1
|
Beamud B, Benz F, Bikard D. Going viral: The role of mobile genetic elements in bacterial immunity. Cell Host Microbe 2024; 32:804-819. [PMID: 38870898 DOI: 10.1016/j.chom.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Bacteriophages and other mobile genetic elements (MGEs) pose a significant threat to bacteria, subjecting them to constant attacks. In response, bacteria have evolved a sophisticated immune system that employs diverse defensive strategies and mechanisms. Remarkably, a growing body of evidence suggests that most of these defenses are encoded by MGEs themselves. This realization challenges our traditional understanding of bacterial immunity and raises intriguing questions about the evolutionary forces at play. Our review provides a comprehensive overview of the latest findings on the main families of MGEs and the defense systems they encode. We also highlight how a vast diversity of defense systems remains to be discovered and their mechanism of mobility understood. Altogether, the composition and distribution of defense systems in bacterial genomes only makes sense in the light of the ecological and evolutionary interactions of a complex network of MGEs.
Collapse
Affiliation(s)
- Beatriz Beamud
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France.
| | - Fabienne Benz
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - David Bikard
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France.
| |
Collapse
|
2
|
Wang X, Tang Y, Yue X, Wang S, Yang K, Xu Y, Shen Q, Friman VP, Wei Z. The role of rhizosphere phages in soil health. FEMS Microbiol Ecol 2024; 100:fiae052. [PMID: 38678007 PMCID: PMC11065364 DOI: 10.1093/femsec/fiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
While the One Health framework has emphasized the importance of soil microbiomes for plant and human health, one of the most diverse and abundant groups-bacterial viruses, i.e. phages-has been mostly neglected. This perspective reviews the significance of phages for plant health in rhizosphere and explores their ecological and evolutionary impacts on soil ecosystems. We first summarize our current understanding of the diversity and ecological roles of phages in soil microbiomes in terms of nutrient cycling, top-down density regulation, and pathogen suppression. We then consider how phages drive bacterial evolution in soils by promoting horizontal gene transfer, encoding auxiliary metabolic genes that increase host bacterial fitness, and selecting for phage-resistant mutants with altered ecology due to trade-offs with pathogen competitiveness and virulence. Finally, we consider challenges and avenues for phage research in soil ecosystems and how to elucidate the significance of phages for microbial ecology and evolution and soil ecosystem functioning in the future. We conclude that similar to bacteria, phages likely play important roles in connecting different One Health compartments, affecting microbiome diversity and functions in soils. From the applied perspective, phages could offer novel approaches to modulate and optimize microbial and microbe-plant interactions to enhance soil health.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yike Tang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiufeng Yue
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Zhang X, Wang R, Xie X, Hu Y, Wang J, Sun Q, Feng X, Lin W, Tong S, Yan W, Wen H, Wang M, Zhai S, Sun C, Wang F, Niu Q, Kropinski A, Cui Y, Jiang X, Peng S, Li S, Tong Y. Mining bacterial NGS data vastly expands the complete genomes of temperate phages. NAR Genom Bioinform 2022; 4:lqac057. [PMID: 35937545 PMCID: PMC9346568 DOI: 10.1093/nargab/lqac057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 06/13/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Temperate phages (active prophages induced from bacteria) help control pathogenicity, modulate community structure, and maintain gut homeostasis. Complete phage genome sequences are indispensable for understanding phage biology. Traditional plaque techniques are inapplicable to temperate phages due to their lysogenicity, curbing their identification and characterization. Existing bioinformatics tools for prophage prediction usually fail to detect accurate and complete temperate phage genomes. This study proposes a novel computational temperate phage detection method (TemPhD) mining both the integrated active prophages and their spontaneously induced forms (temperate phages) from next-generation sequencing raw data. Applying the method to the available dataset resulted in 192 326 complete temperate phage genomes with different host species, expanding the existing number of complete temperate phage genomes by more than 100-fold. The wet-lab experiments demonstrated that TemPhD can accurately determine the complete genome sequences of the temperate phages, with exact flanking sites, outperforming other state-of-the-art prophage prediction methods. Our analysis indicates that temperate phages are likely to function in the microbial evolution by (i) cross-infecting different bacterial host species; (ii) transferring antibiotic resistance and virulence genes and (iii) interacting with hosts through restriction-modification and CRISPR/anti-CRISPR systems. This work provides a comprehensively complete temperate phage genome database and relevant information, which can serve as a valuable resource for phage research.
Collapse
Affiliation(s)
- Xianglilan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing 100071, People's Republic of China
| | - Ruohan Wang
- Department of Computer Science, City University of Hong Kong , Hong Kong 999077, People's Republic of China
| | - Xiangcheng Xie
- College of Computer, National University of Defense Technology , Changsha 410073, People's Republic of China
| | - Yunjia Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
- School of Medicine, Shanghai University , Shanghai 200444, People's Republic of China
| | - Jianping Wang
- Department of Computer Science, City University of Hong Kong , Hong Kong 999077, People's Republic of China
| | - Qiang Sun
- The 964th Hospital , Changchun 130021, People's Republic of China
| | - Xikang Feng
- School of Software, Northwestern Polytechnical University , Xi’an 710072, People's Republic of China
| | - Wei Lin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| | - Shanwei Tong
- Bioinformatics Graduate Program, University of British Columbia , Vancouver BC V6T 1Z4, Canada
- Faculty of Health Sciences, Simon Fraser University , Burnaby , BC V5A 1S6, Canada
| | - Wei Yan
- National Library of Medicine, National Institutes of Health , Bethesda , MD 20894, USA
| | - Huiqi Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing 100071, People's Republic of China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| | - Mengyao Wang
- Department of Computer Science, City University of Hong Kong , Hong Kong 999077, People's Republic of China
| | - Shixiang Zhai
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences , Yantai 264003, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
- Center for Ocean Mega-Science, Chinese Academy of Sciences , Qingdao 266071, People's Republic of China
| | - Cheng Sun
- School of Computer Science and Electronic Engineering, Hunan University , Changsha 410082, People's Republic of China
| | - Fangyi Wang
- Department of Statistics, the Ohio State University , Columbus, OH 43210, USA
| | - Qi Niu
- School of Computer Science and Electronic Engineering, Hunan University , Changsha 410082, People's Republic of China
| | - Andrew M Kropinski
- Departments of Food Science, and Pathobiology, University of Guelph , Guelph , ON N1G 2W1 , Canada
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing 100071, People's Republic of China
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health , Bethesda , MD 20894, USA
| | - Shaoliang Peng
- School of Computer Science and Electronic Engineering, Hunan University , Changsha 410082, People's Republic of China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong , Hong Kong 999077, People's Republic of China
| | - Yigang Tong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, People's Republic of China
| |
Collapse
|
4
|
Comparative Genomic Analysis of Rhodococcus equi: An Insight into Genomic Diversity and Genome Evolution. Int J Genomics 2019; 2019:8987436. [PMID: 31950028 PMCID: PMC6948317 DOI: 10.1155/2019/8987436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/24/2019] [Accepted: 08/11/2019] [Indexed: 12/03/2022] Open
Abstract
Rhodococcus equi, a member of the Rhodococcus genus, is a gram-positive pathogenic bacterium. Rhodococcus possesses an open pan-genome that constitutes the basis of its high genomic diversity and allows for adaptation to specific niche conditions and the changing host environments. Our analysis further showed that the core genome of R. equi contributes to the pathogenicity and niche adaptation of R. equi. Comparative genomic analysis revealed that the genomes of R. equi shared identical collinearity relationship, and heterogeneity was mainly acquired by means of genomic islands and prophages. Moreover, genomic islands in R. equi were always involved in virulence, resistance, or niche adaptation and possibly working with prophages to cause the majority of genome expansion. These findings provide an insight into the genomic diversity, evolution, and structural variation of R. equi and a valuable resource for functional genomic studies.
Collapse
|
5
|
Ra SR, Kim MS, Paek CIL, Pak YC, Pak SH, Pak HB, Ri KC. Bci528I, a new isoschizomer of EcoRI isolated from Bacillus circulans 528. Folia Microbiol (Praha) 2019; 64:803-808. [DOI: 10.1007/s12223-019-00694-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
|
6
|
Sitaraman R. Prokaryotic horizontal gene transfer within the human holobiont: ecological-evolutionary inferences, implications and possibilities. MICROBIOME 2018; 6:163. [PMID: 30223892 PMCID: PMC6142633 DOI: 10.1186/s40168-018-0551-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 09/05/2018] [Indexed: 05/26/2023]
Abstract
The ubiquity of horizontal gene transfer in the living world, especially among prokaryotes, raises interesting and important scientific questions regarding its effects on the human holobiont i.e., the human and its resident bacterial communities considered together as a unit of selection. Specifically, it would be interesting to determine how particular gene transfer events have influenced holobiont phenotypes in particular ecological niches and, conversely, how specific holobiont phenotypes have influenced gene transfer events. In this synthetic review, we list some notable and recent discoveries of horizontal gene transfer among the prokaryotic component of the human microbiota, and analyze their potential impact on the holobiont from an ecological-evolutionary viewpoint. Finally, the human-Helicobacter pylori association is presented as an illustration of these considerations, followed by a delineation of unresolved questions and avenues for future research.
Collapse
Affiliation(s)
- Ramakrishnan Sitaraman
- Department of Biotechnology, TERI School of Advanced Studies, 10 Institutional Area, Vasant Kunj, New Delhi, 110070, India.
| |
Collapse
|
7
|
Covarrubias PC, Moya-Beltrán A, Atavales J, Moya-Flores F, Tapia PS, Acuña LG, Spinelli S, Quatrini R. Occurrence, integrity and functionality of AcaML1-like viruses infecting extreme acidophiles of the Acidithiobacillus species complex. Res Microbiol 2018; 169:628-637. [PMID: 30138723 DOI: 10.1016/j.resmic.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
General knowledge on the diversity and biology of microbial viruses infecting bacterial hosts from extreme acidic environments lags behind most other econiches. In this study, we analyse the AcaML1 virus occurrence in the taxon, its genetic composition and infective behaviour under standard acidic and SOS-inducing conditions to assess its integrity and functionality. Occurrence analysis in sequenced acidithiobacilli showed that AcaML1-like proviruses are confined to the mesothermophiles Acidithiobacillus caldus and Thermithiobacillus tepidarius. Among A. caldus strains and isolates this provirus had a modest prevalence (30%). Comparative genomic analysis revealed a significant conservation with the T. tepidarius AcaML1-like provirus, excepting the tail genes, and a high conservation of the virus across strains of the A. caldus species. Such conservation extends from the modules architecture to the gene level, suggesting that organization and composition of these viruses are preserved for functional reasons. Accordingly, the AcaML1 proviruses were demonstrated to excise from their host genomes under DNA-damaging conditions triggering the SOS-response and to produce DNA-containing VLPs. Despite this fact, under the conditions evaluated (acidic) the VLPs obtained from A. caldus ATCC 51756 could not produce productive infections of a candidate sensitive strain (#6) nor trigger it lysis.
Collapse
Affiliation(s)
- Paulo C Covarrubias
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ana Moya-Beltrán
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Joaquin Atavales
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Pablo S Tapia
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Lillian G Acuña
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR 7257, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile.
| |
Collapse
|
8
|
Zheng Z, Bao M, Wu F, Van Horn C, Chen J, Deng X. A Type 3 Prophage of 'Candidatus Liberibacter asiaticus' Carrying a Restriction-Modification System. PHYTOPATHOLOGY 2018; 108:454-461. [PMID: 29192841 DOI: 10.1094/phyto-08-17-0282-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Prophages, the lysogenic form of bacterial phages, are important genetic entities of 'Candidatus Liberibacter asiaticus' (CLas), a nonculturable α-proteobacterium associated with citrus Huanglongbing. Two CLas prophages have been described, SC1 (NC_019549.1, Type 1) and SC2 (NC_019550.1, Type 2), which involve the lytic cycle and the lysogenic cycle, respectively. To explore the prophage repertoire, 523 CLas DNA samples extracted from leaf petioles of CLas-infected citrus were collected from southern China and surveyed for Type 1 and Type 2 prophages by specific PCR. Eighteen samples were found lacking both prophages. One sample, JXGC, sequenced using Illumina HiSeq, generated >100 million short sequence reads (150 bp per read). Read mapping to known prophage sequences showed a sequence coverage of 46% to SC1 and 50% to SC2. BLAST search using SC1 and SC2 as queries identified three contigs from the JXGC de novo assembly that form a circular P-JXGC-3 (31,449 bp), designated as a new Type 3 prophage. Chromosomal integration of P-JXGC-3 was detected to occur within a helicase gene, resulting in a duplication of this gene. P-JXGC-3 had 36 open reading frames (ORFs), 10 of which were not found in Type 1 or Type 2 prophages, including four genes that encoded a restriction-modification (R-M) system (hsdR, hsdS, hsdM1, and hsdM2). Typed by prophage-specific PCR, the CLas strains in southern China contained all combinations of the three prophage types with the exception of a Type 2-Type 3 combination, suggesting active ongoing prophage-phage interactions. Based on gene annotation, P-JXGC-3 is not capable of reproduction via the lytic cycle. The R-M system was speculated to play a role against Type 1 prophage-phage invasion.
Collapse
Affiliation(s)
- Zheng Zheng
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| | - Minli Bao
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| | - Fengnian Wu
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| | - Christopher Van Horn
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| | - Jianchi Chen
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| | - Xiaoling Deng
- First, second, third, and sixth author: Department of Plant Pathology, South China Agricultural University, Guangzhou, Guangdong, China; and first, fourth, and fifth authors: San Joaquín Valley Agricultural Sciences Center, Parlier, CA
| |
Collapse
|
9
|
Dedrick RM, Jacobs-Sera D, Guerrero Bustamante CA, Garlena RA, Mavrich TN, Pope WH, Reyes JCC, Russell DA, Adair T, Alvey R, Bonilla JA, Bricker JS, Brown BR, Byrnes D, Cresawn SG, Davis WB, Dickson LA, Edgington NP, Findley AM, Golebiewska U, Grose JH, Hayes CF, Hughes LE, Hutchison KW, Isern S, Johnson AA, Kenna MA, Klyczek KK, Mageeney CM, Michael SF, Molloy SD, Montgomery MT, Neitzel J, Page ST, Pizzorno MC, Poxleitner MK, Rinehart CA, Robinson CJ, Rubin MR, Teyim JN, Vazquez E, Ware VC, Washington J, Hatfull GF. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol 2017; 2:16251. [PMID: 28067906 PMCID: PMC5508108 DOI: 10.1038/nmicrobiol.2016.251] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/09/2016] [Indexed: 01/22/2023]
Abstract
Temperate phages are common, and prophages are abundant residents of sequenced bacterial genomes. Mycobacteriophages are viruses that infect mycobacterial hosts including Mycobacterium tuberculosis and Mycobacterium smegmatis, encompass substantial genetic diversity and are commonly temperate. Characterization of ten Cluster N temperate mycobacteriophages revealed at least five distinct prophage-expressed viral defence systems that interfere with the infection of lytic and temperate phages that are either closely related (homotypic defence) or unrelated (heterotypic defence) to the prophage. Target specificity is unpredictable, ranging from a single target phage to one-third of those tested. The defence systems include a single-subunit restriction system, a heterotypic exclusion system and a predicted (p)ppGpp synthetase, which blocks lytic phage growth, promotes bacterial survival and enables efficient lysogeny. The predicted (p)ppGpp synthetase coded by the Phrann prophage defends against phage Tweety infection, but Tweety codes for a tetrapeptide repeat protein, gp54, which acts as a highly effective counter-defence system. Prophage-mediated viral defence offers an efficient mechanism for bacterial success in host-virus dynamics, and counter-defence promotes phage co-evolution.
Collapse
Affiliation(s)
- Rebekah M. Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Rebecca A. Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Travis N. Mavrich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Welkin H. Pope
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Daniel A. Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Tamarah Adair
- Department of Biology, Baylor University, Waco, TX 76798
| | - Richard Alvey
- Biology Department, Illinois-Wesleyan University, Bloomington, IL 61702
| | - J. Alfred Bonilla
- Biology Department University of Wisconsin-River Falls, River Falls, WI 54016
| | | | - Bryony R. Brown
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Deanna Byrnes
- Biology Department, Carthage College, Kenosha, WI53140
| | - Steven G. Cresawn
- Biology Department, James Madison University, Harrisonburg, VA 22807
| | - William B. Davis
- School of Molecular Biosciences, Washington State University Pullman, WA 99164
| | - Leon A. Dickson
- Department of Biology, Howard University, Washington, DC 20059
| | | | - Ann M. Findley
- Biology, School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209
| | - Urszula Golebiewska
- Biological Sciences and Geology, Queensborough Community College, Bayside, NY 11364
| | | | - Cory F. Hayes
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Lee E. Hughes
- Biological Sciences, University of North Texas, Denton, TX 76203
| | - Keith W. Hutchison
- Molecular and Biomedical Sciences, University of Maine, Honors College, Orono, ME 04469
| | - Sharon Isern
- Dept. of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965
| | - Allison A. Johnson
- Biology Department, Virginia Commonwealth University, Richmond, VA 23284
| | | | - Karen K. Klyczek
- Biology Department University of Wisconsin-River Falls, River Falls, WI 54016
| | | | - Scott F. Michael
- Dept. of Biological Sciences, Florida Gulf Coast University, Fort Myers, FL 33965
| | - Sally D. Molloy
- Molecular and Biomedical Sciences, University of Maine, Honors College, Orono, ME 04469
| | | | - James Neitzel
- Biology Department, The Evergreen State College, Olympia, WA 98502
| | - Shallee T. Page
- Division of Environmental and, Biological Sciences, University of Maine-Machias, Machias, ME 04654
| | | | | | - Claire A. Rinehart
- Biology Department, Western Kentucky University, Bowling Green, KY 42101
| | | | - Michael R. Rubin
- Biology Department, University of Puerto Rico-Cayey, Cayey, PR 00736
| | | | - Edwin Vazquez
- Biology Department, University of Puerto Rico-Cayey, Cayey, PR 00736
| | - Vassie C. Ware
- Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | | | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
10
|
Xu T, Qin S, Hu Y, Song Z, Ying J, Li P, Dong W, Zhao F, Yang H, Bao Q. Whole genomic DNA sequencing and comparative genomic analysis of Arthrospira platensis: high genome plasticity and genetic diversity. DNA Res 2016; 23:325-38. [PMID: 27330141 PMCID: PMC4991836 DOI: 10.1093/dnares/dsw023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
Arthrospira platensis is a multi-cellular and filamentous non-N2-fixing cyanobacterium that is capable of performing oxygenic photosynthesis. In this study, we determined the nearly complete genome sequence of A. platensis YZ. A. platensis YZ genome is a single, circular chromosome of 6.62 Mb in size. Phylogenetic and comparative genomic analyses revealed that A. platensis YZ was more closely related to A. platensis NIES-39 than Arthrospira sp. PCC 8005 and A. platensis C1. Broad gene gains were identified between A. platensis YZ and three other Arthrospira speices, some of which have been previously demonstrated that can be laterally transferred among different species, such as restriction-modification systems-coding genes. Moreover, unprecedented extensive chromosomal rearrangements among different strains were observed. The chromosomal rearrangements, particularly the chromosomal inversions, were analysed and estimated to be closely related to palindromes that involved long inverted repeat sequences and the extensively distributed type IIR restriction enzyme in the Arthrospira genome. In addition, species from genus Arthrospira unanimously contained the highest rate of repetitive sequence compared with the other species of order Oscillatoriales, suggested that sequence duplication significantly contributed to Arthrospira genome phylogeny. These results provided in-depth views into the genomic phylogeny and structural variation of A. platensis, as well as provide a valuable resource for functional genomics studies.
Collapse
Affiliation(s)
- Teng Xu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou 325035, China
| | - Song Qin
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yongwu Hu
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou 325035, China BGI-Shenzhen, Shenzhen 518083, China
| | - Zhijian Song
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianchao Ying
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou 325035, China
| | - Peizhen Li
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou 325035, China
| | - Wei Dong
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fangqing Zhao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyu Bao
- School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou 325035, China BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
11
|
Panda P, Vanga BR, Lu A, Fiers M, Fineran PC, Butler R, Armstrong K, Ronson CW, Pitman AR. Pectobacterium atrosepticum and Pectobacterium carotovorum Harbor Distinct, Independently Acquired Integrative and Conjugative Elements Encoding Coronafacic Acid that Enhance Virulence on Potato Stems. Front Microbiol 2016; 7:397. [PMID: 27065965 PMCID: PMC4814525 DOI: 10.3389/fmicb.2016.00397] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/14/2016] [Indexed: 12/25/2022] Open
Abstract
Integrative and conjugative elements (ICEs) play a central role in the evolution of bacterial virulence, their transmission between bacteria often leading to the acquisition of virulence factors that alter host range or aggressiveness. Much is known about the functions of the virulence determinants that ICEs harbor, but little is understood about the cryptic effects of ICEs on their host cell. In this study, the importance of horizontally acquired island 2 (HAI2), an ICE in the genome of Pectobacterium atrosepticum SCRI1043, was studied using a strain in which the entire ICE had been removed by CRISPR-Cas-mediated genome editing. HAI2 encodes coronafacic acid, a virulence factor that enhances blackleg disease of potato stems caused by P. atrosepticum SCRI1043. As expected, deletion of HAI2 resulted in reduced blackleg symptoms in potato stems. A subsequent screen for HAI2-related ICEs in other strains of the Pectobacterium genus revealed their ubiquitous nature in P. atrosepticum. Yet, HAI2-related ICEs were only detected in the genomes of a few P. carotovorum strains. These strains were notable as blackleg causing strains belonging to two different subspecies of P. carotovorum. Sequence analysis of the ICEs in different strains of both P. atrosepticum and P. carotovorum confirmed that they were diverse and were present in different locations on the genomes of their bacterial host, suggesting that the cfa cluster was probably acquired independently on a number of occasions via chromosomal insertion of related ICEs. Excision assays also demonstrated that the ICEs in both P. atrosepticum and P. carotovorum are mobilized from the host chromosome. Thus, the future spread of these ICEs via lateral gene transfer might contribute to an increase in the prevalence of blackleg-causing strains of P. carotovorum.
Collapse
Affiliation(s)
- Preetinanda Panda
- The Bio-Protection Research CentreLincoln, New Zealand
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Bhanupratap R. Vanga
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Ashley Lu
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Mark Fiers
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | - Peter C. Fineran
- The Bio-Protection Research CentreLincoln, New Zealand
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Ruth Butler
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| | | | - Clive W. Ronson
- Department of Microbiology and Immunology, University of OtagoDunedin, New Zealand
| | - Andrew R. Pitman
- The Bio-Protection Research CentreLincoln, New Zealand
- Plant Pathology, The New Zealand Institute for Plant and Food Research LimitedLincoln, New Zealand
| |
Collapse
|
12
|
Oliveira PH, Touchon M, Rocha EPC. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 2014; 42:10618-31. [PMID: 25120263 PMCID: PMC4176335 DOI: 10.1093/nar/gku734] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/21/2023] Open
Abstract
The roles of restriction-modification (R-M) systems in providing immunity against horizontal gene transfer (HGT) and in stabilizing mobile genetic elements (MGEs) have been much debated. However, few studies have precisely addressed the distribution of these systems in light of HGT, its mechanisms and its vectors. We analyzed the distribution of R-M systems in 2261 prokaryote genomes and found their frequency to be strongly dependent on the presence of MGEs, CRISPR-Cas systems, integrons and natural transformation. Yet R-M systems are rare in plasmids, in prophages and nearly absent from other phages. Their abundance depends on genome size for small genomes where it relates with HGT but saturates at two occurrences per genome. Chromosomal R-M systems might evolve under cycles of purifying and relaxed selection, where sequence conservation depends on the biochemical activity and complexity of the system and total gene loss is frequent. Surprisingly, analysis of 43 pan-genomes suggests that solitary R-M genes rarely arise from the degradation of R-M systems. Solitary genes are transferred by large MGEs, whereas complete systems are more frequently transferred autonomously or in small MGEs. Our results suggest means of testing the roles for R-M systems and their associations with MGEs.
Collapse
Affiliation(s)
- Pedro H Oliveira
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| | - Marie Touchon
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| |
Collapse
|
13
|
Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 2013; 79:7547-55. [PMID: 24123737 DOI: 10.1128/aem.02229-13] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then termed orphan MTases, they are believed to be mainly involved in regulatory activities in the bacterial cell. Genomes of various lytic and lysogenic phages have been shown to encode multi- and mono-specific orphan MTases that have the ability to confer protection from restriction endonucleases of their bacterial host(s). The ability of a phage to overcome R-M and other phage-targeting resistance systems can be detrimental to particular biotechnological processes such as dairy fermentations. Conversely, as phages may also be beneficial in certain areas such as phage therapy, phages with additional resistance to host defenses may prolong the effectiveness of the therapy. This minireview will focus on bacteriophage-encoded MTases, their prevalence and diversity, as well as their potential origin and function.
Collapse
|
14
|
Complete genome sequence of temperate bacteriophage AcaML1 from the extreme acidophile Acidithiobacillus caldus ATCC 51756. J Virol 2013; 86:12452-3. [PMID: 23087115 DOI: 10.1128/jvi.02261-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Development of reproducible genetic tools in the industrially important acidithiobacilli is urgently required. Inducible temperate phages which may be modified in vitro, propagated in suitable hosts, and used to transduce relevant genetic information to other strains and/or species are potentially valuable tools in this field of research. In order to address these current limitations, the genome sequence of an inducible temperate Myoviridae-like bacteriophage from the Acidithiobacillus caldus type strain was annotated and analyzed bioinformatically. Here, we announce the genome sequence of AcaML1 and report major findings from its annotation.
Collapse
|
15
|
Furuta Y, Kobayashi I. Movement of DNA sequence recognition domains between non-orthologous proteins. Nucleic Acids Res 2012; 40:9218-32. [PMID: 22821560 PMCID: PMC3467074 DOI: 10.1093/nar/gks681] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Comparisons of proteins show that they evolve through the movement of domains. However, in many cases, the underlying mechanisms remain unclear. Here, we observed the movements of DNA recognition domains between non-orthologous proteins within a prokaryote genome. Restriction-modification (RM) systems, consisting of a sequence-specific DNA methyltransferase and a restriction enzyme, contribute to maintenance/evolution of genomes/epigenomes. RM systems limit horizontal gene transfer but are themselves mobile. We compared Type III RM systems in Helicobacter pylori genomes and found that target recognition domain (TRD) sequences are mobile, moving between different orthologous groups that occupy unique chromosomal locations. Sequence comparisons suggested that a likely underlying mechanism is movement through homologous recombination of similar DNA sequences that encode amino acid sequence motifs that are conserved among Type III DNA methyltransferases. Consistent with this movement, incongruence was observed between the phylogenetic trees of TRD regions and other regions in proteins. Horizontal acquisition of diverse TRD sequences was suggested by detection of homologs in other Helicobacter species and distantly related bacterial species. One of these RM systems in H. pylori was inactivated by insertion of another RM system that likely transferred from an oral bacterium. TRD movement represents a novel route for diversification of DNA-interacting proteins.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | | |
Collapse
|
16
|
Asakura Y, Kojima H, Kobayashi I. Evolutionary genome engineering using a restriction-modification system. Nucleic Acids Res 2011; 39:9034-46. [PMID: 21785135 PMCID: PMC3203608 DOI: 10.1093/nar/gkr585] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Modification of complex microbial cellular processes is often necessary to obtain organisms with particularly favorable characteristics, but such experiments can take many generations to achieve. In the present article, we accelerated the experimental evolution of Escherichia coli populations under selection for improved growth using one of the restriction-modification systems, which have shaped bacterial genomes. This resulted in faster evolutionary changes in both the genome and bacterial growth. Transcriptome/genome analysis at various stages enabled prompt identification of sequential genome rearrangements and dynamic gene-expression changes associated with growth improvement. The changes were related to cell-to-cell communication, the cell death program, as well as mass production and energy consumption. These observed changes imply that improvements in microorganism population growth can be achieved by inactivating the cellular mechanisms regulating fraction of active cells in a population. Some of the mutations were shown to have additive effects on growth. These results open the way for the application of evolutionary genome engineering to generate organisms with desirable properties.
Collapse
Affiliation(s)
- Yoko Asakura
- Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa,Tokyo, Japan.
| | | | | |
Collapse
|
17
|
Yamashita E, Nakagawa A, Takahashi J, Tsunoda KI, Yamada S, Takeda S. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:837-41. [PMID: 21821878 DOI: 10.1107/s1744309111005999] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/17/2011] [Indexed: 11/11/2022]
Abstract
The adsorption and infection of bacteriophage P2 is mediated by tail fibres and tail spikes. The tail spikes on the tail baseplate are used to irreversibly adsorb to the host cells. Recently, a P2 phage tail-spike protein, gpV, was purified and it was shown that a C-terminal domain, Ser87-Leu211, is sufficient for the binding of gpV to host Escherichia coli membranes [Kageyama et al. (2009), Biochemistry, 48, 10129-10135]. In this paper, the crystal structure of the C-terminal domain of P2 gpV is reported. The structure is a triangular pyramid and looks like a spearhead composed of an intertwined β-sheet, a triple β-helix and a metal-binding region containing iron, calcium and chloride ions.
Collapse
Affiliation(s)
- Eiki Yamashita
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Domain movement within a gene: a novel evolutionary mechanism for protein diversification. PLoS One 2011; 6:e18819. [PMID: 21533192 PMCID: PMC3077401 DOI: 10.1371/journal.pone.0018819] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/10/2011] [Indexed: 12/30/2022] Open
Abstract
A protein function is carried out by a specific domain localized at a specific position. In the present study, we report that, within a gene, a specific amino acid sequence can move between a certain position and another position. This was discovered when the sequences of restriction-modification systems within the bacterial species Helicobacter pylori were compared. In the specificity subunit of Type I restriction-modification systems, DNA sequence recognition is mediated by target recognition domain 1 (TRD1) and TRD2. To our surprise, several sequences are shared by TRD1 and TRD2 of genes (alleles) at the same locus (chromosomal location); these domains appear to have moved between the two positions. The gene/protein organization can be represented as x-(TRD1)-y-x-(TRD2)-y, where x and y represent repeat sequences. Movement probably occurs by recombination at these flanking DNA repeats. In accordance with this hypothesis, recombination at these repeats also appears to decrease two TRDs into one TRD or increase these two TRDs to three TRDs (TRD1-TRD2-TRD2) and to allow TRD movement between genes even at different loci. Similar movement of domains between TRD1 and TRD2 was observed for the specificity subunit of a Type IIG restriction enzyme. Similar movement of domain between TRD1 and TRD2 was observed for Type I restriction-modification enzyme specificity genes in two more eubacterial species, Streptococcus pyogenes and Mycoplasma agalactiae. Lateral domain movements within a protein, which we have designated DOMO (domain movement), represent novel routes for the diversification of proteins.
Collapse
|
19
|
Furuta Y, Abe K, Kobayashi I. Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res 2010; 38:2428-43. [PMID: 20071371 PMCID: PMC2853133 DOI: 10.1093/nar/gkp1226] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mobility of restriction–modification (RM) gene complexes and their association with genome rearrangements is a subject of active investigation. Here we conducted systematic genome comparisons and genome context analysis on fully sequenced prokaryotic genomes to detect RM-linked genome rearrangements. RM genes were frequently found to be linked to mobility-related genes such as integrase and transposase homologs. They were flanked by direct and inverted repeats at a significantly high frequency. Insertion by long target duplication was observed for I, II, III and IV restriction types. We found several RM genes flanked by long inverted repeats, some of which had apparently inserted into a genome with a short target duplication. In some cases, only a portion of an apparently complete RM system was flanked by inverted repeats. We also found a unit composed of RM genes and an integrase homolog that integrated into a tRNA gene. An allelic substitution of a Type III system with a linked Type I and IV system pair, and allelic diversity in the putative target recognition domain of Type IIG systems were observed. This study revealed the possible mobility of all types of RM systems, and the diversity in their mobility-related organization.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
20
|
Kageyama Y, Murayama M, Onodera T, Yamada S, Fukada H, Kudou M, Tsumoto K, Toyama Y, Kado S, Kubota K, Takeda S. Observation of the Membrane Binding Activity and Domain Structure of gpV, Which Comprises the Tail Spike of Bacteriophage P2. Biochemistry 2009; 48:10129-35. [DOI: 10.1021/bi900928n] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuhiro Kageyama
- Department of Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Masanori Murayama
- Department of Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Takashi Onodera
- Department of Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Seiko Yamada
- Department of Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Harumi Fukada
- Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Motonori Kudou
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 301 FBS-Building, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan
| | - Kouhei Tsumoto
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 301 FBS-Building, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Japan
| | - Yoshiharu Toyama
- Department of Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Syunsaku Kado
- Department of Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Kenji Kubota
- Department of Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Shigeki Takeda
- Department of Chemical Biology, Graduate School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
21
|
The Crp-activated small noncoding regulatory RNA CyaR (RyeE) links nutritional status to group behavior. J Bacteriol 2008; 191:461-76. [PMID: 18978044 DOI: 10.1128/jb.01157-08] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small noncoding regulatory RNAs (sRNAs) play a key role in regulating the expression of many genes in Escherichia coli and other bacteria. Many of the sRNAs identified in E. coli bind to mRNAs in an Hfq-dependent manner and stimulate or inhibit translation of the mRNAs. Several sRNAs are regulated by well-studied global regulators. Here, we report characterization of the CyaR (RyeE) sRNA, which was previously identified in a global search for sRNAs in E. coli. We demonstrated that CyaR is positively regulated by the global regulator Crp under conditions in which cyclic AMP levels are high. We showed by using microarray analysis and Northern blotting that several genes are negatively regulated by CyaR, including ompX, encoding a major outer membrane protein; luxS, encoding the autoinducer-2 synthase; nadE, encoding an essential NAD synthetase; and yqaE, encoding a predicted membrane protein with an unknown function. Using translational lacZ fusions to yqaE, ompX, nadE, and luxS, we demonstrated that the negative regulation of these genes by CyaR occurs at the posttranscriptional level and is direct. Different portions of a highly conserved 3' region of CyaR are predicted to pair with sequences near the ribosome binding site of each of these targets; mutations in this sequence affected regulation, and compensatory mutations in the target mRNA restored regulation, confirming that there is direct regulation by the sRNA. These results provide insight into the mechanisms by which Crp negatively regulates genes such as luxS and ompX and provide a link between catabolite repression, quorum sensing, and nitrogen assimilation in E. coli.
Collapse
|
22
|
Identification of a novel prophage-like gene cluster actively expressed in both virulent and avirulent strains of Leptospira interrogans serovar Lai. Infect Immun 2008; 76:2411-9. [PMID: 18362131 DOI: 10.1128/iai.01730-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA microarray analysis was used to compare the differential gene expression profiles between Leptospira interrogans serovar Lai type strain 56601 and its corresponding attenuated strain IPAV. A 22-kb genomic island covering a cluster of 34 genes (i.e., genes LA0186 to LA0219) was actively expressed in both strains but concomitantly upregulated in strain 56601 in contrast to that of IPAV. Reverse transcription-PCR assays proved that the gene cluster comprised five transcripts. Gene annotation of this cluster revealed characteristics of a putative prophage-like remnant with at least 8 of 34 sequences encoding prophage-like proteins, of which the LA0195 protein is probably a putative prophage CI-like regulator. The transcription initiation activities of putative promoter-regulatory sequences of transcripts I, II, and III, all proximal to the LA0195 gene, were further analyzed in the Escherichia coli promoter probe vector pKK232-8 by assaying the reporter chloramphenicol acetyltransferase (CAT) activities. The strong promoter activities of both transcripts I and II indicated by the E. coli CAT assay were well correlated with the in vitro sequence-specific binding of the recombinant LA0195 protein to the corresponding promoter probes detected by the electrophoresis mobility shift assay. On the other hand, the promoter activity of transcript III was very low in E. coli and failed to show active binding to the LA0195 protein in vitro. These results suggested that the LA0195 protein is likely involved in the transcription of transcripts I and II. However, the identical complete DNA sequences of this prophage remnant from these two strains strongly suggests that possible regulatory factors or signal transduction systems residing outside of this region within the genome may be responsible for the differential expression profiling in these two strains.
Collapse
|
23
|
Knaust F, Kube M, Reinhardt R, Rabus R. Analyses of the vrl gene cluster in Desulfococcus multivorans: homologous to the virulence-associated locus of the ovine footrot pathogen Dichelobacter nodosus strain A198. J Mol Microbiol Biotechnol 2007; 13:156-64. [PMID: 17693723 DOI: 10.1159/000103607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Major parts of the virulence-associated vrl locus known from the gammaproteobacterium Dichelobacter nodosus, the causative agent of ovine footrot, were analyzed in the genome of the sulfate-reducing deltaproteobacterium Desulfococcus multivorans. In the genome of D. multivorans 13 of the 19 vrl genes described for D. nodosus are present and highly conserved with respect to gene sequence and order. The vrl locus and its flanking regions suggest a bacteriophage-mediated transfer into the genome of D. multivorans. Comparative analysis of the deduced Vrl proteins reveals a wide distribution of parts of the virulence-associated vrl locus in distantly related bacteria. Horizontal transfer is suggested as driving mechanism for the circulation of the vrl genes in bacteria. Except for the vrlBMN genes D. multivorans and Desulfovibrio desulfuricans G20 together contain all vrl genes displaying a high degree of similarity. For D. multivorans it could be shown that guanine plus cytosine (GC) content, GC skew, di-, tri- or tetranucleotide distribution did not differ between the vrl locus and its flanking sequences. This could be a hint that the vrl locus originated from a related organism or at least a genome with similar characteristics. The conspicuous high degree of conservation of the analyzed vrl genes may result from a recent transfer event or reflect a function of the vrl genes, which is still unknown and not necessarily disease associated. The latter is supported by the evidence for expression of the vrl genes in D. multivorans, which has not been described as pathogen or to be associated to any disease pattern before.
Collapse
Affiliation(s)
- Florian Knaust
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | | | | | | |
Collapse
|
24
|
Odegrip R, Nilsson AS, Haggård-Ljungquist E. Identification of a gene encoding a functional reverse transcriptase within a highly variable locus in the P2-like coliphages. J Bacteriol 2006; 188:1643-7. [PMID: 16452449 PMCID: PMC1367236 DOI: 10.1128/jb.188.4.1643-1647.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 11/18/2005] [Indexed: 11/20/2022] Open
Abstract
The P2-like coliphages are highly similar; the structural genes show at least 96% identity. However, at two loci they have genes believed to be horizontally transferred. We show that the genetic content at the second loci, the TO region, contains six completely different sequences with high AT contents and with different open reading frames. The product of one of them exhibits reverse transcriptase activity and blocks infection of phage T5.
Collapse
Affiliation(s)
- Richard Odegrip
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Pristas P, Piknova M. Underrepresentation of short palindromes in Selenomonas ruminantium DNA: evidence for horizontal gene transfer of restriction and modification systems? Can J Microbiol 2005; 51:315-8. [PMID: 15980893 DOI: 10.1139/w05-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular analysis of isolates of the rumen bacterium Selenomonas ruminantium revealed a high variety and frequency of site-specific (restriction) endonucleases. While all known S. ruminantium restriction and modification systems recognize hexanucleotide sequences only, consistently low counts of both 6-bp and 4-bp palindromes were found in DNA sequences of S. ruminantium. Statistical analysis indicated that there is some correlation between the degree of underrepresentation of tetranucleotide words and the number of known restriction endonucleases for a given sequence. Control analysis showed the same correlation in lambda DNA but not in human adenovirus DNA. Based on the data presented, it could be proposed that there is a much higher historical occurrence of restriction and modification systems in S. ruminantium and (or) frequent horizontal gene transfer of restriction and modification gene complexes.
Collapse
Affiliation(s)
- Peter Pristas
- Institute of Animal Physiology, Slovak Academy of Sciences, Soltesovej 4-6, 04001 Kosice, Slovak Republic.
| | | |
Collapse
|
26
|
Gladitz J, Shen K, Antalis P, Hu FZ, Post JC, Ehrlich GD. Codon usage comparison of novel genes in clinical isolates of Haemophilus influenzae. Nucleic Acids Res 2005; 33:3644-58. [PMID: 15983137 PMCID: PMC1160521 DOI: 10.1093/nar/gki670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A similarity statistic for codon usage was developed and used to compare novel gene sequences found in clinical isolates of Haemophilus influenzae with a reference set of 80 prokaryotic, eukaryotic and viral genomes. These analyses were performed to obtain an indication as to whether individual genes were Haemophilus-like in nature, or if they probably had more recently entered the H.influenzae gene pool via horizontal gene transfer from other species. The average and SD values were calculated for the similarity statistics from a study of the set of all genes in the H.influenzae Rd reference genome that encoded proteins of 100 amino acids or longer. Approximately 80% of Rd genes gave a statistic indicating that they were most like other Rd genes. Genes displaying codon usage statistics >1 SD above this range were either considered part of the highly expressed group of H.influenzae genes, or were considered of foreign origin. An alternative determinant for identifying genes of foreign origin was when the similarity statistics produced a value that was much closer to a non-H.influenzae reference organism than to any of the Haemophilus species contained in the reference set. Approximately 65% of the novel sequences identified in the H.influenzae clinical isolates displayed codon usages most similar to Haemophilus sp. The remaining novel sequences produced similarity statistics closer to one of the other reference genomes thereby suggesting that these sequences may have entered the H.influenzae gene pool more recently via horizontal transfer.
Collapse
Affiliation(s)
| | | | | | | | | | - Garth D. Ehrlich
- To whom correspondence should be addressed. Tel: +1 412 359 4228; Fax: +1 412 359 6995;
| |
Collapse
|
27
|
Mira A, Pushker R, Legault BA, Moreira D, Rodríguez-Valera F. Evolutionary relationships of Fusobacterium nucleatum based on phylogenetic analysis and comparative genomics. BMC Evol Biol 2004; 4:50. [PMID: 15566569 PMCID: PMC535925 DOI: 10.1186/1471-2148-4-50] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 11/26/2004] [Indexed: 11/17/2022] Open
Abstract
Background The phylogenetic position and evolutionary relationships of Fusobacteria remain uncertain. Especially intriguing is their relatedness to low G+C Gram positive bacteria (Firmicutes) by ribosomal molecular phylogenies, but their possession of a typical gram negative outer membrane. Taking advantage of the recent completion of the Fusobacterium nucleatum genome sequence we have examined the evolutionary relationships of Fusobacterium genes by phylogenetic analysis and comparative genomics tools. Results The data indicate that Fusobacterium has a core genome of a very different nature to other bacterial lineages, and branches out at the base of Firmicutes. However, depending on the method used, 35–56% of Fusobacterium genes appear to have a xenologous origin from bacteroidetes, proteobacteria, spirochaetes and the Firmicutes themselves. A high number of hypothetical ORFs with unusual codon usage and short lengths were found and hypothesized to be remnants of transferred genes that were discarded. Some proteins and operons are also hypothesized to be of mixed ancestry. A large portion of the Gram-negative cell wall-related genes seems to have been transferred from proteobacteria. Conclusions Many instances of similarity to other inhabitants of the dental plaque that have been sequenced were found. This suggests that the close physical contact found in this environment might facilitate horizontal gene transfer, supporting the idea of niche-specific gene pools. We hypothesize that at a point in time, probably associated to the rise of mammals, a strong selective pressure might have existed for a cell with a Clostridia-like metabolic apparatus but with the adhesive and immune camouflage features of Proteobacteria.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Composition/genetics
- Chromosome Mapping/methods
- Chromosomes, Bacterial/genetics
- Enzymes/genetics
- Evolution, Molecular
- Fusobacterium nucleatum/enzymology
- Fusobacterium nucleatum/genetics
- Gene Order/genetics
- Gene Transfer, Horizontal/genetics
- Genes, Bacterial/genetics
- Genome, Bacterial
- Genomics/methods
- Operon/genetics
- Phylogeny
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 23S/genetics
- Recombinant Fusion Proteins/genetics
Collapse
Affiliation(s)
- Alex Mira
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain
| | - Ravindra Pushker
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain
| | - Boris A Legault
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain
| | - David Moreira
- UMR CNRS 8079, Ecologie, Systématique et Evolution, Université Paris-Sud, bâtiment 360, 91405 Orsay Cedex, France
| | - Francisco Rodríguez-Valera
- Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, San Juan 03550, Alicante, Spain
| |
Collapse
|
28
|
|