1
|
Omnus DJ, Fink MJ, Kallazhi A, Xandri Zaragoza M, Leppert A, Landreh M, Jonas K. The heat shock protein LarA activates the Lon protease in response to proteotoxic stress. Nat Commun 2023; 14:7636. [PMID: 37993443 PMCID: PMC10665427 DOI: 10.1038/s41467-023-43385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
The Lon protease is a highly conserved protein degradation machine that has critical regulatory and protein quality control functions in cells from the three domains of life. Here, we report the discovery of a α-proteobacterial heat shock protein, LarA, that functions as a dedicated Lon regulator. We show that LarA accumulates at the onset of proteotoxic stress and allosterically activates Lon-catalysed degradation of a large group of substrates through a five amino acid sequence at its C-terminus. Further, we find that high levels of LarA cause growth inhibition in a Lon-dependent manner and that Lon-mediated degradation of LarA itself ensures low LarA levels in the absence of stress. We suggest that the temporal LarA-dependent activation of Lon helps to meet an increased proteolysis demand in response to protein unfolding stress. Our study defines a regulatory interaction of a conserved protease with a heat shock protein, serving as a paradigm of how protease activity can be tuned under changing environmental conditions.
Collapse
Affiliation(s)
- Deike J Omnus
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Matthias J Fink
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Aswathy Kallazhi
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Maria Xandri Zaragoza
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 751 24, Uppsala, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden.
| |
Collapse
|
2
|
Bouraoui A, Louzada RA, Aimeur S, Waeytens J, Wien F, My-Chan Dang P, Bizouarn T, Dupuy C, Baciou L. New insights in the molecular regulation of the NADPH oxidase 2 activity: Negative modulation by Poldip2. Free Radic Biol Med 2023; 199:113-125. [PMID: 36828293 DOI: 10.1016/j.freeradbiomed.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Poldip2 was shown to be involved in oxidative signaling to ensure certain biological functions. It was proposed that, in VSMC, by interaction with the Nox4-associated membrane protein p22phox, Poldip2 stimulates the level of reactive oxygen species (ROS) production. In vitro, with fractionated membranes from HEK393 cells over-expressing Nox4, we confirmed the up-regulation of NADPH oxidase 4 activity by the recombinant and purified Poldip2. Besides Nox4, the Nox1, Nox2, or Nox3 isoforms are also established partners of the p22phox protein raising the question of their regulation by Poldip2 and of the effect in cells expressing simultaneously different Nox isoforms. In this study, we have addressed this issue by investigating the potential regulatory role of Poldip2 on NADPH oxidase 2, present in phagocyte cells. Unexpectedly, the effect of Poldip2 on phagocyte NADPH oxidase 2 was opposite to that observed on NADPH oxidase 4. Using membranes from circulating resting neutrophils, the ROS production rate of NADPH oxidase 2 was down-regulated by Poldip2 (2.5-fold). The down-regulation effect could not be correlated to the interaction of Poldip2 with p22phox but rather, to the interaction of Poldip2 with the p47phox protein, one of the regulatory proteins of the phagocyte NADPH oxidase. Our results show that the interaction of Poldip2 with p47phox constitutes a novel regulatory mechanism that can negatively modulate the activity of NADPH oxidase 2 by trapping the so-called "adaptor" subunit of the complex. Poldip2 could act as a tunable switch capable of specifically regulating the activities of NADPH oxidases. This selective regulatory role of Poldip2, positive for Nox4 or negative for Nox2 could orchestrate the level and the type of ROS generated by Nox enzymes in the cells.
Collapse
Affiliation(s)
- Aicha Bouraoui
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Ruy Andrade Louzada
- Université Paris Saclay, UMR 9019 CNRS, Gustave Roussy, 94800, Villejuif, France
| | - Sana Aimeur
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Jehan Waeytens
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France; Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
| | - Frank Wien
- DISCO beamline, Synchrotron SOLEIL, Campus Paris-Saclay, 91192, Gif-sur-Yvette Cedex, France
| | - Pham My-Chan Dang
- INSERM U1149, CNRS ERL8252, Centre de Recherche sur l'Inflammation, Université de Paris, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, F-75018, France
| | - Tania Bizouarn
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France
| | - Corinne Dupuy
- Université Paris Saclay, UMR 9019 CNRS, Gustave Roussy, 94800, Villejuif, France
| | - Laura Baciou
- Université Paris-Saclay, Institut de Chimie Physique UMR 8000, CNRS, 91405, Orsay Cedex, France.
| |
Collapse
|
3
|
Amemiya HM, Schroeder J, Freddolino PL. Nucleoid-associated proteins shape chromatin structure and transcriptional regulation across the bacterial kingdom. Transcription 2021; 12:182-218. [PMID: 34499567 PMCID: PMC8632127 DOI: 10.1080/21541264.2021.1973865] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023] Open
Abstract
Genome architecture has proven to be critical in determining gene regulation across almost all domains of life. While many of the key components and mechanisms of eukaryotic genome organization have been described, the interplay between bacterial DNA organization and gene regulation is only now being fully appreciated. An increasing pool of evidence has demonstrated that the bacterial chromosome can reasonably be thought of as chromatin, and that bacterial chromosomes contain transcriptionally silent and transcriptionally active regions analogous to heterochromatin and euchromatin, respectively. The roles played by histones in eukaryotic systems appear to be shared across a range of nucleoid-associated proteins (NAPs) in bacteria, which function to compact, structure, and regulate large portions of bacterial chromosomes. The broad range of extant NAPs, and the extent to which they differ from species to species, has raised additional challenges in identifying and characterizing their roles in all but a handful of model bacteria. Here we review the regulatory roles played by NAPs in several well-studied bacteria and use the resulting state of knowledge to provide a working definition for NAPs, based on their function, binding pattern, and expression levels. We present a screening procedure which can be applied to any species for which transcriptomic data are available. Finally, we note that NAPs tend to play two major regulatory roles - xenogeneic silencers and developmental regulators - and that many unrecognized potential NAPs exist in each bacterial species examined.
Collapse
Affiliation(s)
- Haley M. Amemiya
- University of Michigan Medical School, Ann Arbor, MI, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jeremy Schroeder
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L. Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Kulik AA, Maruszczak KK, Thomas DC, Nabi-Aldridge NLA, Carr M, Bingham RJ, Cooper CDO. Crystal structure and molecular dynamics of human POLDIP2, a multifaceted adaptor protein in metabolism and genome stability. Protein Sci 2021; 30:1196-1209. [PMID: 33884680 PMCID: PMC8138528 DOI: 10.1002/pro.4085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/02/2023]
Abstract
Polymerase δ‐interacting protein 2 (POLDIP2, PDIP38) is a multifaceted, “moonlighting” protein, involved in binding protein partners from many different cellular processes, including mitochondrial metabolism and DNA replication and repair. How POLDIP2 interacts with many different proteins is unknown. Towards this goal, we present the crystal structure of POLDIP2 to 2.8 Å, which exhibited a compact two‐domain β‐strand‐rich globular structure, confirmed by circular dichroism and small angle X‐ray scattering approaches. POLDIP2 comprised canonical DUF525 and YccV domains, but with a conserved domain linker packed tightly, resulting in an “extended” YccV module. A central channel was observed, which we hypothesize could influence structural changes potentially mediated by redox conditions, following observation of a modified cysteine residue in the channel. Unstructured regions were rebuilt by ab initio modelling to generate a model of full‐length POLDIP2. Molecular dynamics simulations revealed a highly dynamic N‐terminal region tethered to the YccV‐domain by an extended linker, potentially facilitating interactions with distal binding partners. Models of POLDIP2 complexed with two of its partners, PrimPol and PCNA, indicated that dynamic flexibility of the POLDIP2 N‐terminus and loop regions likely mediate protein interactions. PDB Code(s): 6Z9C;
Collapse
Affiliation(s)
- Anastasija A Kulik
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | | | | | | | | | | | | |
Collapse
|
5
|
A Multifunctional Protein PolDIP2 in DNA Translesion Synthesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:35-45. [PMID: 32383114 DOI: 10.1007/978-3-030-41283-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Polymerase δ-interacting protein 2 (PolDIP2) is involved in the multiple protein-protein interactions and plays roles in many cellular processes including regulation of the nuclear redox environment, organization of the mitotic spindle and chromosome segregation, pre-mRNA processing, mitochondrial morphology and functions, cell migration and cellular adhesion. PolDIP2 is also a binding partner of high-fidelity DNA polymerase delta, PCNA and a number of translesion and repair DNA polymerases. The growing evidence suggests that PolDIP2 is a general regulatory protein in DNA damage response. However PolDIP2 functions in DNA translesion synthesis and repair are not fully understood. In this review, we address the functional interaction of PolDIP2 with human DNA polymerases and discuss the possible functions in DNA damage response.
Collapse
|
6
|
Garcia-Orozco KD, Cinco-Moroyoqui F, Angulo-Sanchez LT, Marquez-Rios E, Burgos-Hernandez A, Cardenas-Lopez JL, Gomez-Aguilar C, Corona-Martinez DO, Saab-Rincon G, Sotelo-Mundo RR. Biochemical Characterization of a Novel α/β-Hydrolase/FSH from the White Shrimp Litopenaeus vannamei. Biomolecules 2019; 9:E674. [PMID: 31683580 PMCID: PMC6921030 DOI: 10.3390/biom9110674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Lipases and esterases are important enzymes that share the α/β hydrolase fold. The activity and cellular localization are important characteristics to understand the role of such enzymes in an organism. (2) Methods: Bioinformatic and biochemical tools were used to describe a new α/β hydrolase from a Litopenaeus vannamei transcriptome (LvFHS for Family Serine Hydrolase). (3) Results: The enzyme was obtained by heterologous overexpression in Escherichia coli and showed hydrolytic activity towards short-chain lipid substrates and high affinity to long-chain lipid substrates. Anti-LvFHS antibodies were produced in rabbit that immunodetected the LvFSH enzyme in several shrimp tissues. (4) Conclusions: The protein obtained and analyzed was an α/β hydrolase with esterase and lipase-type activity towards long-chain substrates up to 12 carbons; its immunodetection in shrimp tissues suggests that it has an intracellular localization, and predicted roles in energy mobilization and signal transduction.
Collapse
Affiliation(s)
- Karina D Garcia-Orozco
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| | - Francisco Cinco-Moroyoqui
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Lucía T Angulo-Sanchez
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| | - Enrique Marquez-Rios
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Armando Burgos-Hernandez
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Jose L Cardenas-Lopez
- Departamento de Investigación y Posgrado en Alimentos. Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico.
| | - Carolina Gomez-Aguilar
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| | - David O Corona-Martinez
- Departamento de Ciencias de la Salud, Universidad de Sonora, Cd. 85040 Obregon, Sonora, Mexico.
| | - Gloria Saab-Rincon
- Departamento de Ingeniería Celular & Biocatalisis, Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, 62250 Cuernavaca, Morelos, Mexico.
| | - Rogerio R Sotelo-Mundo
- Laboratorio de Estructura Biomolecular. Centro de Investigacion en Alimentacion y Desarrollo, A.C. 83304 Hermosillo, Sonora, Mexico.
| |
Collapse
|
7
|
Puri N, Karzai AW. HspQ Functions as a Unique Specificity-Enhancing Factor for the AAA+ Lon Protease. Mol Cell 2017; 66:672-683.e4. [PMID: 28575662 DOI: 10.1016/j.molcel.2017.05.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/24/2017] [Accepted: 05/16/2017] [Indexed: 11/26/2022]
Abstract
The AAA+ Lon protease is conserved from bacteria to humans, performs crucial roles in protein homeostasis, and is implicated in bacterial pathogenesis and human disease. We investigated how Lon selectively degrades specific substrates among a diverse array of potential targets. We report the discovery of HspQ as a new Lon substrate, unique specificity-enhancing factor, and potent allosteric activator. Lon recognizes HspQ via a C-terminal degron, whose precise presentation, in synergy with multipartite contacts with the native core of HspQ, is required for allosteric Lon activation. Productive HspQ-Lon engagement enhances degradation of multiple new and known Lon substrates. Our studies reveal the existence and simultaneous utilization of two distinct substrate recognition sites on Lon, an HspQ binding site and an HspQ-modulated allosteric site. Our investigations unveil an unprecedented regulatory use of an evolutionarily conserved heat shock protein and present a distinctive mechanism for how Lon protease achieves temporally enhanced substrate selectivity.
Collapse
Affiliation(s)
- Neha Puri
- Department of Biochemistry and Cell Biology, Center for Infectious Diseases, Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - A Wali Karzai
- Department of Biochemistry and Cell Biology, Center for Infectious Diseases, Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
8
|
Zhang J, Ruhlman TA, Sabir JSM, Blazier JC, Weng ML, Park S, Jansen RK. Coevolution between Nuclear-Encoded DNA Replication, Recombination, and Repair Genes and Plastid Genome Complexity. Genome Biol Evol 2016; 8:622-34. [PMID: 26893456 PMCID: PMC4824065 DOI: 10.1093/gbe/evw033] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear–plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Integrative Biology, University of Texas at Austin
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin
| | - Jamal S M Sabir
- The Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | | | - Mao-Lun Weng
- Department of Integrative Biology, University of Texas at Austin
| | - Seongjun Park
- Department of Integrative Biology, University of Texas at Austin
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin The Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
9
|
Evolution of the methyl directed mismatch repair system in Escherichia coli. DNA Repair (Amst) 2015; 38:32-41. [PMID: 26698649 DOI: 10.1016/j.dnarep.2015.11.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/26/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022]
Abstract
DNA mismatch repair (MMR) repairs mispaired bases in DNA generated by replication errors. MutS or MutS homologs recognize mispairs and coordinate with MutL or MutL homologs to direct excision of the newly synthesized DNA strand. In most organisms, the signal that discriminates between the newly synthesized and template DNA strands has not been definitively identified. In contrast, Escherichia coli and some related gammaproteobacteria use a highly elaborated methyl-directed MMR system that recognizes Dam methyltransferase modification sites that are transiently unmethylated on the newly synthesized strand after DNA replication. Evolution of methyl-directed MMR is characterized by the acquisition of Dam and the MutH nuclease and by the loss of the MutL endonuclease activity. Methyl-directed MMR is present in a subset of Gammaproteobacteria belonging to the orders Enterobacteriales, Pasteurellales, Vibrionales, Aeromonadales, and a subset of the Alteromonadales (the EPVAA group) as well as in gammaproteobacteria that have obtained these genes by horizontal gene transfer, including the medically relevant bacteria Fluoribacter, Legionella, and Tatlockia and the marine bacteria Methylophaga and Nitrosococcus.
Collapse
|
10
|
Nishimura K, Apitz J, Friso G, Kim J, Ponnala L, Grimm B, van Wijk KJ. Discovery of a Unique Clp Component, ClpF, in Chloroplasts: A Proposed Binary ClpF-ClpS1 Adaptor Complex Functions in Substrate Recognition and Delivery. THE PLANT CELL 2015; 27:2677-91. [PMID: 26419670 PMCID: PMC4682326 DOI: 10.1105/tpc.15.00574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 05/18/2023]
Abstract
Clp proteases are found in prokaryotes, mitochondria, and plastids where they play crucial roles in maintaining protein homeostasis (proteostasis). The plant plastid Clp machinery comprises a hetero-oligomeric ClpPRT proteolytic core, ATP-dependent chaperones ClpC and ClpD, and an adaptor protein, ClpS1. ClpS1 selects substrates to the ClpPR protease-ClpC chaperone complex for degradation, but the underlying substrate recognition and delivery mechanisms are currently unclear. Here, we characterize a ClpS1-interacting protein in Arabidopsis thaliana, ClpF, which can interact with the Clp substrate glutamyl-tRNA reductase. ClpF and ClpS1 mutually stimulate their association with ClpC. ClpF, which is only found in photosynthetic eukaryotes, contains bacterial uvrB/C and YccV protein domains and a unique N-terminal domain. We propose a testable model in which ClpS1 and ClpF form a binary adaptor for selective substrate recognition and delivery to ClpC, reflecting an evolutionary adaptation of the Clp system to the plastid proteome.
Collapse
Affiliation(s)
- Kenji Nishimura
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Janina Apitz
- Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | - Giulia Friso
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Jitae Kim
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, New York 14853
| | - Bernhard Grimm
- Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | - Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
11
|
Brown DI, Lassègue B, Lee M, Zafari R, Long JS, Saavedra HI, Griendling KK. Poldip2 knockout results in perinatal lethality, reduced cellular growth and increased autophagy of mouse embryonic fibroblasts. PLoS One 2014; 9:e96657. [PMID: 24797518 PMCID: PMC4010529 DOI: 10.1371/journal.pone.0096657] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Polymerase-δ interacting protein 2 (Poldip2) is an understudied protein, originally described as a binding partner of polymerase delta and proliferating cell nuclear antigen (PCNA). Numerous roles for Poldip2 have been proposed, including mitochondrial elongation, DNA replication/repair and ROS production via Nox4. In this study, we have identified a novel role for Poldip2 in regulating the cell cycle. We used a Poldip2 gene-trap mouse and found that homozygous animals die around the time of birth. Poldip2-/- embryos are significantly smaller than wild type or heterozygous embryos. We found that Poldip2-/- mouse embryonic fibroblasts (MEFs) exhibit reduced growth as measured by population doubling and growth curves. This effect is not due to apoptosis or senescence; however, Poldip2-/- MEFs have higher levels of the autophagy marker LC3b. Measurement of DNA content by flow cytometry revealed an increase in the percentage of Poldip2-/- cells in the G1 and G2/M phases of the cell cycle, accompanied by a decrease in the percentage of S-phase cells. Increases in p53 S20 and Sirt1 were observed in passage 2 Poldip2-/- MEFs. In passage 4/5 MEFs, Cdk1 and CyclinA2 are downregulated in Poldip2-/- cells, and these changes are reversed by transfection with SV40 large T-antigen, suggesting that Poldip2 may target the E2F pathway. In contrast, p21CIP1 is increased in passage 4/5 Poldip2-/- MEFs and its expression is unaffected by SV40 transfection. Overall, these results reveal that Poldip2 is an essential protein in development, and underline its importance in cell viability and proliferation. Because it affects the cell cycle, Poldip2 is a potential novel target for treating proliferative conditions such as cancer, atherosclerosis and restenosis.
Collapse
Affiliation(s)
- David I. Brown
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Bernard Lassègue
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Minyoung Lee
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rostam Zafari
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - James S. Long
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Harold I. Saavedra
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kathy K. Griendling
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
12
|
DNA polymerase δ-interacting protein 2 is a processivity factor for DNA polymerase λ during 8-oxo-7,8-dihydroguanine bypass. Proc Natl Acad Sci U S A 2013; 110:18850-5. [PMID: 24191025 DOI: 10.1073/pnas.1308760110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bypass of DNA lesions by the replication fork requires a switch between the replicative DNA polymerase (Pol) and a more specialized translesion synthesis (TLS) Pol to overcome the obstacle. DNA Pol δ-interacting protein 2 (PolDIP2) has been found to physically interact with Pol η, Pol ζ, and Rev1, suggesting a possible role of PolDIP2 in the TLS reaction. However, the consequences of PolDIP2 interaction on the properties of TLS Pols remain unknown. Here, we analyzed the effects of PolDIP2 on normal and TLS by five different human specialized Pols from three families: Pol δ (family B), Pol η and Pol ι (family Y), and Pol λ and Pol β (family X). Our results show that PolDIP2 also physically interacts with Pol λ, which is involved in the correct bypass of 8-oxo-7,8-dihydroguanine (8-oxo-G) lesions. This interaction increases both the processivity and catalytic efficiency of the error-free bypass of a 8-oxo-G lesion by both Pols η and λ, but not by Pols β or ι. Additionally, we provide evidence that PolDIP2 stimulates Pol δ without affecting its fidelity, facilitating the switch from Pol δ to Pol λ during 8-oxo-G TLS. PolDIP2 stimulates Pols λ and η mediated bypass of other common DNA lesions, such as abasic sites and cyclobutane thymine dimers. Finally, PolDIP2 silencing increases cell sensitivity to oxidative stress and its effect is further potentiated in a Pol λ deficient background, suggesting that PolDIP2 is an important mediator for TLS.
Collapse
|
13
|
Deletion of a novel F-box protein, MUS-10, in Neurospora crassa leads to altered mitochondrial morphology, instability of mtDNA and senescence. Genetics 2010; 185:1257-69. [PMID: 20516500 DOI: 10.1534/genetics.110.117200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
While mitochondria are renowned for their role in energy production, they also perform several other integral functions within the cell. Thus, it is not surprising that mitochondrial dysfunction can negatively impact cell viability. Although mitochondria have received an increasing amount of attention in recent years, there is still relatively little information about how proper maintenance of mitochondria and its genomes is achieved. The Neurospora crassa mus-10 mutant was first identified through its increased sensitivity to methyl methanesulfonate (MMS) and was thus believed to be defective in some aspect of DNA repair. Here, we report that mus-10 harbors fragmented mitochondria and that it accumulates deletions in its mitochondrial DNA (mtDNA), suggesting that the mus-10 gene product is involved in mitochondrial maintenance. Interestingly, mus-10 begins to senesce shortly after deletions are visualized in its mtDNA. To uncover the function of MUS-10, we used a gene rescue approach to clone the mus-10 gene and discovered that it encodes a novel F-box protein. We show that MUS-10 interacts with a core component of the Skp, Cullin, F-box containing (SCF) complex, SCON-3, and that its F-box domain is essential for its function in vivo. Thus, we provide evidence that MUS-10 is part of an E3 ubiquitin ligase complex involved in maintaining the integrity of mitochondria and may function to prevent cellular senescence.
Collapse
|
14
|
Epigenetic regulation of the bacterial cell cycle. Curr Opin Microbiol 2009; 12:722-9. [PMID: 19783470 DOI: 10.1016/j.mib.2009.08.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 08/16/2009] [Indexed: 01/15/2023]
Abstract
N(6)-methyl-adenines can serve as epigenetic signals for interactions between regulatory DNA sequences and regulatory proteins that control cellular functions, such as the initiation of chromosome replication or the expression of specific genes. Several of these genes encode master regulators of the bacterial cell cycle. DNA adenine methylation is mediated by Dam in gamma-proteobacteria and by CcrM in alpha-proteobacteria. A major difference between them is that CcrM is cell cycle regulated, while Dam is active throughout the cell cycle. In alpha-proteobacteria, GANTC sites can remain hemi-methylated for a significant period of the cell cycle, depending on their location on the chromosome. In gamma-proteobacteria, most GATC sites are only transiently hemi-methylated, except regulatory GATC sites that are protected from Dam methylation by specific DNA-binding proteins.
Collapse
|
15
|
Molecular characterization and tissue localization of an F-box only protein from silkworm, Bombyx mori. Comp Funct Genomics 2009:416040. [PMID: 19557136 PMCID: PMC2699434 DOI: 10.1155/2009/416040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 03/12/2009] [Accepted: 04/06/2009] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic F-box protein family is characterized by an F-box motif that has been shown to be critical for the controlled degradation of regulatory proteins. We identified a gene encoding an F-box protein from a cDNA library of silkworm pupae, which has an ORF of 1821 bp, encoding a predicted 606 amino acids. Bioinformatic analysis on the amino acid sequence shows that BmFBXO21 has a low degree of similarity to proteins from other species, and may be related to the regulation of cell-cycle progression. We have detected the expression pattern of BmFBXO21 mRNA and protein and performed immunohistochemistry at three different levels. Expression was highest in the spinning stage, and in the tissues of head, epidermis, and genital organs.
Collapse
|
16
|
Abstract
N(6)-methyl-adenine is found in the genomes of bacteria, archaea, protists and fungi. Most bacterial DNA adenine methyltransferases are part of restriction-modification systems. Certain groups of Proteobacteria also harbour solitary DNA adenine methyltransferases that provide signals for DNA-protein interactions. In gamma-proteobacteria, Dam methylation regulates chromosome replication, nucleoid segregation, DNA repair, transposition of insertion elements and transcription of specific genes. In Salmonella, Haemophilus, Yersinia and Vibrio species and in pathogenic Escherichia coli, Dam methylation is required for virulence. In alpha-proteobacteria, CcrM methylation regulates the cell cycle in Caulobacter, Rhizobium and Agrobacterium, and has a role in Brucella abortus infection.
Collapse
Affiliation(s)
- Didier Wion
- INSERM U318, CHU Michallon, Université Joseph Fourier, 38043 Grenoble, France.
| | | |
Collapse
|
17
|
Robbins-Manke JL, Zdraveski ZZ, Marinus M, Essigmann JM. Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase- and mismatch repair-deficient Escherichia coli. J Bacteriol 2005; 187:7027-37. [PMID: 16199573 PMCID: PMC1251628 DOI: 10.1128/jb.187.20.7027-7037.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA adenine methylation by DNA adenine methyltransferase (Dam) in Escherichia coli plays an important role in processes such as DNA replication initiation, gene expression regulation, and mismatch repair. In addition, E. coli strains deficient in Dam are hypersensitive to DNA-damaging agents. We used genome microarrays to compare the transcriptional profiles of E. coli strains deficient in Dam and mismatch repair (dam, dam mutS, and mutS mutants). Our results show that >200 genes are expressed at a higher level in the dam strain, while an additional mutation in mutS suppresses the induction of many of the same genes. We also show by microarray and semiquantitative real-time reverse transcription-PCR that both dam and dam mutS strains show derepression of LexA-regulated SOS genes as well as the up-regulation of other non-SOS genes involved in DNA repair. To correlate the level of SOS induction and the up-regulation of genes involved in recombinational repair with the level of DNA damage, we used neutral single-cell electrophoresis to determine the number of double-strand breaks per cell in each of the strains. We find that dam mutant E. coli strains have a significantly higher level of double-strand breaks than the other strains. We also observe a broad range in the number of double-strand breaks in dam mutant cells, with a minority of cells showing as many as 10 or more double-strand breaks. We propose that the up-regulation of recombinational repair in dam mutants allows for the efficient repair of double-strand breaks whose formation is dependent on functional mismatch repair.
Collapse
Affiliation(s)
- Jennifer L Robbins-Manke
- Biological Engineering Division, Massachusetts Institute of Technology, 77 Massachusetts Ave., 56-670, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
18
|
Abstract
GATC sequences in Escherichia coli DNA are methylated at the adenine residue by DNA adenine methyltransferase (DamMT). These methylated residues and/or the level of DamMT can influence cellular functions such as gene transcription, DNA mismatch repair, initiation of chromosome replication and nucleoid structure. In certain bacteria, unlike E. coli, DamMT is essential for viability perhaps owing to its role in chromosome replication. DamMT has also been implicated as a virulence factor in bacterial pathogenesis. The origin and phylogeny of DamMT, based on sequenced genomes, has been deduced.
Collapse
Affiliation(s)
- Anders Løbner-Olesen
- Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark
| | | | | |
Collapse
|
19
|
Shimuta TR, Nakano K, Yamaguchi Y, Ozaki S, Fujimitsu K, Matsunaga C, Noguchi K, Emoto A, Katayama T. Novel heat shock protein HspQ stimulates the degradation of mutant DnaA protein in Escherichia coli. Genes Cells 2005; 9:1151-66. [PMID: 15569148 DOI: 10.1111/j.1365-2443.2004.00800.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Escherichia coli DnaA protein initiates chromosomal replication and is an important regulatory target during the replication cycle. In this study, a suppressor mutation isolated by transposon mutagenesis was found to allow growth of the temperature-sensitive dnaA508 and dnaA167 mutants at 40 degrees C. The suppressor consists of a transposon insertion in a previously annotated ORF, here termed hspQ, a novel heat shock gene whose promoter is recognized by the major heat shock sigma factor sigma32. Expression of hspQ on a pBR322 derivative inhibits growth of the dnaA508 and dnaA167 mutants at 30 degrees C, whereas growth of dnaA46 and other dnaA mutants is insensitive to changes in the level of hspQ. Cellular DnaA508 protein is degraded rapidly at elevated temperature, but hspQ disruption impedes this process. In contrast, DnaA46 protein is rapidly degraded in an hspQ-independent manner. Gel-filtration and chemical cross-linking experiments suggest that HspQ forms a stable homodimer in solution and can form homomultimers consisting of about four monomers. Heat-shock induced proteases such as Clp contain homomultimers of subunit proteins. We propose that HspQ is a new factor involved in the quality control of proteins and that it functions by excluding denatured proteins.
Collapse
Affiliation(s)
- Toh-ru Shimuta
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Miller C, Ingmer H, Thomsen LE, Skarstad K, Cohen SN. DpiA binding to the replication origin of Escherichia coli plasmids and chromosomes destabilizes plasmid inheritance and induces the bacterial SOS response. J Bacteriol 2003; 185:6025-31. [PMID: 14526013 PMCID: PMC225042 DOI: 10.1128/jb.185.20.6025-6031.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dpiA and dpiB genes of Escherichia coli, which are orthologs of genes that regulate citrate uptake and utilization in Klebsiella pneumoniae, comprise a two-component signal transduction system that can modulate the replication of and destabilize the inheritance of pSC101 and certain other plasmids. Here we show that perturbed replication and inheritance result from binding of the effector protein DpiA to A+T-rich replication origin sequences that resemble those in the K. pneumoniae promoter region targeted by the DpiA ortholog, CitB. Consistent with its ability to bind to A+T-rich origin sequences, overproduction of DpiA induced the SOS response in E. coli, suggesting that chromosomal DNA replication is affected. Bacteria that overexpressed DpiA showed an increased amount of DNA per cell and increased cell size-both also characteristic of the SOS response. Concurrent overexpression of the DNA replication initiation protein, DnaA, or the DNA helicase, DnaB-both of which act at A+T-rich replication origin sequences in the E. coli chromosome and DpiA-targeted plasmids-reversed SOS induction as well as plasmid destabilization by DpiA. Our finding that physical and functional interactions between DpiA and sites of replication initiation modulate DNA replication and plasmid inheritance suggests a mechanism by which environmental stimuli transmitted by these gene products can regulate chromosomal and plasmid dynamics.
Collapse
Affiliation(s)
- Christine Miller
- Departments of Genetics. Medicine, Stanford University, Stanford, California 94305-5120, USA
| | | | | | | | | |
Collapse
|