1
|
Britton AP, Visser KA, Ongenae VMA, Zhang P, Wassink H, Doerksen TA, Welke CA, Lynch KH, van Belkum MJ, Dennis JJ, Yang X, Claessen D, Briegel A, Martin-Visscher LA. Characterization of Bacteriophage cd2, a Siphophage Infecting Carnobacterium divergens and a Representative Species of a New Genus of Phage. Microbiol Spectr 2023; 11:e0097323. [PMID: 37458599 PMCID: PMC10434151 DOI: 10.1128/spectrum.00973-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/24/2023] [Indexed: 08/19/2023] Open
Abstract
Carnobacterium divergens is frequently isolated from natural environments and is a predominant species found in refrigerated foods, particularly meat, seafood, and dairy. While there is substantial interest in using C. divergens as biopreservatives and/or probiotics, some strains are known to be fish pathogens, and the uncontrolled growth of C. divergens has been associated with food spoilage. Bacteriophages offer a selective approach to identify and control the growth of bacteria; however, to date, few phages targeting C. divergens have been reported. In this study, we characterize bacteriophage cd2, which we recently isolated from minced beef. A detailed host range study reveals that phage cd2 infects certain phylogenetic groups of C. divergens. This phage has a latent period of 60 min and a burst size of ~28 PFU/infected cell. The phage was found to be acid and heat sensitive, with a complete loss of phage activity when stored at pH 2 or heated to 60°C. Electron microscopy shows that phage cd2 is a siphophage, and while it shares the B3 morphotype with a unique cluster of Listeria and Enterococcus phages, a comparison of genomes reveals that phage cd2 comprises a new genus of phage, which we have termed as Carnodivirus. IMPORTANCE Currently, very little is known about phages that infect carnobacteria, an important genus of lactic acid bacteria with both beneficial and detrimental effects in the food and aquaculture industries. This report provides a detailed characterization of phage cd2, a novel siphophage that targets Carnobacterium divergens, and sets the groundwork for understanding the biology of these phages and their potential use in the detection and biocontrol of C. divergens isolates.
Collapse
Affiliation(s)
- Angelle P. Britton
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Kaitlyn A. Visser
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Véronique M. A. Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Peipei Zhang
- Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Heather Wassink
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Thomas A. Doerksen
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Catherine A. Welke
- Department of Chemistry, The King’s University, Edmonton, Alberta, Canada
| | - Karlene H. Lynch
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
2
|
Whole genome sequence analysis of bacteriophage P1 that infects the Lactobacillus plantarum. Virus Genes 2022; 58:570-583. [DOI: 10.1007/s11262-022-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
|
3
|
Antibiotic Exposure Leads to Reduced Phage Susceptibility in Vancomycin Intermediate Staphylococcus aureus (VISA). Antimicrob Agents Chemother 2022; 66:e0224721. [PMID: 35708333 PMCID: PMC9295574 DOI: 10.1128/aac.02247-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In the time of antimicrobial resistance, phage therapy is frequently suggested as a possible solution for such difficult-to-treat infections. Vancomycin-intermediate Staphylococcus aureus (VISA) remains a relatively rare yet increasing occurrence in the clinic for which phage therapy may be an option. However, the data presented herein suggest a potential cross-resistance mechanism to phage following vancomycin exposure in VISA strains. When comparing genetically similar strains differing in their susceptibility to vancomycin, those with intermediate levels of vancomycin resistance displayed decreased sensitivity to phage in solid and liquid assays. Serial passaging with vancomycin induced both reduced vancomycin susceptibility and phage sensitivity. As a consequence, the process of phage infection was shown to be interrupted after DNA ejection from adsorbed phage but prior to phage DNA replication, as demonstrated through adsorption assays, lysostaphin sensitivity assays, electron microscopy, and quantitative PCR (qPCR). At a time when phage products are being used for experimental treatments and tested in clinical trials, it is important to understand possible interference between mechanisms underlying antibiotic and phage resistance in order to design effective therapeutic regimens.
Collapse
|
4
|
Dkhili S, Ribeiro M, Ghariani S, Yahia HB, Hillion M, Poeta P, Slama KB, Hébraud M, Igrejas G. Bacteriophages as Antimicrobial Agents? Proteomic Insights on Three Novel Lytic Bacteriophages Infecting ESBL-Producing Escherichia coli. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:626-640. [PMID: 34559008 DOI: 10.1089/omi.2021.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the emergence of multiresistant bacteria, the use of bacteriophages is gaining renewed interest as potential antimicrobial agents. The aim of this study was to analyze the structure of three lytic bacteriophages infecting Escherichia coli (SD1, SD2, and SD3) using a gel-based proteomics approach and the cellular response of this bacterium to phage SD1 infection at the proteome level. The combination of the results of 1-DE and 2-DE followed by mass spectrometry led to the identification of 3, 14, and 9 structure proteins for SD1, SD2, and SD3 phages, respectively. Different protein profiles with common proteins were noticed. We also analyzed phage-induced effects by comparing samples from infected cells to those of noninfected cells. We verified important changes in E. coli proteins expression during phage SD1 infection, where there was an overexpression of proteins involved in stress response. Our results indicated that viral infection caused bacterial oxidative stress and bacterial cells response to stress was orchestrated by antioxidant defense mechanisms. This article makes an empirical scientific contribution toward the concept of bacteriophages as potential antimicrobial agents. With converging ecological threats in the 21st century, novel approaches to address the innovation gaps in antimicrobial development are more essential than ever. Further research on bacteriophages is called for in this broader context of planetary health and integrative biology.
Collapse
Affiliation(s)
- Sadika Dkhili
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Miguel Ribeiro
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| | - Salma Ghariani
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Houssem Ben Yahia
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Mélanie Hillion
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Patricia Poeta
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - Karim Ben Slama
- Laboratoire des Microorganismes et Biomolécules actives, Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisie.,Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, Tunis, Tunisie
| | - Michel Hébraud
- University Clermont Auvergne, INRAE, UMR0454 Microbiology Digestive Environment Health (MEDiS), Saint-Genès Champanelle, France.,INRAE, Metabolism Exploration Platform, Proteomic Component (PFEMcp), Saint-Genès Champanelle, France
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology and University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Functional Genomics and Proteomics Unity, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,LAQV-REQUIMTE, Faculty of Science and Technology, University Nova of Lisbon, Lisbon, Portugal
| |
Collapse
|
5
|
Genome Sequences of Bacteriophages cd2, cd3, and cd4, which Specifically Target Carnobacterium divergens. Microbiol Resour Announc 2021; 10:e0063621. [PMID: 34435863 PMCID: PMC8388549 DOI: 10.1128/mra.00636-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carnobacteria have been implicated in food spoilage, but also in protection against pathogenic bacteria. We report the isolation and complete genome sequences of three bacteriophages (phages cd2, cd3, and cd4) that specifically target Carnobacterium divergens. The genome sizes are approximately 57 kbp and have limited homology to known enterococcal and streptococcal phages.
Collapse
|
6
|
Double Tubular Contractile Structure of the Type VI Secretion System Displays Striking Flexibility and Elasticity. J Bacteriol 2019; 202:JB.00425-19. [PMID: 31636107 DOI: 10.1128/jb.00425-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial treatment can induce many bacterial pathogens to enter a cell wall-deficient state that contributes to persistent infections. The effect of this physiological state on the assembly of transenvelope-anchored organelles is not well understood. The type VI secretion system (T6SS) is a widespread molecular weapon for interspecies interactions and virulence, comprising a long double tubular structure and a transenvelope/baseplate complex. Here, we report that cell wall-deficient spheroplasts assembled highly flexible and elastic T6SS structures forming U, O, or S shapes. Upon contacting the inner membrane, the T6SS tubes did not contract but rather continued to grow along the membrane. Such deformation likely results from continual addition of sheath/tube subunits at the distal end. Induction of TagA repressed curved sheath formation. Curved sheaths could also contract and deliver T6SS substrates and were readily disassembled by the ClpV ATPase after contraction. Our data highlight the dramatic effect of cell wall deficiency on the shape of the T6SS structures and reveal the elastic nature of this double tubular contractile injection nanomachine.IMPORTANCE The cell wall is a physical scaffold that all transenvelope complexes have to cross for assembly. However, the cell wall-deficient state has been described as a common condition found in both Gram-negative and Gram-positive pathogens during persistent infections. Loss of cell wall is known to have pleiotropic physiological effects, but how membrane-anchored large cellular organelles adapt to this unique state is less completely understood. Our study examined the assembly of the T6SS in cell wall-deficient spheroplast cells. We report the elastic nature of contractile T6SS tubules under such conditions, providing key insights for understanding how large intracellular structures such as the T6SS accommodate the multifaceted changes in cell wall-deficient cells.
Collapse
|
7
|
Bao H, Shahin K, Zhang Q, Zhang H, Wang Z, Zhou Y, Zhang X, Zhu S, Stefan S, Wang R. Morphologic and genomic characterization of a broad host range Salmonella enterica serovar Pullorum lytic phage vB_SPuM_SP116. Microb Pathog 2019; 136:103659. [DOI: 10.1016/j.micpath.2019.103659] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/24/2022]
|
8
|
Expanding the Diversity of Myoviridae Phages Infecting Lactobacillus plantarum-A Novel Lineage of Lactobacillus Phages Comprising Five New Members. Viruses 2019; 11:v11070611. [PMID: 31277436 PMCID: PMC6669764 DOI: 10.3390/v11070611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/07/2019] [Accepted: 07/02/2019] [Indexed: 01/01/2023] Open
Abstract
Lactobacillus plantarum is a bacterium with probiotic properties and promising applications in the food industry and agriculture. So far, bacteriophages of this bacterium have been moderately addressed. We examined the diversity of five new L. plantarum phages via whole genome shotgun sequencing and in silico protein predictions. Moreover, we looked into their phylogeny and their potential genomic similarities to other complete phage genome records through extensive nucleotide and protein comparisons. These analyses revealed a high degree of similarity among the five phages, which extended to the vast majority of predicted virion-associated proteins. Based on these, we selected one of the phages as a representative and performed transmission electron microscopy and structural protein sequencing tests. Overall, the results suggested that the five phages belong to the family Myoviridae, they have a long genome of 137,973-141,344 bp, a G/C content of 36.3-36.6% that is quite distinct from their host's, and surprisingly, 7 to 15 tRNAs. Only an average 41/174 of their predicted genes were assigned a function. The comparative analyses unraveled considerable genetic diversity for the five L. plantarum phages in this study. Hence, the new genus "Semelevirus" was proposed, comprising exclusively of the five phages. This novel lineage of Lactobacillus phages provides further insight into the genetic heterogeneity of phages infecting Lactobacillus sp. The five new Lactobacillus phages have potential value for the development of more robust starters through, for example, the selection of mutants insensitive to phage infections. The five phages could also form part of phage cocktails, which producers would apply in different stages of L. plantarum fermentations in order to create a range of organoleptic outputs.
Collapse
|
9
|
Biological and molecular characterization of a bacteriophage infecting Xanthomonas campestris pv. campestris, isolated from brassica fields. Arch Virol 2019; 164:1857-1862. [PMID: 31065851 DOI: 10.1007/s00705-019-04263-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/29/2019] [Indexed: 11/27/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot of crucifers. Here, we report a virus that infects Xcc isolated from brassica fields in Brazil. Morphological, molecular and phylogenetic analysis indicated that the isolated virus is a new member of the genus Pbunavirus, family Myoviridae, and we propose the name "Xanthomonas virus XC 2" for this virus. The isolated virus has a narrow host range, infecting only Xcc isolates, and it did not infect unrelated bacteria. These results indicate that the isolated bacteriophage is highly specific for Xcc and may be a potential agent for biological control.
Collapse
|
10
|
Feyereisen M, Mahony J, Lugli GA, Ventura M, Neve H, Franz CMAP, Noben JP, O'Sullivan T, Sinderen DV. Isolation and Characterization of Lactobacillus brevis Phages. Viruses 2019; 11:v11050393. [PMID: 31035495 PMCID: PMC6563214 DOI: 10.3390/v11050393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022] Open
Abstract
Lactobacillus brevis has been widely used in industry for fermentation purposes. However, it is also associated with the spoilage of foods and beverages, in particular, beer. There is an increasing demand for natural food preservation methods, and in this context, bacteriophages possess the potential to control such spoilage bacteria. Just a few studies on phages infecting Lactobacillus brevis have been performed to date and in the present study, we report the isolation and characterization of five virulent phages capable of infecting Lb. brevis strains. The analysis reveals a high diversity among the isolates, with members belonging to both, the Myoviridae and Siphoviridae families. One isolate, designated phage 3-521, possesses a genome of 140.8 kb, thus representing the largest Lb. brevis phage genome sequenced to date. While the isolated phages do not propagate on Lb. brevis beer-spoiling strains, phages showed activity against these strains, impairing the growth of some Lb. brevis strains. The results highlight the potential of bacteriophage-based treatments as an effective approach to prevent bacterial spoilage of beer.
Collapse
Affiliation(s)
- Marine Feyereisen
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
| | - Jennifer Mahony
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
- APC Microbiome Ireland, University College of Cork, T12 YT20 Cork, Ireland.
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Horst Neve
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, 24103, Kiel, Germany.
| | - Charles M A P Franz
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, 24103, Kiel, Germany.
| | - Jean-Paul Noben
- Department Physiology Biochemistry and Immunology, Biomedical Research Institute, Hasselt University, B-3590 Diepenbeek, Belgium.
| | - Tadhg O'Sullivan
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, 2382 Zoeterwoude, The Netherlands.
| | - Douwe van Sinderen
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
- APC Microbiome Ireland, University College of Cork, T12 YT20 Cork, Ireland.
| |
Collapse
|
11
|
Guerrero-Ferreira RC, Hupfeld M, Nazarov S, Taylor NM, Shneider MM, Obbineni JM, Loessner MJ, Ishikawa T, Klumpp J, Leiman PG. Structure and transformation of bacteriophage A511 baseplate and tail upon infection of Listeria cells. EMBO J 2019; 38:embj.201899455. [PMID: 30606715 DOI: 10.15252/embj.201899455] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
Contractile injection systems (bacteriophage tails, type VI secretions system, R-type pyocins, etc.) utilize a rigid tube/contractile sheath assembly for breaching the envelope of bacterial and eukaryotic cells. Among contractile injection systems, bacteriophages that infect Gram-positive bacteria represent the least understood members. Here, we describe the structure of Listeria bacteriophage A511 tail in its pre- and post-host attachment states (extended and contracted, respectively) using cryo-electron microscopy, cryo-electron tomography, and X-ray crystallography. We show that the structure of the tube-baseplate complex of A511 is similar to that of phage T4, but the A511 baseplate is decorated with different receptor-binding proteins, which undergo a large structural transformation upon host attachment and switch the symmetry of the baseplate-tail fiber assembly from threefold to sixfold. For the first time under native conditions, we show that contraction of the phage tail sheath assembly starts at the baseplate and propagates through the sheath in a domino-like motion.
Collapse
Affiliation(s)
- Ricardo C Guerrero-Ferreira
- Laboratory of Structural Biology and Biophysics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mario Hupfeld
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Sergey Nazarov
- Laboratory of Structural Biology and Biophysics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicholas Mi Taylor
- Laboratory of Structural Biology and Biophysics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mikhail M Shneider
- Laboratory of Structural Biology and Biophysics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Laboratory of Molecular Bioengineering, Moscow, Russia
| | - Jagan M Obbineni
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland.,Centre for Agricultural Innovations and Advanced Learning (VAIAL), Vellore Institute of Technology, Vellore, India
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Takashi Ishikawa
- Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Petr G Leiman
- Laboratory of Structural Biology and Biophysics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
|
13
|
Genomic analysis and immune response in a murine mastitis model of vB_EcoM-UFV13, a potential biocontrol agent for use in dairy cows. Sci Rep 2018; 8:6845. [PMID: 29717158 PMCID: PMC5931544 DOI: 10.1038/s41598-018-24896-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/11/2018] [Indexed: 02/02/2023] Open
Abstract
Bovine mastitis remains the main cause of economic losses for dairy farmers. Mammary pathogenic Escherichia coli (MPEC) is related to an acute mastitis and its treatment is still based on the use of antibiotics. In the era of antimicrobial resistance (AMR), bacterial viruses (bacteriophages) present as an efficient treatment or prophylactic option. However, this makes it essential that its genetic structure, stability and interaction with the host immune system be thoroughly characterized. The present study analyzed a novel, broad host-range anti-mastitis agent, the T4virus vB_EcoM-UFV13 in genomic terms, and its activity against a MPEC strain in an experimental E. coli-induced mastitis mouse model. 4,975 Single Nucleotide Polymorphisms (SNPs) were assigned between vB_EcoM-UFV13 and E. coli phage T4 genomes with high impact on coding sequences (CDS) (37.60%) for virion proteins. Phylogenetic trees and genome analysis supported a recent infection mix between vB_EcoM-UFV13 and Shigella phage Shfl2. After a viral stability evaluation (e.g pH and temperature), intramammary administration (MOI 10) resulted in a 10-fold reduction in bacterial load. Furthermore, pro-inflammatory cytokines, such as IL-6 and TNF-α, were observed after viral treatment. This work brings the whole characterization and immune response to vB_EcoM-UFV13, a biocontrol candidate for bovine mastitis.
Collapse
|
14
|
Bacteriophages as modulator for the human gut microbiota: Release from dairy food systems and survival in a dynamic human gastrointestinal model. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Oliveira H, Pinto G, Oliveira A, Noben JP, Hendrix H, Lavigne R, Łobocka M, Kropinski AM, Azeredo J. Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies. Sci Rep 2017; 7:46157. [PMID: 28387353 PMCID: PMC5384007 DOI: 10.1038/srep46157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
Morganella morganii is a common but frequent neglected environmental opportunistic pathogen which can cause deadly nosocomial infections. The increased number of multidrug-resistant M. morganii isolates motivates the search for alternative and effective antibacterials. We have isolated two novel obligatorily lytic M. morganii bacteriophages (vB_MmoM_MP1, vB_MmoP_MP2) and characterized them with respect to specificity, morphology, genome organization and phylogenetic relationships. MP1's dsDNA genome consists of 163,095 bp and encodes 271 proteins, exhibiting low DNA (<40%) and protein (<70%) homology to other members of the Tevenvirinae. Its unique property is a >10 kb chromosomal inversion that encompass the baseplate assembly and head outer capsid synthesis genes when compared to other T-even bacteriophages. MP2 has a dsDNA molecule with 39,394 bp and encodes 55 proteins, presenting significant genomic (70%) and proteomic identity (86%) but only to Morganella bacteriophage MmP1. MP1 and MP2 are then novel members of Tevenvirinae and Autographivirinae, respectively, but differ significantly from other tailed bacteriophages of these subfamilies to warrant proposing new genera. Both bacteriophages together could propagate in 23 of 27 M. morganii clinical isolates of different origin and antibiotic resistance profiles, making them suitable for further studies on a development of bacteriophage cocktail for potential therapeutic applications.
Collapse
Affiliation(s)
- Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Graça Pinto
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Ana Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Diepenbeek 3590, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, B-3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, B-3001 Leuven, Belgium
| | - Małgorzata Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland.,Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrew M Kropinski
- Departments of Food Science; Molecular and Cellular Biology; and, Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
16
|
Mikalová L, Bosák J, Hříbková H, Dědičová D, Benada O, Šmarda J, Šmajs D. Novel Temperate Phages of Salmonella enterica subsp. salamae and subsp. diarizonae and Their Activity against Pathogenic S. enterica subsp. enterica Isolates. PLoS One 2017; 12:e0170734. [PMID: 28118395 PMCID: PMC5261728 DOI: 10.1371/journal.pone.0170734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/10/2017] [Indexed: 01/20/2023] Open
Abstract
Forty strains of Salmonella enterica (S. enterica) subspecies salamae (II), arizonae (IIIa), diarizonae (IIIb), and houtenae (IV) were isolated from human or environmental samples and tested for bacteriophage production. Production of bacteriophages was observed in 15 S. enterica strains (37.5%) belonging to either the subspecies salamae (8 strains) or diarizonae (7 strains). Activity of phages was tested against 52 pathogenic S. enterica subsp. enterica isolates and showed that phages produced by subsp. salamae had broader activity against pathogenic salmonellae compared to phages from the subsp. diarizonae. All 15 phages were analyzed using PCR amplification of phage-specific regions and 9 different amplification profiles were identified. Five phages (SEN1, SEN4, SEN5, SEN22, and SEN34) were completely sequenced and classified as temperate phages. Phages SEN4 and SEN5 were genetically identical, thus representing a single phage type (i.e. SEN4/5). SEN1 and SEN4/5 fit into the group of P2-like phages, while the SEN22 phage showed sequence relatedness to P22-like phages. Interestingly, while phage SEN34 was genetically distantly related to Lambda-like phages (Siphoviridae), it had the morphology of the Myoviridae family. Based on sequence analysis and electron microscopy, phages SEN1 and SEN4/5 were members of the Myoviridae family and phage SEN22 belonged to the Podoviridae family.
Collapse
Affiliation(s)
- Lenka Mikalová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Hana Hříbková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Daniela Dědičová
- National Reference Laboratory for Salmonella, The National Institute of Public Health, Šrobárova, Prague, Czech Republic
| | - Oldřich Benada
- Institute of Microbiology of ASCR, v.v.i., Vídeňská, Prague, Czech Republic
| | - Jan Šmarda
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| |
Collapse
|
17
|
Ozaki T, Abe N, Kimura K, Suzuki A, Kaneko J. Genomic analysis of Bacillus subtilis lytic bacteriophage ϕNIT1 capable of obstructing natto fermentation carrying genes for the capsule-lytic soluble enzymes poly-γ-glutamate hydrolase and levanase. Biosci Biotechnol Biochem 2016; 81:135-146. [PMID: 27885938 DOI: 10.1080/09168451.2016.1232153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacillus subtilis strains including the fermented soybean (natto) starter produce capsular polymers consisting of poly-γ-glutamate and levan. Capsular polymers may protect the cells from phage infection. However, bacteriophage ϕNIT1 carries a γ-PGA hydrolase gene (pghP) that help it to counteract the host cell's protection strategy. ϕNIT had a linear double stranded DNA genome of 155,631-bp with a terminal redundancy of 5,103-bp, containing a gene encoding an active levan hydrolase. These capsule-lytic enzyme genes were located in the possible foreign gene cluster regions between central core and terminal redundant regions, and were expressed at the late phase of the phage lytic cycle. All tested natto origin Spounavirinae phages carried both genes for capsule degrading enzymes similar to ϕNIT1. A comparative genomic analysis revealed the diversity among ϕNIT1 and Bacillus phages carrying pghP-like and levan-hydrolase genes, and provides novel understanding on the acquisition mechanism of these enzymatic genes.
Collapse
Affiliation(s)
- Tatsuro Ozaki
- a Department of Microbial Biotechnology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Naoki Abe
- a Department of Microbial Biotechnology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Keitarou Kimura
- b Laboratory of Applied Microbiology , Food Research Institute-National Agriculture and Food Research Organization (NFRI-NARO) , Tsukuba , Japan
| | - Atsuto Suzuki
- a Department of Microbial Biotechnology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Jun Kaneko
- a Department of Microbial Biotechnology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
18
|
Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate. Proc Natl Acad Sci U S A 2016; 113:9351-6. [PMID: 27469164 DOI: 10.1073/pnas.1605883113] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteriophages from the family Myoviridae use double-layered contractile tails to infect bacteria. Contraction of the tail sheath enables the tail tube to penetrate through the bacterial cell wall and serve as a channel for the transport of the phage genome into the cytoplasm. However, the mechanisms controlling the tail contraction and genome release of phages with "double-layered" baseplates were unknown. We used cryo-electron microscopy to show that the binding of the Twort-like phage phi812 to the Staphylococcus aureus cell wall requires a 210° rotation of the heterohexameric receptor-binding and tripod protein complexes within its baseplate about an axis perpendicular to the sixfold axis of the tail. This rotation reorients the receptor-binding proteins to point away from the phage head, and also results in disruption of the interaction of the tripod proteins with the tail sheath, hence triggering its contraction. However, the tail sheath contraction of Myoviridae phages is not sufficient to induce genome ejection. We show that the end of the phi812 double-stranded DNA genome is bound to one protein subunit from a connector complex that also forms an interface between the phage head and tail. The tail sheath contraction induces conformational changes of the neck and connector that result in disruption of the DNA binding. The genome penetrates into the neck, but is stopped at a bottleneck before the tail tube. A subsequent structural change of the tail tube induced by its interaction with the S. aureus cell is required for the genome's release.
Collapse
|
19
|
Chen X, Xi Y, Zhang H, Wang Z, Fan M, Liu Y, Wu W. Characterization and adsorption of Lactobacillus virulent phage P1. J Dairy Sci 2016; 99:6995-7001. [PMID: 27372579 DOI: 10.3168/jds.2016-11332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/25/2016] [Indexed: 11/19/2022]
Abstract
Bacteriophage infection of lactic acid bacteria is considered an important problem worldwide in the food fermentation industry, as it may produce low quality or unsafe foods, cause fermentation failure, and result in economic losses. To increase current knowledge on the properties of Lactobacillus virulent phages, we evaluated the effect of divalent cations, temperature, pH, and chloramphenicol on the adsorption ability of Lactobacillus virulent phage P1. Phage P1 was isolated from the abnormal fermentation liquid of Lactobacillus plantarum IMAU10120. The results showed that this phage belonged to the Siphoviridae family. The latent period of this phage was 45min, and the burst time was 90min. Burst size was 132.88±2.37 phage counts expressed per milliliter per infective center. This phage showed good tolerance at different temperatures, but incubation at 50°C only affected its adsorption. Adsorption rate reached a maximum value between 30 and 42°C. A high adsorption value of phage infectivity was obtained from pH 6 to 8. Moreover, calcium ions promoted and increased the adsorption capacity of phage P1, but magnesium ions had negative effects. Chloramphenicol had no effect on phage adsorption. This study increased current knowledge on the characterization and biological aspects of Lactobacillus virulent phages, and may provide some basic information that can be used to design successful antiphage strategies in the food industry.
Collapse
Affiliation(s)
- X Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China.
| | - Y Xi
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - H Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - Z Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - M Fan
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - Y Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| | - W Wu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Huhhot, 010018, P. R. China
| |
Collapse
|
20
|
Functional properties of Lactobacillus plantarum strains: A study in vitro of heat stress influence. Food Microbiol 2016. [DOI: 10.1016/j.fm.2015.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Gomes F, Henriques M. Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Curr Microbiol 2015; 72:377-82. [PMID: 26687332 DOI: 10.1007/s00284-015-0958-8] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 11/29/2022]
Abstract
Mastitis is defined as the inflammatory response resulting of the infection of the udder tissue and it is reported in numerous species, namely in domestic dairy animals. This pathology is the most frequent disease of dairy cattle and can be potentially fatal. Mastitis is an economically important pathology associated with reduced milk production, changes in milk composition and quality, being considered one of the most costly to dairy industry. Therefore, the majority of research in the field has focused on control of bovine mastitis and many efforts are being made for the development of new and effective anti-mastitis drugs. Antibiotic treatment is an established component of mastitis control programs; however, the continuous search for new therapeutic alternatives, effective in the control and treatment of bovine mastitis, is urgent. This review will provide an overview of some conventional and emerging approaches in the management of bovine mastitis' infections.
Collapse
Affiliation(s)
- Fernanda Gomes
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB, Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Mariana Henriques
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB, Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|
22
|
Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei. Appl Environ Microbiol 2015; 82:95-105. [PMID: 26475105 DOI: 10.1128/aem.02723-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/11/2015] [Indexed: 01/21/2023] Open
Abstract
Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts.
Collapse
|
23
|
Ferrando V, Quiberoni A, Reinhemer J, Suárez V. Resistance of functional Lactobacillus plantarum strains against food stress conditions. Food Microbiol 2015; 48:63-71. [DOI: 10.1016/j.fm.2014.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/12/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
|
24
|
Tevdoradze E, Kvachadze L, Kutateladze M, Stewart CR. Bactericidal genes of Staphylococcal bacteriophage Sb-1. Curr Microbiol 2014; 68:204-10. [PMID: 24077954 DOI: 10.1007/s00284-013-0456-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/07/2013] [Indexed: 11/27/2022]
Abstract
Bacteriophage genes offer a potential resource for development of new antibiotics. Here, we identify at least six genes of Staphylococcus aureus phage Sb-1 that have bactericidal activity when expressed in Escherichia coli. Since the natural host is gram-positive, and E. coli is gram-negative, it is likely that a variety of quite different bacterial pathogens would be susceptible to each of these bactericidal activities, which therefore might serve as the basis for development of new wide-spectrum antibiotics. We show that two of these gene products target E. coli protein synthesis.
Collapse
|
25
|
Mahony J, Bottacini F, van Sinderen D, Fitzgerald GF. Progress in lactic acid bacterial phage research. Microb Cell Fact 2014; 13 Suppl 1:S1. [PMID: 25185514 PMCID: PMC4155818 DOI: 10.1186/1475-2859-13-s1-s1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Research on lactic acid bacteria (LAB) has advanced significantly over the past number of decades and these developments have been driven by the parallel advances in technologies such as genomics, bioinformatics, protein expression systems and structural biology, combined with the ever increasing commercial relevance of this group of microorganisms. Some of the more significant and impressive outputs have been in the domain of bacteriophage-host interactions which provides a prime example of the cutting-edge model systems represented by LAB research. Here, we present a retrospective overview of the key advances in LAB phage research including phage-host interactions and co-evolution. We describe how in many instances this knowledge can be pivotal in creating real improvements in the application of LAB cultures in commercial practice.
Collapse
|
26
|
Habann M, Leiman PG, Vandersteegen K, Van den Bossche A, Lavigne R, Shneider MM, Bielmann R, Eugster MR, Loessner MJ, Klumpp J. Listeriaphage A511, a model for the contractile tail machineries of SPO1-related bacteriophages. Mol Microbiol 2014; 92:84-99. [DOI: 10.1111/mmi.12539] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Matthias Habann
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Petr G. Leiman
- Institut de Physique des Systèmes Biologiques; EPF Lausanne; 1015 Lausanne Switzerland
| | | | - An Van den Bossche
- Division of Gene Technology; Katholieke Universiteit Leuven; 3001 Leuven Belgium
| | - Rob Lavigne
- Division of Gene Technology; Katholieke Universiteit Leuven; 3001 Leuven Belgium
| | - Mikhail M. Shneider
- Institut de Physique des Systèmes Biologiques; EPF Lausanne; 1015 Lausanne Switzerland
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; 117997 Moscow Russia
| | - Regula Bielmann
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Marcel R. Eugster
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| | - Jochen Klumpp
- Institute of Food, Nutrition and Health; ETH Zurich; 8092 Zurich Switzerland
| |
Collapse
|
27
|
Gomes F, Teixeira P, Oliveira R. Mini-review: Staphylococcus epidermidis as the most frequent cause of nosocomial infections: old and new fighting strategies. BIOFOULING 2014; 30:131-141. [PMID: 24283376 DOI: 10.1080/08927014.2013.848858] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Staphylococcus epidermidis is nowadays regarded as the most frequent cause of nosocomial infections and indwelling medical device-associated infections. One of the features that contributes to the success of this microorganism and which is elemental to the onset of pathogenesis is its ability to form biofilms. Cells in this mode of growth are inherently more resistant to antimicrobials. Seeking to treat staphylococcal-related infections and to prevent their side effects, such as the significant morbidity and health care costs, many efforts are being made to develop of new and effective antistaphylococcal drugs. Indeed, due to its frequency and extreme resistance to treatment, staphylococcal-associated infections represent a serious burden for the public health system. This review will provide an overview of some conventional and emerging anti-biofilm approaches in the management of medical device-associated infections related to this important nosocomial pathogen.
Collapse
Affiliation(s)
- F Gomes
- a Centre of Biological Engineering, IBB - Institute for Biotechnology and Bioengineering, University of Minho , Braga , Portugal
| | | | | |
Collapse
|
28
|
Mahony J, van Sinderen D. Current taxonomy of phages infecting lactic acid bacteria. Front Microbiol 2014; 5:7. [PMID: 24478767 PMCID: PMC3900856 DOI: 10.3389/fmicb.2014.00007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/07/2014] [Indexed: 01/29/2023] Open
Abstract
Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp., and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork Cork, Ireland
| | - Douwe van Sinderen
- Department of Microbiology, University College Cork Cork, Ireland ; Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork Cork, Ireland
| |
Collapse
|
29
|
Barylski J, Nowicki G, Goździcka-Józefiak A. The discovery of phiAGATE, a novel phage infecting Bacillus pumilus, leads to new insights into the phylogeny of the subfamily Spounavirinae. PLoS One 2014; 9:e86632. [PMID: 24466180 PMCID: PMC3900605 DOI: 10.1371/journal.pone.0086632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 12/16/2013] [Indexed: 01/05/2023] Open
Abstract
The Bacillus phage phiAGATE is a novel myovirus isolated from the waters of Lake Góreckie (a eutrophic lake in western Poland). The bacteriophage infects Bacillus pumilus, a bacterium commonly observed in the mentioned reservoir. Analysis of the phiAGATE genome (149844 base pairs) resulted in 204 predicted protein-coding sequences (CDSs), of which 53 could be functionally annotated. Further investigation revealed that the bacteriophage is a member of a previously undescribed cluster of phages (for the purposes of this study we refer to it as "Bastille group") within the Spounavirinae subfamily. Here we demonstrate that these viruses constitute a distinct branch of the Spounavirinae phylogenetic tree, with limited similarity to phages from the Twortlikevirus and Spounalikevirus genera. The classification of phages from the Bastille group into any currently accepted genus proved extremely difficult, prompting concerns about the validity of the present taxonomic arrangement of the subfamily.
Collapse
Affiliation(s)
- Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Grzegorz Nowicki
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Anna Goździcka-Józefiak
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
30
|
Cavanagh D, Guinane CM, Neve H, Coffey A, Ross RP, Fitzgerald GF, McAuliffe O. Phages of non-dairy lactococci: isolation and characterization of ΦL47, a phage infecting the grass isolate Lactococcus lactis ssp. cremoris DPC6860. Front Microbiol 2014; 4:417. [PMID: 24454309 PMCID: PMC3888941 DOI: 10.3389/fmicb.2013.00417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/18/2013] [Indexed: 11/17/2022] Open
Abstract
Lactococci isolated from non-dairy sources have been found to possess enhanced metabolic activity when compared to dairy strains. These capabilities may be harnessed through the use of these strains as starter or adjunct cultures to produce more diverse flavor profiles in cheese and other dairy products. To understand the interactions between these organisms and the phages that infect them, a number of phages were isolated against lactococcal strains of non-dairy origin. One such phage, ΦL47, was isolated from a sewage sample using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. Visualization of phage virions by transmission electron microscopy established that this phage belongs to the family Siphoviridae and possesses a long tail fiber, previously unseen in dairy lactococcal phages. Determination of the lytic spectrum revealed a broader than expected host range, with ΦL47 capable of infecting 4 industrial dairy strains, including ML8, HP and 310, and 3 additional non-dairy isolates. Whole genome sequencing of ΦL47 revealed a dsDNA genome of 128, 546 bp, making it the largest sequenced lactococcal phage to date. In total, 190 open reading frames (ORFs) were identified, and comparative analysis revealed that the predicted products of 117 of these ORFs shared greater than 50% amino acid identity with those of L. lactis phage Φ949, a phage isolated from cheese whey. Despite their different ecological niches, the genomic content and organization of ΦL47 and Φ949 are quite similar, with both containing 4 gene clusters oriented in different transcriptional directions. Other features that distinguish ΦL47 from Φ949 and other lactococcal phages, in addition to the presence of the tail fiber and the genome length, include a low GC content (32.5%) and a high number of predicted tRNA genes (8). Comparative genome analysis supports the conclusion that ΦL47 is a new member of the 949 lactococcal phage group which currently includes the dairy Φ949.
Collapse
Affiliation(s)
- Daniel Cavanagh
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland ; Department of Microbiology, University College Cork Co. Cork, Ireland
| | - Caitriona M Guinane
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food Kiel, Germany
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology Co. Cork, Ireland
| | - R Paul Ross
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland
| | | | - Olivia McAuliffe
- Department of Food Biosciences, Teagasc Food Research Centre Fermoy, Ireland
| |
Collapse
|
31
|
Narrow-host-range bacteriophages that infect Rhizobium etli associate with distinct genomic types. Appl Environ Microbiol 2013; 80:446-54. [PMID: 24185856 DOI: 10.1128/aem.02256-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we isolated and characterized 14 bacteriophages that infect Rhizobium etli. They were obtained from rhizosphere soil of bean plants from agricultural lands in Mexico using an enrichment method. The host range of these phages was narrow but variable within a collection of 48 R. etli strains. We obtained the complete genome sequence of nine phages. Four phages were resistant to several restriction enzymes and in vivo cloning, probably due to nucleotide modifications. The genome size of the sequenced phages varied from 43 kb to 115 kb, with a median size of ≈ 45 to 50 kb. A large proportion of open reading frames of these phage genomes (65 to 70%) consisted of hypothetical and orphan genes. The remainder encoded proteins needed for phage morphogenesis and DNA synthesis and processing, among other functions, and a minor percentage represented genes of bacterial origin. We classified these phages into four genomic types on the basis of their genomic similarity, gene content, and host range. Since there are no reports of similar sequences, we propose that these bacteriophages correspond to novel species.
Collapse
|
32
|
Xu Q, Chiu HJ, Farr CL, Jaroszewski L, Knuth MW, Miller MD, Lesley SA, Godzik A, Elsliger MA, Deacon AM, Wilson IA. Structures of a bifunctional cell wall hydrolase CwlT containing a novel bacterial lysozyme and an NlpC/P60 DL-endopeptidase. J Mol Biol 2013; 426:169-84. [PMID: 24051416 DOI: 10.1016/j.jmb.2013.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/07/2013] [Accepted: 09/11/2013] [Indexed: 11/17/2022]
Abstract
Tn916-like conjugative transposons carrying antibiotic resistance genes are found in a diverse range of bacteria. Orf14 within the conjugation module encodes a bifunctional cell wall hydrolase CwlT that consists of an N-terminal bacterial lysozyme domain (N-acetylmuramidase, bLysG) and a C-terminal NlpC/P60 domain (γ-d-glutamyl-l-diamino acid endopeptidase) and is expected to play an important role in the spread of the transposons. We determined the crystal structures of CwlT from two pathogens, Staphylococcus aureus Mu50 (SaCwlT) and Clostridium difficile 630 (CdCwlT). These structures reveal that NlpC/P60 and LysG domains are compact and conserved modules, connected by a short flexible linker. The LysG domain represents a novel family of widely distributed bacterial lysozymes. The overall structure and the active site of bLysG bear significant similarity to other members of the glycoside hydrolase family 23 (GH23), such as the g-type lysozyme (LysG) and Escherichia coli lytic transglycosylase MltE. The active site of bLysG contains a unique structural and sequence signature (DxxQSSES+S) that is important for coordinating a catalytic water. Molecular modeling suggests that the bLysG domain may recognize glycan in a similar manner to MltE. The C-terminal NlpC/P60 domain contains a conserved active site (Cys-His-His-Tyr) that appears to be specific to murein tetrapeptide. Access to the active site is likely regulated by isomerism of a side chain atop the catalytic cysteine, allowing substrate entry or product release (open state), or catalysis (closed state).
Collapse
Affiliation(s)
- Qingping Xu
- Joint Center for Structural Genomics (http://www.jcsg.org); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hsiu-Ju Chiu
- Joint Center for Structural Genomics (http://www.jcsg.org); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Carol L Farr
- Joint Center for Structural Genomics (http://www.jcsg.org); Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lukasz Jaroszewski
- Joint Center for Structural Genomics (http://www.jcsg.org); Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark W Knuth
- Joint Center for Structural Genomics (http://www.jcsg.org); Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Mitchell D Miller
- Joint Center for Structural Genomics (http://www.jcsg.org); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Scott A Lesley
- Joint Center for Structural Genomics (http://www.jcsg.org); Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Adam Godzik
- Joint Center for Structural Genomics (http://www.jcsg.org); Center for Research in Biological Systems, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marc-André Elsliger
- Joint Center for Structural Genomics (http://www.jcsg.org); Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ashley M Deacon
- Joint Center for Structural Genomics (http://www.jcsg.org); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ian A Wilson
- Joint Center for Structural Genomics (http://www.jcsg.org); Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
33
|
Abstract
Due to their crucial role in pathogenesis and virulence, phages of Staphylococcus aureus have been extensively studied. Most of them encode and disseminate potent staphylococcal virulence factors. In addition, their movements contribute to the extraordinary versatility and adaptability of this prominent pathogen by improving genome plasticity. In addition to S. aureus, phages from coagulase-negative Staphylococci (CoNS) are gaining increasing interest. Some of these species, such as S. epidermidis, cause nosocomial infections and are therefore problematic for public health. This review provides an overview of the staphylococcal phages family extended to CoNS phages. At the morphological level, all these phages characterized so far belong to the Caudovirales order and are mainly temperate Siphoviridae. At the molecular level, comparative genomics revealed an extensive mosaicism, with genes organized into functional modules that are frequently exchanged between phages. Evolutionary relationships within this family, as well as with other families, have been highlighted. All these aspects are of crucial importance for our understanding of evolution and emergence of pathogens among bacterial species such as Staphylococci.
Collapse
Affiliation(s)
- Marie Deghorain
- Author to whom correspondence should be addressed; (L.V.M.); (M.D.); Tel.: +32-2-650-97-76 (M.D.); +32-2-650-97-78 (L.V.M.); Fax: +32-2-650-97-70
| | - Laurence Van Melderen
- Author to whom correspondence should be addressed; (L.V.M.); (M.D.); Tel.: +32-2-650-97-76 (M.D.); +32-2-650-97-78 (L.V.M.); Fax: +32-2-650-97-70
| |
Collapse
|
34
|
Vandersteegen K, Kropinski AM, Nash JHE, Noben JP, Hermans K, Lavigne R. Romulus and Remus, two phage isolates representing a distinct clade within the Twortlikevirus genus, display suitable properties for phage therapy applications. J Virol 2013; 87:3237-47. [PMID: 23302893 PMCID: PMC3592175 DOI: 10.1128/jvi.02763-12] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/07/2012] [Indexed: 11/20/2022] Open
Abstract
The renewed interest in controlling Staphylococcus aureus infections using their natural enemies, bacteriophages, has led to the isolation of a limited number of virulent phages so far. These phages are all members of the Twortlikevirus, displaying little variance. We present two novel closely related (95.9% DNA homology) lytic myoviruses, Romulus and Remus, with double-stranded DNA (dsDNA) genomes of 131,333 bp and 134,643 bp, respectively. Despite their relatedness to Staphylococcus phages K, G1, ISP, and Twort and Listeria phages A511 and P100, Romulus and Remus can be proposed as isolates of a new species within the Twortlikevirus genus. A distinguishing feature for these phage genomes is the unique distribution of group I introns compared to that in other staphylococcal myoviruses. In addition, a hedgehog/intein domain was found within their DNA polymerase genes, and an insertion sequence-encoded transposase exhibits splicing behavior and produces a functional portal protein. From a phage therapy application perspective, Romulus and Remus infected approximately 70% of the tested S. aureus isolates and displayed promising lytic activity against these isolates. Furthermore, both phages showed a rapid initial adsorption and demonstrated biofilm-degrading capacity in a proof-of-concept experiment.
Collapse
Affiliation(s)
- Katrien Vandersteegen
- Laboratory of Gene Technology, Division of Gene Technology, University of Leuven, Heverlee, Belgium
| | - Andrew M. Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - John H. E. Nash
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Katleen Hermans
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Division of Gene Technology, University of Leuven, Heverlee, Belgium
| |
Collapse
|
35
|
Łobocka M, Hejnowicz MS, Dąbrowski K, Gozdek A, Kosakowski J, Witkowska M, Ulatowska MI, Weber-Dąbrowska B, Kwiatek M, Parasion S, Gawor J, Kosowska H, Głowacka A. Genomics of staphylococcal Twort-like phages--potential therapeutics of the post-antibiotic era. Adv Virus Res 2012; 83:143-216. [PMID: 22748811 DOI: 10.1016/b978-0-12-394438-2.00005-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polyvalent bacteriophages of the genus Twort-like that infect clinically relevant Staphylococcus strains may be among the most promising phages with potential therapeutic applications. They are obligatorily lytic, infect the majority of Staphylococcus strains in clinical strain collections, propagate efficiently and do not transfer foreign DNA by transduction. Comparative genomic analysis of 11 S. aureus/S. epidermidis Twort-like phages, as presented in this chapter, emphasizes their strikingly high similarity and clear divergence from phage Twort of the same genus, which might have evolved in hosts of a different species group. Genetically, these phages form a relatively isolated group, which minimizes the risk of acquiring potentially harmful genes. The order of genes in core parts of their 127 to 140-kb genomes is conserved and resembles that found in related representatives of the Spounavirinae subfamily of myoviruses. Functions of certain conserved genes can be predicted based on their homology to prototypical genes of model spounavirus SPO1. Deletions in the genomes of certain phages mark genes that are dispensable for phage development. Nearly half of the genes of these phages have no known homologues. Unique genes are mostly located near termini of the virion DNA molecule and are expressed early in phage development as implied by analysis of their potential transcriptional signals. Thus, many of them are likely to play a role in host takeover. Single genes encode homologues of bacterial virulence-associated proteins. They were apparently acquired by a common ancestor of these phages by horizontal gene transfer but presumably evolved towards gaining functions that increase phage infectivity for bacteria or facilitate mature phage release. Major differences between the genomes of S. aureus/S. epidermidis Twort-like phages consist of single nucleotide polymorphisms and insertions/deletions of short stretches of nucleotides, single genes, or introns of group I. Although the number and location of introns may vary between particular phages, intron shuffling is unlikely to be a major factor responsible for specificity differences.
Collapse
Affiliation(s)
- Małgorzata Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Characterization of two virulent phages of Lactobacillus plantarum. Appl Environ Microbiol 2012; 78:8719-34. [PMID: 23042172 DOI: 10.1128/aem.02565-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria.
Collapse
|
37
|
Uchiyama J, Maeda Y, Takemura I, Gamoh K, Matsuzaki S, Daibata M. Analysis of deoxynucleosides in bacteriophages ϕEF24C and K and the frequency of a specific restriction site in the genomes of members of the bacteriophage subfamily Spounavirinae. Arch Virol 2012; 157:1587-92. [DOI: 10.1007/s00705-012-1324-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/22/2012] [Indexed: 01/21/2023]
|
38
|
Lanza B, Zago M, Carminati D, Rossetti L, Meucci A, Marfisi P, Russi F, Iannucci E, Di Serio MG, Giraffa G. Isolation and preliminary characterization of Lactobacillus plantarum bacteriophages from table olive fermentation. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0400-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
39
|
Kwiatek M, Parasion S, Mizak L, Gryko R, Bartoszcze M, Kocik J. Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic against Staphylococcus aureus strains. Arch Virol 2011; 157:225-34. [DOI: 10.1007/s00705-011-1160-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/19/2011] [Indexed: 11/28/2022]
|
40
|
Uchiyama J, Takemura I, Satoh M, Kato SI, Ujihara T, Akechi K, Matsuzaki S, Daibata M. Improved adsorption of an Enterococcus faecalis bacteriophage ΦEF24C with a spontaneous point mutation. PLoS One 2011; 6:e26648. [PMID: 22046321 PMCID: PMC3201976 DOI: 10.1371/journal.pone.0026648] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/30/2011] [Indexed: 11/19/2022] Open
Abstract
Some bacterial strains of the multidrug-resistant Gram-positive bacteria Enterococcus faecalis can significantly reduce the efficacy of conventional antimicrobial chemotherapy. Thus, the introduction of bacteriophage (phage) therapy is expected, where a phage is used as a bioagent to destroy bacteria. E. faecalis phage ΦEF24C is known to be a good candidate for a therapeutic phage against E. faecalis. However, this therapeutic phage still produces nonuniform antimicrobial effects with different bacterial strains of the same species and this might prove detrimental to its therapeutic effects. One solution to this problem is the preparation of mutant phages with higher activity, based on a scientific rationale. This study isolated and analyzed a spontaneous mutant phage, ΦEF24C-P2, which exhibited higher infectivity against various bacterial strains when compared with phage ΦEF24C. First, the improved bactericidal effects of phage ΦEF24C-P2 were attributable to its increased adsorption rate. Moreover, genomic sequence scanning revealed that phage ΦEF24C-P2 had a point mutation in orf31. Proteomic analysis showed that ORF31 (mw, 203 kDa) was present in structural components, and immunological analysis using rabbit-derived antibodies showed that it was a component of a long, flexible fine tail fiber extending from the tail end. Finally, phage ΦEF24C-P2 also showed higher bactericidal activity in human blood compared with phage ΦEF24C using the in vitro assay system. In conclusion, the therapeutic effects of phage ΦEF24C-P2 were improved by a point mutation in gene orf31, which encoded a tail fiber component.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
| | - Iyo Takemura
- Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
| | - Miho Satoh
- Science Research Center, Kochi University, Kochi, Japan
| | | | | | - Kazue Akechi
- Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
- * E-mail:
| | - Masanori Daibata
- Department of Microbiology and Infection, Faculty of Medicine, Kochi University, Kochi, Japan
| |
Collapse
|
41
|
Vandersteegen K, Mattheus W, Ceyssens PJ, Bilocq F, De Vos D, Pirnay JP, Noben JP, Merabishvili M, Lipinska U, Hermans K, Lavigne R. Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS One 2011; 6:e24418. [PMID: 21931710 PMCID: PMC3170307 DOI: 10.1371/journal.pone.0024418] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/09/2011] [Indexed: 01/03/2023] Open
Abstract
The increasing antibiotic resistance in bacterial populations requires alternatives for classical treatment of infectious diseases and therefore drives the renewed interest in phage therapy. Methicillin resistant Staphylococcus aureus (MRSA) is a major problem in health care settings and live-stock breeding across the world. This research aims at a thorough microbiological, genomic, and proteomic characterization of S. aureus phage ISP, required for therapeutic applications. Host range screening of a large batch of S. aureus isolates and subsequent fingerprint and DNA microarray analysis of the isolates revealed a substantial activity of ISP against 86% of the isolates, including relevant MRSA strains. From a phage therapy perspective, the infection parameters and the frequency of bacterial mutations conferring ISP resistance were determined. Further, ISP was proven to be stable in relevant in vivo conditions and subcutaneous as well as nasal and oral ISP administration to rabbits appeared to cause no adverse effects. ISP encodes 215 gene products on its 138,339 bp genome, 22 of which were confirmed as structural proteins using tandem electrospray ionization-mass spectrometry (ESI-MS/MS), and shares strong sequence homology with the ‘Twort-like viruses’. No toxic or virulence-associated proteins were observed. The microbiological and molecular characterization of ISP supports its application in a phage cocktail for therapeutic purposes.
Collapse
Affiliation(s)
| | - Wesley Mattheus
- Division of Gene Technology, Katholieke Universiteit Leuven, Heverlee, Belgium
| | - Pieter-Jan Ceyssens
- Division of Gene Technology, Katholieke Universiteit Leuven, Heverlee, Belgium
| | - Florence Bilocq
- Laboratory for Molecular and Cellular Technology, Burn Centre, Queen Astrid Military Hospital, Brussels, Belgium
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology, Burn Centre, Queen Astrid Military Hospital, Brussels, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Burn Centre, Queen Astrid Military Hospital, Brussels, Belgium
| | - Jean-Paul Noben
- Hasselt University, Biomedical Research Institute and Transnational University Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Maia Merabishvili
- Laboratory for Molecular and Cellular Technology, Burn Centre, Queen Astrid Military Hospital, Brussels, Belgium
- Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
| | - Urszula Lipinska
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Katleen Hermans
- Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Rob Lavigne
- Division of Gene Technology, Katholieke Universiteit Leuven, Heverlee, Belgium
- * E-mail:
| |
Collapse
|
42
|
Kvachadze L, Balarjishvili N, Meskhi T, Tevdoradze E, Skhirtladze N, Pataridze T, Adamia R, Topuria T, Kutter E, Rohde C, Kutateladze M. Evaluation of lytic activity of staphylococcal bacteriophage Sb-1 against freshly isolated clinical pathogens. Microb Biotechnol 2011; 4:643-50. [PMID: 21481199 PMCID: PMC3819013 DOI: 10.1111/j.1751-7915.2011.00259.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/07/2011] [Indexed: 11/27/2022] Open
Abstract
In recent decades the increase in antibiotic-resistant bacterial strains has become a serious threat to the treatment of infectious diseases. Drug resistance of Staphylococcus aureus has become a major problem in hospitals of many countries, including developed ones. Today the interest in alternative remedies to antibiotics, including bacteriophage treatment, is gaining new ground. Here, we describe the staphylococcal bacteriophage Sb-1 - a key component of therapeutic phage preparation that was successfully used against staphylococcal infections during many years in the Former Soviet Union. This phage still reveals a high spectrum of lytic activity in vitro against freshly isolated, genetically different clinical samples (including methicillin-resistant S. aureus) obtained from the local hospitals, as well as the clinics from different geographical areas. The sequence analyses of phage genome showed absence of bacterial virulence genes. A case report describes a promising clinical response after phage application in patient with cystic fibrosis and indicates the efficacy of usage of Sb-1 phage against various staphylococcal infections.
Collapse
Affiliation(s)
- Leila Kvachadze
- Laboratory of Genetic Engineering and Biotechnology, G. Eliava Institute of Bacteriophages, Microbiology and Virology, 3, Gotua str., Tbilisi 0160, Georgia
| | - Nana Balarjishvili
- Laboratory of Genetic Engineering and Biotechnology, G. Eliava Institute of Bacteriophages, Microbiology and Virology, 3, Gotua str., Tbilisi 0160, Georgia
| | - Tamila Meskhi
- Laboratory of Genetic Engineering and Biotechnology, G. Eliava Institute of Bacteriophages, Microbiology and Virology, 3, Gotua str., Tbilisi 0160, Georgia
| | - Ekaterine Tevdoradze
- Laboratory of Genetic Engineering and Biotechnology, G. Eliava Institute of Bacteriophages, Microbiology and Virology, 3, Gotua str., Tbilisi 0160, Georgia
| | - Natia Skhirtladze
- Laboratory of Genetic Engineering and Biotechnology, G. Eliava Institute of Bacteriophages, Microbiology and Virology, 3, Gotua str., Tbilisi 0160, Georgia
| | - Tamila Pataridze
- Laboratory of Genetic Engineering and Biotechnology, G. Eliava Institute of Bacteriophages, Microbiology and Virology, 3, Gotua str., Tbilisi 0160, Georgia
| | - Revaz Adamia
- Laboratory of Genetic Engineering and Biotechnology, G. Eliava Institute of Bacteriophages, Microbiology and Virology, 3, Gotua str., Tbilisi 0160, Georgia
| | - Temur Topuria
- Cystic Fibrosis National Center, 2/6 Lubliana str., Tbilisi 0160, Georgia
| | - Elizabeth Kutter
- DZMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B,38124 Braunschweig, Germany
| | - Christine Rohde
- Evergreens State College, 2700 Parkway, NW, Olympia, WA 98505, USA
| | - Mzia Kutateladze
- Laboratory of Genetic Engineering and Biotechnology, G. Eliava Institute of Bacteriophages, Microbiology and Virology, 3, Gotua str., Tbilisi 0160, Georgia
| |
Collapse
|
43
|
Yoon BH, Jang SH, Chang HI. Sequence analysis of the Lactobacillus temperate phage Sha1. Arch Virol 2011; 156:1681-4. [PMID: 21701917 DOI: 10.1007/s00705-011-1048-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Bacteriophage Sha1, a newly isolated temperate phage from a mitomycin-C-induced lysate of Lactobacillus plantarum isolated from Kimchi, has an isometric head (58 nm × 60 nm) and a long tail (259 nm × 11 nm). The double-strand DNA genome of the phage Sha1 was 41,726 base pairs (bp) long, with a G+C content of 40.61%. Bioinformatic analysis of Sha1 shows that this phage contains 58 putative open reading frames (ORFs). Sha1 can be classified as a member of the large family Siphoviridae by genomic structure and morphology. To our knowledge, this is the first report of genomic sequencing and characterization of temperate phage Sha1 from wild-type L. plantarum isolated from kimchi in Korea.
Collapse
Affiliation(s)
- Bo Hyun Yoon
- College of Life Sciences and Biotechnology, Korea University, 5-1 Anam-Dong, Sungbuk-Gu, Seoul, Korea
| | | | | |
Collapse
|
44
|
Characterization of lytic enzyme open reading frame 9 (ORF9) derived from Enterococcus faecalis bacteriophage phiEF24C. Appl Environ Microbiol 2010; 77:580-5. [PMID: 21097580 DOI: 10.1128/aem.01540-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteriophage (phage) therapy against Gram-positive bacteria, such as Staphylococcus aureus, Listeria monocytogenes, and Enterococcus faecalis, members of a genus of SPO1-like viruses are typically employed because of their extreme virulence and broad host spectrum. Phage φEF24C, which is a SPO1-like virus infecting E. faecalis, has previously been characterized as a therapeutic phage candidate. In addition to the phage itself, phage endolysin is also recognized as an effective antimicrobial agent. In this study, a putative endolysin gene (orf9) of E. faecalis phage φEF24C was analyzed in silico, and its activity was characterized using the recombinant form. First, bioinformatics analysis predicted that the open reading frame 9 (ORF9) protein is N-acetylmuramoyl-l-alanine amidase. Second, bacteriolytic and bactericidal activities of ORF9 against E. faecalis were confirmed by zymography, decrease of peptidoglycan turbidity, decrease of the viable count, and morphological analysis of ORF9-treated cells. Third, ORF9 did not appear to require Zn(2+) ions for its activity, contrary to the bioinformatics prediction of a Zn(2+) ion requirement. Fourth, the lytic spectrum was from 97.1% (34 out of 35 strains, including vancomycin-resistant strains) of E. faecalis strains to 60% (6 out of 10 strains) of Enterococcus faecium strains. Fifth, N-acetylmuramoyl-l-alanine amidase activity of ORF9 was confirmed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and the subsequent MALDI-postsource decay (PSD) analyses. Finally, functional analysis using N- or C-terminally deleted ORF9 mutants suggested that a complete ORF9 molecule is essential for its activity. These results suggested that ORF9 is an endolysin of phage φEF24C and can be a therapeutic alternative to antibiotics.
Collapse
|
45
|
Complete nucleotide sequence of the temperate bacteriophage LBR48, a new member of the family Myoviridae. Arch Virol 2010; 156:319-22. [PMID: 20976608 DOI: 10.1007/s00705-010-0841-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022]
Abstract
The complete genomic sequence of LBR48, a temperate bacteriophage induced from a lysogenic strain of Lactobacillus brevis, was found to be 48,211 nucleotides long and to contain 90 putative open reading frames. Based on structural characteristics obtained from microscopic analysis and nucleic acid sequence determination, phage LBR48 can be classified as a member of the family Myoviridae. Analysis of the genome showed the conserved gene order of previously reported phages of the family Siphoviridae from lactic acid bacteria, despite low nucleotide sequence similarity. Analysis of the attachment sites revealed 15-nucleotide-long core sequences.
Collapse
|
46
|
Klumpp J, Lavigne R, Loessner MJ, Ackermann HW. The SPO1-related bacteriophages. Arch Virol 2010; 155:1547-61. [PMID: 20714761 DOI: 10.1007/s00705-010-0783-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
A large and diverse group of bacteriophages has been termed 'SPO1-like viruses'. To date, molecular data and genome sequences are available for Bacillus phage SPO1 and eight related phages infecting members of other bacterial genera. Many additional bacteriophages have been described as SPO1-related, but very few data are available for most of them. We present an overview of putative 'SPO1-like viruses' and shall discuss the available data in view of the recently proposed expansion of this group of bacteriophages to the tentative subfamily Spounavirinae. Characteristics of SPO1-related phages include (a) the host organisms are Firmicutes; (b) members are strictly virulent myoviruses; (c) all phages feature common morphological properties; (d) the phage genome consists of a terminally redundant, non-permuted dsDNA molecule of 127-157 kb in size; and (e) phages share considerable amino acid homology. The number of phages isolated consistent with these parameters is large, suggesting a ubiquitous nature of this group of viruses.
Collapse
Affiliation(s)
- Jochen Klumpp
- Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, Zurich, Switzerland.
| | | | | | | |
Collapse
|
47
|
Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol 2010; 192:5441-53. [PMID: 20709901 DOI: 10.1128/jb.00709-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brochothrix belongs to the low-GC branch of Gram-positive bacteria (Firmicutes), closely related to Listeria, Staphylococcus, Clostridium, and Bacillus. Brochothrix thermosphacta is a nonproteolytic food spoilage organism, adapted to growth in vacuum-packaged meats. We report the first genome sequences and characterization of Brochothrix bacteriophages. Phage A9 is a myovirus with an 89-nm capsid diameter and a 171-nm contractile tail; it belongs to the Spounavirinae subfamily and shares significant homologies with Listeria phage A511, Staphylococcus phage Twort, and others. The A9 unit genome is 127 kb long with 11-kb terminal redundancy; it encodes 198 proteins and 6 tRNAs. Phages BL3 and NF5 are temperate siphoviruses with a head diameter of 56 to 59 nm. The BL3 tail is 270 nm long, whereas NF5 features a short tail of only 94 nm. The NF5 genome (36.95 kb) encodes 57 gene products, BL3 (41.52 kb) encodes 65 products, and both are arranged in life cycle-specific modules. Surprisingly, BL3 and NF5 show little relatedness to Listeria phages but rather demonstrate relatedness to lactococcal phages. Peptide mass fingerprinting of viral proteins indicate programmed -1 translational frameshifts in the NF5 capsid and the BL3 major tail protein. Both NF5 and BL3 feature circularly permuted, terminally redundant genomes, packaged by a headful mechanism, and integrases of the serine (BL3) and tyrosine (NF5) types. They utilize unique target sequences not previously described: BL3 inserts into the 3' end of a RNA methyltransferase, whereas NF5 integrates into the 5'-terminal part of a putative histidinol-phosphatase. Interestingly, both genes are reconstituted by phage sequence.
Collapse
|
48
|
Wang S, Qiao X, Liu X, Zhang X, Wang C, Zhao X, Chen Z, Wen Y, Song Y. Complete genomic sequence analysis of the temperate bacteriophage phiSASD1 of Streptomyces avermitilis. Virology 2010; 403:78-84. [PMID: 20447671 DOI: 10.1016/j.virol.2010.03.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 03/23/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
The bacteriophage phiSASD1, isolated from a failed industrial avermectin fermentation, belongs to the Siphoviridae family. Its four predominant structural proteins, which include the major capsid, portal and two tail-related proteins, were separated and identified by SDS-PAGE and N-terminal sequence analysis. The entire double-stranded DNA genome of phiSASD1 consists of 37,068 bp, with 3'-protruding cohesive ends of nine nucleotides. Putative biological functions have been assigned to 24 of the 43 potential open reading frames. Comparative analysis shows perfect assembly of three "core" gene modules: the morphogenesis and head module, the tail module and the right arm gene module, which displays obvious similarity to the right arm genes of Streptomyces phage phiC31 in function and arrangement. Meanwhile, structural module flexibility within phiSASD1 suggests that assignment of phage taxonomy based on comparative genomics of structural genes will be more complex than expected due to the exchangeability of functional genetic elements.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Microbiology, College of Biological Sciences, China Agricultural University, Beijing, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Whichard JM, Weigt LA, Borris DJ, Li LL, Zhang Q, Kapur V, Pierson FW, Lingohr EJ, She YM, Kropinski AM, Sriranganathan N. Complete genomic sequence of bacteriophage felix o1. Viruses 2010; 2:710-730. [PMID: 21994654 PMCID: PMC3185647 DOI: 10.3390/v2030710] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/25/2010] [Accepted: 03/08/2010] [Indexed: 11/16/2022] Open
Abstract
Bacteriophage O1 is a Myoviridae A1 group member used historically for identifying Salmonella. Sequencing revealed a single, linear, 86,155-base-pair genome with 39% average G+C content, 131 open reading frames, and 22 tRNAs. Closest protein homologs occur in Erwinia amylovora phage φEa21-4 and Escherichia coli phage wV8. Proteomic analysis indentified structural proteins: Gp23, Gp36 (major tail protein), Gp49, Gp53, Gp54, Gp55, Gp57, Gp58 (major capsid protein), Gp59, Gp63, Gp64, Gp67, Gp68, Gp69, Gp73, Gp74 and Gp77 (tail fiber). Based on phage-host codon differences, 7 tRNAs could affect translation rate during infection. Introns, holin-lysin cassettes, bacterial toxin homologs and host RNA polymerase-modifying genes were absent.
Collapse
Affiliation(s)
- Jean M. Whichard
- Mailstop G29, Centers for Disease Control and Prevention; 1600 Clifton Road, Atlanta, GA 30329, USA; E-Mail: (J.M.W.)
| | - Lee A. Weigt
- Smithsonian National Institution, National Museum in Natural History, MRC 534, Washington, DC 20560, USA; E-Mail: (L.A.W.)
| | - Douglas J. Borris
- Abbot Point of Care, 185 Corkstown Road, Ottawa, ON, K2H 8V4, Canada
| | - Ling Ling Li
- Pennsylvania State University, Department of Veterinary and Biomedical Sciences, 204 Wartick Laboratory, University Park, PA 16802, USA; E-Mail: (L.L.L.)
| | - Qing Zhang
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. Seattle, WA 98109, USA; E-Mail: (Q.Z.)
| | - Vivek Kapur
- Pennsylvania State University, 115 Henning Bldg., University Park, PA 16802, USA; E-Mail: (V.K.)
| | - F. William Pierson
- VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Duck Pond Drive (0442), Blacksburg, Virginia 24061, USA, E-Mail: (F.W.P.)
| | - Erika J. Lingohr
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario N1G 3W4, Canada; E-Mails: (E.J.L.); (A.M.K.)
| | - Yi-Min She
- Centre for Biologics Research, Health Canada, Room D159, Frederick G. Banting Building 251 Sir Frederick Banting Driveway, Tunney’s Pasture, Ottawa, ON K1A 0K9, Canada; E-Mail: (Y.-M.S.)
| | - Andrew M. Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario N1G 3W4, Canada; E-Mails: (E.J.L.); (A.M.K.)
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, Ontario N1G 2W1, Canada
| | - Nammalwar Sriranganathan
- Center for Molecular Medicine and Infectious Disease; 1410 Prices Fork Road; Blacksburg, VA 24061-0342, USA
| |
Collapse
|
50
|
Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germane KL, Edgar RH, Hoyte NN, Bowman CA, Tantoco AT, Paladin EC, Myers MS, Smith AL, Grace MS, Pham TT, O'Brien MB, Vogelsberger AM, Hryckowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peebles CL, Cresawn SG, Hendrix RW. Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 2010; 397:119-43. [PMID: 20064525 DOI: 10.1016/j.jmb.2010.01.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/08/2009] [Accepted: 01/05/2010] [Indexed: 10/20/2022]
Abstract
Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of 60-all infecting a common bacterial host-provides further insight into their diversity and evolution. Of the 60 phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, 5 of which can be further divided into subclusters; 5 genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the 6 genomes in Cluster D share more than 97.5% average nucleotide similarity with one another. In contrast, similarity between the 2 genomes in Cluster I is barely detectable by diagonal plot analysis. In total, 6858 predicted open-reading frames have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries, and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit a smaller average size than genes of their host (205 residues compared with 315), phage genes in higher flux average only 100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains.
Collapse
Affiliation(s)
- Graham F Hatfull
- Department of Biological Sciences, Pittsburgh Bacteriophage Institute, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|