1
|
Chivers PT, Basak P, Maroney MJ. One His, two His…the emerging roles of histidine in cellular nickel trafficking. J Inorg Biochem 2024; 259:112668. [PMID: 39053077 DOI: 10.1016/j.jinorgbio.2024.112668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Biological environments present a complex array of metal-binding ligands. Metal-binding proteins have been the overwhelming focus of study because of their important and well-defined biological roles. Consequently, the presence of functional low molecular weight (LMW) metal-ligand complexes has been overlooked in terms of their roles in metallobiochemistry, particularly within cells. Recent studies in microbial systems have illuminated the different roles of L-histidine in nickel uptake, gene expression, and metalloenzyme maturation. In this focused critical review, these roles are surveyed in the context of the coordination chemistry of Ni(II) ions and the amino acid histidine, and the physico-chemical properties of nickel complexes of histidine. These complexes are fundamentally important to cellular metal homeostasis and further work is needed to fully define their contributions.
Collapse
Affiliation(s)
- Peter T Chivers
- Departments of Biosciences and Chemistry, University of Durham, Durham DH1 3LE, UK
| | - Priyanka Basak
- Department of Chemistry, University of Massachusetts, Amherst, MA 01002, United States of America
| | - Michael J Maroney
- Department of Chemistry, University of Massachusetts, Amherst, MA 01002, United States of America.
| |
Collapse
|
2
|
Basak P, Cabelli DE, Chivers PT, Farquhar ER, Maroney MJ. In vitro maturation of NiSOD reveals a role for cytoplasmic histidine in processing and metalation. Metallomics 2023; 15:mfad054. [PMID: 37723610 PMCID: PMC10628968 DOI: 10.1093/mtomcs/mfad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
The importance of cellular low molecular weight ligands in metalloenzyme maturation is largely unexplored. Maturation of NiSOD requires post-translational N-terminal processing of the proenzyme, SodN, by its cognate protease, SodX. Here we provide evidence for the participation of L-histidine in the protease-dependent maturation of nickel-dependent superoxide dismutase (NiSOD) from Streptomyces coelicolor. In vitro studies using purified proteins cloned from S. coelicolor and overexpressed in E. coli support a model where a ternary complex formed between the substrate (SodN), the protease (SodX) and L-Histidine creates a novel Ni-binding site that is capable of the N-terminal processing of SodN and specifically incorporates Ni into the apo-NiSOD product. Thus, L-Histidine serves many of the functions associated with a metallochaperone or, conversely, eliminates the need for a metallochaperone in NiSOD maturation.
Collapse
Affiliation(s)
- Priyanka Basak
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Diane E Cabelli
- Department of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Peter T Chivers
- Departments of Biosciences and Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Erik R Farquhar
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Michael J Maroney
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Hausinger RP. Five decades of metalloenzymology. Enzymes 2023; 54:71-105. [PMID: 37945178 PMCID: PMC11934070 DOI: 10.1016/bs.enz.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Metalloenzymes have been detailed in The Enzymes since its inception over half a century ago. Here, I review selected metal-containing enzyme highlights from early chapters in this series and I describe advances made since those contributions. Three topics are emphasized: nickel-containing enzymes, Fe(II)/2-oxoglutarate-dependent oxygenases, and enzymes containing non-canonical iron-sulfur clusters.
Collapse
Affiliation(s)
- Robert P Hausinger
- Departments of Microbiology & Molecular Genetics and Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
4
|
Patipong T, Kageyama H, Waditee-Sirisattha R. Insights into the phylogeny and transcriptional response of serine proteases in a halotolerant cyanobacterium Halothece sp. PCC7418. PLANT SIGNALING & BEHAVIOR 2021; 16:1913556. [PMID: 34184613 PMCID: PMC8281059 DOI: 10.1080/15592324.2021.1913556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 06/13/2023]
Abstract
Serine proteases are a class of versatile proteolytic enzymes. They are necessary for protein catabolism, intracellular amino acid turnover, and regulation of proteins involved in diverse molecular and cellular processes across taxa. In this study, bioinformatic analyses revealed a significantly large number of serine proteases in the halotolerant cyanobacterium Halothece sp. PCC7418 (hereafter referred to as Halothece 7418) compared to the model freshwater cyanobacterium Synechococcus elongatus PCC7942 (hereafter referred to as S. elongatus 7942). The cyanobacterial serine proteases are likely derived from different linages since no conserved motifs were detected. The presence of highly diverse serine proteases in Halothece 7418 implicated an evolutionary-mediated modification of several proteases, which may play numerous physiological roles. We also examined the gene expression patterns of 34 serine protease encoding genes in Halothece 7418 exposed to salt stress. Our results revealed that several serine protease genes were drastically up-regulated under salt with high concentration but remained unchanged under salt with low concentration. All four clp genes (H1996, H1997, H0950, and H3375) and H3553 gene (which encodes a putative HtrA protease) were significantly induced upon salt stress. These responses support the roles of the housekeeping pathways in both the degradation of damaged proteins induced by salt stress and regulation of proteins involved in the molecular recovery from salt stress. Since serine proteases share several biochemical features and physiological functions, the results from this study provide an insight into diversification of serine proteases in cyanobacteria. Further, these results will increase our understanding of several mechanisms at the subcellular level.
Collapse
Affiliation(s)
- Tanutcha Patipong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Thailand
| | - Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, Japan
- Department of Chemistry, Faculty of Science and Technology, Meijo University, Nagoya, Japan
| | | |
Collapse
|
5
|
Abstract
The ancestors of cyanobacteria generated Earth's first biogenic molecular oxygen, but how they dealt with oxidative stress remains unconstrained. Here we investigate when superoxide dismutase enzymes (SODs) capable of removing superoxide free radicals evolved and estimate when Cyanobacteria originated. Our Bayesian molecular clocks, calibrated with microfossils, predict that stem Cyanobacteria arose 3300-3600 million years ago. Shortly afterwards, we find phylogenetic evidence that ancestral cyanobacteria used SODs with copper and zinc cofactors (CuZnSOD) during the Archaean. By the Paleoproterozoic, they became genetically capable of using iron, nickel, and manganese as cofactors (FeSOD, NiSOD, and MnSOD respectively). The evolution of NiSOD is particularly intriguing because it corresponds with cyanobacteria's invasion of the open ocean. Our analyses of metalloenzymes dealing with reactive oxygen species (ROS) now demonstrate that marine geochemical records alone may not predict patterns of metal usage by phototrophs from freshwater and terrestrial habitats.
Collapse
|
6
|
Dedman CJ, Newson GC, Davies GL, Christie-Oleza JA. Mechanisms of silver nanoparticle toxicity on the marine cyanobacterium Prochlorococcus under environmentally-relevant conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141229. [PMID: 32777503 DOI: 10.1016/j.scitotenv.2020.141229] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Global demand for silver nanoparticles (AgNPs), and their inevitable release into the environment, is rapidly increasing. AgNPs display antimicrobial properties and have previously been recorded to exert adverse effects upon marine phytoplankton. However, ecotoxicological research is often compromised by the use of non-ecologically relevant conditions, and the mechanisms of AgNP toxicity under environmental conditions remains unclear. To examine the impact of AgNPs on natural marine communities, a natural assemblage was exposed to citrate-stabilised AgNPs. Here, investigation confirmed that the marine dominant cyanobacteria Prochlorococcus is particularly sensitive to AgNP exposure. Whilst Prochlorococcus represents the most abundant photosynthetic organism on Earth and contributes significantly to global primary productivity, little ecotoxicological research has been carried out on this cyanobacterium. To address this, Prochlorococcus was exposed to citrate-stabilised AgNPs, as well as silver in its ionic form (Ag2SO4), under simulated natural conditions. Both AgNPs and ionic silver were observed to reduce Prochlorococcus populations by over 90% at concentrations ≥10 μg L-1, representing the upper limit of AgNP concentrations predicted in the environment (10 μg L-1). Longer-term assessment revealed this to be a perturbation which was irreversible. Through use of quenching agents for superoxide and hydrogen peroxide, alongside incubations with ionic silver, it was revealed that AgNP toxicity likely arises from synergistic effects of toxic superoxide species generation and leaching of ionic silver. The extent of toxicity was strongly dependent on cell density, and completely mitigated in more cell-dense cultures. Hence, the calculation and reporting of the particle-to-cell ratio reveals that this parameter is effective for standardisation of experimental work, and allows for direct comparison between studies where cell density may vary. Given the key role that marine cyanobacteria play in global primary production and biogeochemical cycling, their higher susceptibility to AgNP exposure is a concern in hotspots of pollution.
Collapse
Affiliation(s)
- Craig J Dedman
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, United Kingdom..
| | - Gabrielle C Newson
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7EQ, United Kingdom
| | - Gemma-Louise Davies
- University College London, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, United Kingdom..
| | - Joseph A Christie-Oleza
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, United Kingdom.; Department of Biology, University of the Balearic Islands, Ctra. Valldemossa, km 7.5, CP: 07122 Palma, Spain; IMEDEA (CSIC-UIB), CP: 07190 Esporles, Spain.
| |
Collapse
|
7
|
Zheng P, Chen L, Zhong S, Wei X, Zhao Q, Pan Q, Kang Z, Liu J. A Cu-only superoxide dismutase from stripe rust fungi functions as a virulence factor deployed for counter defense against host-derived oxidative stress. Environ Microbiol 2020; 22:5309-5326. [PMID: 32985748 DOI: 10.1111/1462-2920.15236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 12/13/2022]
Abstract
Plants quickly accumulate reactive oxygen species (ROS) to resist against pathogen invasion, while pathogens strive to escape host immune surveillance by degrading ROS. However, the nature of the strategies that fungal pathogens adopt to counteract host-derived oxidative stress is manifold and requires deep investigation. In this study, a superoxide dismutase (SOD) from Puccinia striiformis f. sp. tritici (Pst) PsSOD2 with a signal peptide (SP) and the glycophosphatidyl inositol (GPI) anchor, strongly induced during infection, was analysed for its biological characteristics and potential role in wheat-Pst interactions. The results showed that PsSOD2 encodes a Cu-only SOD and responded to ROS treatment. Heterologous complementation assays in Saccharomyces cerevisiae suggest that the SP of PsSOD2 is functional for its secretion. Transient expression in Nicotiana benthamiana leaves revealed that PsSOD2 is localized to the plasma membrane. In addition, knockdown of PsSOD2 by host-induced gene silencing reduced Pst virulence and resulted in restricted hyphal development and increased ROS accumulation. In contrast, heterologous transient assays of PsSOD2 suppressed flg22-elicited ROS production. Taken together, our data indicate that PsSOD2, as a virulence factor, was induced and localized to the plasma membrane where it may function to scavenge host-derived ROS for promoting fungal infection.
Collapse
Affiliation(s)
- Peijing Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Liyang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Suye Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaobo Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qi Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinglin Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,College of Plant Scicence, Tarim University, Alaer, Xinjiang, 843300, China
| | - Jie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
8
|
Wang C, Chen Y, Zhou H, Li X, Tan Z. Adaptation mechanisms of Rhodococcus sp. CNS16 under different temperature gradients: Physiological and transcriptome. CHEMOSPHERE 2020; 238:124571. [PMID: 31472351 DOI: 10.1016/j.chemosphere.2019.124571] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Rhodococcus exhibits strong adaptability to environmental stressors and plays a crucial role in environmental bioremediation. However, seasonal changes in ambient temperature, especially rapid temperature drops exert an adverse effect on in situ bioremediation. In this paper, we studied the cell morphology and fatty acid composition of an aniline-degrading strain Rhodococcus sp. CNS16 at temperatures of 30 °C, 20 °C, and 10 °C. At suboptimal temperatures, cell morphology of CNS16 changed from short rod-shaped to long rod or irregular shaped, and the proportion of unsaturated fatty acids was upregulated. Transcriptomic technologies were then utilized to gain detailed insights into the adaptive mechanisms of CNS16 subjected to suboptimal temperatures. The results showed that the number of gene responses was significantly higher at 10 °C than that at 20 °C. The inhibition of peptidoglycan synthase expression and up-regulation of Filamentous Temperature Sensitive as well as unsaturated fatty acid synthesis genes at suboptimal temperatures might be closely related to corresponding changes in cell morphology and fatty acids composition. Strain CNS16 showed loss of catalase and superoxide dismutase activity, and utilized thioredoxin-dependent thiol peroxidase to resist oxidative stress. The up-regulation of carotenoid and Vitamin B2 synthesis at 10 °C might also be involved in the resistance to oxidative stress. Amino acid metabolism, coenzyme and vitamin metabolism, ABC transport, and energy metabolism are essential for peptidoglycan synthesis and regulation of cellular metabolism; therefore, synergistically resisting environmental stress. This study provides a mechanistic basis for the regulation of aniline degradation in Rhodococcus sp. CNS16 at low temperatures.
Collapse
Affiliation(s)
- Chen Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yangwu Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| | - Houzhen Zhou
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| | - Xudong Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China
| | - Zhouliang Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, 610041, Chengdu, China.
| |
Collapse
|
9
|
Complete genome sequence and comparative analysis of Streptomyces seoulensis, a pioneer strain of nickel superoxide dismutase. Genes Genomics 2019; 42:273-281. [PMID: 31797314 DOI: 10.1007/s13258-019-00878-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Streptomyces seoulensis has contributed to the discovery and initiation of extensive research into nickel superoxide dismutase (NiSOD), a unique type of superoxide dismutase found in actinomycetes. Still so far, there is no information about whole genome sequence of this strain. OBJECTIVE To investigate complete genome sequence and perform bioinformatic analyses for genomic functions related with nickel-associated genes. METHODS DNA was extracted using the Wizard Genomic DNA Purification Kit then sequenced using a Pacific Biosciences SMRT cell 8Pac V3 DNA Polymerase Binding Kit P6 with the PacBiov2 RSII platform. We assembled the PacBio long-reads with the HGAP3 pipeline. RESULTS We obtained complete genome sequence of S. seoulensis, which comprises a 6,339,363 bp linear chromosome. While analyzing the genome to annotate the genomic function, we discovered the nickel-associated genes. We observed that the sodN gene encoding for NiSOD is located adjacent to the sodX gene, which encodes for the nickel-type superoxide dismutase maturation protease. In addition, several nickel-associated genes and gene clusters-nickel-responsive regulator, nickel uptake transporter, nickel-iron [NiFe]-hydrogenase and other putative genes were also detected. Strain specific genes were discovered through a comparative analysis of S. coelicolor and S. griseus. Further bioinformatic analyses revealed that this strain encodes at least 22 putative biosynthetic gene clusters, thereby implying that S. seoulensis has the potential to produce novel bioactive compounds. CONCLUSION We annotated the genome and determined nickel-associated genes and gene clusters and discovered biosynthetic gene clusters for secondary metabolites implying that S. seoulensis produces novel types of bioactive compounds.
Collapse
|
10
|
Tietze D, Koley Seth B, Brauser M, Tietze AA, Buntkowsky G. NiII
Complex Formation and Protonation States at the Active Site of a Nickel Superoxide Dismutase-Derived Metallopeptide: Implications for the Mechanism of Superoxide Degradation. Chemistry 2018; 24:15879-15888. [DOI: 10.1002/chem.201803042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Daniel Tietze
- Eduard-Zintl Institute for Physical and Inorganic Chemistry; Darmstadt University of Technology; Alarich-Weiss-Str. 8 64287 Darmstadt Germany), -darmstadt
| | - Banabithi Koley Seth
- Eduard-Zintl Institute for Physical and Inorganic Chemistry; Darmstadt University of Technology; Alarich-Weiss-Str. 8 64287 Darmstadt Germany), -darmstadt
- current address: Department of Chemistry; Durham University; Lower Mountjoy, Stockton Road Durham DH1 3LE United Kingdom
| | - Matthias Brauser
- Eduard-Zintl Institute for Physical and Inorganic Chemistry; Darmstadt University of Technology; Alarich-Weiss-Str. 8 64287 Darmstadt Germany), -darmstadt
| | - Alesia A. Tietze
- Clemens-Schöpf Institute for Organic Chemistry and Biochemistry; Darmstadt University of Technology; Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Gerd Buntkowsky
- Eduard-Zintl Institute for Physical and Inorganic Chemistry; Darmstadt University of Technology; Alarich-Weiss-Str. 8 64287 Darmstadt Germany), -darmstadt
| |
Collapse
|
11
|
Tietze D, Sartorius J, Koley Seth B, Herr K, Heimer P, Imhof D, Mollenhauer D, Buntkowsky G. New insights into the mechanism of nickel superoxide degradation from studies of model peptides. Sci Rep 2017; 7:17194. [PMID: 29222438 PMCID: PMC5722923 DOI: 10.1038/s41598-017-17446-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
A series of small, catalytically active metallopeptides, which were derived from the nickel superoxide dismutase (NiSOD) active site were employed to study the mechanism of superoxide degradation especially focusing on the role of the axial imidazole ligand. In the literature, there are contradicting propositions about the catalytic importance of the N-terminal histidine. Therefore, we studied the stability and activity of a set of eight NiSOD model peptides, which represent the major model systems discussed in the literature to date, yet differing in their length and their Ni-coordination. UV-Vis-coupled stopped-flow kinetic measurements and mass spectrometry analysis unveiled their high oxidation sensitivity in the presence of oxygen and superoxide resulting into a much faster Ni(II)-peptide degradation for the amine/amide Ni(II) coordination than for the catalytically inactive bis-amidate Ni(II) coordination. With respect to these results we determined the catalytic activities for all NiSOD mimics studied herein, which turned out to be in almost the same range of about 2 × 106 M-1 s-1. From these experiments, we concluded that the amine/amide Ni(II) coordination is clearly the key factor for catalytic activity. Finally, we were able to clarify the role of the N-terminal histidine and to resolve the contradictory literature propositions, reported in previous studies.
Collapse
Affiliation(s)
- Daniel Tietze
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| | - Jana Sartorius
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Banabithi Koley Seth
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Kevin Herr
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Pascal Heimer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53119, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53119, Bonn, Germany
| | - Doreen Mollenhauer
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| |
Collapse
|
12
|
Campeciño JO, Maroney MJ. Reinventing the Wheel: The NiSOD Story. THE BIOLOGICAL CHEMISTRY OF NICKEL 2017. [DOI: 10.1039/9781788010580-00170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The most recently discovered SOD requires nickel in its active site – NiSOD. Among the available metals, nickel seems an unlikely redox center. This chapter discusses the protein adaptations required in order to use nickel for SOD catalysis. Cysteine ligands are employed for the first time in an SOD, to suppress the potential of the Ni(ii/iii) couple. However, this adaptation alone is not sufficient to produce an SOD, since thiolate ligands are sensitive to oxidation by H2O2 and O2. Additional adaptations include the use of two unusual backbone N-donor ligands, an amidate and the N-terminal amine. Yet merely producing a stable Ni redox center is not sufficient for SOD catalysis. A source of protons is needed to produce H2O2 and the pH-independent catalysis that is characteristic of SODs. Thus, the cysteine thiolates were also employed to provide a site for protonation. In restricting active site access, NiSOD appears to have utilized the same strategy employed by MnSOD and FeSOD – a “gateway” formed by Tyr residues. Thus, NiSOD represents evolution that converged on the same criteria for catalysis as other SODs, where the adaptations to the metal site are uniquely suited to using nickel as a redox center.
Collapse
Affiliation(s)
| | - Michael J. Maroney
- Department of Chemistry, University of Massachusetts Amherst MA 01003 USA
- Program in Molecular and Cellular Biology, University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
13
|
Xia W, Li H, Sun H. Nickel Metallochaperones: Structure, Function, and Nickel-Binding Properties. THE BIOLOGICAL CHEMISTRY OF NICKEL 2017. [DOI: 10.1039/9781788010580-00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nickel-containing enzymes catalyze a series of important biochemical processes in both prokaryotes and eukaryotes. The maturation of the enzymes requires the proper assembly of the nickel-containing active sites, which involves a battery of nickel metallochaperones that exert metal delivery and storage functions. “Cross-talk” also exists between different nickel enzyme maturation processes. This chapter summarizes the updated knowledge about the nickel chaperones based on biochemical and structural biology research, and discusses the possible nickel delivery mechanisms.
Collapse
Affiliation(s)
- Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| | - Hongzhe Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry Sun Yat-sen University Guangzhou 510275 China
- Department of Chemistry, The University of Hong Kong Hong Kong SAR China
| |
Collapse
|
14
|
Guan J, Liu G, Cai K, Gao C, Liu R. Probing the interactions between carboxylated multi-walled carbon nanotubes and copper-zinc superoxide dismutase at a molecular level. LUMINESCENCE 2014; 30:693-8. [PMID: 25351393 DOI: 10.1002/bio.2807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/12/2014] [Accepted: 09/24/2014] [Indexed: 12/31/2022]
Abstract
In order to evaluate the toxicity of multi-walled carbon nanotubes (MWCNTs-COOH) at a molecular level, the effect of MWCNTs-COOH on antioxidant enzyme copper-zinc superoxide dismutase (Cu/ZnSOD) was investigated using fluorescence spectroscopy, UV/vis absorption spectroscopy, circular dichroism (CD) spectroscopy and isothermal titration calorimetry (ITC). By deducting the inner filter effect (IFE), the fluorescence emission spectra and synchronous fluorescence spectra indicated that there were interactions between MWCNTs-COOH and Cu/ZnSOD. Moreover, the microenvironment of the amino acid residues in the enzyme was changed slightly. The UV/vis absorption and CD spectroscopic results showed appreciable conformational changes in Cu/ZnSOD. However, the results of a Cu/ZnSOD activity determination did not show any significant difference. In other words, MWCNTs-COOH has no significant effect on enzyme activity. The ITC results showed that the binding of MWCNTs-COOH to Cu/ZnSOD was a weak endothermic process, indicating that the predominant force of the binding was hydrophobic interaction. Moreover, it was essential to consider the IFE in fluorescence assays, which might affect the accuracy and precision of the results. The above results are helpful in evaluating the oxidative stress induced by MWCNTs-COOH in vivo.
Collapse
Affiliation(s)
- Jin Guan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Guiliang Liu
- Shandong Institute for Food and Drug Control, Jinan, 250101, People's Republic of China
| | - Kai Cai
- Shandong Environmental Monitoring Centre, Shandong, 250101, People's Republic of China
| | - Canzhu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, People's Republic of China
| | - Rutao Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, People's Republic of China
| |
Collapse
|
15
|
Chivers PT. Cobalt and Nickel. BINDING, TRANSPORT AND STORAGE OF METAL IONS IN BIOLOGICAL CELLS 2014. [DOI: 10.1039/9781849739979-00381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cobalt and nickel play key roles in biological systems as cofactors in a small number of important enzymes. The majority of these are found in microbes. Evidence for direct roles for Ni(II) and Co(II) enzymes in higher organisms is limited, with the exception of the well-known requirement for the cobalt-containing vitamin B12 cofactor and the Ni-dependent urease in plants. Nonetheless, nickel in particular plays a key role in human health because of its essential role in microbes that inhabit various growth niches within the body. These roles can be beneficial, as can be seen with the anaerobic production and consumption of H2 in the digestive tract by bacteria and archaea that results in increased yields of short-chain fatty acids. In other cases, nickel has an established role in the establishment of pathogenic infection (Helicobacter pylori urease and colonization of the stomach). The synthesis of Co- and Ni-containing enzymes requires metal import from the extracellular milieu followed by the targeting of these metals to the appropriate protein and enzymes involved in metallocluster or cofactor biosynthesis. These metals are toxic in excess so their levels must be regulated carefully. This complex pathway of metalloenzyme synthesis and intracellular homeostasis requires proteins that can specifically recognize these metals in a hierarchical manner. This chapter focuses on quantitative and structural details of the cobalt and nickel binding sites in transport, trafficking and regulatory proteins involved in cobalt and nickel metabolism in microbes.
Collapse
Affiliation(s)
- Peter T. Chivers
- Department of Chemistry, School of Biological and Biomedical Sciences, and Biophysical Sciences Institute, Durham University Durham UK
| |
Collapse
|
16
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 675] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
17
|
Boer JL, Mulrooney SB, Hausinger RP. Nickel-dependent metalloenzymes. Arch Biochem Biophys 2014; 544:142-52. [PMID: 24036122 PMCID: PMC3946514 DOI: 10.1016/j.abb.2013.09.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/31/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
Abstract
This review describes the functions, structures, and mechanisms of nine nickel-containing enzymes: glyoxalase I, acireductone dioxygenase, urease, superoxide dismutase, [NiFe]-hydrogenase, carbon monoxide dehydrogenase, acetyl-coenzyme A synthase/decarbonylase, methyl-coenzyme M reductase, and lactate racemase. These enzymes catalyze their various chemistries by using metallocenters of diverse structures, including mononuclear nickel, dinuclear nickel, nickel-iron heterodinuclear sites, more complex nickel-containing clusters, and nickel-tetrapyrroles. Selected other enzymes are active with nickel, but the physiological relevance of this metal specificity is unclear. Additional nickel-containing proteins of undefined function have been identified.
Collapse
Affiliation(s)
- Jodi L Boer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Scott B Mulrooney
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
18
|
Kim HM, Shin JH, Cho YB, Roe JH. Inverse regulation of Fe- and Ni-containing SOD genes by a Fur family regulator Nur through small RNA processed from 3'UTR of the sodF mRNA. Nucleic Acids Res 2013; 42:2003-14. [PMID: 24234448 PMCID: PMC3919588 DOI: 10.1093/nar/gkt1071] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Superoxide dismutases (SODs) are widely distributed enzymes that convert superoxides to hydrogen peroxide and molecular oxygen, using various metals as cofactors. Many actinobacteria contain genes for both Ni-containing (sodN) and Fe-containing (sodF) SODs. In Streptomyces coelicolor, expression of the sodF and sodN genes is inversely regulated by nickel-specific Nur, a Fur-family regulator. With sufficient nickel, Nur directly represses sodF transcription, while inducing sodN indirectly. Bioinformatic search revealed that a conserved 19-nt stretch upstream of sodN matches perfectly with the sodF downstream sequence. We found that the sodF gene produced a stable small-sized RNA species (s-SodF) of ∼ 90 nt that harbors the anti-sodN sequence complementary to sodN mRNA from the 5'-end up to the ribosome binding site. Absence of nearby promoters and sensitivity to 5'-phosphate-specific exonuclease indicated that the s-SodF RNA is a likely processed product of sodF mRNA. The s-SodF RNA caused a significant decrease in the half-life of the sodN mRNA. Therefore, Nur activates sodN expression through inhibiting the synthesis of sodF mRNA, from which inhibitory s-SodF RNA is generated. This reveals a novel mechanism by which antagonistic regulation of one gene is achieved by small RNA processed from the 3'UTR of another gene's mRNA.
Collapse
Affiliation(s)
- Hae Mi Kim
- Laboratory of Molecular Microbiology, School of Biological Sciences, Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
19
|
|
20
|
Genetic identification of a high-affinity Ni transporter and the transcriptional response to Ni deprivation in Synechococcus sp. strain WH8102. Appl Environ Microbiol 2012; 78:7822-32. [PMID: 22904052 DOI: 10.1128/aem.01739-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
One biological need for Ni in marine cyanobacteria stems from the utilization of the Ni metalloenzyme urease for the assimilation of urea as a nitrogen source. In many of the same cyanobacteria, including Synechococcus sp. strain WH8102, an additional and obligate nutrient requirement for Ni results from usage of a Ni superoxide dismutase (Ni-SOD), which is encoded by sodN. To better understand the effects of Ni deprivation on WH8102, parallel microarray-based analysis of gene expression and gene knockout experiments were conducted. The global transcriptional response to Ni deprivation depends upon the nitrogen source provided for growth; fewer than 1% of differentially expressed genes for Ni deprivation on ammonium or urea were concordantly expressed. Surprisingly, genes for putative Ni transporters, including one colocalized on the genome with sodN, sodT, were not induced despite an increase in Ni transport. Knockouts of the putative Ni transporter gene sodT appeared to be lethal in WH8102, so the genes for sodT and sodN in WH8102 were interrupted with the gene for Fe-SOD, sodB, and its promoter from Synechococcus sp. strain WH7803. The sodT::sodB exconjugants were unable to grow at low Ni concentrations, confirming that SodT is a Ni transporter. The sodN::sodB exconjugants displayed higher growth rates at low Ni concentrations than did the wild type, presumably due to a relaxed competition between urease and Ni-SOD for Ni. Both sodT::sodB and sodN::sodB lines exhibited an impaired ability to grow at low Fe concentrations. We propose a posttranslational allosteric SodT regulation involving the binding of Ni to a histidine-rich intracellular protein loop.
Collapse
|
21
|
Enzymatic activity enhancement of non-covalent modified superoxide dismutase and molecular docking analysis. Molecules 2012; 17:3945-56. [PMID: 22466854 PMCID: PMC6268384 DOI: 10.3390/molecules17043945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/16/2022] Open
Abstract
The enzyme activity of superoxide dismutase was improved in the pyrogallol autoxidation system by about 27%, after interaction between hydroxypropyl-β-cyclo-dextrin and superoxide dismutase. Fluorescence spectrometry was used to study the interaction between hydroxypropyl-β-cyclodextrin and superoxide dismutase at different temperatures. By doing this, it can be found that these interactions increase fluorescence sensitivity. In the meantime, the synchronous fluorescence intensity revealed the interaction sites to be close to the tryptophan (Trp) and tyrosine (Tyr) residues of superoxide dismutase. Furthermore, molecular docking was applied to explore the binding mode between the ligands and the receptor. This suggested that HP-β-CD interacted with the B ring, G ring and the O ring and revealed that the lysine (Lys) residues enter the nanocavity. It was concluded that the HP-β-CD caused specific conformational changes in SOD by non-covalent modification.
Collapse
|
22
|
Morrissey J, Bowler C. Iron utilization in marine cyanobacteria and eukaryotic algae. Front Microbiol 2012; 3:43. [PMID: 22408637 PMCID: PMC3296057 DOI: 10.3389/fmicb.2012.00043] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/27/2012] [Indexed: 12/21/2022] Open
Abstract
Iron is essential for aerobic organisms. Additionally, photosynthetic organisms must maintain the iron-rich photosynthetic electron transport chain, which likely evolved in the iron-replete Proterozoic ocean. The subsequent rise in oxygen since those times has drastically decreased the levels of bioavailable iron, indicating that adaptations have been made to maintain sufficient cellular iron levels in the midst of scarcity. In combination with physiological studies, the recent sequencing of marine microorganism genomes and transcriptomes has begun to reveal the mechanisms of iron acquisition and utilization that allow marine microalgae to persist in iron limited environments.
Collapse
Affiliation(s)
- Joe Morrissey
- Ecole Normale Supérieur, Institut de Biologie de l'ENS Paris, France Inserm U1024, Paris, France CNRS UMR 8197, Paris, France
| | | |
Collapse
|
23
|
|
24
|
Miller AF. Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 2011; 586:585-95. [PMID: 22079668 DOI: 10.1016/j.febslet.2011.10.048] [Citation(s) in RCA: 361] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 10/27/2011] [Accepted: 10/30/2011] [Indexed: 11/25/2022]
Abstract
Superoxide dismutases (SODs) catalyze the de toxification of superoxide. SODs therefore acquired great importance as O(2) became prevalent following the evolution of oxygenic photosynthesis. Thus the three forms of SOD provide intriguing insights into the evolution of the organisms and organelles that carry them today. Although ancient organisms employed Fe-dependent SODs, oxidation of the environment made Fe less bio-available, and more dangerous. Indeed, modern lineages make greater use of homologous Mn-dependent SODs. Our studies on the Fe-substituted MnSOD of Escherichia coli, as well as redox tuning in the FeSOD of E. coli shed light on how evolution accommodated differences between Fe and Mn that would affect SOD performance, in SOD proteins whose activity is specific to one or other metal ion.
Collapse
Affiliation(s)
- Anne-Frances Miller
- Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA.
| |
Collapse
|
25
|
Tietze D, Voigt S, Mollenhauer D, Tischler M, Imhof D, Gutmann T, González L, Ohlenschläger O, Breitzke H, Görlach M, Buntkowsky G. Revealing the Position of the Substrate in Nickel Superoxide Dismutase: A Model Study. Angew Chem Int Ed Engl 2011; 50:2946-50. [DOI: 10.1002/anie.201005027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 11/16/2010] [Indexed: 01/26/2023]
|
26
|
Tietze D, Voigt S, Mollenhauer D, Tischler M, Imhof D, Gutmann T, González L, Ohlenschläger O, Breitzke H, Görlach M, Buntkowsky G. Bestimmung der Substratposition in der Nickel-Superoxiddismutase: eine Modellstudie. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Ahmad MSA, Ashraf M. Essential roles and hazardous effects of nickel in plants. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 214:125-167. [PMID: 21913127 DOI: 10.1007/978-1-4614-0668-6_6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
With the world's ever increasing human population, the issues related to environmental degradation of toxicant chemicals are becoming more serious. Humans have accelerated the emission to the environment of many organic and inorganic pollutants such as pesticides, salts, petroleum products, acids, heavy metals, etc. Among different environmental heavy-metal pollutants, Ni has gained considerable attention in recent years, because of its rapidly increasing concentrations in soil, air, and water in different parts of the world. The main mechanisms by which Ni is taken up by plants are passive diffusion and active transport. Soluble Ni compounds are preferably absorbed by plants passively, through a cation transport system; chelated Ni compounds are taken up through secondary, active-transport-mediated means, using transport proteins such as permeases. Insoluble Ni compounds primarily enter plant root cells through endocytosis. Once absorbed by roots, Ni is easily transported to shoots via the xylem through the transpiration stream and can accumulate in neonatal parts such as buds, fruits, and seeds. The Ni transport and retranslocation processes are strongly regulated by metal-ligand complexes (such as nicotianamine, histidine, and organic acids) and by some proteins that specifically bind and transport Ni. Nickel, in low concentrations, fulfills a variety of essential roles in plants, bacteria, and fungi. Therefore, Ni deficiency produces an array of effects on growth and metabolism of plants, including reduced growth, and induction of senescence, leaf and meristem chlorosis, alterations in N metabolism, and reduced Fe uptake. In addition, Ni is a constituent of several metallo-enzymes such as urease, superoxide dismutase, NiFe hydrogenases, methyl coenzyme M reductase, carbon monoxide dehydrogenase, acetyl coenzyme-A synthase, hydrogenases, and RNase-A. Therefore, Ni deficiencies in plants reduce urease activity, disturb N assimilation, and reduce scavenging of superoxide free radical. In bacteria, Ni participates in several important metabolic reactions such as hydrogen metabolism, methane biogenesis, and acetogenesis. Although Ni is metabolically important in plants, it is toxic to most plant species when present at excessive amounts in soil and in nutrient solution. High Ni concentrations in growth media severely retards seed germinability of many crops. This effect of Ni is a direct one on the activities of amylases, proteases, and ribonucleases, thereby affecting the digestion and mobilization of food reserves in germinating seeds. At vegetative stages, high Ni concentrations retard shoot and root growth, affect branching development, deform various plant parts, produce abnormal flower shape, decrease biomass production, induce leaf spotting, disturb mitotic root tips, and produce Fe deficiency that leads to chlorosis and foliar necrosis. Additionally, excess Ni also affects nutrient absorption by roots, impairs plant metabolism, inhibits photosynthesis and transpiration, and causes ultrastructural modifications. Ultimately, all of these altered processes produce reduced yields of agricultural crops when such crops encounter excessive Ni exposures.
Collapse
|
28
|
Kanth BK, Oh TJ, Sohng JK. Identification of two superoxide dismutases (FeSOD and NiSOD) from Streptomyces peucetius ATCC 27952. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-010-0009-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Bafana A, Dutt S, Kumar S, Ahuja PS. Superoxide dismutase: an industrial perspective. Crit Rev Biotechnol 2010; 31:65-76. [DOI: 10.3109/07388551.2010.490937] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Siche S, Neubauer O, Hebbeln P, Eitinger T. A bipartite S unit of an ECF-type cobalt transporter. Res Microbiol 2010; 161:824-9. [PMID: 20868747 DOI: 10.1016/j.resmic.2010.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/31/2010] [Indexed: 11/25/2022]
Abstract
ECF-class transporters comprise abundant importers for micronutrients such as vitamins and transition-metal ions, and for intermediates of salvage pathways in bacteria and archaea. They are composed of ABC ATPases (A units), a conserved transmembrane protein (T unit) and a substrate-specific transmembrane protein (S unit or core transporter). Here we analyzed the function of an ECF-type Co(2+) transporter (CbiMNQO) and, in particular, the derived bipartite S unit CbiMN. CbiMN was characterized as the minimal unit that functions as a Co(2+) transporter. Neither the solitary CbiM nor a tripartite CbiMQO complex was active, indicating an essential role for CbiN. CbiN was loosely bound in CbiMNQO and CbiMN complexes, and did not copurify with its partners. Generating a contiguous reading frame resulted in a Cbi(MN) fusion protein that displayed Co(2+)-transport activity and interacted with CbiQO in vivo. Sixteen variants of Cbi(MN) with modifications in the strongly conserved N-terminal stretch of ten amino-acid residues were constructed and analyzed for transport activity. The results indicate that the length and sequence of this region are critical for functioning of the core transporter. Specifically, they point to essential roles of His₂ and the distance of His₂ to the amino group of the peptide chain in metal recognition.
Collapse
Affiliation(s)
- Stefanie Siche
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestraße 117, 10115 Berlin, Germany.
| | | | | | | |
Collapse
|
31
|
Tietze D, Tischler M, Voigt S, Imhof D, Ohlenschläger O, Görlach M, Buntkowsky G. Development of a functional cis-prolyl bond biomimetic and mechanistic implications for nickel superoxide dismutase. Chemistry 2010; 16:7572-8. [PMID: 20461826 DOI: 10.1002/chem.200903306] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During recent years several peptide-based Ni superoxide dismutase (NiSOD) models have been developed. These NiSOD models show an important structural difference compared to the native NiSOD enzyme, which could cause a completely different mechanism of superoxide dismutation. In the native enzyme the peptide bond between Leu4 and Pro5 is cis-configured, while the NiSOD models exhibit a trans-configured peptide bond between these two residues. To shed light on how the configuration of this single peptide bond influences the activity of the NiSOD model peptides, a new cis-prolyl bond surrogate was developed. As surrogate we chose a leucine/alanine-based disubstituted 1,2,3-triazole, which was incorporated into the NiSOD model peptide replacing residues Leu4 and Pro5. The yielded 1,5-disubstituted triazole nickel peptide exhibited high SOD activity, which was approximately the same activity as its parent trans-configured analogue. Hence, the conformation of the prolyl peptide bond apparently has of minor importance for the catalytic activity of the metallopeptides as postulated in literature. Furthermore, it is shown that the triazole metallopeptide is forming a stable cyanide adduct as a substrate analogue model complex.
Collapse
Affiliation(s)
- Daniel Tietze
- Technische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Petersenstr. 22, 64287 Darmstadt, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Qiu B, Price NM. DIFFERENT PHYSIOLOGICAL RESPONSES OF FOUR MARINE SYNECHOCOCCUS STRAINS (CYANOPHYCEAE) TO NICKEL STARVATION UNDER IRON-REPLETE AND IRON-DEPLETE CONDITIONS(1). JOURNAL OF PHYCOLOGY 2009; 45:1062-1071. [PMID: 27032351 DOI: 10.1111/j.1529-8817.2009.00732.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Synechococcus species are important primary producers in coastal and open-ocean ecosystems. When nitrate was provided as the sole nitrogen source, nickel starvation inhibited the growth of strains WH8102 and WH7803, while it had little effect on two euryhaline strains, WH5701 and PCC 7002. Nickel was required for the acclimation of Synechococcus WH7803 to low iron and high light. In WH8102 and WH7803, nickel starvation decreased the linear electron transport activity, slowed down QA reoxidation, but increased the connectivity factor between individual photosynthetic units. Under such conditions, the reduction of their intersystem electron transport chains was expected to increase, and their cyclic electron transport around PSI would be favored. Nickel starvation decreased the total superoxide dismutase (SOD) activity of WH8102 and WH7803 by 30% and 15% of the control, respectively. The protein-bound (63) Ni of the oceanic strain WH8102 comigrated with SOD activity on nondenaturing gels and thus provided additional evidence for the existence of active NiSOD in Synechococcus WH8102. In WH7803, it seems likely that nickel starvation affected other metabolic pathways and thus indirectly affected the total SOD activity.
Collapse
Affiliation(s)
- Baosheng Qiu
- College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, ChinaDepartment of Biology, McGill University, 1205 Avenue Dr. Penfield, Montreal H3A 1B1, Quebec, Canada
| | - Neil M Price
- College of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, ChinaDepartment of Biology, McGill University, 1205 Avenue Dr. Penfield, Montreal H3A 1B1, Quebec, Canada
| |
Collapse
|
33
|
Affiliation(s)
- Yanjie Li
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Deborah B. Zamble
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
34
|
Kelman D, Ben-Amotz A, Berman-Frank I. Carotenoids provide the major antioxidant defence in the globally significant N2-fixing marine cyanobacterium Trichodesmium. Environ Microbiol 2009; 11:1897-908. [PMID: 19397682 DOI: 10.1111/j.1462-2920.2009.01913.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosynthetic oxygen-evolving microorganisms contend with continuous self-production of molecular oxygen and reactive oxygen species. The deleterious effects of reactive oxygen species are exacerbated for cyanobacterial nitrogen-fixers (diazotrophs) due to the innate sensitivity of nitrogenase to oxygen. This renders incompatible the processes of oxygen-evolving photosynthesis and N-fixation. We examined total antioxidative potential of various diazotrophic and non-diazotrophic cyanobacteria. We focused on Trichodesmium spp., a bloom-forming marine diazotroph that contributes significantly to global nitrogen fixation. Among the species tested, Trichodesmium possessed the highest antioxidant activity. Moreover, while proteins constituted the dominant antioxidative component of all other cyanobacteria tested, Trichodesmium was unique in that small-molecule natural products provided the majority of antioxidant activity, while proteins constituted only 13% of total antioxidant activity. Bioassay-guided fractionation followed by high-performance liquid chromatography profiling of antioxidant purified fractions identified the highly potent antioxidant all-trans-β-carotene, and small amounts of 9-cis-β-carotene and retinyl palmitate. Search of the Trichodesmium genome identified protein sequences homologous to key enzymes in the β-carotene to retinyl palmitate biosynthetic pathway, including 33-37% identity to lecithin retinol acyltransferase. The present study demonstrates the importance of carotenoids in Trichodesmium's arsenal of defensive compounds against oxidative damage and protection of nitrogenase from oxygen and its radicals.
Collapse
Affiliation(s)
- Dovi Kelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 52900, Israel.
| | | | | |
Collapse
|
35
|
Tietze D, Breitzke H, Imhof D, Kothe E, Weston J, Buntkowsky G. New insight into the mode of action of nickel superoxide dismutase by investigating metallopeptide substrate models. Chemistry 2009; 15:517-23. [PMID: 19016282 DOI: 10.1002/chem.200800870] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For the first time, the existence of a substrate adduct of a nickel superoxide dismutase (NiSOD) model, based on the first nine residues from the N terminus of the active form of Streptomyces coelicolor NiSOD, has been proven and the adduct has been isolated. This adduct is based on the cyanide anion (CN(-)), as a substrate analogue of the superoxide anion (O(2)(*-)), and the nickel metallopeptide H-HCDLPCGVY-NH(2)-Ni. Spectroscopic studies, including IR, UV/Vis, and liquid- and solid-state NMR spectroscopy, show a single nickel-bound cyanide anion, which is embedded in the metallopeptide structure. This complex sheds new light on the question of whether the mode of action of the NiSOD enzyme is an inner- or outer-sphere mechanism. Whereas discussion was previously biased in favor of an outer-sphere electron-transfer mechanism due to the fact that binding of cyanide or azide moieties to the nickel active site had never been observed, our results are a clear indication in favor of the inner-sphere electron-transfer mechanism for the disproportionation of the O(2)(*-) ion, whereby the substrate is attached to the Ni atom in the active site of the NiSOD.
Collapse
Affiliation(s)
- Daniel Tietze
- Friedrich-Schiller-Universität Jena, Institut für Physikalische Chemie, Helmholtzweg 4, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Schmidt M, Zahn S, Carella M, Ohlenschläger O, Görlach M, Kothe E, Weston J. Solution structure of a functional biomimetic and mechanistic implications for nickel superoxide dismutases. Chembiochem 2009; 9:2135-46. [PMID: 18690655 DOI: 10.1002/cbic.200800017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The nickel complex of a synthetic nonapeptide (HCDLPCFVY-NH2) is capable of catalytically disproportionating O2(.-) and is thus a functional biomimetic for nickel superoxide dismutases. This represents a simplification as compared to a NiSOD "maquette" that is based on a dodecapeptide that was recently reported [Inorg. Chem. 2006, 45, 2358]. The 3D solution structure reveals that the first six residues form a stable macrocyclic structure with a preformed binding site for Ni(II). Proline 5 exhibits a trans peptide linkage in the biomimetic and a cis conformation in NiSOD enzymes. DFT calculations reveal the source of this preference. Mechanistic consequences for the mode of action (identity of the fifth ligand) are discussed. The SOD activity is compared to enzymatic systems, and selected modifications allowed the biomimetic to be reduced to a functional minimal motif of only six amino acids (ACAAPC-NH2).
Collapse
Affiliation(s)
- Matthias Schmidt
- Leibniz-Institut für Altersforschung, Beutenbergstrasse 11, 07745 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Schmidt A, Gube M, Schmidt A, Kothe E. In silicoanalysis of nickel containing superoxide dismutase evolution and regulation. J Basic Microbiol 2009; 49:109-18. [DOI: 10.1002/jobm.200800293] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Dupont CL, Neupane K, Shearer J, Palenik B. Diversity, function and evolution of genes coding for putative Ni-containing superoxide dismutases. Environ Microbiol 2008; 10:1831-43. [PMID: 18412551 DOI: 10.1111/j.1462-2920.2008.01604.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We examined the phylogenetic distribution, functionality and evolution of the sodN gene family, which has been shown to code for a unique Ni-containing isoform of superoxide dismutase (Ni-SOD) in Streptomyces. Many of the putative sodN sequences retrieved from public domain genomic and metagenomic databases are quite divergent from structurally and functionally characterized Ni-SOD. Structural bioinformatics studies verified that the divergent members of the sodN protein family code for similar three-dimensional structures and identified evolutionarily conserved amino acid residues. Structural and biochemical studies of the N-terminus 'Ni-hook' motif coded for by the putative sodN sequences confirmed both Ni (II) ligating and superoxide dismutase activity. Both environmental and organismal genomes expanded the previously noted phylogenetic distribution of sodN, and the sequences form four well-separated clusters, with multiple subclusters. The phylogenetic distribution of sodN suggests that the gene has been acquired via horizontal gene transfer by numerous organisms of diverse phylogenetic background, including both Eukaryotes and Prokaryotes. The presence of sodN correlates with the genomic absence of the gene coding for Fe-SOD, a structurally and evolutionarily distinct isoform of SOD. Given the low levels of Fe found in the marine environment from where many sequences were attained, we suggest that the replacement of Fe-SOD with Ni-SOD may be an evolutionary adaptation to reduce iron requirements.
Collapse
Affiliation(s)
- C L Dupont
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92039, USA
| | | | | | | |
Collapse
|
39
|
Coleman ML, Chisholm SW. Code and context: Prochlorococcus as a model for cross-scale biology. Trends Microbiol 2007; 15:398-407. [PMID: 17693088 DOI: 10.1016/j.tim.2007.07.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/19/2007] [Accepted: 07/27/2007] [Indexed: 11/28/2022]
Abstract
Prochlorococcus is a simple cyanobacterium that is abundant throughout large regions of the oceans, and has become a useful model for studying the nature and regulation of biological diversity across all scales of complexity. Recent work has revealed that environmental factors such as light, nutrients and predation influence diversity in different ways, changing our image of the structure and dynamics of the global Prochlorococcus population. Advances in metagenomics, transcription profiling and global ecosystem modeling promise to deliver an even greater understanding of this system and further demonstrate the power of cross-scale systems biology.
Collapse
Affiliation(s)
- Maureen L Coleman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
40
|
Eitinger T, Suhr J, Moore L, Smith JAC. Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 2006; 18:399-405. [PMID: 16158232 DOI: 10.1007/s10534-005-3714-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Nickel/cobalt transporters (NiCoTs), a family of secondary metal transporters in prokaryotes and fungi, are characterized by an eight-transmembrane-domain (TMD) architecture and mediate high-affinity uptake of cobalt and/or nickel ions into the cells. One of the strongly conserved regions within the NiCoTs is the signature sequence RHA(V/F)DADHI within TMD II. This stretch of amino acid residues plays an important role in the affinity, velocity and specificity of metal transport. Some relatives of the NiCoTs, named HupE, UreJ and UreH, contain a similar signature sequence and are encoded within or adjacent to [NiFe] hydrogenase or urease operons, or elsewhere in the genome of many prokaryotes. HupE and UreH from Rhodopseudomonas palustris CGA009 and UreJ from Cupriavidus necator H16 were shown to mediate Ni(2+) transport upon heterologous production in E. coli. Other variants of NiCoTs are found in many marine cyanobacteria and in plants. The cyanobacterial proteins are encoded by a segment adjacent to the genes for [Ni] superoxide dismutase and a corresponding putative maturation peptidase. The plant proteins contain N-terminal sequences resembling bipartite transit peptides of thylakoid lumenal and thylakoid integral membrane precursor proteins; expression of a YFP-fusion protein in transfected leaf cells is consistent with targeting of this protein to the plastid, but the function of the plant gene product has yet to be demonstrated.
Collapse
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Germany.
| | | | | | | |
Collapse
|
41
|
Rodionov DA, Hebbeln P, Gelfand MS, Eitinger T. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J Bacteriol 2006; 188:317-27. [PMID: 16352848 PMCID: PMC1317602 DOI: 10.1128/jb.188.1.317-327.2006] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transition metals nickel and cobalt, essential components of many enzymes, are taken up by specific transport systems of several different types. We integrated in silico and in vivo methods for the analysis of various protein families containing both nickel and cobalt transport systems in prokaryotes. For functional annotation of genes, we used two comparative genomic approaches: identification of regulatory signals and analysis of the genomic positions of genes encoding candidate nickel/cobalt transporters. The nickel-responsive repressor NikR regulates many nickel uptake systems, though the NikR-binding signal is divergent in various taxonomic groups of bacteria and archaea. B(12) riboswitches regulate most of the candidate cobalt transporters in bacteria. The nickel/cobalt transporter genes are often colocalized with genes for nickel-dependent or coenzyme B(12) biosynthesis enzymes. Nickel/cobalt transporters of different families, including the previously known NiCoT, UreH, and HupE/UreJ families of secondary systems and the NikABCDE ABC-type transporters, showed a mosaic distribution in prokaryotic genomes. In silico analyses identified CbiMNQO and NikMNQO as the most widespread groups of microbial transporters for cobalt and nickel ions. These unusual uptake systems contain an ABC protein (CbiO or NikO) but lack an extracytoplasmic solute-binding protein. Experimental analysis confirmed metal transport activity for three members of this family and demonstrated significant activity for a basic module (CbiMN) of the Salmonella enterica serovar Typhimurium transporter.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- The Burnham Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|