1
|
Carey CJ, Duggan N, Drabinska J, McClean S. Harnessing hypoxia: bacterial adaptation and chronic infection in cystic fibrosis. FEMS Microbiol Rev 2025; 49:fuaf018. [PMID: 40312783 PMCID: PMC12071387 DOI: 10.1093/femsre/fuaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/04/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
The exquisite ability of bacteria to adapt to their environment is essential for their capacity to colonize hostile niches. In the cystic fibrosis (CF) lung, hypoxia is among several environmental stresses that opportunistic pathogens must overcome to persist and chronically colonize. Although the role of hypoxia in the host has been widely reviewed, the impact of hypoxia on bacterial pathogens has not yet been studied extensively. This review considers the bacterial oxygen-sensing mechanisms in three species that effectively colonize the lungs of people with CF, namely Pseudomonas aeruginosa, Burkholderia cepacia complex, and Mycobacterium abscessus and draws parallels between their three proposed oxygen-sensing two-component systems: BfiSR, FixLJ, and DosRS, respectively. Moreover, each species expresses regulons that respond to hypoxia: Anr, Lxa, and DosR, and encode multiple proteins that share similar homologies and function. Many adaptations that these pathogens undergo during chronic infection, including antibiotic resistance, protease expression, or changes in motility, have parallels in the responses of the respective species to hypoxia. It is likely that exposure to hypoxia in their environmental habitats predispose these pathogens to colonization of hypoxic niches, arming them with mechanisms than enable their evasion of the immune system and establish chronic infections. Overcoming hypoxia presents a new target for therapeutic options against chronic lung infections.
Collapse
Affiliation(s)
- Ciarán J Carey
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Niamh Duggan
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Joanna Drabinska
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
2
|
Do H, Nguyen DL, Ahn YY, Nam Y, Kang Y, Oh H, Hwang J, Han SJ, Kim K, Lee JH. Structural and functional characterization of sulfurtransferase from Frondihabitans sp. PAMC28461. PLoS One 2024; 19:e0298999. [PMID: 38526988 PMCID: PMC10962793 DOI: 10.1371/journal.pone.0298999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/04/2024] [Indexed: 03/27/2024] Open
Abstract
Sulfurtransferases transfer of sulfur atoms from thiols to acceptors like cyanide. They are categorized as thiosulfate sulfurtransferases (TSTs) and 3-mercaptopyruvate sulfurtransferases (MSTs). TSTs transfer sulfur from thiosulfate to cyanide, producing thiocyanate. MSTs transfer sulfur from 3-mercaptopyruvate to cyanide, yielding pyruvate and thiocyanate. The present study aimed to isolate and characterize the sulfurtransferase FrST from Frondihabitans sp. PAMC28461 using biochemical and structural analyses. FrST exists as a dimer and can be classified as a TST rather than an MST according to sequence-based clustering and enzyme activity. Furthermore, the discovery of activity over a wide temperature range and the broad substrate specificity exhibited by FrST suggest promising prospects for its utilization in industrial applications, such as the detoxification of cyanide.
Collapse
Affiliation(s)
- Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Korea
| | - Dieu Linh Nguyen
- Department of Polar Sciences, University of Science and Technology, Incheon, Korea
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Yong-Yoon Ahn
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Korea
| | - Yewon Nam
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
| | - YoonJi Kang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
| | - HoeJung Oh
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
| | - Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Korea
| | - Se Jong Han
- Department of Polar Sciences, University of Science and Technology, Incheon, Korea
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Kitae Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea
- Department of Polar Sciences, University of Science and Technology, Incheon, Korea
| |
Collapse
|
3
|
Pseudomonas aeruginosa Production of Hydrogen Cyanide Leads to Airborne Control of Staphylococcus aureus Growth in Biofilm and In Vivo Lung Environments. mBio 2022; 13:e0215422. [PMID: 36129311 DOI: 10.1128/mbio.02154-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse bacterial volatile compounds alter bacterial stress responses and physiology, but their contribution to population dynamics in polymicrobial communities is not well known. In this study, we showed that airborne volatile hydrogen cyanide (HCN) produced by a wide range of Pseudomonas aeruginosa clinical strains leads to at-a-distance in vitro inhibition of the growth of a wide array of Staphylococcus aureus strains. We determined that low-oxygen environments not only enhance P. aeruginosa HCN production but also increase S. aureus sensitivity to HCN, which impacts P. aeruginosa-S. aureus competition in microaerobic in vitro mixed biofilms as well as in an in vitro cystic fibrosis lung sputum medium. Consistently, we demonstrated that production of HCN by P. aeruginosa controls S. aureus growth in a mouse model of airways coinfected by P. aeruginosa and S. aureus. Our study therefore demonstrates that P. aeruginosa HCN contributes to local and distant airborne competition against S. aureus and potentially other HCN-sensitive bacteria in contexts relevant to cystic fibrosis and other polymicrobial infectious diseases. IMPORTANCE Airborne volatile compounds produced by bacteria are often only considered attractive or repulsive scents, but they also directly contribute to bacterial physiology. Here, we showed that volatile hydrogen cyanide (HCN) released by a wide range of Pseudomonas aeruginosa strains controls Staphylococcus aureus growth in low-oxygen in vitro biofilms or aggregates and in vivo lung environments. These results are of pathophysiological relevance, since lungs of cystic fibrosis patients are known to present microaerobic areas and to be commonly associated with the presence of S. aureus and P. aeruginosa in polymicrobial communities. Our study therefore provides insights into how a bacterial volatile compound can contribute to the exclusion of S. aureus and other HCN-sensitive competitors from P. aeruginosa ecological niches. It opens new perspectives for the management or monitoring of P. aeruginosa infections in lower-lung airway infections and other polymicrobial disease contexts.
Collapse
|
4
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 510] [Impact Index Per Article: 170.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
5
|
Zuhra K, Szabo C. The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter. FEBS J 2022; 289:2481-2515. [PMID: 34297873 PMCID: PMC9291117 DOI: 10.1111/febs.16135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022]
Abstract
Cyanide is traditionally viewed as a cytotoxic agent, with its primary mode of action being the inhibition of mitochondrial Complex IV (cytochrome c oxidase). However, recent studies demonstrate that the effect of cyanide on Complex IV in various mammalian cells is biphasic: in lower concentrations (nanomolar to low micromolar) cyanide stimulates Complex IV activity, increases ATP production and accelerates cell proliferation, while at higher concentrations (high micromolar to low millimolar) it produces the previously known ('classic') toxic effects. The first part of the article describes the cytotoxic actions of cyanide in the context of environmental toxicology, and highlights pathophysiological conditions (e.g., cystic fibrosis with Pseudomonas colonization) where bacterially produced cyanide exerts deleterious effects to the host. The second part of the article summarizes the mammalian sources of cyanide production and overviews the emerging concept that mammalian cells may produce cyanide, in low concentrations, to serve biological regulatory roles. Cyanide fulfills many of the general criteria as a 'classical' mammalian gasotransmitter and shares some common features with the current members of this class: nitric oxide, carbon monoxide, and hydrogen sulfide.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of PharmacologySection of MedicineUniversity of FribourgSwitzerland
| | - Csaba Szabo
- Chair of PharmacologySection of MedicineUniversity of FribourgSwitzerland
| |
Collapse
|
6
|
Antimicrobial Weapons of Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:223-256. [DOI: 10.1007/978-3-031-08491-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Sentausa E, Basso P, Berry A, Adrait A, Bellement G, Couté Y, Lory S, Elsen S, Attrée I. Insertion sequences drive the emergence of a highly adapted human pathogen. Microb Genom 2019; 6. [PMID: 30946644 PMCID: PMC7643977 DOI: 10.1099/mgen.0.000265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is a highly adaptive opportunistic pathogen that can have serious health consequences in patients with lung disorders. Taxonomic outliers of P. aeruginosa of environmental origin have recently emerged as infectious for humans. Here, we present the first genome-wide analysis of an isolate that caused fatal haemorrhagic pneumonia. In two clones, CLJ1 and CLJ3, sequentially recovered from a patient with chronic pulmonary disease, insertion of a mobile genetic element into the P. aeruginosa chromosome affected major virulence-associated phenotypes and led to increased resistance to the antibiotics used to combat the infection. Comparative genome, proteome and transcriptome analyses revealed that this ISL3-family insertion sequence disrupted the genes for flagellar components, type IV pili, O-specific antigens, translesion polymerase and enzymes producing hydrogen cyanide. Seven-fold more insertions were detected in the later isolate, CLJ3, than in CLJ1, some of which modified strain susceptibility to antibiotics by disrupting the genes for the outer-membrane porin OprD and the regulator of β-lactamase expression AmpD. In the Galleria mellonella larvae model, the two strains displayed different levels of virulence, with CLJ1 being highly pathogenic. This study revealed insertion sequences to be major players in enhancing the pathogenic potential of a P. aeruginosa taxonomic outlier by modulating both its virulence and its resistance to antimicrobials, and explains how this bacterium adapts from the environment to a human host.
Collapse
Affiliation(s)
- Erwin Sentausa
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,Present address: Evotec ID (Lyon) SAS, Marcy l'Étoile, France
| | - Pauline Basso
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,Present address: Department of Microbiology and Immunology, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA
| | - Alice Berry
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
| | - Annie Adrait
- Université Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Gwendoline Bellement
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France.,Université Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France.,Present address: Biozentrum, University of Basel, Basel, Switzerland
| | - Yohann Couté
- Université Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Sylvie Elsen
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
| | - Ina Attrée
- Université Grenoble Alpes, CNRS ERL5261, INSERM U1036, CEA, Laboratory Biology of Cancer and Infection, Bacterial Pathogenesis and Cellular Responses, Biosciences and Biotechnology Institute of Grenoble, 38000 Grenoble, France
| |
Collapse
|
8
|
Chevalier S, Bouffartigues E, Bazire A, Tahrioui A, Duchesne R, Tortuel D, Maillot O, Clamens T, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P. Extracytoplasmic function sigma factors in Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:706-721. [PMID: 29729420 DOI: 10.1016/j.bbagrm.2018.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/06/2018] [Accepted: 04/30/2018] [Indexed: 01/26/2023]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa, like all members of the genus Pseudomonas, has the capacity to thrive in very different environments, ranging from water, plant roots, to animals, including humans to whom it can cause severe infections. This remarkable adaptability is reflected in the number of transcriptional regulators, including sigma factors in this bacterium. Among those, the 19 to 21 extracytoplasmic sigma factors (ECFσ) are endowed with different regulons and functions, including the iron starvation σ (PvdS, FpvI, HasI, FecI, FecI2 and others), the cell wall stress ECFσ AlgU, SigX and SbrI, and the unorthodox σVreI involved in the expression of virulence. Recently published data show that these ECFσ have separate regulons although presenting some cross-talk. We will present evidence that these different ECFσ are involved in the expression of different phenotypes, ranging from cell-wall stress response, production of extracellular polysaccharides, formation of biofilms, to iron acquisition.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France.
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alexis Bazire
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Rachel Duchesne
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Damien Tortuel
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| |
Collapse
|
9
|
Gellatly SL, Bains M, Breidenstein EBM, Strehmel J, Reffuveille F, Taylor PK, Yeung ATY, Overhage J, Hancock REW. Novel roles for two-component regulatory systems in cytotoxicity and virulence-related properties in Pseudomonas aeruginosa. AIMS Microbiol 2018; 4:173-191. [PMID: 31294209 PMCID: PMC6605022 DOI: 10.3934/microbiol.2018.1.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/26/2018] [Indexed: 11/18/2022] Open
Abstract
The rapid adaptation of the opportunistic bacterial pathogen Pseudomonas aeruginosa to various growth modes and environmental conditions is controlled in part through diverse two-component regulatory systems. Some of these systems are well studied, but the majority are poorly characterized, even though it is likely that several of these systems contribute to virulence. Here, we screened all available strain PA14 mutants in 50 sensor kinases, 50 response regulators and 5 hybrid sensor/regulators, for contributions to cytotoxicity against cultured human bronchial epithelial cells, as assessed by the release of cytosolic lactate dehydrogenase. This enabled the identification of 8 response regulators and 3 sensor kinases that caused substantial decreases in cytotoxicity, and 5 response regulators and 8 sensor kinases that significantly increased cytotoxicity by 15-58% or more. These regulators were additionally involved in motility, adherence, type 3 secretion, production of cytotoxins, and the development of biofilms. Here we investigated in more detail the roles of FleSR, PilSR and WspR. Not all cognate pairs contributed to cytotoxicity (e.g. PhoPQ, PilSR) in the same way and some differences could be detected between the same mutants in PAO1 and PA14 strain backgrounds (e.g. FleSR, PhoPQ). This study highlights the potential importance of these regulators and their downstream targets on pathogenesis and demonstrates that cytotoxicity can be regulated by several systems and that their contributions are partly dependent on strain background.
Collapse
Affiliation(s)
- Shaan L Gellatly
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Manjeet Bains
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Elena B M Breidenstein
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Janine Strehmel
- Microbiology of Natural and Technical Interfaces Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Fany Reffuveille
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Patrick K Taylor
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Amy T Y Yeung
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Joerg Overhage
- Microbiology of Natural and Technical Interfaces Department, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Little AS, Okkotsu Y, Reinhart AA, Damron FH, Barbier M, Barrett B, Oglesby-Sherrouse AG, Goldberg JB, Cody WL, Schurr MJ, Vasil ML, Schurr MJ. Pseudomonas aeruginosa AlgR Phosphorylation Status Differentially Regulates Pyocyanin and Pyoverdine Production. mBio 2018; 9:e02318-17. [PMID: 29382736 PMCID: PMC5790918 DOI: 10.1128/mbio.02318-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa employs numerous, complex regulatory elements to control expression of its many virulence systems. The P. aeruginosa AlgZR two-component regulatory system controls the expression of several crucial virulence phenotypes. We recently determined, through transcriptomic profiling of a PAO1 ΔalgR mutant strain compared to wild-type PAO1, that algZR and hemCD are cotranscribed and show differential iron-dependent gene expression. Previous expression profiling was performed in strains without algR and revealed that AlgR acts as either an activator or repressor, depending on the gene. Thus, examination of P. aeruginosa gene expression from cells locked into different AlgR phosphorylation states reveals greater physiological relevance. Therefore, gene expression from strains carrying algR alleles encoding a phosphomimetic (AlgR D54E) or a phosphoablative (AlgR D54N) form were compared by microarray to PAO1. Transcriptome analyses of these strains revealed 25 differentially expressed genes associated with iron siderophore biosynthesis or heme acquisition or production. The PAO1 algR D54N mutant produced lower levels of pyoverdine but increased expression of the small RNAs prrf1 and prrf2 compared to PAO1. In contrast, the algR D54N mutant produced more pyocyanin than wild-type PAO1. On the other hand, the PAO1 algR D54E mutant produced higher levels of pyoverdine, likely due to increased expression of an iron-regulated gene encoding the sigma factor pvdS, but it had decreased pyocyanin production. AlgR specifically bound to the prrf2 and pvdS promoters in vitro AlgR-dependent pyoverdine production was additionally influenced by carbon source rather than the extracellular iron concentration per se AlgR phosphorylation effects were also examined in a Drosophila melanogaster feeding, murine acute pneumonia, and punch wound infection models. Abrogation of AlgR phosphorylation attenuated P. aeruginosa virulence in these infection models. These results show that the AlgR phosphorylation state can directly, as well as indirectly, modulate the expression of iron acquisition genes that may ultimately impact the ability of P. aeruginosa to establish and maintain an infection.IMPORTANCE Pyoverdine and pyocyanin production are well-known P. aeruginosa virulence factors that obtain extracellular iron from the environment and from host proteins in different manners. Here, we show that the AlgR phosphorylation state inversely controls pyoverdine and pyocyanin production and that this control is carbon source dependent. P. aeruginosa expressing AlgR D54N, mimicking the constitutively unphosphorylated state, produced more pyocyanin than cells expressing wild-type AlgR. In contrast, a strain expressing an AlgR phosphomimetic (AlgR D54E) produced higher levels of pyoverdine. Pyoverdine production was directly controlled through the prrf2 small regulatory RNA and the pyoverdine sigma factor, PvdS. Abrogating pyoverdine or pyocyanin gene expression has been shown to attenuate virulence in a variety of models. Moreover, the inability to phosphorylate AlgR attenuates virulence in three different models, a Drosophila melanogaster feeding model, a murine acute pneumonia model, and a wound infection model. Interestingly, AlgR-dependent pyoverdine production was responsive to carbon source, indicating that this regulation has additional complexities that merit further study.
Collapse
Affiliation(s)
- Alexander S. Little
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yuta Okkotsu
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alexandria A. Reinhart
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Brandon Barrett
- Department of Biology, University of Dallas, Irving, Texas, USA
| | - Amanda G. Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Joanna B. Goldberg
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Center for Cystic Fibrosis and Airways Disease Research, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William L. Cody
- Department of Biology, University of Dallas, Irving, Texas, USA
| | - Michael J. Schurr
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael L. Vasil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Michael J. Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
11
|
Chowdhury N, Bagchi A. Structural Insight into the Gene Expression Profiling of the hcn Operon in Pseudomonas aeruginosa. Appl Biochem Biotechnol 2017; 182:1144-1157. [DOI: 10.1007/s12010-016-2388-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/28/2016] [Indexed: 11/29/2022]
|
12
|
Broderick KE, Potluri P, Zhuang S, Scheffler IE, Sharma VS, Pilz RB, Boss GR. Cyanide Detoxification by the Cobalamin Precursor Cobinamide. Exp Biol Med (Maywood) 2016; 231:641-9. [PMID: 16636313 DOI: 10.1177/153537020623100519] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cyanide is a highly toxic agent that inhibits mitochondrial cytochrome-c oxidase, thereby depleting cellular ATP. it contributes to smoke inhalation deaths in fires and could be used as a weapon of mass destruction. Cobalamin (vitamin B12) binds cyanide with a relatively high affinity and is used in Europe to treat smoke inhalation victims. Cobinamide, the penultimate compound in cobalamin biosynthesis, binds cyanide with about 1010 greater affinity than cobalamin, and we found It was several-fold more effective than cobalamin in (i) reversing cyanide inhibition of oxidative phosphorylation in mammalian cells; (ii) rescuing mammalian cells and Drosophila melanogaster from cyanide toxicity; and (iii) reducing cyanide inhibition of Drosophila Malpighian tubule secretion. Cobinamide could be delivered by oral ingestion, inhalation, or injection to Drosophila, and it was as effective when administered up to 5 mins post-cyanide exposure as when given preexposure. We conclude that cobinamide is an effective cyanide detoxifying agent that has potential use as a cyanide antidote, both in smoke inhalation victims and in persons exposed to cyanide used as a weapon of mass destruction.
Collapse
Affiliation(s)
- Kate E Broderick
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0652, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016. [PMID: 27507964 DOI: 10.3389/fmicb.2016.01144]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy; Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
14
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016. [PMID: 27507964 DOI: 10.3389/fmicb.2016.01144] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy; Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
15
|
Vernocchi P, Del Chierico F, Putignani L. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health. Front Microbiol 2016; 7:1144. [PMID: 27507964 PMCID: PMC4960240 DOI: 10.3389/fmicb.2016.01144] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.
Collapse
Affiliation(s)
- Pamela Vernocchi
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| | - Federica Del Chierico
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| | - Lorenza Putignani
- Unit of Human Microbiome, Genetic and Rare Diseases Area, Bambino Gesù Children's Hospital, IRCCSRome, Italy
- Unit of Parasitology, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
16
|
Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide. World J Microbiol Biotechnol 2016; 32:50. [DOI: 10.1007/s11274-015-1987-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/26/2015] [Indexed: 12/31/2022]
|
17
|
The Pseudomonas aeruginosa PAO1 Two-Component Regulator CarSR Regulates Calcium Homeostasis and Calcium-Induced Virulence Factor Production through Its Regulatory Targets CarO and CarP. J Bacteriol 2016; 198:951-63. [PMID: 26755627 DOI: 10.1128/jb.00963-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/31/2015] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED Pseudomonas aeruginosa is an opportunistic human pathogen that causes severe, life-threatening infections in patients with cystic fibrosis (CF), endocarditis, wounds, or artificial implants. During CF pulmonary infections, P. aeruginosa often encounters environments where the levels of calcium (Ca(2+)) are elevated. Previously, we showed that P. aeruginosa responds to externally added Ca(2+) through enhanced biofilm formation, increased production of several secreted virulence factors, and by developing a transient increase in the intracellular Ca(2+) level, followed by its removal to the basal submicromolar level. However, the molecular mechanisms responsible for regulating Ca(2+)-induced virulence factor production and Ca(2+) homeostasis are not known. Here, we characterized the genome-wide transcriptional response of P. aeruginosa to elevated [Ca(2+)] in both planktonic cultures and biofilms. Among the genes induced by CaCl2 in strain PAO1 was an operon containing the two-component regulator PA2656-PA2657 (here called carS and carR), while the closely related two-component regulators phoPQ and pmrAB were repressed by CaCl2 addition. To identify the regulatory targets of CarSR, we constructed a deletion mutant of carR and performed transcriptome analysis of the mutant strain at low and high [Ca(2+)]. Among the genes regulated by CarSR in response to CaCl2 are the predicted periplasmic OB-fold protein, PA0320 (here called carO), and the inner membrane-anchored five-bladed β-propeller protein, PA0327 (here called carP). Mutations in both carO and carP affected Ca(2+) homeostasis, reducing the ability of P. aeruginosa to export excess Ca(2+). In addition, a mutation in carP had a pleotropic effect in a Ca(2+)-dependent manner, altering swarming motility, pyocyanin production, and tobramycin sensitivity. Overall, the results indicate that the two-component system CarSR is responsible for sensing high levels of external Ca(2+) and responding through its regulatory targets that modulate Ca(2+) homeostasis, surface-associated motility, and the production of the virulence factor pyocyanin. IMPORTANCE During infectious disease, Pseudomonas aeruginosa encounters environments with high calcium (Ca(2+)) concentrations, yet the cells maintain intracellular Ca(2+) at levels that are orders of magnitude less than that of the external environment. In addition, Ca(2+) signals P. aeruginosa to induce the production of several virulence factors. Compared to eukaryotes, little is known about how bacteria maintain Ca(2+) homeostasis or how Ca(2+) acts as a signal. In this study, we identified a two-component regulatory system in P. aeruginosa PAO1, termed CarRS, that is induced at elevated Ca(2+) levels. CarRS modulates Ca(2+) signaling and Ca(2+) homeostasis through its regulatory targets, CarO and CarP. The results demonstrate that P. aeruginosa uses a two-component regulatory system to sense external Ca(2+) and relays that information for Ca(2+)-dependent cellular processes.
Collapse
|
18
|
Chowdhury N, Bagchi A. Molecular insight into the activity of LasR protein from Pseudomonas aeruginosa in the regulation of virulence gene expression by this organism. Gene 2016; 580:80-7. [PMID: 26768577 DOI: 10.1016/j.gene.2015.12.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 11/09/2015] [Accepted: 12/30/2015] [Indexed: 10/22/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen. This organism attacks human patients suffering from diseases like AIDS, cancer, cystic fibrosis, etc. One of the important virulent factors produced by this organism is Hydrogen Cyanide. This is expressed from the genes encoded by the hcnABC operon. The expressions of the genes encoded by hcnABC operon are mediated mainly by the interactions of LasR protein with the corresponding promoter region of the hcnABC operon. The LasR protein acts as a dimer and binds to the promoter DNA with the help of an autoinducer ligand. However, till date the detailed molecular mechanism of how the LasR protein interacts with the promoter DNA is not clearly known. Therefore, in this work, an attempt has been made to analyze the mode of interactions of the LasR protein with the promoter DNA region of the hcnABC operon. We analyzed the three dimensional structure of the LasR protein from Pseudomonas aeruginosa and docked the protein with the autoinducer ligand. We then docked the ligand-bound-LasR-protein as well the LasR-protein-without-the-autoinducer-ligand on to the promoter DNA region of hcnABC operon. We analyzed the details of the interaction profiles of LasR protein with the autoinducer ligand. We also deciphered the details of the LasR promoter-DNA interactions. We compared the modes of DNA bindings by the LasR protein in presence and absence of the autoinducer ligand and tried to analyze the molecular details of the binding of LasR protein with the promoter DNA region of hcnABC operon during hcnABC gene expression. This study may therefore pave the pathway for future experiments to determine the relative effects of the amino acid residues of LasR protein in DNA binding during the transcription of hcnABC operon.
Collapse
Affiliation(s)
- Nilkanta Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia 741235, India
| | - Angshuman Bagchi
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia 741235, India.
| |
Collapse
|
19
|
Kong W, Zhao J, Kang H, Zhu M, Zhou T, Deng X, Liang H. ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa. Nucleic Acids Res 2015. [PMID: 26206672 PMCID: PMC4787818 DOI: 10.1093/nar/gkv747] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AlgR is a key transcriptional regulator required for the expression of multiple virulence factors, including type IV pili and alginate in Pseudomonas aeruginosa. However, the regulon and molecular regulatory mechanism of AlgR have yet to be fully elucidated. Here, among 157 loci that were identified by a ChIP-seq assay, we characterized a gene, mucR, which encodes an enzyme that synthesizes the intracellular second messenger cyclic diguanylate (c-di-GMP). A ΔalgR strain produced lesser biofilm than did the wild-type strain, which is consistent with a phenotype controlled by c-di-GMP. AlgR positively regulates mucR via direct binding to its promoter. A ΔalgRΔmucR double mutant produced lesser biofilm than did the single ΔalgR mutant, demonstrating that c-di-GMP is a positive regulator of biofilm formation. AlgR controls the levels of c-di-GMP synthesis via direct regulation of mucR. In addition, the cognate sensor of AlgR, FimS/AlgZ, also plays an important role in P. aeruginosa virulence. Taken together, this study provides new insights into the AlgR regulon and reveals the involvement of c-di-GMP in the mechanism underlying AlgR regulation.
Collapse
Affiliation(s)
- Weina Kong
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Jingru Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Huaping Kang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Miao Zhu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| | - Tianhong Zhou
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Xin Deng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, Tianjin 300457, China
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| |
Collapse
|
20
|
Neerincx AH, Mandon J, van Ingen J, Arslanov DD, Mouton JW, Harren FJM, Merkus PJFM, Cristescu SM. Real-time monitoring of hydrogen cyanide (HCN) and ammonia (NH
3
) emitted by
Pseudomonas aeruginosa. J Breath Res 2015; 9:027102. [DOI: 10.1088/1752-7155/9/2/027102] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
Zdor R. Bacterial cyanogenesis: impact on biotic interactions. J Appl Microbiol 2014; 118:267-74. [DOI: 10.1111/jam.12697] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/06/2014] [Accepted: 11/14/2014] [Indexed: 11/26/2022]
Affiliation(s)
- R.E. Zdor
- Department of Biology; Andrews University; Berrien Springs MI USA
| |
Collapse
|
22
|
Expression analysis of the Pseudomonas aeruginosa AlgZR two-component regulatory system. J Bacteriol 2014; 197:736-48. [PMID: 25488298 DOI: 10.1128/jb.02290-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa virulence components are subject to complex regulatory control primarily through two-component regulatory systems that allow for sensing and responding to environmental stimuli. In this study, the expression and regulation of the P. aeruginosa AlgZR two-component regulatory system were examined. Primer extension and S1 nuclease protection assays were used to identify two transcriptional initiation sites for algR within the algZ coding region, and two additional start sites were identified upstream of the algZ coding region. The two algR transcriptional start sites, RT1 and RT2, are directly regulated by AlgU, consistent with previous reports of increased algR expression in mucoid backgrounds, and RpoS additionally plays a role in algR transcription. The expression of the first algZ promoter, ZT1, is entirely dependent upon Vfr for expression, whereas Vfr, RpoS, or AlgU does not regulate the second algZ promoter, ZT2. Western blot, real-time quantitative PCR (RT-qPCR), and transcriptional fusion analyses show that algZR expression is Vfr dependent. The algZ and algR genes also are cotranscribed in both nonmucoid and mucoid backgrounds. Furthermore, algZR was found to be cotranscribed with hemCD by RT-PCR. RT-qPCR confirmed that hemC transcription in the PAO1 ΔalgZ mutant was 40% of the level of the wild-type strain. Taken together, these results indicate that algZR transcription involves multiple factors at multiple start sites that control individual gene expression as well as coexpression of this two-component system with heme biosynthetic genes.
Collapse
|
23
|
Nair C, Shoemark A, Chan M, Ollosson S, Dixon M, Hogg C, Alton EWFW, Davies JC, Williams HD. Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function. Eur Respir J 2014; 44:1253-61. [PMID: 25186256 DOI: 10.1183/09031936.00097014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have previously reported cyanide at concentrations of up to 150 μM in the sputum of cystic fibrosis patients infected with Pseudomonas aeruginosa and a negative correlation with lung function. Our aim was to investigate possible mechanisms for this association, focusing on the effect of pathophysiologically relevant cyanide levels on human respiratory cell function. Ciliary beat frequency measurements were performed on nasal brushings and nasal air-liquid interface (ALI) cultures obtained from healthy volunteers and cystic fibrosis patients. Potassium cyanide decreased ciliary beat frequency in healthy nasal brushings (n = 6) after 60 min (150 μM: 47% fall, p<0.0012; 75 μM: 32% fall, p<0.0001). Samples from cystic fibrosis patients (n = 3) showed similar results (150 μM: 55% fall, p = 0.001). Ciliary beat frequency inhibition was not due to loss of cell viability and was reversible. The inhibitory mechanism was independent of ATP levels. KCN also significantly inhibited ciliary beat frequency in ALI cultures, albeit to a lesser extent. Ciliary beat frequency measurements on ALI cultures treated with culture supernatants from P. aeruginosa mutants defective in virulence factor production implicated cyanide as a key component inhibiting the ciliary beat frequency. If cyanide production similarly impairs mucocilliary clearance in vivo, it could explain the link with increased disease severity observed in cystic fibrosis patients with detectable cyanide in their airway.
Collapse
Affiliation(s)
| | - Amelia Shoemark
- Dept of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Mario Chan
- Dept of Gene Therapy, Imperial College, London, UK
| | - Sarah Ollosson
- Dept of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Mellissa Dixon
- Dept of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Claire Hogg
- Dept of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, UK
| | | | - Jane C Davies
- Dept of Gene Therapy, Imperial College, London, UK Joint senior authors
| | - Huw D Williams
- Dept of Life Sciences, Imperial College, London, UK Joint senior authors
| |
Collapse
|
24
|
Okkotsu Y, Little AS, Schurr MJ. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol 2014; 4:82. [PMID: 24999454 PMCID: PMC4064291 DOI: 10.3389/fcimb.2014.00082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections.
Collapse
Affiliation(s)
- Yuta Okkotsu
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Alexander S Little
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Michael J Schurr
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
25
|
Li Y, Petrova OE, Su S, Lau GW, Panmanee W, Na R, Hassett DJ, Davies DG, Sauer K. BdlA, DipA and induced dispersion contribute to acute virulence and chronic persistence of Pseudomonas aeruginosa. PLoS Pathog 2014; 10:e1004168. [PMID: 24901523 PMCID: PMC4047105 DOI: 10.1371/journal.ppat.1004168] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 04/22/2014] [Indexed: 11/22/2022] Open
Abstract
The human pathogen Pseudomonas aeruginosa is capable of causing both acute and chronic infections. Differences in virulence are attributable to the mode of growth: bacteria growing planktonically cause acute infections, while bacteria growing in matrix-enclosed aggregates known as biofilms are associated with chronic, persistent infections. While the contribution of the planktonic and biofilm modes of growth to virulence is now widely accepted, little is known about the role of dispersion in virulence, the active process by which biofilm bacteria switch back to the planktonic mode of growth. Here, we demonstrate that P. aeruginosa dispersed cells display a virulence phenotype distinct from those of planktonic and biofilm cells. While the highest activity of cytotoxic and degradative enzymes capable of breaking down polymeric matrix components was detected in supernatants of planktonic cells, the enzymatic activity of dispersed cell supernatants was similar to that of biofilm supernatants. Supernatants of non-dispersing ΔbdlA biofilms were characterized by a lack of many of the degradative activities. Expression of genes contributing to the virulence of P. aeruginosa was nearly 30-fold reduced in biofilm cells relative to planktonic cells. Gene expression analysis indicated dispersed cells, while dispersing from a biofilm and returning to the single cell lifestyle, to be distinct from both biofilm and planktonic cells, with virulence transcript levels being reduced up to 150-fold compared to planktonic cells. In contrast, virulence gene transcript levels were significantly increased in non-dispersing ΔbdlA and ΔdipA biofilms compared to wild-type planktonic cells. Despite this, bdlA and dipA inactivation, resulting in an inability to disperse in vitro, correlated with reduced pathogenicity and competitiveness in cross-phylum acute virulence models. In contrast, bdlA inactivation rendered P. aeruginosa more persistent upon chronic colonization of the murine lung, overall indicating that dispersion may contribute to both acute and chronic infections. Pathogenic bacteria, including the human pathogen Pseudomonas aeruginosa, can cause acute and chronic infections. The difference in these infection modes can be explained by how bacteria grow. Acute infections occur when individual bacteria rapidly replicate, produce high levels of virulence factors, and disseminate from the nidus of infection. Chronic infections occur when bacteria adhere to tissue or implanted medical devices and form multi-cellular, matrix-encased aggregates known as biofilms. The acute-to-chronic infection switch occurs when bacteria transition from planktonic to biofilm growth. However, the contribution of dispersion, the process by which bacteria leave a biofilm to return to planktonic growth, remains unclear. Here, we demonstrate that, while having left a biofilm, dispersed cells are distinct from planktonic cells with respect to gene expression, release of matrix-degrading enzymes, and pathogenicity. We found that a mutant impaired in nutrient-induced dispersion, while enhancing chronic infections, is impaired in mounting acute infections in both plant and mouse hosts. Overall, this work establishes that dispersed cells have a unique virulence phenotype, with nutrient-induced dispersion not only serving as an integral part of both acute and chronic infections but also as a potential mechanism of infection control.
Collapse
Affiliation(s)
- Yi Li
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Olga E. Petrova
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Shengchang Su
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Gee W. Lau
- College of Veterinary Medicine, Urbana, Illinois, United States of America
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Renuka Na
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David G. Davies
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Karin Sauer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Ryall B, Carrara M, Zlosnik JEA, Behrends V, Lee X, Wong Z, Lougheed KE, Williams HD. The mucoid switch in Pseudomonas aeruginosa represses quorum sensing systems and leads to complex changes to stationary phase virulence factor regulation. PLoS One 2014; 9:e96166. [PMID: 24852379 PMCID: PMC4031085 DOI: 10.1371/journal.pone.0096166] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/03/2014] [Indexed: 01/04/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa chronically infects the airways of Cystic Fibrosis (CF) patients during which it adapts and undergoes clonal expansion within the lung. It commonly acquires inactivating mutations of the anti-sigma factor MucA leading to a mucoid phenotype, caused by excessive production of the extracellular polysaccharide alginate that is associated with a decline in lung function. Alginate production is believed to be the key benefit of mucA mutations to the bacterium in the CF lung. A phenotypic and gene expression characterisation of the stationary phase physiology of mucA22 mutants demonstrated complex and subtle changes in virulence factor production, including cyanide and pyocyanin, that results in their down-regulation upon entry into stationary phase but, (and in contrast to wildtype strains) continued production in prolonged stationary phase. These findings may have consequences for chronic infection if mucoid P. aeruginosa were to continue to make virulence factors under non-growing conditions during infection. These changes resulted in part from a severe down-regulation of both AHL-and AQ (PQS)-dependent quorum sensing systems. In trans expression of the cAMP-dependent transcription factor Vfr restored both quorum sensing defects and virulence factor production in early stationary phase. Our findings have implications for understanding the evolution of P. aeruginosa during CF lung infection and it demonstrates that mucA22 mutation provides a second mechanism, in addition to the commonly occurring lasR mutations, of down-regulating quorum sensing during chronic infection this may provide a selection pressure for the mucoid switch in the CF lung.
Collapse
Affiliation(s)
- Ben Ryall
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Marta Carrara
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - James E. A. Zlosnik
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Volker Behrends
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Xiaoyun Lee
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Zhen Wong
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Kathryn E. Lougheed
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Huw D. Williams
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BHA. Genetics and regulation of bacterial alginate production. Environ Microbiol 2014; 16:2997-3011. [DOI: 10.1111/1462-2920.12389] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/18/2013] [Accepted: 12/22/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Iain D. Hay
- Institute of Fundamental Sciences; Massey University; Palmerston North 4442 New Zealand
| | - Yajie Wang
- Institute of Fundamental Sciences; Massey University; Palmerston North 4442 New Zealand
| | - Mohammed F. Moradali
- Institute of Fundamental Sciences; Massey University; Palmerston North 4442 New Zealand
| | - Zahid U. Rehman
- Institute of Fundamental Sciences; Massey University; Palmerston North 4442 New Zealand
| | - Bernd H. A. Rehm
- Institute of Fundamental Sciences; Massey University; Palmerston North 4442 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology; Massey University; Palmerston North 4442 New Zealand
| |
Collapse
|
28
|
Frangipani E, Pérez-Martínez I, Williams HD, Cherbuin G, Haas D. A novel cyanide-inducible gene cluster helps protect Pseudomonas aeruginosa from cyanide. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:28-34. [PMID: 24596260 DOI: 10.1111/1758-2229.12105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/03/2013] [Accepted: 09/13/2013] [Indexed: 06/03/2023]
Abstract
Pseudomonas aeruginosa produces the toxic secondary metabolite hydrogen cyanide (HCN) at high cell population densities and low aeration. Here, we investigated the impact of HCN as a signal in cell-cell communication by comparing the transcriptome of the wild-type strain PAO1 to that of an HCN-negative mutant under cyanogenic conditions. HCN repressed four genes and induced 12 genes. While the individual functions of these genes are unknown, with one exception (i.e. a ferredoxin-dependent reductase), a highly inducible six-gene cluster (PA4129-PA4134) was found to be crucial for protection of P. aeruginosa from external HCN intoxication. A double mutant deleted for PA4129-PA4134 and cioAB (encoding cyanide-insensitive oxidase) did not grow with 100 μM KCN, whereas the corresponding single mutants were essentially unaffected, suggesting a synergistic action of the PA4129-PA4134 gene products and cyanide-insensitive oxidase.
Collapse
Affiliation(s)
- Emanuela Frangipani
- Département de Microbiologie Fondamentale, Université de Lausanne, CH-1015, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Clinical application of volatile organic compound analysis for detecting infectious diseases. Clin Microbiol Rev 2014; 26:462-75. [PMID: 23824368 DOI: 10.1128/cmr.00020-13] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This review article introduces the significance of testing of volatile organic compounds (VOCs) in clinical samples and summarizes important features of some of the technologies. Compared to other human diseases such as cancer, studies on VOC analysis in cases of infectious diseases are limited. Here, we have described results of studies which have used some of the appropriate technologies to evaluate VOC biomarkers and biomarker profiles associated with infections. The publications reviewed include important infections of the respiratory tract, gastrointestinal tract, urinary tract, and nasal cavity. The results highlight the use of VOC biomarker profiles resulting from certain infectious diseases in discriminating between infected and healthy subjects. Infection-related VOC profiles measured in exhaled breath as well as from headspaces of feces or urine samples are a source of information with respect to disease detection. The volatiles emitted in clinical matrices may on the one hand represent metabolites of the infecting pathogen or on the other hand reflect pathogen-induced host responses or, indeed, a combination of both. Because exhaled-breath samples are easy to collect and online instruments are commercially available, VOC analysis in exhaled breath appears to be a promising tool for noninvasive detection and monitoring of infectious diseases.
Collapse
|
30
|
Abstract
BACKGROUND The aim of this study was to determine whether volatile organic compounds (VOCs) present in the headspace of feces could be used to diagnose or distinguish between chronic diseases of the gastrointestinal tract and apparently healthy volunteers. METHODS A total of 87 people were recruited, divided between 4 categories: healthy volunteers (n = 19), Crohn's disease (n = 22), ulcerative colitis (n = 20), and irritable bowel syndrome (n = 26). They each supplied fecal samples before, and except for the healthy volunteers, after treatment. Fecal samples were incubated in a sample bag with added purified air at 40°C and headspace samples were taken and concentrated on thermal sorption tubes. Gas chromatography-mass spectrometry then desorbed and analyzed these. The concentrations of a selection of high-abundance compounds were determined and assessed for differences in concentration between the groups. RESULTS Crohn's disease samples showed significant elevations in the concentrations of ester and alcohol derivates of short-chain fatty acids and indole compared with the other groups; indole and phenol were elevated in ulcerative colitis and irritable bowel syndrome but not at a statistically significant level. After treatment, the levels of many of the VOCs were significantly reduced and were more similar to those concentrations in healthy controls. CONCLUSIONS The abundance of a number of VOCs in feces differs markedly between Crohn's disease and other gastrointestinal conditions. Following treatment, the VOC profile is altered to more closely resemble that of healthy volunteers.
Collapse
|
31
|
Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2012; 41:1-20. [PMID: 23143271 PMCID: PMC3592444 DOI: 10.1093/nar/gks1039] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
32
|
Quantification of Pseudomonas aeruginosa hydrogen cyanide production by a polarographic approach. J Microbiol Methods 2012; 90:20-4. [DOI: 10.1016/j.mimet.2012.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 04/02/2012] [Accepted: 04/10/2012] [Indexed: 01/25/2023]
|
33
|
Balasubramanian D, Schneper L, Merighi M, Smith R, Narasimhan G, Lory S, Mathee K. The regulatory repertoire of Pseudomonas aeruginosa AmpC ß-lactamase regulator AmpR includes virulence genes. PLoS One 2012; 7:e34067. [PMID: 22479525 PMCID: PMC3315558 DOI: 10.1371/journal.pone.0034067] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/27/2012] [Indexed: 01/19/2023] Open
Abstract
In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. In addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, we compared the transcriptional profile generated using DNA microarrays of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion mutant, PAOΔampR. Transcriptome analysis demonstrates that the AmpR regulon is much more extensive than previously thought, with the deletion of ampR influencing the differential expression of over 500 genes. In addition to regulating resistance to β-lactam antibiotics via AmpC, AmpR also regulates non-β-lactam antibiotic resistance by modulating the MexEF-OprN efflux pump. Other virulence mechanisms including biofilm formation and QS-regulated acute virulence factors are AmpR-regulated. Real-time PCR and phenotypic assays confirmed the microarray data. Further, using a Caenorhabditis elegans model, we demonstrate that a functional AmpR is required for P. aeruginosa pathogenicity. AmpR, a member of the core genome, also regulates genes in the regions of genome plasticity that are acquired by horizontal gene transfer. Further, we show differential regulation of other transcriptional regulators and sigma factors by AmpR, accounting for the extensive AmpR regulon. The data demonstrates that AmpR functions as a global regulator in P. aeruginosa and is a positive regulator of acute virulence while negatively regulating biofilm formation, a chronic infection phenotype. Unraveling this complex regulatory circuit will provide a better understanding of the bacterial response to antibiotics and how the organism coordinately regulates a myriad of virulence factors in response to antibiotic exposure.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, Florida, United States of America
| | - Lisa Schneper
- Molecular Microbiology and Infectious Diseases (Herbert Werthiem College of Medicine), Florida International University, Miami, Florida, United States of America
| | - Massimo Merighi
- Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachussetts, United States of America
| | - Roger Smith
- Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachussetts, United States of America
| | - Giri Narasimhan
- School of Computing and Information Science, College of Engineering and Computing, Florida International University, Miami, Florida, United States of America
| | - Stephen Lory
- Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachussetts, United States of America
| | - Kalai Mathee
- Molecular Microbiology and Infectious Diseases (Herbert Werthiem College of Medicine), Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
34
|
Hare NJ, Soe CZ, Rose B, Harbour C, Codd R, Manos J, Cordwell SJ. Proteomics of Pseudomonas aeruginosa Australian Epidemic Strain 1 (AES-1) Cultured under Conditions Mimicking the Cystic Fibrosis Lung Reveals Increased Iron Acquisition via the Siderophore Pyochelin. J Proteome Res 2011; 11:776-95. [DOI: 10.1021/pr200659h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nathan J. Hare
- School of Molecular Bioscience, The University of Sydney, 2006 Australia
| | | | | | | | | | | | - Stuart J. Cordwell
- School of Molecular Bioscience, The University of Sydney, 2006 Australia
| |
Collapse
|
35
|
Hagins JM, Scoffield J, Suh SJ, Silo-Suh L. Malate synthase expression is deregulated in the Pseudomonas aeruginosa cystic fibrosis isolate FRD1. Can J Microbiol 2011; 57:186-95. [PMID: 21358759 DOI: 10.1139/w10-118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pseudomonas aeruginosa causes chronic pulmonary infections, which can persist for decades, in patients with cystic fibrosis (CF). Current evidence suggests that the glyoxylate pathway is an important metabolic pathway for P. aeruginosa growing within the CF lung. In this study, we identified glcB, which encodes for the second key enzyme of the glyoxylate pathway, malate synthase, as a requirement for virulence of P. aeruginosa on alfalfa seedlings. While expression of glcB in PAO1, an acute isolate of P. aeruginosa, responds to some carbon sources that use the glyoxylate pathway, expression of glcB in FRD1, a CF isolate, is constitutively upregulated. Malate synthase activity is moderately affected by glcB expression and is nearly constitutive in both backgrounds, with slightly higher activity in FRD1 than in PAO1. In addition, RpoN negatively regulates glcB in PAO1 but not in FRD1. In summary, the genes encoding for the glyoxylate-specific enzymes appear to be coordinately regulated, even though they are not located within the same operon on the P. aeruginosa genome. Furthermore, both genes encoding for the glyoxylate enzymes can become deregulated during adaptation of the bacterium to the CF lung.
Collapse
Affiliation(s)
- Jessica M Hagins
- Department of Biological Sciences, Auburn University, AL 36849, USA
| | | | | | | |
Collapse
|
36
|
Linares JF, Moreno R, Fajardo A, Martínez-Solano L, Escalante R, Rojo F, Martínez JL. The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Environ Microbiol 2011; 12:3196-212. [PMID: 20626455 DOI: 10.1111/j.1462-2920.2010.02292.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The capacity of a bacterial pathogen to produce a disease in a treated host depends on the former's virulence and resistance to antibiotics. Several scattered pieces of evidence suggest that these two characteristics can be influenced by bacterial metabolism. This potential relationship is particularly important upon infection of a host, a situation that demands bacteria adapt their physiology to their new environment, making use of newly available nutrients. To explore the potential cross-talk between bacterial metabolism, antibiotic resistance and virulence, a Pseudomonas aeruginosa model was used. This species is an important opportunistic pathogen intrinsically resistant to many antibiotics. The role of Crc, a global regulator that controls the metabolism of carbon sources and catabolite repression in Pseudomonas, was analysed to determine its contribution to the intrinsic antibiotic resistance and virulence of P. aeruginosa. Using proteomic analyses, high-throughput metabolic tests and functional assays, the present work shows the virulence and antibiotic resistance of this pathogen to be linked to its physiology, and to be under the control (directly or indirectly) of Crc. A P. aeruginosa strain lacking the Crc regulator showed defects in type III secretion, motility, expression of quorum sensing-regulated virulence factors, and was less virulent in a Dictyostelium discoideum model. In addition, this mutant strain was more susceptible to beta-lactams, aminoglycosides, fosfomycin and rifampin. Crc might therefore be a good target in the search for new antibiotics.
Collapse
Affiliation(s)
- Juan F Linares
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Involvement of an ATP-dependent protease, PA0779/AsrA, in inducing heat shock in response to tobramycin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2011; 55:1874-82. [PMID: 21357290 DOI: 10.1128/aac.00935-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adaptive resistance of Pseudomonas aeruginosa to aminoglycosides is known to occur during chronic lung infections in cystic fibrosis patients in response to nonlethal concentrations of aminoglycosides. Not only is it difficult to achieve high levels of drug throughout the dehydrated mucus in the lung, but also steep oxygen gradients exist across the mucus layer, further reducing the bactericidal activity of aminoglycosides. In this study, microarray analysis was utilized to examine the gene responses of P. aeruginosa to lethal, inhibitory, and subinhibitory concentrations of tobramycin under aerobic and anaerobic conditions. While prolonged exposure to subinhibitory concentrations of tobramycin caused increased levels of expression predominantly of the efflux pump genes mexXY, the greatest increases in gene expression levels in response to lethal concentrations of tobramycin involved a number of heat shock genes and the PA0779 gene (renamed here asrA), encoding an alternate Lon protease. Microarray analysis of an asrA::luxCDABE transposon mutant revealed that the induction of heat shock genes in response to tobramycin in this mutant was significantly decreased compared to that in the parent strain. The level of expression of asrA was induced from an arabinose-inducible promoter to 35-fold greater than wild-type expression levels in the absence of tobramycin, and this overexpression alone caused an increased expression of the heat shock genes, as determined by quantitative PCR (qPCR). This overexpression of asrA conferred short-term protection against lethal levels (4 μg/ml) of tobramycin but did not affect the tobramycin MIC. The RpoH heat shock sigma factor was found to be involved in the regulation of asrA in response to both heat shock and tobramycin at the posttranscriptional level. The results of this work suggest that the tobramycin concentration has a significant impact on the gene expression of P. aeruginosa, with lethal concentrations resulting in immediate adaptations conferring short-term protection, such as the induction of the heat shock response, and with subinhibitory concentrations leading to more sustainable long-term protection mechanisms, such as increased efflux.
Collapse
|
38
|
Williams HD, Behrends V, Bundy JG, Ryall B, Zlosnik JEA. Hypertonic Saline Therapy in Cystic Fibrosis: Do Population Shifts Caused by the Osmotic Sensitivity of Infecting Bacteria Explain the Effectiveness of this Treatment? Front Microbiol 2010; 1:120. [PMID: 21687721 PMCID: PMC3109665 DOI: 10.3389/fmicb.2010.00120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/11/2010] [Indexed: 01/22/2023] Open
Abstract
Cystic fibrosis (CF) is caused by a defect in the CF transmembrane regulator that leads to depletion and dehydration of the airway surface liquid (ASL) of the lung epithelium, providing an environment that can be infected by bacteria leading to increased morbidity and mortality. Pseudomonas aeruginosa chronically infects more than 80% of CF patients and one hallmark of infection is the emergence of a mucoid phenotype associated with a worsening prognosis and more rapid decline in lung function. Hypertonic saline (HS) is a clinically proven treatment that improves mucociliary clearance through partial rehydration of the ASL of the lung. Strikingly, while HS therapy does not alter the prevalence of P. aeruginosa in the CF lung it does decrease the frequency of episodes of acute, severe illness known as infective exacerbations among CF patients. In this article, we propose a hypothesis whereby the positive clinical effects of HS treatment are explained by the osmotic sensitivity of the mucoid sub-population of P. aeruginosa in the CF lung leading to selection against this group in favor of the osmotically resistant non-mucoid variants.
Collapse
Affiliation(s)
- Huw D. Williams
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondon, UK
| | - Volker Behrends
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondon, UK
- Section of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College LondonLondon, UK
| | - Jacob G. Bundy
- Section of Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College LondonLondon, UK
| | - Ben Ryall
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondon, UK
| | - James E. A. Zlosnik
- Centre for the Understanding and Prevention of Infection in Children/Division of Infectious and Immunological Diseases, Department of Pediatrics, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
39
|
Anderson R, Roddam L, Bettiol S, Sanderson K, Reid D. Biosignificance of bacterial cyanogenesis in the CF lung. J Cyst Fibros 2010; 9:158-64. [DOI: 10.1016/j.jcf.2009.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/18/2009] [Accepted: 12/21/2009] [Indexed: 02/03/2023]
|
40
|
Rau MH, Hansen SK, Johansen HK, Thomsen LE, Workman CT, Nielsen KF, Jelsbak L, Høiby N, Yang L, Molin S. Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environ Microbiol 2010; 12:1643-58. [PMID: 20406284 DOI: 10.1111/j.1462-2920.2010.02211.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen ubiquitous to the natural environment but with the capability of moving to the host environment. Long-term infection of the airways of cystic fibrosis patients is associated with extensive genetic adaptation of P. aeruginosa, and we have studied cases of the initial stages of infection in order to characterize the early adaptive processes in the colonizing bacteria. A combination of global gene expression analysis and phenotypic characterization of longitudinal isolates from cystic fibrosis patients revealed well-known characteristics such as conversion to a mucoid phenotype by mucA mutation and increased antibiotic resistance by nfxB mutation. Additionally, upregulation of the atu operon leading to enhanced growth on leucine provides a possible example of metabolic optimization. A detailed investigation of the mucoid phenotype uncovered profound pleiotropic effects on gene expression including reduction of virulence factors and the Rhl quorum sensing system. Accordingly, mucoid isolates displayed a general reduction of virulence in the Caenorhabditis elegans infection model, altogether suggesting that the adaptive success of the mucoid variant extends beyond the benefits of alginate overproduction. In the overall perspective the global phenotype of the adapted variants appears to place them on paths in direction of fully adapted strains residing in long-term chronically infected patients.
Collapse
Affiliation(s)
- Martin Holm Rau
- Department of Systems Biology, Technical University of Denmark, Building 301, 2800 Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hagins JM, Scoffield JA, Suh SJ, Silo-Suh L. Influence of RpoN on isocitrate lyase activity in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2010; 156:1201-1210. [PMID: 20093293 DOI: 10.1099/mic.0.033381-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa is the major aetiological agent of chronic pulmonary infections in patients with cystic fibrosis (CF). The metabolic pathways utilized by P. aeruginosa during these infections, which can persist for decades, are poorly understood. Several lines of evidence suggest that the glyoxylate pathway, which utilizes acetate or fatty acids to replenish intermediates of the tricarboxylic acid cycle, is an important metabolic pathway for P. aeruginosa adapted to the CF lung. Isocitrate lyase (ICL) is one of two major enzymes of the glyoxylate pathway. In a previous study, we determined that P. aeruginosa is dependent upon aceA, which encodes ICL, to cause disease on alfalfa seedlings and in rat lungs. Expression of aceA in PAO1, a P. aeruginosa isolate associated with acute infection, is regulated by carbon sources that utilize the glyoxyate pathway. In contrast, expression of aceA in FRD1, a CF isolate, is constitutively upregulated. Moreover, this deregulation of aceA occurs in other P. aeruginosa isolates associated with chronic infection, suggesting that high ICL activity facilitates adaptation of P. aeruginosa to the CF lung. Complementation of FRD1 with a PAO1 clone bank identified that rpoN negatively regulates aceA. However, the deregulation of aceA in FRD1 was not due to a knockout mutation of rpoN. Regulation of the glyoxylate pathway by RpoN is likely to be indirect, and represents a unique regulatory role for this sigma factor in bacterial metabolism.
Collapse
Affiliation(s)
- Jessica M Hagins
- Department of Biological Sciences, 101 Life Sciences Building, Auburn University, AL 36849, USA
| | - Jessica A Scoffield
- Department of Biological Sciences, 101 Life Sciences Building, Auburn University, AL 36849, USA
| | - Sang-Jin Suh
- Department of Biological Sciences, 101 Life Sciences Building, Auburn University, AL 36849, USA
| | - Laura Silo-Suh
- Department of Biological Sciences, 101 Life Sciences Building, Auburn University, AL 36849, USA
| |
Collapse
|
42
|
Behrends V, Ryall B, Wang X, Bundy JG, Williams HD. Metabolic profiling of Pseudomonas aeruginosa demonstrates that the anti-sigma factor MucA modulates osmotic stress tolerance. MOLECULAR BIOSYSTEMS 2010; 6:562-9. [DOI: 10.1039/b918710c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Isocitrate lyase supplies precursors for hydrogen cyanide production in a cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol 2009; 191:6335-9. [PMID: 19700524 DOI: 10.1128/jb.00692-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa colonizes and can persist in the lungs of cystic fibrosis (CF) patients for decades. Adaptation of P. aeruginosa to the CF lung environment causes various genotypic and phenotypic alterations in the bacterium that facilitate persistence. We showed previously that isocitrate lyase (ICL) activity is constitutively upregulated in the P. aeruginosa CF isolate FRD1. We show here that high ICL activity in FRD1 contributes to increased hydrogen cyanide (HCN) production by this isolate. Disruption of aceA, which encodes ICL, results in reduced cyanide production by FRD1 but does not affect cyanide production in the wound isolate PAO1. Cyanide production is restored to the FRD1aceA mutant by addition of glyoxylate, a product of ICL activity, or glycine to the growth medium. Conversion of glyoxylate to glycine may provide a mechanism for increased cyanide production by P. aeruginosa growing on compounds that activate the glyoxylate pathway. Consistent with this hypothesis, disruption of PA5304, encoding a putative d-amino acid dehydrogenase (DadA), led to decreased cyanide production by FRD1. Cyanide production was restored to the FRD1dadA mutant by the addition of glycine, but not glyoxylate, to the growth medium, suggesting that loss of the ability to convert glyoxylate to glycine was associated with the dadA mutation. This was supported by increased glycine production from toluene-treated FRD1 cells with the addition of glyoxylate compared to FRD1dadA cells. This study indicates a larger role for ICL in the physiology and virulence of chronic isolates of P. aeruginosa than previously recognized.
Collapse
|
44
|
Ryall B, Mitchell H, Mossialos D, Williams H. Cyanogenesis by the entomopathogenic bacteriumPseudomonas entomophila. Lett Appl Microbiol 2009; 49:131-5. [DOI: 10.1111/j.1472-765x.2009.02632.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Pseudomonas aeruginosa AlgR controls cyanide production in an AlgZ-dependent manner. J Bacteriol 2009; 191:2993-3002. [PMID: 19270096 DOI: 10.1128/jb.01156-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic infections in individuals suffering from the genetic disorder cystic fibrosis. In P. aeruginosa, the transcriptional regulator AlgR controls a variety of virulence factors, including alginate production, twitching motility, biofilm formation, quorum sensing, and hydrogen cyanide (HCN) production. In this study, the regulation of HCN production was examined. Strains lacking AlgR or the putative AlgR sensor AlgZ produced significantly less HCN than did a nonmucoid isogenic parent. In contrast, algR and algZ mutants showed increased HCN production in an alginate-producing (mucoid) background. HCN production was optimal in a 5% O2 environment. In addition, cyanide production was elevated in bacteria grown on an agar surface compared to bacteria grown in planktonic culture. A conserved AlgR phosphorylation site (aspartate at amino acid position 54), which is required for surface-dependent twitching motility but not alginate production, was found to be critical for cyanide production. Nuclease protection mapping of the hcnA promoter identified a new transcriptional start site required for HCN production. A subset of clinical isolates that lack this start site produced small amounts of cyanide. Taken together, these data show that the P. aeruginosa hcnA promoter contains three transcriptional start sites and that HCN production is regulated by AlgZ and AlgR and is maximal under microaerobic conditions when the organism is surface attached.
Collapse
|
46
|
Gooderham WJ, Hancock REW. Regulation of virulence and antibiotic resistance by two-component regulatory systems inPseudomonas aeruginosa. FEMS Microbiol Rev 2009; 33:279-94. [DOI: 10.1111/j.1574-6976.2008.00135.x] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
47
|
Enderby B, Smith D, Carroll W, Lenney W. Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis. Pediatr Pulmonol 2009; 44:142-7. [PMID: 19148935 DOI: 10.1002/ppul.20963] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
HYPOTHESIS Hydrogen cyanide (HCN) is emitted by Pseudomonas aeruginosa (PA) in vitro. We hypothesized that exhaled HCN could be measured using Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) and that concentrations would be higher in children with cystic fibrosis (CF) and PA infection than in children with asthma. METHODS Children aged 7-17 years with CF (n = 16) or asthma (n = 21) attending outpatient clinics provided breath samples between July and December 2007. HCN was measured using the SIFT-MS Profile 3 instrument. FeNO was measured with a Sievers NOA 280i analyzer. Baseline inter-group differences between HCN and FeNO concentrations were compared using the Mann-Whitney U test. Children were invited to re-attend fortnightly. Breath samples, spirometry, growth and clinical status were measured at each visit. RESULTS There were significant baseline differences in exhaled HCN and FeNO concentrations between the two groups. Children with CF had higher median HCN concentrations than those with asthma: 13.5 parts per billion (ppb) (IQR 8.1-16.5) versus 2.0 ppb (IQR 0.0-4.8) (P < 0.001). Children with CF had lower median FeNO levels compared to children with asthma: 13.4 ppb (IQR 8.9-17.6) versus 57.9 ppb (IQR 34.0-85.7) (P < 0.001). Intra-subject variability was high and significant changes in HCN concentrations were not observed related to changes in lung function or clinical status. CONCLUSION This study provides proof of principle that HCN is detectable in the breath of children with CF and is elevated compared to children with asthma. Further studies are required to capture data from acutely unwell children and more accurately delineate responses to treatment.
Collapse
Affiliation(s)
- Beth Enderby
- Academic Department of Paediatrics, University Hospital of North Staffordshire, Stoke-on-Trent, UK
| | | | | | | |
Collapse
|
48
|
|
49
|
Ryall B, Lee X, Zlosnik JEA, Hoshino S, Williams HD. Bacteria of the Burkholderia cepacia complex are cyanogenic under biofilm and colonial growth conditions. BMC Microbiol 2008; 8:108. [PMID: 18588687 PMCID: PMC2504479 DOI: 10.1186/1471-2180-8-108] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 06/27/2008] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The Burkholderia cepacia complex (Bcc) is a collection of nine genotypically distinct but phenotypically similar species. They show wide ecological diversity and include species that are used for promoting plant growth and bio-control as well species that are opportunistic pathogens of vulnerable patients. Over recent years the Bcc have emerged as problematic pathogens of the CF lung. Pseudomonas aeruginosa is another important CF pathogen. It is able to synthesise hydrogen cyanide (HCN), a potent inhibitor of cellular respiration. We have recently shown that HCN production by P. aeruginosa may have a role in CF pathogenesis. This paper describes an investigation of the ability of bacteria of the Bcc to make HCN. RESULTS The genome of Burkholderia cenocepacia has 3 putative HCN synthase encoding (hcnABC) gene clusters. B. cenocepacia and all 9 species of the Bcc complex tested were able to make cyanide at comparable levels to P. aeruginosa, but only when grown surface attached as colonies or during biofilm growth on glass beads. In contrast to P. aeruginosa and other cyanogenic bacteria, cyanide was not detected during planktonic growth of Bcc strains. CONCLUSION All species in the Bcc are cyanogenic when grown as surface attached colonies or as biofilms.
Collapse
Affiliation(s)
- Ben Ryall
- Department of Life Sciences, Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Xiaoyun Lee
- Department of Life Sciences, Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - James EA Zlosnik
- Department of Life Sciences, Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Saiko Hoshino
- Department of Life Sciences, Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| | - Huw D Williams
- Department of Life Sciences, Division of Biology, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK
| |
Collapse
|
50
|
Broderick KE, Chan A, Balasubramanian M, Feala J, Reed SL, Panda M, Sharma VS, Pilz RB, Bigby TD, Boss GR. Cyanide produced by human isolates of Pseudomonas aeruginosa contributes to lethality in Drosophila melanogaster. J Infect Dis 2008; 197:457-64. [PMID: 18199034 DOI: 10.1086/525282] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Some Pseudomonas aeruginosa strains are cyanogenic, and cyanide may contribute to the bacterium's virulence. Using human isolates of P. aeruginosa, we have shown that Drosophila melanogaster suspended above cyanogenic strains become motionless and develop bradycardia and that flies injected with cyanogenic bacterial strains die more rapidly than those injected with noncyanogenic strains. Flies exposed to cyanogenic strains had high cyanide and low adenosine triphosphate (ATP) concentrations in body extracts, and treatment with a cyanide antidote equalized survival of flies injected with cyanogenic and noncyanogenic strains. P. aeruginosa PAO1 strain with a mutation in the hydrogen cyanide synthase gene cluster was much less toxic to flies than the parental cyanogenic strain or 2 knock-in strains. Transgenic flies overexpressing rhodanese, which detoxifies cyanide by converting it to thiocyanate, were resistant to cyanide and the increased virulence of cyanogenic strains. We conclude that D. melanogaster is a good model for studying cyanide produced by P. aeruginosa.
Collapse
Affiliation(s)
- Kate E Broderick
- Department of Medicine, University of California, San Diego, CA 92093-0652, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|