1
|
Baker ZR, Zhang Y, Zhang H, Franklin HC, Serpa PBS, Southard T, Li L, Hsu BB. Sustained in situ protein production and release in the mammalian gut by an engineered bacteriophage. Nat Biotechnol 2025:10.1038/s41587-025-02570-7. [PMID: 39966654 DOI: 10.1038/s41587-025-02570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/20/2025] [Indexed: 02/20/2025]
Abstract
Oral administration of biologic drugs is challenging because of the degradative activity of the upper gastrointestinal tract. Strategies that use engineered microbes to produce biologics in the lower gastrointestinal tract are limited by competition with resident commensal bacteria. Here we demonstrate the engineering of bacteriophage (phage) that infect resident commensals to express heterologous proteins released during cell lysis. Working with the virulent T4 phage, which targets resident, nonpathogenic Escherichia coli, we first identify T4-specific promoters with maximal protein expression and minimal impact on T4 phage titers. We engineer T4 phage to express a serine protease inhibitor of a pro-inflammatory enzyme with increased activity in ulcerative colitis and observe reduced enzyme activity in a mouse model of colitis. We also apply the approach to reduce weight gain and inflammation in mouse models of diet-induced obesity. This work highlights an application of virulent phages in the mammalian gut as engineerable vectors to release therapeutics from resident gut bacteria.
Collapse
Affiliation(s)
- Zachary R Baker
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Yao Zhang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Haiyan Zhang
- Metabolism Core, Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, USA
| | - Hollyn C Franklin
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Priscila B S Serpa
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Teresa Southard
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Bryan B Hsu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
- Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens, Virginia Tech, Blacksburg, VA, USA.
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Yilmaz Demirel N, Weber M, Höfer K. Bridging the gap: RNAylation conjugates RNAs to proteins. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119826. [PMID: 39182583 DOI: 10.1016/j.bbamcr.2024.119826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
In nature, the majority of known RNA-protein interactions are transient. Our recent study has depicted a novel mechanism known as RNAylation, which covalently links proteins and RNAs. This novel modification bridges the realms of RNA and protein modifications. This review specifically explores RNAylation catalyzed by bacteriophage T4 ADP-ribosyltransferase ModB, with a focus on its protein targets and RNA substrates in the context of Escherichia coli-bacteriophage T4 interaction. Additionally, we discuss the biological significance of RNAylation and present perspectives on RNAylation as a versatile bioconjugation strategy for RNAs and proteins.
Collapse
Affiliation(s)
- Nurseda Yilmaz Demirel
- Max-Planck-Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Moritz Weber
- Max-Planck-Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Katharina Höfer
- Max-Planck-Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Saikia B, Riquelme-Barrios S, Carell T, Brameyer S, Jung K. Depletion of m 6A-RNA in Escherichia coli reduces the infectious potential of T5 bacteriophage. Microbiol Spectr 2024; 12:e0112424. [PMID: 39422505 PMCID: PMC11619597 DOI: 10.1128/spectrum.01124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification of mRNA in eukaryotes that plays, among other mechanisms, an essential role in virus replication. However, the understanding of m6A-RNA modification in prokaryotes, especially in relation to phage replication, is limited. To address this knowledge gap, we investigated the effects of m6A-RNA modifications on phage replication in two model organisms: Vibrio campbellii BAA-1116 (previously Vibrio harveyi BB120) and Escherichia coli MG1655. An m6A-RNA-depleted V. campbellii mutant (ΔrlmFΔrlmJ) did not differ from the wild type in the induction of lysogenic phages or in susceptibility to the lytic Virtus phage. In contrast, the infection potential of the T5 phage, but not that of other T phages or the lambda phage, was reduced in an m6A-RNA-depleted E. coli mutant (ΔrlmFΔrlmJ) compared to the wild type. This was shown by a lower plaquing efficiency and a higher percentage of surviving cells. There were no differences in the T5 phage adsorption rate, but the mutant exhibited a 5-min delay in the rise period during the one-step growth curve. This is the first report demonstrating that E. coli cells with lower m6A-RNA levels have a higher chance of surviving T5 phage infection. IMPORTANCE The importance of RNA modifications has been thoroughly studied in the context of eukaryotic viral infections. However, their role in bacterial hosts during phage infections is largely unexplored. Our research delves into this gap by investigating the effect of host N6-methyladenosine (m6A)-RNA modifications during phage infection. We found that an Escherichia coli mutant depleted of m6A-RNA is less susceptible to T5 infection than the wild type. This finding emphasizes the need to further investigate how RNA modifications affect the fine-tuned regulation of individual bacterial survival in the presence of phages to ensure population survival.
Collapse
Affiliation(s)
- Bibakhya Saikia
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Thomas Carell
- Department for Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität, München, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
4
|
Pozhydaieva N, Billau FA, Wolfram-Schauerte M, Ramírez Rojas AA, Paczia N, Schindler D, Höfer K. Temporal epigenome modulation enables efficient bacteriophage engineering and functional analysis of phage DNA modifications. PLoS Genet 2024; 20:e1011384. [PMID: 39231196 PMCID: PMC11404850 DOI: 10.1371/journal.pgen.1011384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/16/2024] [Accepted: 08/01/2024] [Indexed: 09/06/2024] Open
Abstract
Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| |
Collapse
|
5
|
Pozhydaieva N, Wolfram-Schauerte M, Keuthen H, Höfer K. The enigmatic epitranscriptome of bacteriophages: putative RNA modifications in viral infections. Curr Opin Microbiol 2024; 77:102417. [PMID: 38217927 DOI: 10.1016/j.mib.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/15/2024]
Abstract
RNA modifications play essential roles in modulating RNA function, stability, and fate across all kingdoms of life. The entirety of the RNA modifications within a cell is defined as the epitranscriptome. While eukaryotic RNA modifications are intensively studied, understanding bacterial RNA modifications remains limited, and knowledge about bacteriophage RNA modifications is almost nonexistent. In this review, we shed light on known mechanisms of bacterial RNA modifications and propose how this knowledge might be extended to bacteriophages. We build hypotheses on enzymes potentially responsible for regulating the epitranscriptome of bacteriophages and their host. This review highlights the exciting prospects of uncovering the unexplored field of bacteriophage epitranscriptomics and its potential role to shape bacteriophage-host interactions.
Collapse
Affiliation(s)
| | | | - Helene Keuthen
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Suskiewicz MJ, Prokhorova E, Rack JGM, Ahel I. ADP-ribosylation from molecular mechanisms to therapeutic implications. Cell 2023; 186:4475-4495. [PMID: 37832523 PMCID: PMC10789625 DOI: 10.1016/j.cell.2023.08.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/15/2023]
Abstract
ADP-ribosylation is a ubiquitous modification of biomolecules, including proteins and nucleic acids, that regulates various cellular functions in all kingdoms of life. The recent emergence of new technologies to study ADP-ribosylation has reshaped our understanding of the molecular mechanisms that govern the establishment, removal, and recognition of this modification, as well as its impact on cellular and organismal function. These advances have also revealed the intricate involvement of ADP-ribosylation in human physiology and pathology and the enormous potential that their manipulation holds for therapy. In this review, we present the state-of-the-art findings covering the work in structural biology, biochemistry, cell biology, and clinical aspects of ADP-ribosylation.
Collapse
Affiliation(s)
| | | | - Johannes G M Rack
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; MRC Centre of Medical Mycology, University of Exeter, Exeter, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Wolfram-Schauerte M, Pozhydaieva N, Grawenhoff J, Welp LM, Silbern I, Wulf A, Billau FA, Glatter T, Urlaub H, Jäschke A, Höfer K. A viral ADP-ribosyltransferase attaches RNA chains to host proteins. Nature 2023; 620:1054-1062. [PMID: 37587340 PMCID: PMC10468400 DOI: 10.1038/s41586-023-06429-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/12/2023] [Indexed: 08/18/2023]
Abstract
The mechanisms by which viruses hijack the genetic machinery of the cells they infect are of current interest. When bacteriophage T4 infects Escherichia coli, it uses three different adenosine diphosphate (ADP)-ribosyltransferases (ARTs) to reprogram the transcriptional and translational apparatus of the host by ADP-ribosylation using nicotinamide adenine dinucleotide (NAD) as a substrate1,2. NAD has previously been identified as a 5' modification of cellular RNAs3-5. Here we report that the T4 ART ModB accepts not only NAD but also NAD-capped RNA (NAD-RNA) as a substrate and attaches entire RNA chains to acceptor proteins in an 'RNAylation' reaction. ModB specifically RNAylates the ribosomal proteins rS1 and rL2 at defined Arg residues, and selected E. coli and T4 phage RNAs are linked to rS1 in vivo. T4 phages that express an inactive mutant of ModB have a decreased burst size and slowed lysis of E. coli. Our findings reveal a distinct biological role for NAD-RNA, namely the activation of the RNA for enzymatic transfer to proteins. The attachment of specific RNAs to ribosomal proteins might provide a strategy for the phage to modulate the host's translation machinery. This work reveals a direct connection between RNA modification and post-translational protein modification. ARTs have important roles far beyond viral infections6, so RNAylation may have far-reaching implications.
Collapse
Affiliation(s)
- Maik Wolfram-Schauerte
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | | | - Julia Grawenhoff
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Ivan Silbern
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
| | - Alexander Wulf
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Franziska A Billau
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg-August-University, Göttingen, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Katharina Höfer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
8
|
Mahler M, Malone LM, van den Berg DF, Smith LM, Brouns SJJ, Fineran PC. An OmpW-dependent T4-like phage infects Serratia sp. ATCC 39006. Microb Genom 2023; 9:mgen000968. [PMID: 36995210 PMCID: PMC10132071 DOI: 10.1099/mgen.0.000968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/27/2023] [Indexed: 03/31/2023] Open
Abstract
Serratia sp. ATCC 39006 is a Gram-negative bacterium that has been used to study the function of phage defences, such as CRISPR-Cas, and phage counter-defence mechanisms. To expand our phage collection to study the phage-host interaction with Serratia sp. ATCC 39006, we isolated the T4-like myovirus LC53 in Ōtepoti Dunedin, Aotearoa New Zealand. Morphological, phenotypic and genomic characterization revealed that LC53 is virulent and similar to other Serratia, Erwinia and Kosakonia phages belonging to the genus Winklervirus. Using a transposon mutant library, we identified the host ompW gene as essential for phage infection, suggesting that it encodes the phage receptor. The genome of LC53 encodes all the characteristic T4-like core proteins involved in phage DNA replication and generation of viral particles. Furthermore, our bioinformatic analysis suggests that the transcriptional organization of LC53 is similar to that of Escherichia coli phage T4. Importantly, LC53 encodes 18 tRNAs, which likely compensate for differences in GC content between phage and host genomes. Overall, this study describes a newly isolated phage infecting Serratia sp. ATCC 39006 that expands the diversity of phages available to study phage-host interactions.
Collapse
Affiliation(s)
- Marina Mahler
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
| | - Lucia M. Malone
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| | - Daan F. van den Berg
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| | - Leah M. Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Stan J. J. Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
- Kavli Institute of Nanoscience, Delft, Netherlands
| | - Peter C. Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Integrated Omics Reveal Time-Resolved Insights into T4 Phage Infection of E. coli on Proteome and Transcriptome Levels. Viruses 2022; 14:v14112502. [PMID: 36423111 PMCID: PMC9697503 DOI: 10.3390/v14112502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteriophages are highly abundant viruses of bacteria. The major role of phages in shaping bacterial communities and their emerging medical potential as antibacterial agents has triggered a rebirth of phage research. To understand the molecular mechanisms by which phages hijack their host, omics technologies can provide novel insights into the organization of transcriptional and translational events occurring during the infection process. In this study, we apply transcriptomics and proteomics to characterize the temporal patterns of transcription and protein synthesis during the T4 phage infection of E. coli. We investigated the stability of E. coli-originated transcripts and proteins in the course of infection, identifying the degradation of E. coli transcripts and the preservation of the host proteome. Moreover, the correlation between the phage transcriptome and proteome reveals specific T4 phage mRNAs and proteins that are temporally decoupled, suggesting post-transcriptional and translational regulation mechanisms. This study provides the first comprehensive insights into the molecular takeover of E. coli by bacteriophage T4. This data set represents a valuable resource for future studies seeking to study molecular and regulatory events during infection. We created a user-friendly online tool, POTATO4, which is available to the scientific community and allows access to gene expression patterns for E. coli and T4 genes.
Collapse
|
10
|
Iyer LM, Burroughs AM, Anantharaman V, Aravind L. Apprehending the NAD +-ADPr-Dependent Systems in the Virus World. Viruses 2022; 14:1977. [PMID: 36146784 PMCID: PMC9503650 DOI: 10.3390/v14091977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
NAD+ and ADP-ribose (ADPr)-containing molecules are at the interface of virus-host conflicts across life encompassing RNA processing, restriction, lysogeny/dormancy and functional hijacking. We objectively defined the central components of the NAD+-ADPr networks involved in these conflicts and systematically surveyed 21,191 completely sequenced viral proteomes representative of all publicly available branches of the viral world to reconstruct a comprehensive picture of the viral NAD+-ADPr systems. These systems have been widely and repeatedly exploited by positive-strand RNA and DNA viruses, especially those with larger genomes and more intricate life-history strategies. We present evidence that ADP-ribosyltransferases (ARTs), ADPr-targeting Macro, NADAR and Nudix proteins are frequently packaged into virions, particularly in phages with contractile tails (Myoviruses), and deployed during infection to modify host macromolecules and counter NAD+-derived signals involved in viral restriction. Genes encoding NAD+-ADPr-utilizing domains were repeatedly exchanged between distantly related viruses, hosts and endo-parasites/symbionts, suggesting selection for them across the virus world. Contextual analysis indicates that the bacteriophage versions of ADPr-targeting domains are more likely to counter soluble ADPr derivatives, while the eukaryotic RNA viral versions might prefer macromolecular ADPr adducts. Finally, we also use comparative genomics to predict host systems involved in countering viral ADP ribosylation of host molecules.
Collapse
Affiliation(s)
| | | | | | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
11
|
Interaction between Phage T4 Protein RIII and Host Ribosomal Protein S1 Inhibits Endoribonuclease RegB Activation. Int J Mol Sci 2022; 23:ijms23169483. [PMID: 36012768 PMCID: PMC9409239 DOI: 10.3390/ijms23169483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Lytic viruses of bacteria (bacteriophages, phages) are intracellular parasites that take over hosts' biosynthetic processes for their propagation. Most of the knowledge on the host hijacking mechanisms has come from the studies of the lytic phage T4, which infects Escherichia coli. The integrity of T4 development is achieved by strict control over the host and phage processes and by adjusting them to the changing infection conditions. In this study, using in vitro and in vivo biochemical methods, we detected the direct interaction between the T4 protein RIII and ribosomal protein S1 of the host. Protein RIII is known as a cytoplasmic antiholin, which plays a role in the lysis inhibition function of T4. However, our results show that RIII also acts as a viral effector protein mainly targeting S1 RNA-binding domains that are central for all the activities of this multifunctional protein. We confirm that the S1-RIII interaction prevents the S1-dependent activation of endoribonuclease RegB. In addition, we propose that by modulating the multiple processes mediated by S1, RIII could act as a regulator of all stages of T4 infection including the lysis inhibition state.
Collapse
|
12
|
Mikolčević P, Hloušek-Kasun A, Ahel I, Mikoč A. ADP-ribosylation systems in bacteria and viruses. Comput Struct Biotechnol J 2021; 19:2366-2383. [PMID: 34025930 PMCID: PMC8120803 DOI: 10.1016/j.csbj.2021.04.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
ADP-ribosylation is an ancient posttranslational modification present in all kingdoms of life. The system likely originated in bacteria where it functions in inter- and intra-species conflict, stress response and pathogenicity. It was repeatedly adopted via lateral transfer by eukaryotes, including humans, where it has a pivotal role in epigenetics, DNA-damage repair, apoptosis, and other crucial pathways including the immune response to pathogenic bacteria and viruses. In other words, the same ammunition used by pathogens is adapted by eukaryotes to fight back. While we know quite a lot about the eukaryotic system, expanding rather patchy knowledge on bacterial and viral ADP-ribosylation would give us not only a better understanding of the system as a whole but a fighting advantage in this constant arms race. By writing this review we hope to put into focus the available information and give a perspective on how this system works and can be exploited in the search for therapeutic targets in the future. The relevance of the subject is especially highlighted by the current situation of being amid the world pandemic caused by a virus harbouring and dependent on a representative of such a system.
Collapse
Affiliation(s)
- Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
13
|
Ceyssens PJ, De Smet J, Wagemans J, Akulenko N, Klimuk E, Hedge S, Voet M, Hendrix H, Paeshuyse J, Landuyt B, Xu H, Blanchard J, Severinov K, Lavigne R. The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit. Viruses 2020; 12:v12090976. [PMID: 32887488 PMCID: PMC7552054 DOI: 10.3390/v12090976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we describe the biological function of the phage-encoded protein RNA polymerase alpha subunit cleavage protein (Rac), a predicted Gcn5-related acetyltransferase encoded by phiKMV-like viruses. These phages encode a single-subunit RNA polymerase for transcription of their late (structure- and lysis-associated) genes, whereas the bacterial RNA polymerase is used at the earlier stages of infection. Rac mediates the inactivation of bacterial transcription by introducing a specific cleavage in the α subunit of the bacterial RNA polymerase. This cleavage occurs within the flexible linker sequence and disconnects the C-terminal domain, required for transcription initiation from most highly active cellular promoters. To achieve this, Rac likely taps into a novel post-translational modification (PTM) mechanism within the host Pseudomonas aeruginosa. From an evolutionary perspective, this novel phage-encoded regulation mechanism confirms the importance of PTMs in the prokaryotic metabolism and represents a new way by which phages can hijack the bacterial host metabolism.
Collapse
Affiliation(s)
- Pieter-Jan Ceyssens
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Jeroen De Smet
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Jeroen Wagemans
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (E.K.); (K.S.)
| | - Evgeny Klimuk
- Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (E.K.); (K.S.)
| | - Subray Hedge
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; (S.H.); (H.X.); (J.B.)
| | - Marleen Voet
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Hanne Hendrix
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Jan Paeshuyse
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Bart Landuyt
- Department of Biology, KU Leuven, 3000 Leuven, Belgium;
| | - Hua Xu
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; (S.H.); (H.X.); (J.B.)
| | - John Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; (S.H.); (H.X.); (J.B.)
| | - Konstantin Severinov
- Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (E.K.); (K.S.)
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
- Correspondence: ; Tel.: +32-16-379-524
| |
Collapse
|
14
|
Morimoto D, Kimura S, Sako Y, Yoshida T. Transcriptome Analysis of a Bloom-Forming Cyanobacterium Microcystis aeruginosa during Ma-LMM01 Phage Infection. Front Microbiol 2018; 9:2. [PMID: 29403457 PMCID: PMC5780444 DOI: 10.3389/fmicb.2018.00002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/03/2018] [Indexed: 01/21/2023] Open
Abstract
Microcystis aeruginosa forms massive blooms in eutrophic freshwaters, where it is constantly exposed to lytic cyanophages. Unlike other marine cyanobacteria, M. aeruginosa possess remarkably abundant and diverse potential antiviral defense genes. Interestingly, T4-like cyanophage Ma-LMM01, which is the sole cultured lytic cyanophage infecting M. aeruginosa, lacks the host-derived genes involved in maintaining host photosynthesis and directing host metabolism that are abundant in other marine cyanophages. Based on genomic comparisons with closely related cyanobacteria and their phages, Ma-LMM01 is predicted to employ a novel infection program that differs from that of other marine cyanophages. Here, we used RNA-seq technology and in silico analysis to examine transcriptional dynamics during Ma-LMM01 infection to reveal host transcriptional responses to phage infection, and to elucidate the infection program used by Ma-LMM01 to avoid the highly abundant host defense systems. Phage-derived reads increased only slightly at 1 h post-infection, but significantly increased from 16% of total cellular reads at 3 h post-infection to 33% of all reads by 6 h post-infection. Strikingly, almost none of the host genes (0.17%) showed a significant change in expression during infection. However, like other lytic dsDNA phages, including marine cyanophages, phage gene dynamics revealed three expression classes: early (host-takeover), middle (replication), and late (virion morphogenesis). The early genes were concentrated in a single ∼5.8-kb window spanning 10 open reading frames (gp054-gp063) on the phage genome. None of the early genes showed homology to the early genes of other T4-like phages, including known marine cyanophages. Bacterial RNA polymerase (σ70) recognition sequences were also found in the upstream region of middle and late genes, whereas phage-specific motifs were not found. Our findings suggest that unlike other known T4-like phages, Ma-LMM01 achieves three sequential gene expression patterns with no change in host promoter activity. This type of infection that does not cause significant change in host transcriptional levels may be advantageous in allowing Ma-LMM01 to escape host defense systems while maintaining host photosynthesis.
Collapse
Affiliation(s)
- Daichi Morimoto
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigeko Kimura
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- School of Environmental Science, University of Shiga Prefecture, Hikone, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Peters DL, Stothard P, Dennis JJ. The isolation and characterization of Stenotrophomonas maltophilia T4-like bacteriophage DLP6. PLoS One 2017; 12:e0173341. [PMID: 28291834 PMCID: PMC5349666 DOI: 10.1371/journal.pone.0173341] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
Increasing isolation of the extremely antibiotic resistant bacterium Stenotrophomonas maltophilia has caused alarm worldwide due to the limited treatment options available. A potential treatment option for fighting this bacterium is ‘phage therapy’, the clinical application of bacteriophages to selectively kill bacteria. Bacteriophage DLP6 (vB_SmoM-DLP6) was isolated from a soil sample using clinical isolate S. maltophilia strain D1571 as host. Host range analysis of phage DLP6 against 27 clinical S. maltophilia isolates shows successful infection and lysis in 13 of the 27 isolates tested. Transmission electron microscopy of DLP6 indicates that it is a member of the Myoviridae family. Complete genome sequencing and analysis of DLP6 reveals its richly recombined evolutionary history, featuring a core of both T4-like and cyanophage genes, which suggests that it is a member of the T4-superfamily. Unlike other T4-superfamily phages however, DLP6 features a transposase and ends with 229 bp direct terminal repeats. The isolation of this bacteriophage is an exciting discovery due to the divergent nature of DLP6 in relation to the T4-superfamily of phages.
Collapse
Affiliation(s)
- Danielle L. Peters
- 6-065 Centennial Centre for Interdisciplinary Science, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jonathan J. Dennis
- 6-065 Centennial Centre for Interdisciplinary Science, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
16
|
Westcott NP, Hang HC. Chemical reporters for exploring ADP-ribosylation and AMPylation at the host-pathogen interface. Curr Opin Chem Biol 2015; 23:56-62. [PMID: 25461386 DOI: 10.1016/j.cbpa.2014.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/25/2014] [Accepted: 10/06/2014] [Indexed: 01/24/2023]
Abstract
Bacterial pathogens secrete protein toxins and effectors that hijack metabolites to covalently modify host proteins and interfere with their function during infection. Adenosine metabolites, such as nicotinamide adenine dinucleotide (NAD) and adenosine triphosphate (ATP), have in particular been coopted by these secreted virulence factors to reprogram host pathways. While some host targets for secreted virulence factors have been identified, other toxin and effector substrates have been elusive, which require new methods for their characterization. In this review, we focus on chemical reporters based on NAD and ATP that should facilitate the discovery and characterization of adenosine diphosphate (ADP)-ribosylation and adenylylation/AMPylation in bacterial pathogenesis and cell biology.
Collapse
|
17
|
Burroughs AM, Zhang D, Aravind L. The eukaryotic translation initiation regulator CDC123 defines a divergent clade of ATP-grasp enzymes with a predicted role in novel protein modifications. Biol Direct 2015; 10:21. [PMID: 25976611 PMCID: PMC4431377 DOI: 10.1186/s13062-015-0053-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/07/2015] [Indexed: 12/26/2022] Open
Abstract
Abstract Deciphering the origin of uniquely eukaryotic features of sub-cellular systems, such as the translation apparatus, is critical in reconstructing eukaryogenesis. One such feature is the highly conserved, but poorly understood, eukaryotic protein CDC123, which regulates the abundance of the eukaryotic translation initiation eIF2 complex and binds one of its components eIF2γ. We show that the eukaryotic protein CDC123 defines a novel clade of ATP-grasp enzymes distinguished from all other members of the superfamily by a RAGNYA domain with two conserved lysines (henceforth the R2K clade). Combining the available biochemical and genetic data on CDC123 with the inferred enzymatic function, we propose that the eukaryotic CDC123 proteins are likely to function as ATP-dependent protein-peptide ligases which modify proteins by ribosome-independent addition of an oligopeptide tag. We also show that the CDC123 family emerged first in bacteria where it appears to have diversified along with the two other families of the R2K clade. The bacterial CDC123 family members are of two distinct types, one found as part of type VI secretion systems which deliver polymorphic toxins and the other functioning as potential effectors delivered to amoeboid eukaryotic hosts. Representatives of the latter type have also been independently transferred to phylogenetically unrelated amoeboid eukaryotes and their nucleo-cytoplasmic large DNA viruses. Similarly, the two other prokaryotic R2K clade families are also proposed to participate in biological conflicts between bacteriophages and their hosts. These findings add further evidence to the recently proposed hypothesis that the horizontal transfer of enzymatic effectors from the bacterial endosymbionts of the stem eukaryotes played a fundamental role in the emergence of the characteristically eukaryotic regulatory systems and sub-cellular structures. Reviewers This article was reviewed by Michael Galperin and Sandor Pongor. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0053-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| | - Dapeng Zhang
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA.
| |
Collapse
|
18
|
Sung VMH. Mechanistic overview of ADP-ribosylation reactions. Biochimie 2015; 113:35-46. [PMID: 25828806 DOI: 10.1016/j.biochi.2015.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
ADP-ribosylation reactions consist of mono-ADP-ribosylation, poly-ADP-ribosylation and cyclic ADP-ribosylation. These reactions play essential roles in many important physiological and pathophysiological events. The types of chemical linkages, the evolutionarily conserved motif within the enzymes to determine the target specificity, stereochemistry of the ADP-ribosylated products, and the chemical reactions taking place among the enzymes and substrates are discussed.
Collapse
Affiliation(s)
- Vicky M-H Sung
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Harvard University, MA 02115, USA.
| |
Collapse
|
19
|
The natural history of ADP-ribosyltransferases and the ADP-ribosylation system. Curr Top Microbiol Immunol 2015; 384:3-32. [PMID: 25027823 DOI: 10.1007/82_2014_414] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Catalysis of NAD(+)-dependent ADP-ribosylation of proteins, nucleic acids, or small molecules has evolved in at least three structurally unrelated superfamilies of enzymes, namely ADP-ribosyltransferase (ART), the Sirtuins, and probably TM1506. Of these, the ART superfamily is the most diverse in terms of structure, active site residues, and targets that they modify. The primary diversification of the ART superfamily occurred in the context of diverse bacterial conflict systems, wherein ARTs play both offensive and defensive roles. These include toxin-antitoxin systems, virus-host interactions, intraspecific antagonism (polymorphic toxins), symbiont/parasite effectors/toxins, resistance to antibiotics, and repair of RNAs cleaved in conflicts. ARTs evolving in these systems have been repeatedly acquired by lateral transfer throughout eukaryotic evolution, starting from the PARP family, which was acquired prior to the last eukaryotic common ancestor. They were incorporated into eukaryotic regulatory/epigenetic control systems (e.g., PARP family and NEURL4), and also used as defensive (e.g., pierisin and CARP-1 families) or immunity-related proteins (e.g., Gig2-like ARTs). The ADP-ribosylation system also includes other domains, such as the Macro, ADP-ribosyl glycohydrolase, NADAR, and ADP-ribosyl cyclase, which appear to have initially diversified in bacterial conflict-related systems. Unlike ARTs, sirtuins appear to have a much smaller presence in conflict-related systems.
Collapse
|
20
|
Abstract
Poly(ADP-ribose) polymerases (PARPs) modify target proteins post-translationally with poly(ADP-ribose) (PAR) or mono(ADP-ribose) (MAR) using NAD(+) as substrate. The best-studied PARPs generate PAR modifications and include PARP1 and the tankyrase PARP5A, both of which are targets for cancer therapy with inhibitors in either clinical trials or preclinical development. There are 15 additional PARPs, most of which modify proteins with MAR, and their biology is less well understood. Recent data identify potentially cancer-relevant functions for these PARPs, which indicates that we need to understand more about these PARPs to effectively target them.
Collapse
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
21
|
Abstract
Phage G1 gp67 is a 23 kDa protein that binds to the Staphylococcus aureus (Sau) RNA polymerase (RNAP) σ(A) subunit and blocks cell growth by inhibiting transcription. We show that gp67 has little to no effect on transcription from most promoters but is a potent inhibitor of ribosomal RNA transcription. A 2.0-Å-resolution crystal structure of the complex between gp67 and Sau σ(A) domain 4 (σ(A)(4)) explains how gp67 joins the RNAP promoter complex through σ(A)(4) without significantly affecting σ(A)(4) function. Our results indicate that gp67 forms a complex with RNAP at most, if not all, σ(A)-dependent promoters, but selectively inhibits promoters that depend on an interaction between upstream DNA and the RNAP α-subunit C-terminal domain (αCTD). Thus, we reveal a promoter-specific transcription inhibition mechanism by which gp67 interacts with the RNAP promoter complex through one subunit (σ(A)), and selectively affects the function of another subunit (αCTD) depending on promoter usage.
Collapse
|
22
|
Pamp SJ, Harrington ED, Quake SR, Relman DA, Blainey PC. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). Genome Res 2012; 22:1107-19. [PMID: 22434425 PMCID: PMC3371716 DOI: 10.1101/gr.131482.111] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Segmented filamentous bacteria (SFB) are host-specific intestinal symbionts that comprise a distinct clade within the Clostridiaceae, designated Candidatus Arthromitus. SFB display a unique life cycle within the host, involving differentiation into multiple cell types. The latter include filaments that attach intimately to intestinal epithelial cells, and from which "holdfasts" and spores develop. SFB induce a multifaceted immune response, leading to host protection from intestinal pathogens. Cultivation resistance has hindered characterization of these enigmatic bacteria. In the present study, we isolated five SFB filaments from a mouse using a microfluidic device equipped with laser tweezers, generated genome sequences from each, and compared these sequences with each other, as well as to recently published SFB genome sequences. Based on the resulting analyses, SFB appear to be dependent on the host for a variety of essential nutrients. SFB have a relatively high abundance of predicted proteins devoted to cell cycle control and to envelope biogenesis, and have a group of SFB-specific autolysins and a dynamin-like protein. Among the five filament genomes, an average of 8.6% of predicted proteins were novel, including a family of secreted SFB-specific proteins. Four ADP-ribosyltransferase (ADPRT) sequence types, and a myosin-cross-reactive antigen (MCRA) protein were discovered; we hypothesize that they are involved in modulation of host responses. The presence of polymorphisms among mouse SFB genomes suggests the evolution of distinct SFB lineages. Overall, our results reveal several aspects of SFB adaptation to the mammalian intestinal tract.
Collapse
Affiliation(s)
- Sünje J Pamp
- Department of Microbiology and Immunology, The Howard Hughes Medical Institute
| | | | | | | | | |
Collapse
|
23
|
Stallings CL, Chu L, Li LX, Glickman MS. Catalytic and non-catalytic roles for the mono-ADP-ribosyltransferase Arr in the mycobacterial DNA damage response. PLoS One 2011; 6:e21807. [PMID: 21789183 PMCID: PMC3138739 DOI: 10.1371/journal.pone.0021807] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/07/2011] [Indexed: 01/28/2023] Open
Abstract
Recent evidence indicates that the mycobacterial response to DNA double strand breaks (DSBs) differs substantially from previously characterized bacteria. These differences include the use of three DSB repair pathways (HR, NHEJ, SSA), and the CarD pathway, which integrates DNA damage with transcription. Here we identify a role for the mono-ADP-ribosyltransferase Arr in the mycobacterial DNA damage response. Arr is transcriptionally induced following DNA damage and cellular stress. Although Arr is not required for induction of a core set of DNA repair genes, Arr is necessary for suppression of a set of ribosomal protein genes and rRNA during DNA damage, placing Arr in a similar pathway as CarD. Surprisingly, the catalytic activity of Arr is not required for this function, as catalytically inactive Arr was still able to suppress ribosomal protein and rRNA expression during DNA damage. In contrast, Arr substrate binding and catalytic activities were required for regulation of a small subset of other DNA damage responsive genes, indicating that Arr has both catalytic and noncatalytic roles in the DNA damage response. Our findings establish an endogenous cellular function for a mono-ADP-ribosyltransferase apart from its role in mediating Rifampin resistance.
Collapse
Affiliation(s)
- Christina L. Stallings
- Department of Molecular Microbiology Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Linda Chu
- Immunology program, Sloan Kettering Institute, New York, New York, United States of America
| | - Lucy X. Li
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Summer Undergraduate Research Program, New York, New York, United States of America
| | - Michael S. Glickman
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- Immunology program, Sloan Kettering Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
24
|
Pouillot F, Blois H, Iris F. Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria. Biosecur Bioterror 2010; 8:155-69. [PMID: 20569057 DOI: 10.1089/bsp.2009.0057] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural outbreaks of multidrug-resistant microorganisms can cause widespread devastation, and several can be used or engineered as agents of bioterrorism. From a biosecurity standpoint, the capacity to detect and then efficiently control, within hours, the spread and the potential pathological effects of an emergent outbreak, for which there may be no effective antibiotics or vaccines, become key challenges that must be met. We turned to phage engineering as a potentially highly flexible and effective means to both detect and eradicate threats originating from emergent (uncharacterized) bacterial strains. To this end, we developed technologies allowing us to (1) concurrently modify multiple regions within the coding sequence of a gene while conserving intact the remainder of the gene, (2) reversibly interrupt the lytic cycle of an obligate virulent phage (T4) within its host, (3) carry out efficient insertion, by homologous recombination, of any number of engineered genes into the deactivated genomes of a T4 wild-type phage population, and (4) reactivate the lytic cycle, leading to the production of engineered infective virulent recombinant progeny. This allows the production of very large, genetically engineered lytic phage banks containing, in an E. coli host, a very wide spectrum of variants for any chosen phage-associated function, including phage host-range. Screening of such a bank should allow the rapid isolation of recombinant T4 particles capable of detecting (ie, diagnosing), infecting, and destroying hosts belonging to gram-negative bacterial species far removed from the original E. coli host.
Collapse
|
25
|
Uzan M, Miller ES. Post-transcriptional control by bacteriophage T4: mRNA decay and inhibition of translation initiation. Virol J 2010; 7:360. [PMID: 21129205 PMCID: PMC3014915 DOI: 10.1186/1743-422x-7-360] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/03/2010] [Indexed: 01/02/2023] Open
Abstract
Over 50 years of biological research with bacteriophage T4 includes notable discoveries in post-transcriptional control, including the genetic code, mRNA, and tRNA; the very foundations of molecular biology. In this review we compile the past 10 - 15 year literature on RNA-protein interactions with T4 and some of its related phages, with particular focus on advances in mRNA decay and processing, and on translational repression. Binding of T4 proteins RegB, RegA, gp32 and gp43 to their cognate target RNAs has been characterized. For several of these, further study is needed for an atomic-level perspective, where resolved structures of RNA-protein complexes are awaiting investigation. Other features of post-transcriptional control are also summarized. These include: RNA structure at translation initiation regions that either inhibit or promote translation initiation; programmed translational bypassing, where T4 orchestrates ribosome bypass of a 50 nucleotide mRNA sequence; phage exclusion systems that involve T4-mediated activation of a latent endoribonuclease (PrrC) and cofactor-assisted activation of EF-Tu proteolysis (Gol-Lit); and potentially important findings on ADP-ribosylation (by Alt and Mod enzymes) of ribosome-associated proteins that might broadly impact protein synthesis in the infected cell. Many of these problems can continue to be addressed with T4, whereas the growing database of T4-related phage genome sequences provides new resources and potentially new phage-host systems to extend the work into a broader biological, evolutionary context.
Collapse
Affiliation(s)
- Marc Uzan
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | |
Collapse
|
26
|
Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289. [PMID: 21029433 PMCID: PMC2988021 DOI: 10.1186/1743-422x-7-289] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022] Open
Abstract
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ⁷⁰, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ⁷⁰, which then allows the T4 activator MotA to also interact with σ⁷⁰. In addition, AsiA restructuring of σ⁷⁰ prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 2A-13, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
27
|
Lavigne R, Darius P, Summer EJ, Seto D, Mahadevan P, Nilsson AS, Ackermann HW, Kropinski AM. Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 2009; 9:224. [PMID: 19857251 PMCID: PMC2771037 DOI: 10.1186/1471-2180-9-224] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 10/26/2009] [Indexed: 11/30/2022] Open
Abstract
Background We advocate unifying classical and genomic classification of bacteriophages by integration of proteomic data and physicochemical parameters. Our previous application of this approach to the entirely sequenced members of the Podoviridae fully supported the current phage classification of the International Committee on Taxonomy of Viruses (ICTV). It appears that horizontal gene transfer generally does not totally obliterate evolutionary relationships between phages. Results CoreGenes/CoreExtractor proteome comparison techniques applied to 102 Myoviridae suggest the establishment of three subfamilies (Peduovirinae, Teequatrovirinae, the Spounavirinae) and eight new independent genera (Bcep781, BcepMu, FelixO1, HAP1, Bzx1, PB1, phiCD119, and phiKZ-like viruses). The Peduovirinae subfamily, derived from the P2-related phages, is composed of two distinct genera: the "P2-like viruses", and the "HP1-like viruses". At present, the more complex Teequatrovirinae subfamily has two genera, the "T4-like" and "KVP40-like viruses". In the genus "T4-like viruses" proper, four groups sharing >70% proteins are distinguished: T4-type, 44RR-type, RB43-type, and RB49-type viruses. The Spounavirinae contain the "SPO1-"and "Twort-like viruses." Conclusion The hierarchical clustering of these groupings provide biologically significant subdivisions, which are consistent with our previous analysis of the Podoviridae.
Collapse
Affiliation(s)
- Rob Lavigne
- Biosystems Department, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Fieldhouse RJ, Merrill AR. Needle in the haystack: structure-based toxin discovery. Trends Biochem Sci 2008; 33:546-56. [PMID: 18815047 DOI: 10.1016/j.tibs.2008.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/25/2008] [Accepted: 08/13/2008] [Indexed: 12/26/2022]
Abstract
In the current data-rich era, making the leap from sequence data to knowledge is a task that requires an elegant bioinformatics toolset to pinpoint pressing research questions. Therefore, a strategy to expand important protein-family knowledge is required, particularly in cases in which primary sequence identity is low but structural conservation is high. For example, the mono-ADP-ribosylating toxins fit these criteria and several approaches have been used to accelerate the discovery of new family members. The strategy evolved from conduction of PSI-BLAST searches through to the combination of secondary-structure prediction with pattern-based searches. However, a newly developed tactic, in which fold recognition dominates, reduces reliance on sequence similarity and advances scientists toward a true structure-based protein-family expansion methodology.
Collapse
Affiliation(s)
- Robert J Fieldhouse
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | |
Collapse
|
29
|
Stoskiene G, Truncaite L, Zajanckauskaite A, Nivinskas R. Middle promoters constitute the most abundant and diverse class of promoters in bacteriophage T4. Mol Microbiol 2007; 64:421-34. [PMID: 17371501 DOI: 10.1111/j.1365-2958.2007.05659.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The temporally regulated transcription program of bacteriophage T4 relies upon the sequential utilization of three classes of promoters: early, middle and late. Here we show that middle promoters constitute perhaps the largest and the most diverse class of T4 promoters. In addition to 45 T4 middle promoters known to date, we mapped 13 new promoters, 10 of which deviate from the consensus MotA box, with some of them having no obvious match to it. So, 30 promoters of 58 identified now deviate from the consensus sequence deduced previously. In spite of the differences in their sequences, the in vivo activities of these T4 middle promoters were demonstrated to be dependent on both activators, MotA and AsiA. Traditionally, the MotA box was restricted to a 9 bp sequence with the highly conserved motif TGCTT. New logo based on the sequences of currently known middle promoters supports the conclusion that the consensus MotA box is comprised of 10 bp with the highly conserved central motif GCT. However, some apparently good matches to the consensus of middle promoters do not produce transcripts either in vivo or in vitro, indicating that the consensus sequence alone does not fully define a middle promoter.
Collapse
Affiliation(s)
- Giedre Stoskiene
- Department of Gene Engineering, Institute of Biochemistry, Mokslininku 12, 08662 Vilnius, Lithuania
| | | | | | | |
Collapse
|
30
|
Quinones M, Kimsey HH, Ross W, Gourse RL, Waldor MK. LexA represses CTXphi transcription by blocking access of the alpha C-terminal domain of RNA polymerase to promoter DNA. J Biol Chem 2006; 281:39407-12. [PMID: 17046810 DOI: 10.1074/jbc.m609694200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTXPhi is a Vibrio cholerae-specific temperate filamentous phage that encodes cholera toxin. CTXPhi lysogens can be induced with DNA damage-inducing agents such as UV light, leading to the release of CTXPhi virions and the rapid dissemination of cholera toxin genes to new V. cholerae hosts. This environmental regulation is directly mediated by LexA, the host-encoded global SOS transcription factor. LexA and a phage-encoded repressor, RstR, both repress transcription from P(rstA), the primary CTXPhi promoter. Because the LexA binding site is located upstream of the core P(rstA) promoter and overlaps with A-tract sequences, we speculated that LexA represses P(rstA) by occluding a promoter UP element, a binding site for the C-terminal domain of the alpha subunit of RNA polymerase (RNAP) (alphaCTD). Using in vitro transcription assays, we have shown that the LexA binding site stimulates maximal rstA transcription in the absence of any added factors. The alphaCTD of RNAP is required for this stimulation, demonstrating that the LexA site contains, or overlaps with, a promoter UP element. LexA represses rstA transcription by normal RNAP but fails to repress rstA transcription catalyzed by RNAP lacking the alphaCTD. DNase I footprint analysis mapped the alphaCTD binding site to the upstream promoter region that includes the LexA binding site. The addition of free alpha subunits blocked the binding of LexA to rstA promoter DNA, indicating that LexA and the alphaCTD directly compete for binding to their respective sites. To our knowledge, this is the first report of a repressor blocking transcription initiation by occluding a promoter UP element.
Collapse
Affiliation(s)
- Mariam Quinones
- Department of Molecular Microbiology, Tufts University School of Medicine and the Howard Hughes Medical Institute, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
31
|
Nolan JM, Petrov V, Bertrand C, Krisch HM, Karam JD. Genetic diversity among five T4-like bacteriophages. Virol J 2006; 3:30. [PMID: 16716236 PMCID: PMC1524935 DOI: 10.1186/1743-422x-3-30] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 05/23/2006] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. RESULTS Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR) and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs) that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. CONCLUSION Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4-like phages harbour a wealth of genetic material that has not been identified previously. The mechanisms by which these genes may have arisen may differ from those previously proposed for the evolution of other bacteriophage genomes.
Collapse
Affiliation(s)
- James M Nolan
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA 70148, USA
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Vasiliy Petrov
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Claire Bertrand
- LMGM-CNRS UMR 5100,118, route de Narbonne, 31062 Toulouse cedex 09, France
| | - Henry M Krisch
- LMGM-CNRS UMR 5100,118, route de Narbonne, 31062 Toulouse cedex 09, France
| | - Jim D Karam
- Department of Biochemistry, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| |
Collapse
|
32
|
Depping R, Lohaus C, Meyer HE, Rüger W. The mono-ADP-ribosyltransferases Alt and ModB of bacteriophage T4: target proteins identified. Biochem Biophys Res Commun 2005; 335:1217-23. [PMID: 16112649 DOI: 10.1016/j.bbrc.2005.08.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Accepted: 08/03/2005] [Indexed: 11/26/2022]
Abstract
Infection of Escherichia coli by bacteriophage T4 leads to the expression of three phage mono-ADP-ribosyltransferases (namely, Alt, ModA, and ModB), each of which modifies a distinct group of host proteins. To improve understanding of these interactions and their consequences for the T4 replication cycle, we used high-resolution two-dimensional gel electrophoresis and mass-spectrometry to identify some of the putative target proteins ADP-ribosylated in vitro by Alt (total approximately 27) and ModB (total approximately 8). E. coli trigger factor and the elongation factor EF-Tu were 2 targets of ModB action, and these proteins were among the 10 identified as targets of Alt, hinting that these factors are involved in phage replication.
Collapse
Affiliation(s)
- Reinhard Depping
- AG Molekulare Genetik, Ruhr-Universität Bochum, Bochum, Germany.
| | | | | | | |
Collapse
|
33
|
Hinton DM, Pande S, Wais N, Johnson XB, Vuthoori M, Makela A, Hook-Barnard I. Transcriptional takeover by σ appropriation: remodelling of the σ 70 subunit of Escherichia coli RNA polymerase by the bacteriophage T4 activator MotA and co-activator AsiA. Microbiology (Reading) 2005; 151:1729-1740. [PMID: 15941982 DOI: 10.1099/mic.0.27972-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of bacteriophage T4 middle promoters, which occurs about 1 min after infection, uses two phage-encoded factors that change the promoter specificity of the host RNA polymerase. These phage factors, the MotA activator and the AsiA co-activator, interact with theσ70specificity subunit ofEscherichia coliRNA polymerase, which normally contacts the −10 and −35 regions of host promoter DNA. Like host promoters, T4 middle promoters have a good match to the canonicalσ70DNA element located in the −10 region. However, instead of theσ70DNA recognition element in the promoter's −35 region, they have a 9 bp sequence (a MotA box) centred at −30, which is bound by MotA. Recent work has begun to provide information about the MotA/AsiA system at a detailed molecular level. Accumulated evidence suggests that the presence of MotA and AsiA reconfigures protein–DNA contacts in the upstream promoter sequences, without significantly affecting the contacts ofσ70with the −10 region. This type of activation, which is called ‘σappropriation’, is fundamentally different from other well-characterized models of prokaryotic activation in which an activator frequently serves to forceσ70to contact a less than ideal −35 DNA element. This review summarizes the interactions of AsiA and MotA withσ70, and discusses how these interactions accomplish the switch to T4 middle promoters by inhibiting the typical contacts of the C-terminal region ofσ70, region 4, with the host −35 DNA element and with other subunits of polymerase.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suchira Pande
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neelowfar Wais
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xanthia B Johnson
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Madhavi Vuthoori
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Makela
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - India Hook-Barnard
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|