropathogenic and diarrhoeagenic E. coli, phylogenetic group typing, phenotypic traits including biofilm formation, adherence and invasion to HeLa cells, haemolysis activity and antimicrobial resistance.Results. The analysis showed 21 (10.5 %) UPEC isolates carried enteroaggregative E. coli (EAEC) and enteropathogenic E. coli (EPEC) virulence markers. Twenty isolates carried the aggR (EAEC) and one the eae and escV genes (EPEC), which were classified as hybrid strains. The most commonly identified genes were fimH (71.5 %), fyuA (66.7 %), iutA (62 %), chuA (57.1) and traT (47.6 %). Biofilm production, adhesion and invasion were found among 17 (81), 18 (85.7) and 11 (52.4 %) hybrids, respectively. Investigation of the genetic characteristics, phylogenetic group and virulence profile of the detected hybrids revealed that they have genetic diversity and do not belong to a particular clonal lineage.Conclusion. The present study reveals that some UPEC may carry virulence markers of IPEC pathotypes. EAEC and EPEC seem to have a greater tendency to form hybrids and cause UTI. Further studies are needed to elucidate what factors contributed to survival in the urinary tract system and facilitate infection and whether these combinations lead to an increase in pathogenicity or not.
Collapse
Affiliation(s)
- Mahta Yousefipour
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | |
Collapse
|
12
|
Gambushe SM, Zishiri OT, El Zowalaty ME. Review of Escherichia coli O157:H7 Prevalence, Pathogenicity, Heavy Metal and Antimicrobial Resistance, African Perspective. Infect Drug Resist 2022; 15:4645-4673. [PMID: 36039321 PMCID: PMC9420067 DOI: 10.2147/idr.s365269] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Escherichia coli O157:H7 is an important food-borne and water-borne pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome in humans and may cause serious morbidity and large outbreaks worldwide. People with bloody diarrhea have an increased risk of developing serious complications such as acute renal failure and neurological damage. The hemolytic-uremic syndrome (HUS) is a serious condition, and up to 50% of HUS patients can develop long-term renal dysfunction or blood pressure-related complications. Children aged two to six years have an increased risk of developing HUS. Clinical enteropathogenic Escherichia coli (EPEC) infections show fever, vomiting, and diarrhea. The EPEC reservoir is unknown but is suggested to be an asymptomatic or symptomatic child or an asymptomatic adult carrier. Spreading is often through the fecal-oral route. The prevalence of EPEC in infants is low, and EPEC is highly contagious in children. EPEC disease in children tends to be clinically more severe than other diarrheal infections. Some children experience persistent diarrhea that lasts for more than 14 days. Enterotoxigenic Escherichia coli (ETEC) strains are a compelling cause of the problem of diarrheal disease. ETEC strains are a global concern as the bacteria are the leading cause of acute watery diarrhea in children and the leading cause of traveler’s diarrhea. It is contagious to children and can cause chronic diarrhea that can affect the development and well-being of children. Infections with diarrheagenic E. coli are more common in African countries. Antimicrobial agents should be avoided in the acute phase of the disease since studies showed that antimicrobial agents may increase the risk of HUS in children. The South African National Veterinary Surveillance and Monitoring Programme for Resistance to Antimicrobial Drugs has reported increased antimicrobial resistance in E. coli. Pathogenic bacterial strains have developed resistance to a variety of antimicrobial agents due to antimicrobial misuse. The induced heavy metal tolerance may also enhance antimicrobial resistance. The prevalence of antimicrobial resistance depends on the type of the antimicrobial agent, bacterial strain, dose, time, and mode of administration. Developing countries are severely affected by increased resistance to antimicrobial agents due to poverty, lack of proper hygiene, and clean water, which can lead to bacterial infections with limited treatment options due to resistance.
Collapse
Affiliation(s)
- Sydney M Gambushe
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oliver T Zishiri
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Mohamed E El Zowalaty
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE 75 123, Sweden
| |
Collapse
|
13
|
Tobuse AJ, Ang CW, Yeong KY. Modern vaccine development via reverse vaccinology to combat antimicrobial resistance. Life Sci 2022; 302:120660. [PMID: 35642852 DOI: 10.1016/j.lfs.2022.120660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
With the continuous evolution of bacteria, the global antimicrobial resistance health threat is causing millions of deaths yearly. While depending on antibiotics as a primary treatment has its merits, there are no effective alternatives thus far in the pharmaceutical market against some drug-resistant bacteria. In recent years, vaccinology has become a key topic in scientific research. Combining with the growth of technology, vaccine research is seeing a new light where the process is made faster and more efficient. Although less discussed, bacterial vaccine is a feasible strategy to combat antimicrobial resistance. Some vaccines have shown promising results with good efficacy against numerous multidrug-resistant strains of bacteria. In this review, we aim to discuss the findings from studies utilizing reverse vaccinology for vaccine development against some multidrug-resistant bacteria, as well as provide a summary of multi-year bacterial vaccine studies in clinical trials. The advantages of reverse vaccinology in the generation of new bacterial vaccines are also highlighted. Meanwhile, the limitations and future prospects of bacterial vaccine concludes this review.
Collapse
Affiliation(s)
- Asuka Joy Tobuse
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Chee Wei Ang
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| |
Collapse
|
14
|
Li H, Wu G, Zhao L, Zhang M. Suppressed inflammation in obese children induced by a high-fiber diet is associated with the attenuation of gut microbial virulence factor genes. Virulence 2021; 12:1754-1770. [PMID: 34233588 PMCID: PMC8274444 DOI: 10.1080/21505594.2021.1948252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
In our previous study, a gut microbiota-targeted dietary intervention with a high-fiber diet improved the immune status of both genetically obese (Prader-Willi Syndrome, PWS) and simple obese (SO) children. However, PWS children had higher inflammation levels than SO children throughout the trial, the gut microbiota of the two cohorts was similar. As some virulence factors (VFs) produced by the gut microbiota play a role in triggering host inflammation, this study compared the characteristics and changes of gut microbial VF genes of the two cohorts before and after the intervention using a fecal metagenomic dataset. We found that in both cohorts, the high-fiber diet reduced the abundance of VF, and particularly pathogen-specific, genes. The composition of VF genes was also modulated, especially for offensive and defensive VF genes. Furthermore, genes belonging to invasion, T3SS (type III secretion system), and adherence classes were suppressed. Co-occurrence network analysis detected VF gene clusters closely related to host inflammation in each cohort. Though these cohort-specific clusters varied in VF gene combinations and cascade reactions affecting inflammation, they mainly contained VFs belonging to iron uptake, T3SS, and invasion classes. The PWS group had a lower abundance of VF genes before the trial, which suggested that other factors could also be responsible for the increased inflammation in this cohort. This study provides insight into the modulation of VF gene structure in the gut microbiota by a high-fiber diet, with respect to reduced inflammation in obese children, and differences in VF genes between these two cohorts.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition and Health, School of Environmental and Biological Sciences, Rutgers University, NJ, USA
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
15
|
Leclercq SO, Branger M, Smith DGE, Germon P. Lipopolysaccharide core type diversity in the Escherichia coli species in association with phylogeny, virulence gene repertoire and distribution of type VI secretion systems. Microb Genom 2021; 7. [PMID: 34586053 PMCID: PMC8715443 DOI: 10.1099/mgen.0.000652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli is a very versatile species for which diversity has been explored from various perspectives highlighting, for example, phylogenetic groupings and pathovars, as well as a wide range of O serotypes. The highly variable O-antigen, the most external part of the lipopolysaccharide (LPS) component of the outer membrane of E. coli, is linked to the innermost lipid A through the core region of LPS of which five different structures, denominated K-12, R1, R2, R3 and R4, have been characterized so far. The aim of the present study was to analyse the prevalence of these LPS core types in the E. coli species and explore their distribution in the different E. coli phylogenetic groups and in relationship with the virulence gene repertoire. Results indicated an uneven distribution of core types between the different phylogroups, with phylogroup A strains being the most diverse in terms of LPS core types, while phylogroups B1, D and E strains were dominated by the R3 type, and phylogroups B2 and C strains were dominated by the R1 type. Strains carrying the LEE virulence operon were mostly of the R3 type whatever the phylogroup while, within phylogroup B2, strains carrying a K-12 core all belonged to the complex STc131, one of the major clones of extraintestinal pathogenic E. coli (ExPEC) strains. The origin of this uneven distribution is discussed but remains to be fully explained, as well as the consequences of carrying a specific core type on the wider aspects of bacterial phenotype.
Collapse
Affiliation(s)
| | - Maxime Branger
- UMR ISP, INRAE, Université François Rabelais de Tours, F-37380 Nouzilly, France
| | - David G E Smith
- Institute for Biological Chemistry, Biophysics and Bioengineering (IB3), Riccarton Campus, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Pierre Germon
- UMR ISP, INRAE, Université François Rabelais de Tours, F-37380 Nouzilly, France
| |
Collapse
|
16
|
Gajdács M, Kárpáti K, Nagy ÁL, Gugolya M, Stájer A, Burián K. Association between biofilm-production and antibiotic resistance in Escherichia coli isolates: A laboratory-based case study and a literature review. Acta Microbiol Immunol Hung 2021. [PMID: 34524972 DOI: 10.1556/030.2021.01487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
Bacteria can enhance their survival by attaching to inanimate surfaces or tissues, and presenting as multicellular communities encased in a protective extracellular matrix called biofilm. There has been pronounced interest in assessing the relationship between the antibiotic resistant phenotype and biofilm-production in clinically-relevant pathogens. The aim of the present paper was to provide additional experimental results on the topic, testing the biofilm-forming capacity of Escherichia coli isolates using in vitro methods in the context of their antibiotic resistance in the form of a laboratory case study, in addition to provide a comprehensive review of the subject. In our case study, a total of two hundred and fifty (n = 250) E. coli isolates, originating from either clean-catch urine samples (n = 125) or invasive samples (n = 125) were included. The colony morphology of isolates were recorded after 24h, while antimicrobial susceptibility testing was performed using the Kirby-Bauer disk diffusion method. Biofilm-formation of the isolates was assessed with the crystal violet tube-adherence method. Altogether 57 isolates (22.8%) isolates were multidrug resistant (MDR), 89 isolates (35.6%) produced large colonies (>3 mm), mucoid variant colonies were produced in 131 cases (52.4%), and 108 (43.2%) were positive for biofilm formation. Biofilm-producers were less common among isolates resistant to third-generation cephalosporins and trimethoprim-sulfamethoxazole (P = 0.043 and P = 0.023, respectively). Biofilms facilitate a protective growth strategy in bacteria, ensuring safety against environmental stressors, components of the immune system and noxious chemical agents. Being an integral part of bacterial physiology, biofilm-formation is interdependent with the expression of other virulence factors (especially adhesins) and quorum sensing signal molecules. More research is required to allow for the full understanding of the interplay between the MDR phenotype and biofilm-production, which will facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Márió Gajdács
- 1Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt 63., 6720 Szeged, Hungary
- 2Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Krisztina Kárpáti
- 3Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 64-66., 6720 Szeged, Hungary
| | - Ádám László Nagy
- 4Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64., 6720 Szeged, Hungary
| | - Máté Gugolya
- 2Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4., 1089 Budapest, Hungary
| | - Anette Stájer
- 5Department of Periodontology, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64., 6720 Szeged, Hungary
| | - Katalin Burián
- 6Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Faculty of Medicine, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary
| |
Collapse
|
17
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|
18
|
Mehat JW, van Vliet AHM, La Ragione RM. The Avian Pathogenic Escherichia coli (APEC) pathotype is comprised of multiple distinct, independent genotypes. Avian Pathol 2021; 50:402-416. [PMID: 34047644 DOI: 10.1080/03079457.2021.1915960] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Avian Pathogenic E. coli (APEC) is the causative agent of avian colibacillosis, resulting in economic losses to the poultry industry through morbidity, mortality and carcass condemnation, and impacts the welfare of poultry. Colibacillosis remains a complex disease to manage, hampered by diagnostic and classification strategies for E. coli that are inadequate for defining APEC. However, increased accessibility of whole genome sequencing (WGS) technology has enabled phylogenetic approaches to be applied to the classification of E. coli and genomic characterization of the most common APEC serotypes associated with colibacillosis O1, O2 and O78. These approaches have demonstrated that the O78 serotype is representative of two distinct APEC lineages, ST-23 in phylogroup C and ST-117 in phylogroup G. The O1 and O2 serotypes belong to a third lineage comprised of three sub-populations in phylogroup B2; ST-95, ST-140 and ST-428/ST-429. The frequency with which these genotypes are associated with colibacillosis implicates them as the predominant APEC populations and distinct from those causing incidental or opportunistic infections. The fact that these are disparate clusters from multiple phylogroups suggests that these lineages may have become adapted to the poultry niche independently. WGS studies have highlighted the limitations of traditional APEC classification and can now provide a path towards a robust and more meaningful definition of the APEC pathotype. Future studies should focus on characterizing individual APEC populations in detail and using this information to develop improved diagnostics and interventions.
Collapse
Affiliation(s)
- Jai W Mehat
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
19
|
Gomes TAT, Dobrindt U, Farfan MJ, Piazza RMF. Editorial: Interaction of Pathogenic Escherichia coli With the Host: Pathogenomics, Virulence and Antibiotic Resistance. Front Cell Infect Microbiol 2021; 11:654283. [PMID: 33869085 PMCID: PMC8044399 DOI: 10.3389/fcimb.2021.654283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Muenster, Muenster, Germany
| | - Mauricio J Farfan
- Laboratorio Clínico, Hospital Dr. Luis Calvo Mackenna, Santiago, Chile.,Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
20
|
Nascimento JAS, Santos FF, Valiatti TB, Santos-Neto JF, M. Santos AC, Cayô R, Gales AC, A. T. Gomes T. Frequency and Diversity of Hybrid Escherichia coli Strains Isolated from Urinary Tract Infections. Microorganisms 2021; 9:microorganisms9040693. [PMID: 33801702 PMCID: PMC8065829 DOI: 10.3390/microorganisms9040693] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
(1) Background: Hybrid uropathogenic Escherichia coli (UPEC) strains carry virulence markers of the diarrheagenic E. coli (DEC) pathotypes, which may increase their virulence potential. This study analyzed the frequency and virulence potential of hybrid strains among 452 UPEC strains. (2) Methods: Strains were tested for the DEC virulence diagnostic genes’ presence by polymerase chain reaction (PCR). Those carrying at least one gene were classified as hybrid and further tested for 10 UPEC and extraintestinal pathogenic E. coli (ExPEC) virulence genes and phylogenetic classification. Also, their ability to produce hemolysis, adhere to HeLa and renal HEK 293T cells, form a biofilm, and antimicrobial susceptibility were evaluated. (3) Results: Nine (2%) hybrid strains were detected; seven of them carried aggR and two, eae, and were classified as UPEC/EAEC (enteroaggregative E. coli) and UPEC/aEPEC (atypical enteropathogenic E. coli), respectively. They belonged to phylogroups A (five strains), B1 (three), and D (one), and adhered to both cell lineages tested. Only the UPEC/EAEC strains were hemolytic (five strains) and produced biofilm. One UPEC/aEPEC strain was resistant to third-generation cephalosporins and carried blaCTX-M-15. (4) Conclusions: Our findings contribute to understanding the occurrence and pathogenicity of hybrid UPEC strains, which may cause more severe infections.
Collapse
Affiliation(s)
- Júllia A. S. Nascimento
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
| | - Fernanda F. Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (R.C.); (A.C.G.)
| | - Tiago B. Valiatti
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (R.C.); (A.C.G.)
| | - José F. Santos-Neto
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
| | - Ana Carolina M. Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
| | - Rodrigo Cayô
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (R.C.); (A.C.G.)
- Laboratório de Imunologia e Microbiologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Diadema 09972-270, Brazil
| | - Ana C. Gales
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (R.C.); (A.C.G.)
| | - Tânia A. T. Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
21
|
Ballem A, Gonçalves S, Garcia-Meniño I, Flament-Simon SC, Blanco JE, Fernandes C, Saavedra MJ, Pinto C, Oliveira H, Blanco J, Almeida G, Almeida C. Prevalence and serotypes of Shiga toxin-producing Escherichia coli (STEC) in dairy cattle from Northern Portugal. PLoS One 2020; 15:e0244713. [PMID: 33382795 PMCID: PMC7774927 DOI: 10.1371/journal.pone.0244713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
The prevalence of Shiga toxin (Stx)-producing Escherichia coli (STEC) was determined by evaluating its presence in faecal samples from 155 heifers, and 254 dairy cows in 21 farms at North of Portugal sampled between December 2017 and June 2019. The prevalence of STEC in heifers (45%) was significantly higher than in lactating cows (16%) (p<0.05, Fisher exact test statistic value is <0.00001). A total of 133 STEC were isolated, 24 (13.8%) carried Shiga-toxin 1 (stx1) genes, 69 (39.7%) carried Shiga-toxin 2 (stx2) genes, and 40 (23%) carried both stx1 and stx2. Intimin (eae) virulence gene was detected in 29 (21.8%) of the isolates. STEC isolates belonged to 72 different O:H serotypes, comprising 40 O serogroups and 23 H types. The most frequent serotypes were O29:H12 (15%) and O113:H21 (5.2%), found in a large number of farms. Two isolates belonged to the highly virulent serotypes associated with human disease O157:H7 and O26:H11. Many other bovine STEC serotypes founded in this work belonged to serotypes previously described as pathogenic to humans. Thus, this study highlights the need for control strategies that can reduce STEC prevalence at the farm level and, thus, prevent food and environmental contamination.
Collapse
Affiliation(s)
- Andressa Ballem
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Farroupilha Federal Institute, Campus of São Vicente do Sul, Rio Grande do Sul, São Vicente do Sul, Brazil
- Centre for the Research and Technology of Agro-Environmental and Biological Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centro de Investigação de Montanha, School of Agriculture, Polytechnic Institute of Bragança, Bragança, Portugal
| | - Soraia Gonçalves
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Isidro Garcia-Meniño
- Laboratorio de Referencia de E. coli, Department of Microbiology and Parasitology, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Saskia C. Flament-Simon
- Laboratorio de Referencia de E. coli, Department of Microbiology and Parasitology, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús E. Blanco
- Laboratorio de Referencia de E. coli, Department of Microbiology and Parasitology, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Conceição Fernandes
- Centro de Investigação de Montanha, School of Agriculture, Polytechnic Institute of Bragança, Bragança, Portugal
| | - Maria José Saavedra
- Veterinary Science Department, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Science, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Carlos Pinto
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Hugo Oliveira
- Centre of Biological Engineering, University of Minho, Campus of Gualtar, Braga, Portugal
- * E-mail: (CA); (HO)
| | - Jorge Blanco
- Laboratorio de Referencia de E. coli, Department of Microbiology and Parasitology, Veterinary Faculty, University of Santiago de Compostela, Lugo, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gonçalo Almeida
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
| | - Carina Almeida
- National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal
- * E-mail: (CA); (HO)
| |
Collapse
|
22
|
Braz VS, Melchior K, Moreira CG. Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Front Cell Infect Microbiol 2020; 10:548492. [PMID: 33409157 PMCID: PMC7779793 DOI: 10.3389/fcimb.2020.548492] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic plasticity promotes evolution and a vast diversity in Escherichia coli varying from avirulent to highly pathogenic strains, including the emergence of virulent hybrid microorganism. This ability also contributes to the emergence of antimicrobial resistance. These hybrid pathogenic E. coli (HyPEC) are emergent threats, such as O104:H4 from the European outbreak in 2011, aggregative adherent bacteria with the potent Shiga-toxin. Here, we briefly revisited the details of these E. coli classic and hybrid pathogens, the increase in antimicrobial resistance in the context of a genetically empowered multifaceted and versatile bug and the growing need to advance alternative therapies to fight these infections.
Collapse
Affiliation(s)
- Vânia Santos Braz
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Karine Melchior
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
23
|
Azurmendi HF, Veeramachineni V, Freese S, Lichaa F, Freedberg DI, Vann WF. Chemical structure and genetic organization of the E. coli O6:K15 capsular polysaccharide. Sci Rep 2020; 10:12608. [PMID: 32724125 PMCID: PMC7387560 DOI: 10.1038/s41598-020-69476-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Capsular polysaccharides are important virulence factors in pathogenic bacteria. Characterizing the structural components and biosynthetic pathways for these polysaccharides is key to our ability to design vaccines and other preventative therapies that target encapsulated pathogens. Many gram-negative pathogens such as Neisseria meningitidis and Escherichia coli express acidic capsules. The E. coli K15 serotype has been identified as both an enterotoxigenic and uropathogenic pathogen. Despite its relevance as a disease-causing serotype, the associated capsular polysaccharide remains poorly characterized. We describe in this report the chemical structure of the K15 polysaccharide, based on chemical analysis and nuclear magnetic resonance (NMR) data. The repeating structure of the K15 polysaccharide consists of 4)-α-GlcpNAc-(1 → 5)-α-KDOp-(2 → partially O-acetylated at 3-hydroxyl of GlcNAc. We also report, the organization of the gene cluster responsible for capsule biosynthesis. We identify genes in this cluster that potentially encode an O-acetyltransferase, an N-acetylglucosamine transferase, and a KDO transferase consistent with the structure we report.
Collapse
Affiliation(s)
- Hugo F Azurmendi
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Vamsee Veeramachineni
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Stephen Freese
- Affinivax, 650 East Kendall St, Cambridge, MA, 02138, USA
| | - Flora Lichaa
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Darón I Freedberg
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Willie F Vann
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
24
|
Habouria H, Pokharel P, Maris S, Garénaux A, Bessaiah H, Houle S, Veyrier FJ, Guyomard-Rabenirina S, Talarmin A, Dozois CM. Three new serine-protease autotransporters of Enterobacteriaceae (SPATEs) from extra-intestinal pathogenic Escherichia coli and combined role of SPATEs for cytotoxicity and colonization of the mouse kidney. Virulence 2020; 10:568-587. [PMID: 31198092 PMCID: PMC6592367 DOI: 10.1080/21505594.2019.1624102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Serine protease autotransporters of Enterobacteriaceae (SPATEs) are secreted proteins that contribute to virulence and function as proteases, toxins, adhesins, and/or immunomodulators. An extra-intestinal pathogenic E. coli (ExPEC) O1:K1 strain, QT598, isolated from a turkey, was shown to contain vat, tsh, and three uncharacterized SPATE-encoding genes. Uncharacterized SPATEs: Sha (Serine-protease hemagglutinin autotransporter), TagB and TagC (tandem autotransporter genes B and C) were tested for activities including hemagglutination, autoaggregation, and cytotoxicity when expressed in E. coli K-12. Sha and TagB conferred autoaggregation and hemagglutination activities. TagB, TagC, and Sha all exhibited cytopathic effects on a bladder epithelial cell line. In QT598, tagB and tagC are tandemly encoded on a genomic island, and were present in 10% of UTI isolates and 4.7% of avian E. coli. Sha is encoded on a virulence plasmid and was present in 1% of UTI isolates and 20% of avian E. coli. To specifically examine the role of SPATEs for infection, the 5 SPATE genes were deleted from strain QT598 and tested for cytotoxicity. Loss of all five SPATEs abrogated the cytopathic effect on bladder epithelial cells, although derivatives producing any of the 5 SPATEs retained cytopathic activity. In mouse infections, sha gene-expression was up-regulated a mean of sixfold in the bladder compared to growth in vitro. Loss of either tagBC or sha did not reduce urinary tract colonization. Deletion of all 5 SPATEs, however, significantly reduced competitive colonization of the kidney supporting a cumulative role of SPATEs for QT598 in the mouse UTI model.
Collapse
Affiliation(s)
- Hajer Habouria
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Pravil Pokharel
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Segolène Maris
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Amélie Garénaux
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Hicham Bessaiah
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Sébastien Houle
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA)
| | - Frédéric J Veyrier
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,c Institut Pasteur International Network
| | - Stéphanie Guyomard-Rabenirina
- c Institut Pasteur International Network.,d Unité Environnement Santé , Institut Pasteur de Guadeloupe , Les Abymes , Guadeloupe , France
| | - Antoine Talarmin
- c Institut Pasteur International Network.,d Unité Environnement Santé , Institut Pasteur de Guadeloupe , Les Abymes , Guadeloupe , France
| | - Charles M Dozois
- a Institut national de recherche scientifique (INRS)-Institut Armand Frappier , Laval , Quebec , Canada.,b Centre de recherche en infectiologie porcine et avicole (CRIPA).,c Institut Pasteur International Network
| |
Collapse
|
25
|
Adamus-Białek W, Wawszczak M, Arabski M, Majchrzak M, Gulba M, Jarych D, Parniewski P, Głuszek S. Ciprofloxacin, amoxicillin, and aminoglycosides stimulate genetic and phenotypic changes in uropathogenic Escherichia coli strains. Virulence 2020; 10:260-276. [PMID: 30938219 PMCID: PMC6527016 DOI: 10.1080/21505594.2019.1596507] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Antibiotic therapy and its consequences in bacterial and human aspects are widely investigated. Despite this, the emergence of new multidrug resistant bacteria is still a current problem. The scope of our work included the observation of changes among uropathogenic Escherichia coli strains after the treatment with a subinhibitory concentration of different antibiotics. The sensitive strains with or without virulence factors were incubated with amoxicillin, ciprofloxacin, gentamycin, or tobramycin. After each passage, the E. coli derivatives were compared to their wild types based on their susceptibility profiles, virulence genes, biofilm formations and the fingerprint profiles of PCR products amplified with using the (N)(6)(CGG)(4) primer. It turned out that antibiotics caused significant changes in the repertoire of bacterial virulence and biofilm formation, corresponding to acquired cross-resistance. The genomic changes among the studied bacteria were reflected in the changed profiles of the CGG-PCR products. In conclusion, the inappropriate application of antibiotics may cause a rapid rise of Multidrug Resistant (MDR) strains and give bacteria a chance to modulate their own pathogenicity. This phenomenon has been easily observed among uropathogenic E. coli strains and it is one of the main reasons for recurrent infections of the urinary tract.
Collapse
Affiliation(s)
- Wioletta Adamus-Białek
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Monika Wawszczak
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Michał Arabski
- b Department of Biochemistry & Genetics , Jan Kochanowski University , Kielce , Poland
| | - Michał Majchrzak
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Martyna Gulba
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| | - Dariusz Jarych
- c Institute of Medical Biology, Polish Academy of Sciences , Łódź , Poland
| | - Paweł Parniewski
- c Institute of Medical Biology, Polish Academy of Sciences , Łódź , Poland
| | - Stanisław Głuszek
- a Department of Surgery and Surgical Nursery with Laboratory of Genetics, Faculty of Medicine and Health Sciences , Jan Kochanowski University , Kielce , Poland
| |
Collapse
|
26
|
Satpathy G, Chandra GK, Manikandan E, Mahapatra DR, Umapathy S. Pathogenic Escherichia coli (E. coli) detection through tuned nanoparticles enhancement study. Biotechnol Lett 2020; 42:853-863. [PMID: 32040672 DOI: 10.1007/s10529-020-02835-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 02/04/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE This study aims to detect pathogenic Escherichia coli (E. coli) bacteria using non-destructive fluorescence microscopy and micro-Raman spectroscopy. RESULTS Raman vibrational spectroscopy provides additional information regarding biochemical changes at the cellular level. We have used two nanomaterials zinc oxide nanoparticles (ZnO-NPs) and gold nanoparticles (Au-NPs) to detect pathogenic E. coli. The scanning electron microscope (SEM) with energy dispersive X-ray (EDAX) spectroscopy exhibit surface morphology and the elemental composition of the synthesized NPs. The metal NPs are useful contrast agents due to the surface plasmon resonance (SPR) to detect the signal intensity and hence the bacterial cells. The changes due to the interaction between cells and NPs are further correlated to the change in the surface charge and stiffness of the cell surface with the help of the fluorescence microscopic assay. CONCLUSIONS We conclude that when two E. coli strains (MTCC723 and MTCC443) and NPs are respectively mixed and kept overnight, the growth of bacteria are inhibited by ZnO-NPs due to changes in cell membrane permeability and intracellular metabolic system under fluorescence microscopy. However, SPR possessed Au-NPs result in enhanced fluorescence of both pathogens. In addition, with the help of Raman microscopy and element analysis, significant changes are observed when Au-NPs are added with the two strains as compared to ZnO-NPs due to protein, lipid and DNA/RNA induced conformational changes.
Collapse
Affiliation(s)
- Gargibala Satpathy
- Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Bharath Institute for Higher Education & Research (BIHER), Bharath University, Chennai, Tamil Nadu, 600073, India.,Laboratory of Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, 560012, India
| | | | - E Manikandan
- Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Bharath Institute for Higher Education & Research (BIHER), Bharath University, Chennai, Tamil Nadu, 600073, India. .,Solid-State Nanoscale Laboratory, Department of Physics, TUCAS Campus, Thiruvalluvar University, Thennangur, Vellore, 604408, India.
| | - D Roy Mahapatra
- Laboratory of Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, 560012, India.
| | - Siva Umapathy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India. .,Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
27
|
IslandCafe: Compositional Anomaly and Feature Enrichment Assessment for Delineation of Genomic Islands. G3-GENES GENOMES GENETICS 2019; 9:3273-3285. [PMID: 31387857 PMCID: PMC6778810 DOI: 10.1534/g3.119.400562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One of the evolutionary forces driving bacterial genome evolution is the acquisition of clusters of genes through horizontal gene transfer (HGT). These genomic islands may confer adaptive advantages to the recipient bacteria, such as, the ability to thwart antibiotics, become virulent or hypervirulent, or acquire novel metabolic traits. Methods for detecting genomic islands either search for markers or features typical of islands or examine anomaly in oligonucleotide composition against the genome background. The former tends to underestimate, missing islands that have the markers either lost or degraded, while the latter tends to overestimate, due to their inability to discriminate compositional atypicality arising because of HGT from those that are a consequence of other biological factors. We propose here a framework that exploits the strengths of both these approaches while bypassing the pitfalls of either. Genomic islands lacking markers are identified by their association with genomic islands with markers. This was made possible by performing marker enrichment and phyletic pattern analyses within an integrated framework of recursive segmentation and clustering. The proposed method, IslandCafe, compared favorably with frequently used methods for genomic island detection on synthetic test datasets and on a test-set of known islands from 15 well-characterized bacterial species. Furthermore, IslandCafe identified novel islands with imprints of likely horizontal acquisition.
Collapse
|
28
|
Ambite I, Butler DSC, Stork C, Grönberg-Hernández J, Köves B, Zdziarski J, Pinkner J, Hultgren SJ, Dobrindt U, Wullt B, Svanborg C. Fimbriae reprogram host gene expression - Divergent effects of P and type 1 fimbriae. PLoS Pathog 2019; 15:e1007671. [PMID: 31181116 PMCID: PMC6557620 DOI: 10.1371/journal.ppat.1007671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/01/2019] [Indexed: 01/03/2023] Open
Abstract
Pathogens rely on a complex virulence gene repertoire to successfully attack their hosts. We were therefore surprised to find that a single fimbrial gene reconstitution can return the virulence-attenuated commensal strain Escherichia coli 83972 to virulence, defined by a disease phenotype in human hosts. E. coli 83972pap stably reprogrammed host gene expression, by activating an acute pyelonephritis-associated, IRF7-dependent gene network. The PapG protein was internalized by human kidney cells and served as a transcriptional agonist of IRF-7, IFN-β and MYC, suggesting direct involvement of the fimbrial adhesin in this process. IRF-7 was further identified as a potent upstream regulator (-log (p-value) = 61), consistent with the effects in inoculated patients. In contrast, E. coli 83972fim transiently attenuated overall gene expression in human hosts, enhancing the effects of E. coli 83972. The inhibition of RNA processing and ribosomal assembly indicated a homeostatic rather than a pathogenic end-point. In parallel, the expression of specific ion channels and neuropeptide gene networks was transiently enhanced, in a FimH-dependent manner. The studies were performed to establish protective asymptomatic bacteriuria in human hosts and the reconstituted E. coli 83972 variants were developed to improve bacterial fitness for the human urinary tract. Unexpectedly, P fimbriae were able to drive a disease response, suggesting that like oncogene addiction in cancer, pathogens may be addicted to single super-virulence factors. Urinary tract infections affect millions of individuals annually, and many patients suffer from recurring infections several times a year. Antibiotic resistance is increasing rapidly and new strategies are needed to treat even these common bacterial infections. One approach is to use the protective power of asymptomatic bacterial carriage, which has been shown to protect the host against symptomatic urinary tract infection. Instilling “nice” bacteria in the urinary bladder is therefore a promising alternative approach to antibiotic therapy. In an effort to increase the therapeutic use of asymptomatic bacteriuria, we reintroduced bacterial adhesion molecules into the therapeutic Escherichia coli strain 83972 and inoculated patients who are in need of alternative therapy. To our great surprise, the P fimbriated variant caused symptoms, despite lacking other virulence factors commonly thought to be necessary to cause disease. In contrast, type 1 fimbriae, did not provoke symptoms but enhanced the beneficial properties of the wild-type strain. This is explained by a divergent effect of these fimbrial types on host gene expression, where P fimbriae activate the IRF-7 transcription factor that regulates pathology in infected kidneys, suggesting that a single, potent virulence gene may be sufficient to create virulence in human hosts.
Collapse
Affiliation(s)
- Ines Ambite
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Daniel S. C. Butler
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Christoph Stork
- Institute of Hygiene, University of Münster, Mendelstr, Münster, Germany
| | - Jenny Grönberg-Hernández
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Bela Köves
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Jaroslaw Zdziarski
- Institute for Molecular Biology of Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Jerome Pinkner
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Center for Women's Infectious Disease Research (CWIDR), Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Mendelstr, Münster, Germany
- Institute for Molecular Biology of Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Björn Wullt
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
| | - Catharina Svanborg
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Klinikgatan, Lund, Sweden
- * E-mail:
| |
Collapse
|
29
|
Devi TS, Durairaj E, Lyngdoh WV, Duwarah SG, Khyriem AB, Lyngdoh CJ. Real-time multiplex polymerase chain reaction with high-resolution melting-curve analysis for the diagnosis of enteric infections associated with diarrheagenic Escherichia coli. Indian J Med Microbiol 2019; 36:547-556. [PMID: 30880705 DOI: 10.4103/ijmm.ijmm_18_277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction Although diarrheagenic Escherichia coli (DEC) strains are important bacterial causative agents of diarrhoea, they are not routinely sought as stool pathogens in clinical laboratories as conventional microbiological testing are unable to distinguish between normal flora and pathogenic strains of E. coli. This study was undertaken to determine the prevalence of DEC pathotypes amongst children with and without diarrhoea and to detect specific virulent genes present in different DEC pathotypes, using real-time multiplex polymerase chain reaction (PCR) with high-resolution melting (HRM) technology. Materials and Methods Stool samples were obtained from cases and controls. Using a set of conventional biochemical tests, E. coli strains were identified. Further, these isolates were subjected to multiplex PCR system for the detection of virulence genes of different pathotypes of DEC. Real-time multiplex PCR was performed for the detection of specific virulent genes of DEC pathotypes, using Rotor-Gene Q instrument (Qiagen) having High-resolution Melt analyser using Type-it HRM PCR kit (Qiagen) containing EvaGreen fluorescent intercalating dye. Results In this study, we had successfully standardised two multiplex PCR assays which were found to be effective for direct detection of enteropathogenic E. coli (EPEC), enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC) and enteroinvasive E. coli (EIEC). A total of 42 DEC strains were detected at an overall rate of 19.3% (n = 42), from the total 217 E. coli isolates recovered from the cases (n = 39, 17.9%) and control (n = 3, 3.8%) groups. Amongst the 42 DEC pathotypes (39 from cases and 3 from controls), EPEC (10%), EAEC (8.82%), ETEC (2.94%) and EIEC (1.18%) were found in children with diarrhoea (cases) and in children without diarrhoea (control) only EAEC (2.13%) and EPEC (4.26%) were detected. Age distribution, gender variation, seasonal variation and clinical features were also analysed. Conclusion This study helped evaluate the prevalence of DEC amongst children (<18 years of age) with and without diarrhoea using multiplex real-time PCR with HRM analysis.
Collapse
Affiliation(s)
- Thingujam Surbala Devi
- Department of Microbiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Elantamilan Durairaj
- Department of Microbiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Wihiwot Valarie Lyngdoh
- Department of Microbiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Sourabh Gohain Duwarah
- Department of Pediatrics, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Annie Bakorlin Khyriem
- Department of Microbiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| | - Clarissa Jane Lyngdoh
- Department of Microbiology, North Eastern Indira Gandhi Regional Institute of Health and Medical Sciences, Shillong, Meghalaya, India
| |
Collapse
|
30
|
Bhandari AB, Reifenberger JG, Chuang HM, Cao H, Dorfman KD. Measuring the wall depletion length of nanoconfined DNA. J Chem Phys 2018; 149:104901. [PMID: 30219022 PMCID: PMC6135644 DOI: 10.1063/1.5040458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
Efforts to study the polymer physics of DNA confined in nanochannels have been stymied by a lack of consensus regarding its wall depletion length. We have measured this quantity in 38 nm wide, square silicon dioxide nanochannels for five different ionic strengths between 15 mM and 75 mM. Experiments used the Bionano Genomics Irys platform for massively parallel data acquisition, attenuating the effect of the sequence-dependent persistence length and finite-length effects by using nick-labeled E. coli genomic DNA with contour length separations of at least 30 µm (88 325 base pairs) between nick pairs. Over 5 × 106 measurements of the fractional extension were obtained from 39 291 labeled DNA molecules. Analyzing the stretching via Odijk's theory for a strongly confined wormlike chain yielded a linear relationship between the depletion length and the Debye length. This simple linear fit to the experimental data exhibits the same qualitative trend as previously defined analytical models for the depletion length but now quantitatively captures the experimental data.
Collapse
Affiliation(s)
- Aditya Bikram Bhandari
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Jeffrey G Reifenberger
- Bionano Genomics, Inc., 9640 Towne Centre Drive, Suite 100, San Diego, California 92121, USA
| | - Hui-Min Chuang
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Han Cao
- Bionano Genomics, Inc., 9640 Towne Centre Drive, Suite 100, San Diego, California 92121, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
31
|
Deng J, Auchtung JM, Konstantinidis KT, Caro-Quintero A, Brettar I, Höfle M, Tiedje JM. Divergence in Gene Regulation Contributes to Sympatric Speciation of Shewanella baltica Strains. Appl Environ Microbiol 2018; 84:e02015-17. [PMID: 29222101 PMCID: PMC5795076 DOI: 10.1128/aem.02015-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Abstract
Niche partitioning and sequence evolution drive genomic and phenotypic divergence, which ultimately leads to bacterial diversification. This study investigated the genomic composition of two Shewanella baltica clades previously identified through multilocus sequencing typing and recovered from the redox transition zone in the central Baltic Sea. Comparative genomic analysis revealed significantly higher interclade than intraclade genomic dissimilarity and that a subset of genes present in clade A were associated with potential adaptation to respiration of sulfur compounds present in the redox transition zone. The transcriptomic divergence between two representative strains of clades A and D, OS185 and OS195, was also characterized and revealed marked regulatory differences. We found that both the transcriptional divergence of shared genes and expression of strain-specific genes led to differences in regulatory patterns between strains that correlate with environmental redox niches. For instance, under anoxic conditions of respiratory nitrate ammonification, OS185-the strain isolated from a nitrate-rich environment-upregulated nearly twice the number of shared genes upregulated by OS195-the strain isolated from an H2S-containing anoxic environment. Conversely, OS195 showed stronger induction of strain-specific genes, especially those associated with sulfur compound respiration, under thiosulfate-reducing conditions. A positive association between the level of transcriptional divergence and the level of sequence divergence for shared genes was also noted. Our results provide further support for the hypothesis that genomic changes impacting transcriptional regulation play an important role in the diversification of ecologically distinct populations.IMPORTANCE This study examined potential mechanisms through which co-occurring Shewanella baltica strains diversified to form ecologically distinct populations. At the time of isolation, the strains studied composed the major fraction of culturable nitrate-reducing communities in the Baltica Sea. Analysis of genomic content of 13 S. baltica strains from two clades representing different ecotypes demonstrated that one clade specifically possesses a number of genes that could favor successful adaptation to respire sulfur compounds in the portion of the water column from which these strains were isolated. In addition, transcriptional profiling of fully sequenced strains representative of these two clades, OS185 and OS195, under oxygen-, nitrate-, and thiosulfate-respiring conditions demonstrated that the strains exhibit relatively similar transcriptional responses during aerobic growth but more-distinct transcriptional responses under nitrate- and thiosulfate-respiring conditions. Results from this study provide insights into how genomic and gene regulatory diversification together impacted the redox specialization of the S. baltica strains.
Collapse
Affiliation(s)
- Jie Deng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Eco-Chongming, Shanghai, China
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - Jennifer M Auchtung
- Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | - Ingrid Brettar
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Manfred Höfle
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
32
|
Michael Dunne W, Pouseele H, Monecke S, Ehricht R, van Belkum A. Epidemiology of transmissible diseases: Array hybridization and next generation sequencing as universal nucleic acid-mediated typing tools. INFECTION GENETICS AND EVOLUTION 2017; 63:332-345. [PMID: 28943408 DOI: 10.1016/j.meegid.2017.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 02/05/2023]
Abstract
The magnitude of interest in the epidemiology of transmissible human diseases is reflected in the vast number of tools and methods developed recently with the expressed purpose to characterize and track evolutionary changes that occur in agents of these diseases over time. Within the past decade a new suite of such tools has become available with the emergence of the so-called "omics" technologies. Among these, two are exponents of the ongoing genomic revolution. Firstly, high-density nucleic acid probe arrays have been proposed and developed using various chemical and physical approaches. Via hybridization-mediated detection of entire genes or genetic polymorphisms in such genes and intergenic regions these so called "DNA chips" have been successfully applied for distinguishing very closely related microbial species and strains. Second and even more phenomenal, next generation sequencing (NGS) has facilitated the assessment of the complete nucleotide sequence of entire microbial genomes. This technology currently provides the most detailed level of bacterial genotyping and hence allows for the resolution of microbial spread and short-term evolution in minute detail. We will here review the very recent history of these two technologies, sketch their usefulness in the elucidation of the spread and epidemiology of mostly hospital-acquired infections and discuss future developments.
Collapse
Affiliation(s)
- W Michael Dunne
- Data Analytics Unit, bioMerieux, 100 Rodolphe Street, Durham, NC 27712, USA.
| | - Hannes Pouseele
- Data Analytics Unit, bioMerieux, 100 Rodolphe Street, Durham, NC 27712, USA; Applied Maths NV, Keistraat 120, 9830 Sint-Martens-Latem, Belgium.
| | - Stefan Monecke
- Alere Technologies GmbH, Jena, Germany; InfectoGnostics Research Campus, Jena, Germany; Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
| | - Ralf Ehricht
- Alere Technologies GmbH, Jena, Germany; InfectoGnostics Research Campus, Jena, Germany.
| | - Alex van Belkum
- Data Analytics Unit, bioMérieux, 3, Route de Port Michaud, 38390 La Balme Les Grottes, France.
| |
Collapse
|
33
|
Ranjith K, Arunasri K, Reddy GS, Adicherla H, Sharma S, Shivaji S. Global gene expression in Escherichia coli, isolated from the diseased ocular surface of the human eye with a potential to form biofilm. Gut Pathog 2017; 9:15. [PMID: 28392838 PMCID: PMC5379667 DOI: 10.1186/s13099-017-0164-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/25/2017] [Indexed: 01/10/2023] Open
Abstract
Background Escherichia coli, the gastrointestinal commensal, is also known to cause ocular infections such as conjunctivitis, keratitis and endophthalmitis. These infections are normally resolved by topical application of an appropriate antibiotic. But, at times these E. coli are resistant to the antibiotic and this could be due to formation of a biofilm. In this study ocular E. coli from patients with conjunctivitis, keratitis or endophthalmitis were screened for their antibiotic susceptibility and biofilm formation potential. In addition DNA-microarray analysis was done to identify genes that are involved in biofilm formation and antibiotic resistance. Results Out of 12 ocular E. coli isolated from patients ten isolates were resistant to one or more of the nine antibiotics tested and majority of the isolates were positive for biofilm formation. In E. coli L-1216/2010, the best biofilm forming isolate, biofilm formation was confirmed by scanning electron microscopy. Confocal laser scanning microscopic studies indicated that the thickness of the biofilm increased up to 72 h of growth. Further, in the biofilm phase, E. coli L-1216/2010 was 100 times more resistant to the eight antibiotics tested compared to planktonic phase. DNA microarray analysis indicated that in biofilm forming E. coli L-1216/2010 genes encoding biofilm formation such as cell adhesion genes, LPS production genes, genes required for biofilm architecture and extracellular matrix remodeling and genes encoding for proteins that are integral to the cell membrane and those that influence antigen presentation are up regulated during biofilm formation. In addition genes that confer antimicrobial resistance such as genes encoding antimicrobial efflux (mdtM and cycA), virulence (insQ, yjgK), toxin production (sat, yjgK, chpS, chpB and ygjN), transport of amino-acids and other metabolites (cbrB, cbrC, hisI and mglB) are also up regulated. These genes could serve as potential targets for developing strategies for hacking biofilms and overcoming antibiotic resistance. Conclusions This is the first study on global gene expression in antibiotic resistant ocular E. coli with a potential to form biofilm. Using native ocular isolates for antibiotic susceptibility testing, for biofilm formation and global gene expression is relevant and more acceptable than using type strains or non clinical strains which do not necessarily mimic the native isolate. Electronic supplementary material The online version of this article (doi:10.1186/s13099-017-0164-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India.,Research Scholar, Manipal University, Manipal, Karnataka 576104 India
| | - Kotakonda Arunasri
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India
| | | | | | - Savitri Sharma
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L V Prasad Eye Institute, Kallam Anji Reddy campus, Hyderabad, 500007 India
| |
Collapse
|
34
|
Christensen A, Martin GDA. Identification and bioactive potential of marine microorganisms from selected Florida coastal areas. Microbiologyopen 2017; 6. [PMID: 28127894 PMCID: PMC5552912 DOI: 10.1002/mbo3.448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/15/2016] [Accepted: 12/27/2016] [Indexed: 12/01/2022] Open
Abstract
The ocean, with its rich untapped chemical biodiversity, continues to serve as a source of potentially new therapeutic agents. The evaluation of the diversity of cultivable microorganisms from the marine sponge Halichondria panicea and ocean sediment samples were examined and their potential as sources of antimicrobial and antiproliferative agents were investigated. The marine sponge and sediments were collected at different depths (0.9–6 meters) and locations in Florida, including Florida Keys, Port St. Joe in Pensacola, Pensacola Bay, Pensacola Beach, and Fort Pickens. Twenty‐one cultivatable isolates were grouped according to their morphology and identified using 16S rRNA molecular taxonomy. The bacterial community identified consisted of members belonging to the Actinobacteria, Bacteroidetes, Proteobacteria (Alpha‐ and Gamma‐classes) and Firmicutes phylogeny. Seven of the microbes exhibited mild to significant cytotoxic activities against five microbial indicators but no significant cytotoxic activities were observed against the pancreatic (PANC‐1) nor the multidrug‐resistant ovarian cancer cell lines (NCI/ADR). This work reaffirms the phyla Actinobacteria and Proteobacteria as sources of potential bioactive natural product candidates for drug discovery and development.
Collapse
Affiliation(s)
- Anna Christensen
- College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Glenroy D A Martin
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, USA
| |
Collapse
|
35
|
Cordoni G, Woodward MJ, Wu H, Alanazi M, Wallis T, La Ragione RM. Comparative genomics of European avian pathogenic E. Coli (APEC). BMC Genomics 2016; 17:960. [PMID: 27875980 PMCID: PMC5120500 DOI: 10.1186/s12864-016-3289-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023] Open
Abstract
Background Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which results in significant economic losses to the poultry industry worldwide. However, the diversity between isolates remains poorly understood. Here, a total of 272 APEC isolates collected from the United Kingdom (UK), Italy and Germany were characterised using multiplex polymerase chain reactions (PCRs) targeting 22 equally weighted factors covering virulence genes, R-type and phylogroup. Following these analysis, 95 of the selected strains were further analysed using Whole Genome Sequencing (WGS). Results The most prevalent phylogroups were B2 (47%) and A1 (22%), although there were national differences with Germany presenting group B2 (35.3%), Italy presenting group A1 (53.3%) and UK presenting group B2 (56.1%) as the most prevalent. R-type R1 was the most frequent type (55%) among APEC, but multiple R-types were also frequent (26.8%). Following compilation of all the PCR data which covered a total of 15 virulence genes, it was possible to build a similarity tree using each PCR result unweighted to produce 9 distinct groups. The average number of virulence genes was 6–8 per isolate, but no positive association was found between phylogroup and number or type of virulence genes. A total of 95 isolates representing each of these 9 groupings were genome sequenced and analysed for in silico serotype, Multilocus Sequence Typing (MLST), and antimicrobial resistance (AMR). The UK isolates showed the greatest variability in terms of serotype and MLST compared with German and Italian isolates, whereas the lowest prevalence of AMR was found for German isolates. Similarity trees were compiled using sequencing data and notably single nucleotide polymorphism data generated ten distinct geno-groups. The frequency of geno-groups across Europe comprised 26.3% belonging to Group 8 representing serogroups O2, O4, O18 and MLST types ST95, ST140, ST141, ST428, ST1618 and others, 18.9% belonging to Group 1 (serogroups O78 and MLST types ST23, ST2230), 15.8% belonging to Group 10 (serogroups O8, O45, O91, O125ab and variable MLST types), 14.7% belonging to Group 7 (serogroups O4, O24, O35, O53, O161 and MLST type ST117) and 13.7% belonging to Group 9 (serogroups O1, O16, O181 and others and MLST types ST10, ST48 and others). The other groups (2, 3, 4, 5 and 6) each contained relatively few strains. However, for some of the genogroups (e.g. groups 6 and 7) partial overlap with SNPs grouping and PCR grouping (matching PCR groups 8 (13 isolates on 22) and 1 (14 isolates on 16) were observable). However, it was not possible to obtain a clear correlation between genogroups and unweighted PCR groupings. This may be due to the genome plasticity of E. coli that enables strains to carry the same virulence factors even if the overall genotype is substantially different. Conclusions The conclusion to be drawn from the lack of correlations is that firstly, APEC are very diverse and secondly, it is not possible to rely on any one or more basic molecular or phenotypic tests to define APEC with clarity, reaffirming the need for whole genome analysis approaches which we describe here. This study highlights the presence of previously unreported serotypes and MLSTs for APEC in Europe. Moreover, it is a first step on a cautious reconsideration of the merits of classical identification criteria such as R typing, phylogrouping and serotyping. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3289-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guido Cordoni
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK.
| | - Martin J Woodward
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Huihai Wu
- Bioinformatics Core Facility, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Mishaal Alanazi
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| | - Tim Wallis
- Ridgeway Biologicals Ltd, Units 1-3 Old Station Business Park, Compton, Berkshire, RG20 6NE, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7AL, UK
| |
Collapse
|
36
|
Monk JM, Koza A, Campodonico MA, Machado D, Seoane JM, Palsson BO, Herrgård MJ, Feist AM. Multi-omics Quantification of Species Variation of Escherichia coli Links Molecular Features with Strain Phenotypes. Cell Syst 2016; 3:238-251.e12. [PMID: 27667363 DOI: 10.1016/j.cels.2016.08.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/25/2016] [Accepted: 08/19/2016] [Indexed: 11/16/2022]
Abstract
Escherichia coli strains are widely used in academic research and biotechnology. New technologies for quantifying strain-specific differences and their underlying contributing factors promise greater understanding of how these differences significantly impact physiology, synthetic biology, metabolic engineering, and process design. Here, we quantified strain-specific differences in seven widely used strains of E. coli (BL21, C, Crooks, DH5a, K-12 MG1655, K-12 W3110, and W) using genomics, phenomics, transcriptomics, and genome-scale modeling. Metabolic physiology and gene expression varied widely with downstream implications for productivity, product yield, and titer. These differences could be linked to differential regulatory structure. Analyzing high-flux reactions and expression of encoding genes resulted in a correlated and quantitative link between these sets, with strain-specific caveats. Integrated modeling revealed that certain strains are better suited to produce given compounds or express desired constructs considering native expression states of pathways that enable high-production phenotypes. This study yields a framework for quantitatively comparing strains in a species with implications for strain selection.
Collapse
Affiliation(s)
- Jonathan M Monk
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anna Koza
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Miguel A Campodonico
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA; Centre for Biotechnology and Bioengineering, CeBiB, University of Chile, Beauchef 850, Santiago, Chile
| | - Daniel Machado
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Jose Miguel Seoane
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Bernhard O Palsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Adam M Feist
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark; Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA.
| |
Collapse
|
37
|
Abstract
There are a large number of microorganisms in the human intestine, and they play an important role in digestion and absorption, energy metabolism, immune regulation, disease-resistant ability and so on, and are associated with the development of many diseases. The intestinal flora is of important significance for clinical treatment. This review focuses on a variety of molecular biology technologies for intestinal flora research, such as polymerase chain reaction (PCR), PCR-based 16 S rDNA fingerprinting, fluorescence in situ hybridization, gene chip, metagenome sequencing and so on, as well as the prospects for the research of intestinal flora.
Collapse
|
38
|
Miajlovic H, Mac Aogáin M, Collins CJ, Rogers TR, Smith SGJ. Characterization of Escherichia coli bloodstream isolates associated with mortality. J Med Microbiol 2016; 65:71-79. [PMID: 26518234 DOI: 10.1099/jmm.0.000200] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) are the predominant cause of Gramnegative bloodstream infections. In this study, 20 E. coli isolates that were the causative agents of bacteraemia and subsequent mortality were characterized. Whole-genome sequencing was used to define the predominant sequence types (ST) among the isolates and to identify virulence factors associated with pathogenicity of ExPEC. The ability of the isolates to resist killing by both serum and polymorphonuclear leukocytes (PMNLs) was also assessed. In line with global trends, ST131 occurred most frequently among the bloodstream isolates and all isolates of this sequence type were multidrug resistant. Other common STs included ST73 and ST69. All isolates encoded multiple virulence factors across a range of categories, including factors involved in adhesion, immune evasion, iron acquisition and synthesis of toxins. None of these factors could be associated with serum and neutrophil resistance. The majority of isolates were resistant to the bactericidal action of serum and PMNLs, and most of those that were sensitive were isolated from patients with compromised immunity.
Collapse
Affiliation(s)
- Helen Miajlovic
- Department of Clinical Microbiology, Sir Patrick Dun Research Laboratory, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Micheál Mac Aogáin
- Department of Clinical Microbiology, Sir Patrick Dun Research Laboratory, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Cathal J Collins
- Department of Clinical Microbiology, Sir Patrick Dun Research Laboratory, School of Medicine, Trinity College, Dublin 8, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Sir Patrick Dun Research Laboratory, School of Medicine, Trinity College, Dublin 8, Ireland.,Microbiology Department, St James's Hospital, Dublin 8, Ireland
| | - Stephen G J Smith
- Department of Clinical Microbiology, Sir Patrick Dun Research Laboratory, School of Medicine, Trinity College, Dublin 8, Ireland
| |
Collapse
|
39
|
Micenková L, Bosák J, Štaudová B, Kohoutová D, Čejková D, Woznicová V, Vrba M, Ševčíková A, Bureš J, Šmajs D. Microcin determinants are associated with B2 phylogroup of human fecal Escherichia coli isolates. Microbiologyopen 2016; 5:490-8. [PMID: 26987297 PMCID: PMC4906000 DOI: 10.1002/mbo3.345] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/22/2016] [Accepted: 02/03/2016] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli strains are classified into four main phylogenetic groups (A, B1, B2, and D) and strains of these phylogroups differ in a number of characteristics. This study tested whether human fecal E. coli isolates belonging to different phylogroups differ in prevalence of bacteriocinogenic isolates and prevalence of individual bacteriocinogenic determinants. A set of 1283 fecal E. coli isolates from patients with different diseases was tested for the presence of DNA regions allowing classification into E. coli phylogroups and for the ability to produce bacteriocins (23 colicins and 7 microcins). Of the isolates tested, the most common was phylogroup B2 (38.3%) followed by phylogroups A (28.3%), D (26.3%) and B1 (7.2%). Altogether, 695 bacteriocin producers were identified representing 54.2% of all tested isolates. The highest prevalence of bacteriocin producers was found in group B2 (60.3%) and the lowest in group B1 (44.6%). Determinants encoding colicins E1, Ia, and microcin mV were most common in phylogroup A, determinants encoding microcins mM and mH47 were most common in phylogroup B2, and determinant encoding mB17 was most common in phylogroup D. The highest prevalence of bacteriocinogeny was found in phylogroup B2, suggesting that bacteriocinogeny and especially the synthesis of microcins was associated with virulent and resident E. coli strains.
Collapse
Affiliation(s)
- Lenka Micenková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic
| | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic
| | - Barbora Štaudová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic
| | - Darina Kohoutová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University in Prague, Faculty of Medicine at Hradec Králové, University Teaching Hospital, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Darina Čejková
- Department of Immunology, Veterinary Research Institute, Hudcova 70, 621 00, Brno, Czech Republic
| | - Vladana Woznicová
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekarˇská 53, 656 91, Brno, Czech Republic
| | - Martin Vrba
- Department of Clinical Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Alena Ševčíková
- Department of Clinical Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Jan Bureš
- 2nd Department of Internal Medicine - Gastroenterology, Charles University in Prague, Faculty of Medicine at Hradec Králové, University Teaching Hospital, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic
| |
Collapse
|
40
|
Restriction Profiling of 23S Microheterogenic Ribosomal Repeats for Detection and Characterizing of E. coli and Their Clonal, Pathogenic, and Phylogroups. J Pathog 2016; 2015:562136. [PMID: 26885397 PMCID: PMC4738725 DOI: 10.1155/2015/562136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 11/17/2022] Open
Abstract
Correlating ribosomal microheterogenicity with unique restriction profiles can prove to be an efficacious and cost-effective approach compared with sequencing for microbial identification. An attempt to peruse restriction profiling of 23S ribosomal assemblage was ventured; digestion patterns with Bfa I discriminated E. coli from its colony morphovars, while Hae III profiles assisted in establishing distinct clonal groups. Among the gene pool of 399 ribosomal sequences extrapolated from 57 E. coli genomes, varying degree of predominance (I > III > IV > II) of Hae III pattern was observed. This was also corroborated in samples collected from clinical, commensal, and environmental origin. K-12 and its descendants showed type I pattern whereas E. coli-B and its descendants exhibited type IV, both of these patterns being exclusively present in E. coli. A near-possible association between phylogroups and Hae III profiles with presumable correlation between the clonal groups and different pathovars was established. The generic nature, conservation, and barcode gap of 23S rRNA gene make it an ideal choice and substitute to 16S rRNA gene, the most preferred region for molecular diagnostics in bacteria.
Collapse
|
41
|
Štaudová B, Micenková L, Bosák J, Hrazdilová K, Slaninková E, Vrba M, Ševčíková A, Kohoutová D, Woznicová V, Bureš J, Šmajs D. Determinants encoding fimbriae type 1 in fecal Escherichia coli are associated with increased frequency of bacteriocinogeny. BMC Microbiol 2015; 15:201. [PMID: 26445407 PMCID: PMC4594643 DOI: 10.1186/s12866-015-0530-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/25/2015] [Indexed: 01/03/2023] Open
Abstract
Background To screen whether E. coli strains encoding type 1 fimbriae, isolated from fecal microflora, produce bacteriocins more often relative to fimA-negative E. coli strains of similar origin. Methods PCR assays were used to detect presence of genes encoding 30 bacteriocin determinants (23 colicin- and 7 microcin-encoding genes) and 18 virulence determinants in 579 E. coli strains of human and animal origin isolated from hospitals and animal facilities in the Czech and Slovak Republic. E. coli strains were also classified into phylogroups (A, B1, B2 and D). Results fimA-negative E. coli strains (defined as those possessing none of the 18 tested virulence determinants) were compared to fimA-positive E. coli strains (possessing fimA as the only detected virulence determinant). Strains with identified bacteriocin genes were more commonly found among fimA-positive E. coli strains (35.6 %) compared to fimA-negative E. coli strains (21.9 %, p < 0.01) and this was true for both colicin and microcin determinants (p = 0.02 and p < 0.01, respectively). In addition, an increased number of strains encoding colicin E1 were found among fimA-positive E. coli strains (p < 0.01). Conclusions fimA-positive E. coli strains produced bacteriocins (colicins and microcins) more often compared to fimA-negative strains of similar origin. Since type 1 fimbriae of E. coli have been shown to mediate adhesion to epithelial host cells and help colonize the intestines, bacteriocin synthesis appears to be an additional feature of colonizing E. coli strains. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0530-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbora Štaudová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic.
| | - Lenka Micenková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic.
| | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic.
| | - Kristýna Hrazdilová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42, Brno, Czech Republic. .,CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42, Brno, Czech Republic.
| | - Eva Slaninková
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42, Brno, Czech Republic.
| | - Martin Vrba
- Department of Clinical Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic.
| | - Alena Ševčíková
- Department of Clinical Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic.
| | - Darina Kohoutová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University in Praha, Faculty of Medicine at Hradec Kralové, University Teaching Hospital, Sokolská 581, Hradec Kralové, 500 05, Czech Republic.
| | - Vladana Woznicová
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Jan Bureš
- 2nd Department of Internal Medicine - Gastroenterology, Charles University in Praha, Faculty of Medicine at Hradec Kralové, University Teaching Hospital, Sokolská 581, Hradec Kralové, 500 05, Czech Republic.
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic.
| |
Collapse
|
42
|
Liu C, Zheng H, Yang M, Xu Z, Wang X, Wei L, Tang B, Liu F, Zhang Y, Ding Y, Tang X, Wu B, Johnson TJ, Chen H, Tan C. Genome analysis and in vivo virulence of porcine extraintestinal pathogenic Escherichia coli strain PCN033. BMC Genomics 2015; 16:717. [PMID: 26391348 PMCID: PMC4578781 DOI: 10.1186/s12864-015-1890-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 09/01/2015] [Indexed: 11/17/2022] Open
Abstract
Background Strains of extraintestinal pathogenic Escherichia coli (ExPEC) can invade and colonize extraintestinal sites and cause a wide range of infections. Genomic analysis of ExPEC has mainly focused on isolates of human and avian origins, with porcine ExPEC isolates yet to be sequenced. To better understand the genomic attributes underlying the pathogenicity of porcine ExPEC, we isolated two E. coli strains PCN033 and PCN061 from pigs, assessed their in vivo virulence, and completed and compared their genomes. Results Animal experiments demonstrated that strain PCN033, but not PCN061, was pathogenic in a pig model. The chromosome of PCN033 was 384 kb larger than that of PCN061. Among the PCN033-specific sequences, genes encoding adhesins, unique lipopolysaccharide, unique capsular polysaccharide, iron acquisition and transport systems, and metabolism were identified. Additionally, a large plasmid PCN033p3 harboring many typical ExPEC virulence factors was identified in PCN033. Based on the genetic variation between PCN033 and PCN061, corresponding phenotypic differences in flagellum-dependent swarming motility and metabolism were verified. Furthermore, the comparative genomic analyses showed that the PCN033 genome shared many similarities with genomic sequences of human ExPEC strains. Additionally, comparison of PCN033 genome with other nine characteristic E. coli genomes revealed 425 PCN033-special coding sequences. Genes of this subset included those encoding type I restriction-modification (R-M) system, type VI secretion system (T6SS) and membrane-associated proteins. Conclusions The genetic and phenotypic differences between PCN033 and PCN061 could partially explain their differences in virulence, and also provide insight towards the molecular mechanisms of porcine ExPEC infections. Additionally, the similarities between the genomes of PCN033 and human ExPEC strains suggest that some connections between porcine and human ExPEC strains exist. The first completed genomic sequence for porcine ExPEC and the genomic differences identified by comparative analyses provide a baseline understanding of porcine ExPEC genetics and lay the foundation for their further study. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1890-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Canying Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China. .,Department of Veterinary Medicine, Foshan University, Foshan, Guangdong, China.
| | - Huajun Zheng
- Shanghai-Most Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China.
| | - Minjun Yang
- Shanghai-Most Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China.
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Liuya Wei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Biao Tang
- Shanghai-Most Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China. .,State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yanyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Yi Ding
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Xibiao Tang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
43
|
Grillo-Puertas M, Martínez-Zamora MG, Rintoul MR, Soto SM, Rapisarda VA. Environmental phosphate differentially affects virulence phenotypes of uropathogenic Escherichia coli isolates causative of prostatitis. Virulence 2015; 6:608-17. [PMID: 26083279 DOI: 10.1080/21505594.2015.1059561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
K-12 Escherichia coli cells grown in static media containing a critical phosphate (Pi) concentration ≥25 mM maintained a high polyphosphate (polyP) level in stationary phase, impairing biofilm formation, a phenomenon that is triggered by polyP degradation. Pi concentration in human urine fluctuates according to health state. Here, the influence of environmental Pi concentration on the occurrence of virulence traits in uropathogenic E. coli (UPEC) isolated from acute prostatitis patients was evaluated. After a first screening, 3 isolates were selected according to differential biofilm formation profiles depending on media Pi concentration. For each isolate, biofilm positive and negative conditions were established. Regardless of the isolate, biofilm formation capacity was accompanied with curli and cellulose production and expression of some key virulence factors associated with adhesion. When the selected isolates were grown in their non-biofilm-forming condition, low concentrations of nalidixic acid and ciprofloxacin induced biofilm formation. Interestingly, similar to laboratory strains, polyP degradation induced biofilm formation in the selected isolates. Data demonstrated the complexity of UPEC responses to environmental Pi and the importance of polyP metabolism in the virulence of clinical isolates.
Collapse
Affiliation(s)
- M Grillo-Puertas
- a Instituto Superior de Investigaciones Biológicas , INSIBIO (CONICET-UNT) and Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia (UNT) ; Tucumán , Argentina
| | - M G Martínez-Zamora
- a Instituto Superior de Investigaciones Biológicas , INSIBIO (CONICET-UNT) and Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia (UNT) ; Tucumán , Argentina
| | - M R Rintoul
- a Instituto Superior de Investigaciones Biológicas , INSIBIO (CONICET-UNT) and Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia (UNT) ; Tucumán , Argentina
| | - S M Soto
- b Barcelona Center for International Health Research (CRESIB; Hospital Clinic-University of Barcelona) ; Barcelona , Spain
| | - V A Rapisarda
- a Instituto Superior de Investigaciones Biológicas , INSIBIO (CONICET-UNT) and Instituto de Química Biológica "Dr Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia (UNT) ; Tucumán , Argentina
| |
Collapse
|
44
|
Current perspectivesin pathogenesis and antimicrobial resistance of enteroaggregative Escherichia coli. Microb Pathog 2015; 85:44-9. [PMID: 26057827 DOI: 10.1016/j.micpath.2015.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/28/2015] [Accepted: 06/05/2015] [Indexed: 02/08/2023]
Abstract
Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen that causes acute and persistent diarrhea in children and adults. While the pathogenic mechanisms of EAEC intestinal colonization have been uncovered (including bacterial adhesion, enterotoxin and cytotoxin secretion, and stimulation of mucosal inflammation), those of severe extraintestinal infections remain largely unknown. The recent emergence of multidrug resistant EAEC represents an alarming public health threat and clinical challenge, and research on the molecular mechanisms of resistance is urgently needed.
Collapse
|
45
|
Gerbaba TK, Gupta P, Rioux K, Hansen D, Buret AG. Giardia duodenalis-induced alterations of commensal bacteria kill Caenorhabditis elegans: a new model to study microbial-microbial interactions in the gut. Am J Physiol Gastrointest Liver Physiol 2015; 308:G550-61. [PMID: 25573177 PMCID: PMC4360045 DOI: 10.1152/ajpgi.00335.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Giardia duodenalis is the most common cause of parasitic diarrhea worldwide and a well-established risk factor for postinfectious irritable bowel syndrome. We hypothesized that Giardia-induced disruptions in host-microbiota interactions may play a role in the pathogenesis of giardiasis and in postgiardiasis disease. Functional changes induced by Giardia in commensal bacteria and the resulting effects on Caenorhabditis elegans were determined. Although Giardia or bacteria alone did not affect worm viability, combining commensal Escherichia coli bacteria with Giardia became lethal to C. elegans. Giardia also induced killing of C. elegans with attenuated Citrobacter rodentium espF and map mutant strains, human microbiota from a healthy donor, and microbiota from inflamed colonic sites of ulcerative colitis patient. In contrast, combinations of Giardia with microbiota from noninflamed sites of the same patient allowed for worm survival. The synergistic lethal effects of Giardia and E. coli required the presence of live bacteria and were associated with the facilitation of bacterial colonization in the C. elegans intestine. Exposure to C. elegans and/or Giardia altered the expression of 172 genes in E. coli. The genes affected by Giardia included hydrogen sulfide biosynthesis (HSB) genes, and deletion of a positive regulator of HSB genes, cysB, was sufficient to kill C. elegans even in the absence of Giardia. Our findings indicate that Giardia induces functional changes in commensal bacteria, possibly making them opportunistic pathogens, and alters host-microbe homeostatic interactions. This report describes the use of a novel in vivo model to assess the toxicity of human microbiota.
Collapse
Affiliation(s)
- Teklu K. Gerbaba
- 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; ,2Host-Parasite Interactions, NSERC-CREATE Program, University of Calgary, Calgary, Alberta, Canada;
| | - Pratyush Gupta
- 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada;
| | - Kevin Rioux
- 3Department of Medicine, University of Calgary, Calgary, Alberta, Canada; and
| | - Dave Hansen
- 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada;
| | - Andre G. Buret
- 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; ,2Host-Parasite Interactions, NSERC-CREATE Program, University of Calgary, Calgary, Alberta, Canada; ,4Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
46
|
Li L, Zhou Z, Jin W, Wan Y, Lu W. A transcriptomic analysis for identifying the unintended effects of introducing a heterologous glyphosate-tolerant EPSP synthase into Escherichia coli. MOLECULAR BIOSYSTEMS 2015; 11:852-8. [PMID: 25564113 DOI: 10.1039/c4mb00566j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glyphosate is one of the most commonly used broad-spectrum herbicides with little to no hazard to animals, human beings, or the environment. Some microbial 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase variants are not inhibited by glyphosate, and they provide a powerful tool to engineer glyphosate-tolerant plants. However, the unintended effects of EPSP synthase expression patterns on microbes are not yet clear. Here, we use an Affymetrix GeneChip analysis to study how introduction of a heterologous glyphosate-tolerant EPSP synthase into a model microorganism Escherichia coli (E. coli) affects the global gene expression profile. The profile showed that 161 of 4071 genes were differentially expressed after the introduction of the synthase: 19 (0.47%) were up-regulated and 143 (3.49%) were down-regulated. The microarray results, in combination with BiOLOG substrate utilization and amino acid composition assays, suggested that heterologous EPSP synthase expression had very minor effects on E. coli. Although a small number of genes and metabolites were affected by EPSP synthase expression, no functional correlations were identified among the dataset. This study may shed light on the effect of EPSP synthase expression on microbes, which should help in the assessment of environmental safety.
Collapse
Affiliation(s)
- Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | | | | |
Collapse
|
47
|
Molecular analysis of asymptomatic bacteriuria Escherichia coli strain VR50 reveals adaptation to the urinary tract by gene acquisition. Infect Immun 2015; 83:1749-64. [PMID: 25667270 DOI: 10.1128/iai.02810-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.
Collapse
|
48
|
Rawool DB, Vergis J, Vijay D, Dhaka P, Negi M, Kumar M, Nair A, Poharkar KV, Kurkure NV, Kumar A, Malik SVS, Barbuddhe SB. Evaluation of a PCR targeting fimbrial subunit gene (fimA) for rapid and reliable detection of Enteroaggregative Escherichia coli recovered from human and animal diarrhoeal cases. J Microbiol Methods 2015; 110:45-8. [PMID: 25598135 DOI: 10.1016/j.mimet.2015.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 11/28/2022]
Abstract
The present study describes the utility of a chromosomal associated fimbrial subunit gene (fimA) for screening 'typical' as well as 'atypical' Enteroaggregative Escherichia coli (EAEC) by PCR and its possible role as a promising molecular marker for rapid detection of 'typical' and 'atypical' EAEC pathotype.
Collapse
Affiliation(s)
- Deepak B Rawool
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243 122, India.
| | - Jess Vergis
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Deepthi Vijay
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Pankaj Dhaka
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Mamta Negi
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Manesh Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Amruta Nair
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Krupali V Poharkar
- Department of Veterinary Pathology, Nagpur Veterinary College, MAFSU, Nagpur 440 006, India
| | - Nitin V Kurkure
- Department of Veterinary Pathology, Nagpur Veterinary College, MAFSU, Nagpur 440 006, India
| | - Ashok Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - S V S Malik
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - S B Barbuddhe
- National Institute of Biotic Stress Management, Raipur, Chhattisgarh 492 012, India
| |
Collapse
|
49
|
Vijay D, Dhaka P, Vergis J, Negi M, Mohan V, Kumar M, Doijad S, Poharkar K, Kumar A, Malik SS, Barbuddhe SB, Rawool DB. Characterization and biofilm forming ability of diarrhoeagenic enteroaggregative Escherichia coli isolates recovered from human infants and young animals. Comp Immunol Microbiol Infect Dis 2014; 38:21-31. [PMID: 25529123 DOI: 10.1016/j.cimid.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
Enteroaggregative Escherichia coli (EAEC) is an important pathotype that causes infection in humans and animals. EAEC isolates (n=86) recovered from diarrhoeal cases in human infants (37) and young animals (49) were characterized as 'typical' and/or 'atypical' EAEC strains employing PCR for virulence associated genes (cvd432, aaiA, astA, pilS, irp2, ecp, pic, aggR, aafA, aggA, and agg3A). Besides, biofilm formation ability of human and animal EAEC isolates was assessed using microtiter plate assay. In addition, the transcriptional profile of biofilm associated genes (fis and ecp) was also evaluated and correlated with biofilm formation assay for few selected EAEC isolates of human and animal origins. Overall, a diverse virulence gene profile was observed for the EAEC isolates of human and animal origins as none of the EAEC isolates revealed the presence of all the genes that were targeted. Nine 'typical' EAEC isolates were identified (6 from humans and 3 from animals) while, the majority of the isolates were 'atypical' EAEC strains. Isolation and identification of three 'typical' EAEC isolates from animals (canines) appears to be the first report globally. Further, based on the observations of the biofilm formation assay, the study suggested that human EAEC isolates in particular were comparatively more biofilm producers than that of the animal EAEC isolates. The fis gene was highly expressed in majority of 'typical' EAEC isolates and the ecp gene in 'atypical' EAEC isolates.
Collapse
Affiliation(s)
- Deepthi Vijay
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Pankaj Dhaka
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Jess Vergis
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Mamta Negi
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Vysakh Mohan
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Manesh Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | | | | | - Ashok Kumar
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | - Satyaveer Singh Malik
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India
| | | | - Deepak B Rawool
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar 243 122, India.
| |
Collapse
|
50
|
Abstract
The purpose of this essay is threefold: to give an outline of the life and the various achievements of Theodor Escherich, to provide a background to his discovery of what he called Bacterium coli commune (now Escherichia coli), and to indicate the enormous impact of studies with this organism, long before it became the cornerstone of research in bacteriology and in molecular biology.
Collapse
|