1
|
Liu R, He X, Ren G, Li DW, Zhao M, Lehtovirta-Morley L, Todd JD, Zhang XH, Liu J. Niche Partitioning and Intraspecific Variation of Thaumarchaeota in Deep Ocean Sediments. Environ Microbiol 2025; 27:e70018. [PMID: 39777846 DOI: 10.1111/1462-2920.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/03/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Deep-sea sediments contain a large number of Thaumarchaeota that are phylogenetically distinct from their pelagic counterparts. However, their ecology and evolutionary adaptations are not well understood. Metagenomic analyses were conducted on samples from various depths of a 750-cm sediment core collected from the Mariana Trench Challenger Deep. The abundance of Thaumarchaeota and archaeal amoA generally decreased with depth, except for an unexpected peak midway through the core. The thaumarchaeotal metagenome-assembled genomes were classified into diverse phylogenetic clusters associated with amoA-NP-γ, amoA-NP-θ, and amoA-NP-δ of ammonia-oxidising Thaumarchaeota and non-ammonia-oxidising lineages. The most abundant group was within amoA-NP-γ, which is usually found in coastal and shallow habitats, indicating potential niche expansion from marine shallow to hadal environments. This benthic group showed within-species genomic variations compared to the previously identified Hadal water group, suggesting microdiversification of hadal Thaumarchaeota along with niche separation between benthic and pelagic environments. Evolutionary adaptations associated with the benthic-to-pelagic transition included reduced genome size, loss of motility/cell adhesion, altered energy metabolism, and different mechanisms for substrate acquisition and regulation (e.g., ammonium). These findings offer new insights into the evolution of hadal Thaumarchaeota and demonstrate, for the first time, intraspecies-level genomic variation in Thaumarchaeota related to the benthic-versus-pelagic niche partitioning in the deep ocean.
Collapse
Affiliation(s)
- Ronghua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xinxin He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Gaoyang Ren
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Da-Wei Li
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Meixun Zhao
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Laura Lehtovirta-Morley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Jonathan D Todd
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Lewis NM, Kisgeropoulos EC, Lubner CE, Fixen KR. Characterization of ferredoxins involved in electron transfer pathways for nitrogen fixation implicates differences in electronic structure in tuning 2[4Fe4S] Fd activity. J Inorg Biochem 2024; 254:112521. [PMID: 38471286 DOI: 10.1016/j.jinorgbio.2024.112521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Ferredoxins (Fds) are small proteins which shuttle electrons to pathways like biological nitrogen fixation. Physical properties tune the reactivity of Fds with different pathways, but knowledge on how these properties can be manipulated to engineer new electron transfer pathways is lacking. Recently, we showed that an evolved strain of Rhodopseudomonas palustris uses a new electron transfer pathway for nitrogen fixation. This pathway involves a variant of the primary Fd of nitrogen fixation in R. palustris, Fer1, in which threonine at position 11 is substituted for isoleucine (Fer1T11I). To understand why this substitution in Fer1 enables more efficient electron transfer, we used in vivo and in vitro methods to characterize Fer1 and Fer1T11I. Electrochemical characterization revealed both Fer1 and Fer1T11I have similar redox transitions (-480 mV and - 550 mV), indicating the reduction potential was unaffected despite the proximity of T11 to an iron‑sulfur (FeS) cluster of Fer1. Additionally, disruption of hydrogen bonding around an FeS cluster in Fer1 by substituting threonine with alanine (T11A) or valine (T11V) did not increase nitrogenase activity, indicating that disruption of hydrogen bonding does not explain the difference in activity observed for Fer1T11I. Electron paramagnetic resonance spectroscopy studies revealed key differences in the electronic structure of Fer1 and Fer1T11I, which indicate changes to the high spin states and/or spin-spin coupling between the FeS clusters of Fer1. Our data implicates these electronic structure differences in facilitating electron flow and sets a foundation for further investigations to understand the connection between these properties and intermolecular electron transfer.
Collapse
Affiliation(s)
- Nathan M Lewis
- Department of Plant and Microbial Biology and the Biotechnology Institute, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Carolyn E Lubner
- National Renewable Energy Laboratory, Golden, CO, United States of America.
| | - Kathryn R Fixen
- Department of Plant and Microbial Biology and the Biotechnology Institute, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
3
|
Addison H, Glatter T, K. A. Hochberg G, Rebelein JG. Two distinct ferredoxins are essential for nitrogen fixation by the iron nitrogenase in Rhodobacter capsulatus. mBio 2024; 15:e0331423. [PMID: 38377621 PMCID: PMC10936413 DOI: 10.1128/mbio.03314-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Nitrogenases are the only enzymes able to fix gaseous nitrogen into bioavailable ammonia and hence are essential for sustaining life. Catalysis by nitrogenases requires both a large amount of ATP and electrons donated by strongly reducing ferredoxins or flavodoxins. Our knowledge about the mechanisms of electron transfer to nitrogenase enzymes is limited: The electron transport to the iron (Fe)-nitrogenase has hardly been investigated. Here, we characterized the electron transfer pathway to the Fe-nitrogenase in Rhodobacter capsulatus via proteome analyses, genetic deletions, complementation studies, and phylogenetics. Proteome analyses revealed an upregulation of four ferredoxins under nitrogen-fixing conditions reliant on the Fe-nitrogenase in a molybdenum nitrogenase knockout strain, compared to non-nitrogen-fixing conditions. Based on these findings, R. capsulatus strains with deletions of ferredoxin (fdx) and flavodoxin (fld, nifF) genes were constructed to investigate their roles in nitrogen fixation by the Fe-nitrogenase. R. capsulatus deletion strains were characterized by monitoring diazotrophic growth and Fe-nitrogenase activity in vivo. Only deletions of fdxC or fdxN resulted in slower growth and reduced Fe-nitrogenase activity, whereas the double deletion of both fdxC and fdxN abolished diazotrophic growth. Differences in the proteomes of ∆fdxC and ∆fdxN strains, in conjunction with differing plasmid complementation behaviors of fdxC and fdxN, indicate that the two Fds likely possess different roles and functions. These findings will guide future engineering of the electron transport systems to nitrogenase enzymes, with the aim of increased electron flux and product formation.IMPORTANCENitrogenases are essential for biological nitrogen fixation, converting atmospheric nitrogen gas to bioavailable ammonia. The production of ammonia by diazotrophic organisms, harboring nitrogenases, is essential for sustaining plant growth. Hence, there is a large scientific interest in understanding the cellular mechanisms for nitrogen fixation via nitrogenases. Nitrogenases rely on highly reduced electrons to power catalysis, although we lack knowledge as to which proteins shuttle the electrons to nitrogenases within cells. Here, we characterized the electron transport to the iron (Fe)-nitrogenase in the model diazotroph Rhodobacter capsulatus, showing that two distinct ferredoxins are very important for nitrogen fixation despite having different redox centers. In addition, our research expands upon the debate on whether ferredoxins have functional redundancy or perform distinct roles within cells. Here, we observe that both essential ferredoxins likely have distinct roles based on differential proteome shifts of deletion strains and different complementation behaviors.
Collapse
Affiliation(s)
- Holly Addison
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry & Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Georg K. A. Hochberg
- Evolutionary Biochemistry Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Johannes G. Rebelein
- Microbial Metalloenzymes Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
4
|
Feng X, Schut GJ, Adams MWW, Li H. Structures and Electron Transport Paths in the Four Families of Flavin-Based Electron Bifurcation Enzymes. Subcell Biochem 2024; 104:383-408. [PMID: 38963493 DOI: 10.1007/978-3-031-58843-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Oxidoreductases facilitating electron transfer between molecules are pivotal in metabolic pathways. Flavin-based electron bifurcation (FBEB), a recently discovered energy coupling mechanism in oxidoreductases, enables the reversible division of electron pairs into two acceptors, bridging exergonic and otherwise unfeasible endergonic reactions. This chapter explores the four distinct FBEB complex families and highlights a decade of structural insights into FBEB complexes. In this chapter, we discuss the architecture, electron transfer routes, and conformational changes across all FBEB families, revealing the structural foundation that facilitate these remarkable functions.
Collapse
Affiliation(s)
- Xiang Feng
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
5
|
Alleman AB, Peters JW. Mechanisms for Generating Low Potential Electrons across the Metabolic Diversity of Nitrogen-Fixing Bacteria. Appl Environ Microbiol 2023; 89:e0037823. [PMID: 37154716 PMCID: PMC10231201 DOI: 10.1128/aem.00378-23] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The availability of fixed nitrogen is a limiting factor in the net primary production of all ecosystems. Diazotrophs overcome this limit through the conversion of atmospheric dinitrogen to ammonia. Diazotrophs are phylogenetically diverse bacteria and archaea that exhibit a wide range of lifestyles and metabolisms, including obligate anaerobes and aerobes that generate energy through heterotrophic or autotrophic metabolisms. Despite the diversity of metabolisms, all diazotrophs use the same enzyme, nitrogenase, to reduce N2. Nitrogenase is an O2-sensitive enzyme that requires a high amount of energy in the form of ATP and low potential electrons carried by ferredoxin (Fd) or flavodoxin (Fld). This review summarizes how the diverse metabolisms of diazotrophs utilize different enzymes to generate low potential reducing equivalents for nitrogenase catalysis. These enzymes include substrate-level Fd oxidoreductases, hydrogenases, photosystem I or other light-driven reaction centers, electron bifurcating Fix complexes, proton motive force-driven Rnf complexes, and Fd:NAD(P)H oxidoreductases. Each of these enzymes is critical for generating low potential electrons while simultaneously integrating the native metabolism to balance nitrogenase's overall energy needs. Understanding the diversity of electron transport systems to nitrogenase in various diazotrophs will be essential to guide future engineering strategies aimed at expanding the contributions of biological nitrogen fixation in agriculture.
Collapse
Affiliation(s)
- Alexander B. Alleman
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| | - John W. Peters
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
6
|
Safronova V, Sazanova A, Belimov A, Guro P, Kuznetsova I, Karlov D, Chirak E, Yuzikhin O, Verkhozina A, Afonin A, Tikhonovich I. Synergy between Rhizobial Co-Microsymbionts Leads to an Increase in the Efficiency of Plant-Microbe Interactions. Microorganisms 2023; 11:1206. [PMID: 37317180 DOI: 10.3390/microorganisms11051206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Combined inoculation of legumes with rhizobia and plant growth-promoting rhizobacteria or endophytes is a known technique for increasing the efficiency of nitrogen-fixing symbiosis and plant productivity. The aim of this work was to expand knowledge about the synergistic effects between commercial rhizobia of pasture legumes and root nodule bacteria of relict legume species. Pot experiments were performed on common vetch (Vicia sativa L.) and red clover (Trifolium pratense L.) co-inoculated with the participation of the corresponding commercial rhizobial strains (R. leguminosarum bv. viciae RCAM0626 and R. leguminosarum bv. trifolii RCAM1365) and seven strains isolated from nodules of relict legumes inhabiting the Baikal Lake region and the Altai Republic: Oxytropis popoviana, Astragalus chorinensis, O. tragacanthoides and Vicia costata. The inoculation of plants with combinations of strains (commercial strain plus the isolate from relict legume) had a different effect on symbiosis depending on the plant species: the increase in the number of nodules was mainly observed on vetch, whereas increased acetylene reduction activity was evident on clover. It was shown that the relict isolates differ significantly in the set of genes related to different genetic systems that affect plant-microbe interactions. At the same time, they had additional genes that are involved in the formation of symbiosis and determine its effectiveness, but are absent in the used commercial strains: symbiotic genes fix, nif, nod, noe and nol, as well as genes associated with the hormonal status of the plant and the processes of symbiogenesis (acdRS, genes for gibberellins and auxins biosynthesis, genes of T3SS, T4SS and T6SS secretion systems). It can be expected that the accumulation of knowledge about microbial synergy on the example of the joint use of commercial and relict rhizobia will allow in the future the development of methods for the targeted selection of co-microsymbionts to increase the efficiency of agricultural legume-rhizobia systems.
Collapse
Affiliation(s)
- Vera Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Polina Guro
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Irina Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Denis Karlov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Elizaveta Chirak
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Oleg Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Alla Verkhozina
- Siberian Institute of Plant Physiology and Biochemistry (SIPPB), P.O. Box 1243, 664033 Irkutsk, Russia
| | - Alexey Afonin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
7
|
Guo K, Yang J, Yu N, Luo L, Wang E. Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. PLANT COMMUNICATIONS 2023; 4:100499. [PMID: 36447432 PMCID: PMC10030364 DOI: 10.1016/j.xplc.2022.100499] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 05/04/2023]
Abstract
Nitrogen is abundant in the atmosphere but is generally the most limiting nutrient for plants. The inability of many crop plants, such as cereals, to directly utilize freely available atmospheric nitrogen gas means that their growth and production often rely heavily on the application of chemical fertilizers, which leads to greenhouse gas emissions and the eutrophication of water. By contrast, legumes gain access to nitrogen through symbiotic association with rhizobia. These bacteria convert nitrogen gas into biologically available ammonia in nodules through a process termed symbiotic biological nitrogen fixation, which plays a decisive role in ecosystem functioning. Engineering cereal crops that can fix nitrogen like legumes or associate with nitrogen-fixing microbiomes could help to avoid the problems caused by the overuse of synthetic nitrogen fertilizer. With the development of synthetic biology, various efforts have been undertaken with the aim of creating so-called "N-self-fertilizing" crops capable of performing autonomous nitrogen fixation to avoid the need for chemical fertilizers. In this review, we briefly summarize the history and current status of engineering N-self-fertilizing crops. We also propose several potential biotechnological approaches for incorporating biological nitrogen fixation capacity into non-legume plants.
Collapse
Affiliation(s)
- Kaiyan Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Li Luo
- School of Life Sciences, Shanghai Key Laboratory of Bioenergy Crops, Shanghai University, Shanghai 200444, China.
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
8
|
Godoy MS, de Miguel SR, Prieto MA. Aerobic-anaerobic transition boosts poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthesis in Rhodospirillum rubrum: the key role of carbon dioxide. Microb Cell Fact 2023; 22:47. [PMID: 36899367 PMCID: PMC9999600 DOI: 10.1186/s12934-023-02045-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Microbially produced bioplastics are specially promising materials since they can be naturally synthesized and degraded, making its end-of-life management more amenable to the environment. A prominent example of these new materials are polyhydroxyalkanoates. These polyesters serve manly as carbon and energy storage and increase the resistance to stress. Their synthesis can also work as an electron sink for the regeneration of oxidized cofactors. In terms of biotechnological applications, the co-polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), or PHBV, has interesting biotechnological properties due to its lower stiffness and fragility compared to the homopolymer poly(3-hydroxybutyrate) (P3HB). In this work, we explored the potentiality of Rhodospirillum rubrum as a producer of this co-polymer, exploiting its metabolic versatility when grown in different aeration conditions and photoheterotrophically. RESULTS When shaken flasks experiments were carried out with limited aeration using fructose as carbon source, PHBV production was triggered reaching 29 ± 2% CDW of polymer accumulation with a 75 ± 1%mol of 3-hydroxyvalerate (3HV) (condition C2). Propionate and acetate were secreted in this condition. The synthesis of PHBV was exclusively carried out by the PHA synthase PhaC2. Interestingly, transcription of cbbM coding RuBisCO, the key enzyme of the Calvin-Benson-Bassham cycle, was similar in aerobic and microaerobic/anaerobic cultures. The maximal PHBV yield (81% CDW with 86%mol 3HV) was achieved when cells were transferred from aerobic to anaerobic conditions and controlling the CO2 concentration by adding bicarbonate to the culture. In these conditions, the cells behaved like resting cells, since polymer accumulation prevailed over residual biomass formation. In the absence of bicarbonate, cells could not adapt to an anaerobic environment in the studied lapse. CONCLUSIONS We found that two-phase growth (aerobic-anaerobic) significantly improved the previous report of PHBV production in purple nonsulfur bacteria, maximizing the polymer accumulation at the expense of other components of the biomass. The presence of CO2 is key in this process demonstrating the involvement of the Calvin-Benson-Bassham in the adaptation to changes in oxygen availability. These results stand R. rubrum as a promising producer of high-3HV-content PHBV co-polymer from fructose, a PHBV unrelated carbon source.
Collapse
Affiliation(s)
- Manuel S Godoy
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain.
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain.
| | - Santiago R de Miguel
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain.
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
9
|
Evolving a New Electron Transfer Pathway for Nitrogen Fixation Uncovers an Electron Bifurcating-Like Enzyme Involved in Anaerobic Aromatic Compound Degradation. mBio 2023; 14:e0288122. [PMID: 36645294 PMCID: PMC9973337 DOI: 10.1128/mbio.02881-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nitrogenase is the key enzyme involved in nitrogen fixation and uses low potential electrons delivered by ferredoxin (Fd) or flavodoxin (Fld) to reduce dinitrogen gas (N2) to produce ammonia, generating hydrogen gas (H2) as an obligate product of this activity. Although the phototrophic alphaproteobacterium Rhodopseudomonas palustris encodes multiple proteins that can reduce Fd, the FixABCX complex is the only one shown to support nitrogen fixation, and R. palustris Fix- mutants grow poorly under nitrogen-fixing conditions. To investigate how native electron transfer chains (ETCs) can be redirected toward nitrogen fixation, we leveraged the strong selective pressure of nitrogen limitation to isolate a suppressor of an R. palustris ΔfixC strain that grows under nitrogen-fixing conditions. We found two mutations were required to restore growth under nitrogen-fixing conditions in the absence of functional FixABCX. One mutation was in the gene encoding the primary Fd involved in nitrogen fixation, fer1, and the other mutation was in aadN, which encodes a homolog of NAD+-dependent Fd:NADPH oxidoreductase (Nfn). We present evidence that AadN plays a role in electron transfer to benzoyl coenzyme A reductase, the key enzyme involved in anaerobic aromatic compound degradation. Our data support a model where the ETC for anaerobic aromatic compound degradation was repurposed to support nitrogen fixation in the ΔfixC suppressor strain. IMPORTANCE There is increasing evidence that protein electron carriers like Fd evolved to form specific partnerships with select electron donors and acceptors to keep native electron transfer pathways insulated from one another. This makes it challenging to integrate a Fd-dependent pathway such as biological nitrogen fixation into non-nitrogen-fixing organisms and provide the high-energy reducing power needed to fix nitrogen. Here, we show that amino acid substitutions in an electron donor for anaerobic aromatic compound degradation and an Fd involved in nitrogen fixation enabled electron transfer to nitrogenase. This study provides a model system to understand electron transfer chain specificity and how new electron transfer pathways can be evolved for biotechnologically valuable pathways like nitrogen fixation.
Collapse
|
10
|
Bennett EM, Murray JW, Isalan M. Engineering Nitrogenases for Synthetic Nitrogen Fixation: From Pathway Engineering to Directed Evolution. BIODESIGN RESEARCH 2023; 5:0005. [PMID: 37849466 PMCID: PMC10521693 DOI: 10.34133/bdr.0005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/24/2022] [Indexed: 10/19/2023] Open
Abstract
Globally, agriculture depends on industrial nitrogen fertilizer to improve crop growth. Fertilizer production consumes fossil fuels and contributes to environmental nitrogen pollution. A potential solution would be to harness nitrogenases-enzymes capable of converting atmospheric nitrogen N2 to NH3 in ambient conditions. It is therefore a major goal of synthetic biology to engineer functional nitrogenases into crop plants, or bacteria that form symbiotic relationships with crops, to support growth and reduce dependence on industrially produced fertilizer. This review paper highlights recent work toward understanding the functional requirements for nitrogenase expression and manipulating nitrogenase gene expression in heterologous hosts to improve activity and oxygen tolerance and potentially to engineer synthetic symbiotic relationships with plants.
Collapse
Affiliation(s)
- Emily M. Bennett
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - James W. Murray
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
11
|
Pan H, Zhu B, Li J, Zhou Z, Bu W, Dai Y, Lu X, Liu H, Tian Y. Degradation of iprodione by a novel strain Azospirillum sp. A1-3 isolated from Tibet. Front Microbiol 2023; 13:1057030. [PMID: 36699606 PMCID: PMC9869045 DOI: 10.3389/fmicb.2022.1057030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
A bacterial strain A1-3 with iprodione-degrading capabilities was isolated from the soil for vegetable growing under greenhouses at Lhasa, Tibet. Based on phenotypic, phylogenetic, and genotypic data, strain A1-3 was considered to represent a novel species of genus Azospirillum. It was able to use iprodione as the sole source of carbon and energy for growth, 27.96 mg/L (50.80%) iprodione was reduced within 108 h at 25°C. During the degradation of iprodione by Azospirillum sp. A1-3, iprodione was firstly degraded to N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine, and then to (3,5-dichlorophenylurea) acetic acid. However, (3,5-dichlorophenylurea) acetic acid cannot be degraded to 3,5-dichloroaniline by Azospirillum sp. A1-3. A ipaH gene which has a highly similarity (98.72-99.92%) with other previously reported ipaH genes, was presented in Azospirillum sp. A1-3. Azospirillum novel strain with the ability of iprodione degradation associated with nitrogen fixation has never been reported to date, and Azospirillum sp. A1-3 might be a promising candidate for application in the bioremediation of iprodione-contaminated environments.
Collapse
Affiliation(s)
- Hu Pan
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Beike Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jin Li
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Ziqiong Zhou
- School of Food Science, Tibet Institute of Agriculture and Animal Husbandry, Nyingchi, China
| | - Wenbin Bu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yanna Dai
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,*Correspondence: Huhu Liu, ✉
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,Yun Tian, ✉
| |
Collapse
|
12
|
Wekesa C, Jalloh AA, Muoma JO, Korir H, Omenge KM, Maingi JM, Furch ACU, Oelmüller R. Distribution, Characterization and the Commercialization of Elite Rhizobia Strains in Africa. Int J Mol Sci 2022; 23:ijms23126599. [PMID: 35743041 PMCID: PMC9223902 DOI: 10.3390/ijms23126599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Grain legumes play a significant role in smallholder farming systems in Africa because of their contribution to nutrition and income security and their role in fixing nitrogen. Biological Nitrogen Fixation (BNF) serves a critical role in improving soil fertility for legumes. Although much research has been conducted on rhizobia in nitrogen fixation and their contribution to soil fertility, much less is known about the distribution and diversity of the bacteria strains in different areas of the world and which of the strains achieve optimal benefits for the host plants under specific soil and environmental conditions. This paper reviews the distribution, characterization, and commercialization of elite rhizobia strains in Africa.
Collapse
Affiliation(s)
- Clabe Wekesa
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Abdul A. Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya;
| | - John O. Muoma
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya;
| | - Hezekiah Korir
- Crops, Horticulture and Soils Department, Egerton University, P.O. Box 536, Egerton 20115, Kenya;
| | - Keziah M. Omenge
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - John M. Maingi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Alexandra C. U. Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
- Correspondence: ; Tel.: +49-3641949232
| |
Collapse
|
13
|
Dufault-Thompson K, Hall B, Jiang X. Taxonomic distribution and evolutionary analysis of the equol biosynthesis gene cluster. BMC Genomics 2022; 23:182. [PMID: 35247986 PMCID: PMC8898433 DOI: 10.1186/s12864-022-08426-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Equol, an isoflavonoid metabolite with possible health benefits in humans, is known to be produced by some human gut bacteria. While the genes encoding the equol production pathway have been characterized in a few bacterial strains, a systematic analysis of the equol production pathway is currently lacking.
Results
This study presents an analysis of the taxonomic distribution and evolutionary history of the gene cluster encoding the equol production pathway. A survey for equol gene clusters within the Genome Taxonomy Database bacterial genomes and human gut metagenomes resulted in the identification of a highly conserved gene cluster found in nine bacterial species from the Eggerthellaceae family. The identified gene clusters from human gut metagenomes revealed potential variations in the equol gene cluster organization and gene content within the equol-producing Eggerthellaceae clades. Subsequent analysis showed that in addition to the four genes directly involved in equol production, multiple other genes were consistently found in the equol gene clusters. These genes were predicted to encode a putative electron transport complex and hydrogenase maturase system, suggesting potential roles for them in the equol production pathway. Analysis of the gene clusters and a phylogenetic reconstruction of a putative NAD kinase gene provided evidence of the recent transfer of the equol gene cluster from a basal Eggerthellaceae species to Slackia_A equolifaciens, Enteroscipio sp000270285, and Lactococcus garvieae 20–92.
Conclusions
This analysis demonstrates that the highly conserved equol gene cluster is taxonomically restricted to the Eggerthellaceae family of bacteria and provides evidence of the role of horizontal gene transfer in the evolutionary history of these genes. These results provide a foundation for future studies of equol production in the human gut and future efforts related to bioengineering and the use of equol-producing bacteria as probiotics.
Collapse
|
14
|
Maeda I. Potential of Phototrophic Purple Nonsulfur Bacteria to Fix Nitrogen in Rice Fields. Microorganisms 2021; 10:microorganisms10010028. [PMID: 35056477 PMCID: PMC8777916 DOI: 10.3390/microorganisms10010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Biological nitrogen fixation catalyzed by Mo-nitrogenase of symbiotic diazotrophs has attracted interest because its potential to supply plant-available nitrogen offers an alternative way of using chemical fertilizers for sustainable agriculture. Phototrophic purple nonsulfur bacteria (PNSB) diazotrophically grow under light anaerobic conditions and can be isolated from photic and microaerobic zones of rice fields. Therefore, PNSB as asymbiotic diazotrophs contribute to nitrogen fixation in rice fields. An attempt to measure nitrogen in the oxidized surface layer of paddy soil estimates that approximately 6–8 kg N/ha/year might be accumulated by phototrophic microorganisms. Species of PNSB possess one of or both alternative nitrogenases, V-nitrogenase and Fe-nitrogenase, which are found in asymbiotic diazotrophs, in addition to Mo-nitrogenase. The regulatory networks control nitrogenase activity in response to ammonium, molecular oxygen, and light irradiation. Laboratory and field studies have revealed effectiveness of PNSB inoculation to rice cultures on increases of nitrogen gain, plant growth, and/or grain yield. In this review, properties of the nitrogenase isozymes and regulation of nitrogenase activities in PNSB are described, and research challenges and potential of PNSB inoculation to rice cultures are discussed from a viewpoint of their applications as nitrogen biofertilizer.
Collapse
Affiliation(s)
- Isamu Maeda
- Department of Applied Biological Chemistry, School of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya 321-8505, Japan
| |
Collapse
|
15
|
Kumar S, Diksha, Sindhu SS, Kumar R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 3:100094. [PMID: 35024641 PMCID: PMC8724949 DOI: 10.1016/j.crmicr.2021.100094] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Modern intensive agricultural practices face numerous challenges that pose major threats to global food security. In order to address the nutritional requirements of the ever-increasing world population, chemical fertilizers and pesticides are applied on large scale to increase crop production. However, the injudicious use of agrochemicals has resulted in environmental pollution leading to public health hazards. Moreover, agriculture soils are continuously losing their quality and physical properties as well as their chemical (imbalance of nutrients) and biological health. Plant-associated microbes with their plant growth- promoting traits have enormous potential to solve these challenges and play a crucial role in enhancing plant biomass and crop yield. The beneficial mechanisms of plant growth improvement include enhanced nutrient availability, phytohormone modulation, biocontrol of phytopathogens and amelioration of biotic and abiotic stresses. Solid-based or liquid bioinoculant formulation comprises inoculum preparation, addition of cell protectants such as glycerol, lactose, starch, a good carrier material, proper packaging and best delivery methods. Recent developments of formulation include entrapment/microencapsulation, nano-immobilization of microbial bioinoculants and biofilm-based biofertilizers. This review critically examines the current state-of-art on use of microbial strains as biofertilizers and the important roles performed by these beneficial microbes in maintaining soil fertility and enhancing crop productivity.
Collapse
Key Words
- ABA, Abscisic acid
- ACC, 1-aminocyclopropane-1-carboxylic acid
- AM, Arbuscular mycorrhiza
- APX, Ascorbate peroxidase
- BGA, Blue green algae
- BNF, Biological nitrogen fixation
- Beneficial microorganisms
- Biofertilizers
- CAT, Catalase
- Crop production
- DAPG, 2, 4-diacetyl phloroglucinol
- DRB, Deleterious rhizospheric bacteria
- GA, Gibberellic acid
- GPX, Glutathione/thioredoxin peroxidase
- HCN, Hydrogen cyanide
- IAA, Indole acetic acid
- IAR, Intrinsic antibiotic resistance
- ISR, Induced systemic resistance
- KMB, Potassium mobilizing bacteria
- KSMs, Potassium-solubilizing microbes
- MAMPs, Microbes associated molecular patterns
- PAMPs, Pathogen associated molecular patterns
- PCA, Phenazine-1-carboxylic acid
- PGP, Plant growth-promoting
- PGPR, Plant growth-promoting rhizobacteria
- POD, Peroxidase
- PSB, Phosphate-solubilizing bacteria
- Rhizosphere
- SAR, Systemic acquired resistance
- SOB, Sulphur oxidizing bacteria
- Soil fertility
- Sustainable agriculture
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Diksha
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Satyavir S. Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| | - Rakesh Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar 125004, India
| |
Collapse
|
16
|
Yuan S, Zhou S, Feng Y, Zhang C, Huang Y, Shan Z, Chen S, Guo W, Yang H, Yang Z, Qiu D, Chen H, Zhou X. Identification of the Important Genes of Bradyrhizobium diazoefficiens 113-2 Involved in Soybean Nodule Development and Senescence. Front Microbiol 2021; 12:754837. [PMID: 34858367 PMCID: PMC8632152 DOI: 10.3389/fmicb.2021.754837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Legume nodule development and senescence directly affect nitrogen fixation efficiency and involve a programmed series of molecular events. These molecular events are carried out synchronously by legumes and rhizobia. The characteristics and molecular mechanisms of nitrogen fixation at soybean important developmental stages play critical roles in soybean cultivation and fertilizer application. Although the gene expression of soybean were analyzed in nodules at five important soybean developmental stages, information on the expression of rhizobial genes in these nodule samples is limited. In the present study, we investigated the expression of Bradyrhizobium diazoefficiens 113-2 genes in the nodule samples from five developmental stages of soybean (Branching stage, flowering stage, fruiting stage, pod stage and harvest stage). Similar gene expression patterns of B. diazoefficiens 113-2 were existed during optimal symbiotic functioning, while different expression patterns were found among early nodule development, nitrogen fixation progress and nodule senescence. Besides, we identified 164 important different expression genes (DEGs) associated with nodule development and senescence. These DEGs included those encoding nod, nif, fix proteins and T3SS secretion system-related proteins, as well as proteins involved in nitrogen metabolism, ABC transporters and two-component system pathways. Gene Ontology, KEGG pathway and homology analysis of the identified DEGs revealed that most of these DEGs are uncharacterized genes associated with nodule development and senescence, and they are not core genes among the rhizobia genomes. Our results provide new clues for the understanding of the genetic determinants of soil rhizobia in nodule development and senescence, and supply theoretical basis for the creation of high efficiency soybean cultivation technology.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Shunxin Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Yong Feng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Zhihui Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Shuilian Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Hongli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Zhonglu Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Dezhen Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of PRC, Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan, China
| |
Collapse
|
17
|
Li Y, Kreuzer M, Clayssen Q, Ebert MO, Ruscheweyh HJ, Sunagawa S, Kunz C, Attwood G, Amelchanka S, Terranova M. The rumen microbiome inhibits methane formation through dietary choline supplementation. Sci Rep 2021; 11:21761. [PMID: 34741032 PMCID: PMC8571420 DOI: 10.1038/s41598-021-01031-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/18/2021] [Indexed: 11/11/2022] Open
Abstract
Enteric fermentation from ruminants is a primary source of anthropogenic methane emission. This study aims to add another approach for methane mitigation by manipulation of the rumen microbiome. Effects of choline supplementation on methane formation were quantified in vitro using the Rumen Simulation Technique. Supplementing 200 mM of choline chloride or choline bicarbonate reduced methane emissions by 97–100% after 15 days. Associated with the reduction of methane formation, metabolomics analysis revealed high post-treatment concentrations of ethanol, which likely served as a major hydrogen sink. Metagenome sequencing showed that the methanogen community was almost entirely lost, and choline-utilizing bacteria that can produce either lactate, ethanol or formate as hydrogen sinks were enriched. The taxa most strongly associated with methane mitigation were Megasphaera elsdenii and Denitrobacterium detoxificans, both capable of consuming lactate, which is an intermediate product and hydrogen sink. Accordingly, choline metabolism promoted the capability of bacteria to utilize alternative hydrogen sinks leading to a decline of hydrogen as a substrate for methane formation. However, fermentation of fibre and total organic matter could not be fully maintained with choline supplementation, while amino acid deamination and ethanolamine catabolism produced excessive ammonia, which would reduce feed efficiency and adversely affect live animal performance.
Collapse
Affiliation(s)
- Yang Li
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland.
| | - Michael Kreuzer
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Quentin Clayssen
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Marc-Olivier Ebert
- Laboratory of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 3, 8093, Zurich, Switzerland
| | | | - Shinichi Sunagawa
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Carmen Kunz
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Graeme Attwood
- AgResearch Ltd. Grasslands Research Centre, Palmerston North, 4442, New Zealand
| | - Sergej Amelchanka
- ETH Zurich, AgroVet-Strickhof, Eschikon 27, 8315, Lindau, Switzerland
| | - Melissa Terranova
- ETH Zurich, AgroVet-Strickhof, Eschikon 27, 8315, Lindau, Switzerland
| |
Collapse
|
18
|
Evolutionary origin and ecological implication of a unique nif island in free-living Bradyrhizobium lineages. THE ISME JOURNAL 2021; 15:3195-3206. [PMID: 33990706 PMCID: PMC8528876 DOI: 10.1038/s41396-021-01002-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023]
Abstract
The alphaproteobacterial genus Bradyrhizobium has been best known as N2-fixing members that nodulate legumes, supported by the nif and nod gene clusters. Recent environmental surveys show that Bradyrhizobium represents one of the most abundant free-living bacterial lineages in the world's soils. However, our understanding of Bradyrhizobium comes largely from symbiotic members, biasing the current knowledge of their ecology and evolution. Here, we report the genomes of 88 Bradyrhizobium strains derived from diverse soil samples, including both nif-carrying and non-nif-carrying free-living (nod free) members. Phylogenomic analyses of these and 252 publicly available Bradyrhizobium genomes indicate that nif-carrying free-living members independently evolved from symbiotic ancestors (carrying both nif and nod) multiple times. Intriguingly, the nif phylogeny shows that the vast majority of nif-carrying free-living members comprise an independent cluster, indicating that horizontal gene transfer promotes nif expansion among the free-living Bradyrhizobium. Comparative genomics analysis identifies that the nif genes found in free-living Bradyrhizobium are located on a unique genomic island of ~50 kb equipped with genes potentially involved in coping with oxygen tension. We further analyze amplicon sequencing data to show that Bradyrhizobium members presumably carrying this nif island are widespread in a variety of environments. Given the dominance of Bradyrhizobium in world's soils, our findings have implications for global nitrogen cycles and agricultural research.
Collapse
|
19
|
Duan HD, Khan SA, Miller AF. Photogeneration and reactivity of flavin anionic semiquinone in a bifurcating electron transfer flavoprotein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148415. [PMID: 33727071 DOI: 10.1016/j.bbabio.2021.148415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 02/04/2023]
Abstract
Electron transfer bifurcation allows production of a strongly reducing carrier at the expense of a weaker one, by redistributing energy among a pair of electrons. Thus, two weakly-reducing electrons from NADH are consumed to produce a strongly reducing ferredoxin or flavodoxin, paid for by reduction of an oxidizing acceptor. The prevailing mechanism calls for participation of a strongly reducing flavin semiquinone which has been difficult to observe with site-certainly in multi-flavin systems. Using blue light (450 nm) to photoexcite the flavins of bifurcating electron transfer flavoprotein (ETF), we demonstrate accumulation of anionic flavin semiquinone in excess of what is observed in equilibrium titrations, and establish its ability to reduce the low-potential electron acceptor benzyl viologen. This must occur at the bifurcating flavin because the midpoint potentials of the electron transfer (ET) flavin are not sufficiently negative. We show that bis-tris propane buffer is an effective electron donor to the flavin photoreduction, but that if the system is prepared with the ET flavin chemically reduced, so that only the bifurcating flavin is oxidized and photochemically active, flavin anionic semiquinone is formed more rapidly. Thus, excited bifurcating flavin is able to draw on an electron stored at the ET flavin. Flavin semiquinone photogenerated at the bifurcation site must therefore be accompanied by additional semiquinone formation by oxidation of the ET flavin. Consistent with the expected instability of bifurcating flavin semiquinone, it subsides immediately upon cessation of illumination. However comparison with yields of semiquinone in equilibrium titrations suggest that during continuous illumination at pH 9 a steady state population of 0.3 equivalents of bifurcating flavin semiquinone accumulates, and then undergoes further photoreduction to the hydroquinone. Although transient, the population of bifurcating flavin semiquinone explains the system's ability to conduct light-driven electron transfer from bis-tris propane to benzyl viologen, in effect trapping energy from light.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Sharique A Khan
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | | |
Collapse
|
20
|
Wise CE, Ledinina AE, Yuly JL, Artz JH, Lubner CE. The role of thermodynamic features on the functional activity of electron bifurcating enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148377. [PMID: 33453185 DOI: 10.1016/j.bbabio.2021.148377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
Electron bifurcation is a biological mechanism to drive a thermodynamically unfavorable redox reaction through direct coupling with an exergonic reaction. This process allows microorganisms to generate high energy reducing equivalents in order to sustain life and is often found in anaerobic metabolism, where the energy economy of the cell is poor. Recent work has revealed details of the redox energy landscapes for a variety of electron bifurcating enzymes, greatly expanding the understanding of how energy is transformed by this unique mechanism. Here we highlight the plasticity of these emerging landscapes, what is known regarding their mechanistic underpinnings, and provide a context for interpreting their biochemical activity within the physiological framework. We conclude with an outlook for propelling the field toward an integrative understanding of the impact of electron bifurcation.
Collapse
Affiliation(s)
| | | | | | - Jacob H Artz
- National Renewable Energy Laboratory, Golden, CO, USA
| | | |
Collapse
|
21
|
Paulitsch F, Delamuta JRM, Ribeiro RA, da Silva Batista JS, Hungria M. Phylogeny of symbiotic genes reveals symbiovars within legume-nodulating Paraburkholderia species. Syst Appl Microbiol 2020; 43:126151. [PMID: 33171385 DOI: 10.1016/j.syapm.2020.126151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Bacteria belonging to the genus Paraburkholderia are capable of establishing symbiotic relationships with plants belonging to the Fabaceae (=Leguminosae) family and fixing the atmospheric nitrogen in specialized structures in the roots called nodules, in a process known as biological nitrogen fixation (BNF). In the nodulation and BNF processes several bacterial symbiotic genes are involved, but the relations between symbiotic, core genes and host specificity are still poorly studied and understood in Paraburkholderia. In this study, eight strains of nodulating nitrogen-fixing Paraburkholderia isolated in Brazil, together with described species and other reference strains were used to infer the relatedness between core (16S rDNA, recA) and symbiotic (nod, nif, fix) genes. The diversity of genes involved in the nodulation (nodAC) and nitrogen fixation (nifH) abilities was investigated. Only two groups, one containing three Paraburkholderia species symbionts of Mimosa, and another one with P. ribeironis strains presented similar phylogenetic patterns in the analysis of core and symbiotic genes. In three other groups events of horizontal gene transfer of symbiotic genes were detected. Paraburkholderia strains with available genomes were used in the complementary analysis of nifHDK and fixABC and confirmed well-defined phylogenetic positions of symbiotic genes. In all analyses of nod, nif and fix genes the strains were distributed into five clades with high bootstrap support, allowing the proposal of five symbiovars in nodulating nitrogen-fixing Paraburkholderia, designated as mimosae, africana, tropicalis, atlantica and piptadeniae. Phylogenetic inferences within each symbiovar are discussed.
Collapse
Affiliation(s)
- Fabiane Paulitsch
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil; Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, SBN, Quadra 2, Bloco L, Lote 06, Edifício Capes, 70.040-020 Brasília, Distrito Federal, Brazil.
| | - Jakeline Renata Marçon Delamuta
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil.
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil.
| | - Jesiane Stefania da Silva Batista
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Avenida General Carlos Cavalcanti, 4748 - Uvaranas, C.P. 6001, Ponta Grossa, PR 84030‑900, Brazil.
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, 86001-970 Londrina, Paraná, Brazil; Departamento de Microbiologia, Universidade Estadual de Londrina, C.P. 10011, 86057-970 Londrina, Paraná, Brazil; Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, 71605-001 Brasília, Distrito Federal, Brazil.
| |
Collapse
|
22
|
Liu YF, Chen J, Liu ZL, Shou LB, Lin DD, Zhou L, Yang SZ, Liu JF, Li W, Gu JD, Mu BZ. Anaerobic Degradation of Paraffins by Thermophilic Actinobacteria under Methanogenic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10610-10620. [PMID: 32786606 DOI: 10.1021/acs.est.0c02071] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microbial anaerobic alkane degradation is a key process in subsurface oil reservoirs and anoxic environments contaminated with petroleum, with a major impact on global carbon cycling. However, the thermophiles capable of water-insoluble paraffins (>C17) degradation under methanogenic conditions has remained understudied. Here, we established thermophilic (55 °C) n-paraffins-degrading (C21-C30) cultures from an oil reservoir. After over 900 days of incubation, the even-numbered n-paraffins were biodegraded to methane. The bacterial communities are dominated by a novel class-level lineage of actinobacteria, 'Candidatus Syntraliphaticia'. These 'Ca. Syntraliphaticia'-like metagenome-assembled genomes (MAGs) encode a complete alkylsuccinate synthases (ASS) gene operon, as well as hydrogenases and formate dehydrogenase, and several enzymes potentially involved in alkyl-CoA oxidation and the Wood-Ljungdahl pathway. Metatranscriptomic analysis suggests that n-paraffins are activated via fumarate addition reaction, and oxidized into carbon dioxide, hydrogen/formate and acetate by 'Ca. Syntraliphaticia', that could be further converted to methane by the abundant hydrogenotrophic and acetoclastic methanogens. We also found a divergent methyl-CoM reductase-like complex (MCR) and a canonical MCR in two MAGs representing 'Ca. Methanosuratus' (within candidate phylum Verstraetearchaeota), indicating the capability of methane and short-chain alkane metabolism in the oil reservoir. Ultimately, this result offers new insights into the degradability and the mechanisms of n-paraffins under methanogenic conditions at high temperatures.
Collapse
Affiliation(s)
- Yi-Fan Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Jing Chen
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhong-Lin Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Li-Bin Shou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Dan-Dan Lin
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Wei Li
- National Engineering Laboratory for Industrial Wastewater Treatment, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, P.R. China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P.R. China
- Engineering Research Center of MEOR, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
23
|
Abstract
The enzyme molybdenum nitrogenase converts atmospheric nitrogen gas to ammonia and is of critical importance for the cycling of nitrogen in the biosphere and for the sustainability of life. Alternative vanadium and iron-only nitrogenases that are homologous to molybdenum nitrogenases are also found in archaea and bacteria, but they have a different transition metal, either vanadium or iron, at their active sites. So far alternative nitrogenases have only been found in microbes that also have molybdenum nitrogenase. They are less widespread than molybdenum nitrogenase in bacteria and archaea, and they are less efficient. The presumption has been that alternative nitrogenases are fail-safe enzymes that are used in situations where molybdenum is limiting. Recent work indicates that vanadium nitrogenase may play a role in the global biological nitrogen cycle and iron-only nitrogenase may contribute products that shape microbial community interactions in nature.
Collapse
Affiliation(s)
- Caroline S Harwood
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
24
|
Hakobyan A, Zhu J, Glatter T, Paczia N, Liesack W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Metab Eng 2020; 61:181-196. [PMID: 32479801 DOI: 10.1016/j.ymben.2020.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/20/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Methane, a non-expensive natural substrate, is used by Methylocystis spp. as a sole source of carbon and energy. Here, we assessed whether Methylocystis sp. strain SC2 is able to also utilize hydrogen as an energy source. The addition of 2% H2 to the culture headspace had the most significant positive effect on the growth yield under CH4 (6%) and O2 (3%) limited conditions. The SC2 biomass yield doubled from 6.41 (±0.52) to 13.82 (±0.69) mg cell dry weight per mmol CH4, while CH4 consumption was significantly reduced. Regardless of H2 addition, CH4 utilization was increasingly redirected from respiration to fermentation-based pathways with decreasing O2/CH4 mixing ratios. Theoretical thermodynamic calculations confirmed that hydrogen utilization under oxygen-limited conditions doubles the maximum biomass yield compared to fully aerobic conditions without H2 addition. Hydrogen utilization was linked to significant changes in the SC2 proteome. In addition to hydrogenase accessory proteins, the production of Group 1d and Group 2b hydrogenases was significantly increased in both short- and long-term incubations. Both long-term incubation with H2 (37 d) and treatments with chemical inhibitors revealed that SC2 growth under hydrogen-utilizing conditions does not require the activity of complex I. Apparently, strain SC2 has the metabolic capacity to channel hydrogen-derived electrons into the quinone pool, which provides a link between hydrogen oxidation and energy production. In summary, H2 may be a promising alternative energy source in biotechnologically oriented methanotroph projects that aim to maximize biomass yield from CH4, such as the production of high-quality feed protein.
Collapse
Affiliation(s)
- Anna Hakobyan
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jing Zhu
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
25
|
Reji L, Francis CA. Metagenome-assembled genomes reveal unique metabolic adaptations of a basal marine Thaumarchaeota lineage. ISME JOURNAL 2020; 14:2105-2115. [PMID: 32405026 DOI: 10.1038/s41396-020-0675-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022]
Abstract
Thaumarchaeota constitute an abundant and ubiquitous phylum of Archaea that play critical roles in the global nitrogen and carbon cycles. Most well-characterized members of the phylum are chemolithoautotrophic ammonia-oxidizing archaea (AOA), which comprise up to 5 and 20% of the total single-celled life in soil and marine systems, respectively. Using two high-quality metagenome-assembled genomes (MAGs), here we describe a divergent marine thaumarchaeal clade that is devoid of the ammonia-oxidation machinery and the AOA-specific carbon-fixation pathway. Phylogenomic analyses placed these genomes within the uncultivated and largely understudied marine pSL12-like thaumarchaeal clade. The predominant mode of nutrient acquisition appears to be aerobic heterotrophy, evidenced by the presence of respiratory complexes and various organic carbon degradation pathways. Both genomes encoded several pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenases, as well as a form III RuBisCO. Metabolic reconstructions suggest anaplerotic CO2 assimilation mediated by RuBisCO, which may be linked to the central carbon metabolism. We conclude that these genomes represent a hitherto unrecognized evolutionary link between predominantly anaerobic basal thaumarchaeal lineages and mesophilic marine AOA, with important implications for diversification within the phylum Thaumarchaeota.
Collapse
Affiliation(s)
- Linta Reji
- Earth System Science, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
26
|
Abstract
As the only enzyme currently known to reduce dinitrogen (N2) to ammonia (NH3), nitrogenase is of significant interest for bio-inspired catalyst design and for new biotechnologies aiming to produce NH3 from N2. In order to reduce N2, nitrogenase must also hydrolyze at least 16 equivalents of adenosine triphosphate (MgATP), representing the consumption of a significant quantity of energy available to biological systems. Here, we review natural and engineered electron transfer pathways to nitrogenase, including strategies to redirect or redistribute electron flow in vivo towards NH3 production. Further, we also review strategies to artificially reduce nitrogenase in vitro, where MgATP hydrolysis is necessary for turnover, in addition to strategies that are capable of bypassing the requirement of MgATP hydrolysis to achieve MgATP-independent N2 reduction.
Collapse
|
27
|
Marietou A, Lund MB, Marshall IP, Schreiber L, Jørgensen BB. Complete genome sequence of Desulfobacter hydrogenophilus AcRS1. Mar Genomics 2020. [DOI: 10.1016/j.margen.2019.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Current Progress in Nitrogen Fixing Plants and Microbiome Research. PLANTS 2020; 9:plants9010097. [PMID: 31940996 PMCID: PMC7020401 DOI: 10.3390/plants9010097] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 01/10/2023]
Abstract
In agroecosystems, nitrogen is one of the major nutrients limiting plant growth. To meet the increased nitrogen demand in agriculture, synthetic fertilizers have been used extensively in the latter part of the twentieth century, which have led to environmental challenges such as nitrate pollution. Biological nitrogen fixation (BNF) in plants is an essential mechanism for sustainable agricultural production and healthy ecosystem functioning. BNF by legumes and associative, endosymbiotic, and endophytic nitrogen fixation in non-legumes play major roles in reducing the use of synthetic nitrogen fertilizer in agriculture, increased plant nutrient content, and soil health reclamation. This review discusses the process of nitrogen-fixation in plants, nodule formation, the genes involved in plant-rhizobia interaction, and nitrogen-fixing legume and non-legume plants. This review also elaborates on current research efforts involved in transferring nitrogen-fixing mechanisms from legumes to non-legumes, especially to economically important crops such as rice, maize, and wheat at the molecular level and relevant other techniques involving the manipulation of soil microbiome for plant benefits in the non-legume root environment.
Collapse
|
29
|
Ryu MH, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, Garcia-Costas A, Peters JW, Poole PS, Ané JM, Voigt CA. Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol 2019; 5:314-330. [DOI: 10.1038/s41564-019-0631-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
|
30
|
Abstract
Rhizobia are α- and β-proteobacteria that form a symbiotic partnership with legumes, fixing atmospheric dinitrogen to ammonia and providing it to the plant. Oxygen regulation is key in this symbiosis. Fixation is performed by an oxygen-intolerant nitrogenase enzyme but requires respiration to meet its high energy demands. To satisfy these opposing constraints the symbiotic partners cooperate intimately, employing a variety of mechanisms to regulate and respond to oxygen concentration. During symbiosis rhizobia undergo significant changes in gene expression to differentiate into nitrogen-fixing bacteroids. Legumes host these bacteroids in specialized root organs called nodules. These generate a near-anoxic environment using an oxygen diffusion barrier, oxygen-binding leghemoglobin and control of mitochondria localization. Rhizobia sense oxygen using multiple interconnected systems which enable a finely-tuned response to the wide range of oxygen concentrations they experience when transitioning from soil to nodules. The oxygen-sensing FixL-FixJ and hybrid FixL-FxkR two-component systems activate at relatively high oxygen concentration and regulate fixK transcription. FixK activates the fixNOQP and fixGHIS operons producing a high-affinity terminal oxidase required for bacterial respiration in the microaerobic nodule. Additionally or alternatively, some rhizobia regulate expression of these operons by FnrN, an FNR-like oxygen-sensing protein. The final stage of symbiotic establishment is activated by the NifA protein, regulated by oxygen at both the transcriptional and protein level. A cross-species comparison of these systems highlights differences in their roles and interconnections but reveals common regulatory patterns and themes. Future work is needed to establish the complete regulon of these systems and identify other regulatory signals.
Collapse
Affiliation(s)
- Paul J Rutten
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Wang H, Waluk D, Dixon R, Nordlund S, Norén A. Energy shifts induce membrane sequestration of DraG in Rhodospirillum rubrum independent of the ammonium transporters and diazotrophic conditions. FEMS Microbiol Lett 2019; 365:5053809. [PMID: 30010831 PMCID: PMC6067124 DOI: 10.1093/femsle/fny176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/10/2018] [Indexed: 01/15/2023] Open
Abstract
Metabolic regulation of Rhodospirillum rubrum nitrogenase is mediated at the post-translational level by the enzymes DraT and DraG when subjected to changes in nitrogen or energy status. DraT is activated during switch-off, while DraG is inactivated by reversible membrane association. We confirm here that the ammonium transporter, AmtB1, rather than its paralog AmtB2, is required for ammonium induced switch-off. Amongst several substitutions at the N100 position in DraG, only N100K failed to locate to the membrane following ammonium shock, suggesting loss of interaction through charge repulsion. When switch-off was induced by lowering energy levels, either by darkness during photosynthetic growth or oxygen depletion under respiratory conditions, reversible membrane sequestration of DraG was independent of AmtB proteins and occurred even under non-diazotrophic conditions. We propose that under these conditions, changes in redox status or possibly membrane potential induce interactions between DraG and another membrane protein in response to the energy status.
Collapse
Affiliation(s)
- Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedicinska Centrum, Husarg.3, S-75237 Uppsala, Sweden
| | - Dominik Waluk
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Svante Arrhenius v. 16C, Stockholm S-10691, Sweden
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich NR47 UH, UK
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Svante Arrhenius v. 16C, Stockholm S-10691, Sweden
| | - Agneta Norén
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Svante Arrhenius v. 16C, Stockholm S-10691, Sweden
| |
Collapse
|
32
|
Complete Genome Sequence of the Plant Growth-Promoting Bacterium Hartmannibacter diazotrophicus Strain E19 T. Int J Genomics 2019; 2019:7586430. [PMID: 31583244 PMCID: PMC6754898 DOI: 10.1155/2019/7586430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 11/17/2022] Open
Abstract
Strain E19T described as Hartmannibacter diazotrophicus gen. nov. sp. nov. was isolated from the rhizosphere of Plantago winteri from a natural salt meadow in a nature protection area. Strain E19T is a plant growth-promoting rhizobacterium able to colonize the rhizosphere of barley and to promote its growth only under salt stress conditions. To gain insights into the genetic bases of plant growth promotion and its lifestyle at the rhizosphere under salty conditions, we determined the complete genome sequence using two complementary sequencing platforms (Ilumina MiSeq and PacBio RSII). The E19T genome comprises one circular chromosome and one plasmid containing several genes involved in salt adaptation and genes related to plant growth-promoting traits under salt stress. Based on previous experiments, ACC deaminase activity was identified as a main mechanism of E19T to promote plant growth under salt stress. Interestingly, no genes classically reported to encode for ACC deaminase activity are present. In general, the E19T genome provides information to confirm, discover, and better understand many of its previously evaluated traits involved in plant growth promotion under salt stress. Furthermore, the complete E19T genome sequence helps to define its previously reported unclear 16S rRNA gene-based phylogenetic affiliation. Hartmannibacter forms a distinct subcluster with genera Methylobrevis, Pleomorphomonas, Oharaeibacter, and Mongoliimonas subclustered with genera belonging to Rhizobiales.
Collapse
|
33
|
Sazanova AL, Safronova VI, Kuznetsova IG, Karlov DS, Belimov AA, Andronov EE, Chirak ER, Popova JP, Verkhozina AV, Willems A, Tikhonovich IA. Bosea caraganae sp. nov. a new species of slow-growing bacteria isolated from root nodules of the relict species Caragana jubata (Pall.) Poir. originating from Mongolia. Int J Syst Evol Microbiol 2019; 69:2687-2695. [DOI: 10.1099/ijsem.0.003509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Anna L. Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Vera I. Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Irina G. Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Denis S. Karlov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Andrey A. Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
- Kazan Institute of Biochemistry and Biophysics of the Russian Academy of Sciences (KIBB of RAS), 420111, Lobachevsky Str. 2/31, Kazan, Russian Federation
| | - Evgeny E. Andronov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Elizaveta R. Chirak
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Janna P. Popova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
| | - Alla V. Verkhozina
- Siberian Institute of Plant Physiology and Biochemistry (SIPPB), 664033, Lermontova Str. 132, Irkutsk, Russian Federation
| | - Anne Willems
- Ghent University, Department of Biochemistry and Microbiology, Faculty of Sciences, 9000, K.L. Ledeganckstraat 35, Ghent, Belgium
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, Sh. Podbelskogo 3, St. Petersburg, Russian Federation
- Saint Petersburg State University, Department of Genetics and Biotechnology, 199034, Universitetskaya Emb. 7/9, St. Petersburg, Russian Federation
| |
Collapse
|
34
|
Safronova V, Belimov A, Sazanova A, Chirak E, Kuznetsova I, Andronov E, Pinaev A, Tsyganova A, Seliverstova E, Kitaeva A, Tsyganov V, Tikhonovich I. Two Broad Host Range Rhizobial Strains Isolated From Relict Legumes Have Various Complementary Effects on Symbiotic Parameters of Co-inoculated Plants. Front Microbiol 2019; 10:514. [PMID: 30930885 PMCID: PMC6428766 DOI: 10.3389/fmicb.2019.00514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 02/28/2019] [Indexed: 11/23/2022] Open
Abstract
Two bacterial strains Ach-343 and Opo-235 were isolated, respectively from nodules of Miocene-Pliocene relict legumes Astragalus chorinensis Bunge and Oxytropis popoviana Peschkova originated from Buryatia (Baikal Lake region, Russia). For identification of these strains the sequencing of 16S rRNA (rrs) gene was used. Strain Opo-235 belonged to the species Mesorhizobium japonicum, while the strain Ach-343 was identified as M. kowhaii (100 and 99.9% rrs similarity with the type strains MAFF 303099T and ICMP 19512T, respectively). Symbiotic genes of these strains as well as some genes that promote plant growth (acdS, gibberellin- and auxin-synthesis related genes) were searched throughout the whole genome sequences. The sets of plant growth-promoting genes found were almost identical in both strains, whereas the sets of symbiotic genes were different and complemented each other with several nod, nif, and fix genes. Effects of mono- and co-inoculation of Astragalus sericeocanus, Oxytropis caespitosa, Glycyrrhiza uralensis, Medicago sativa, and Trifolium pratense plants with the strains M. kowhaii Ach-343 and M. japonicum Opo-235 expressing fluorescent proteins mCherry (red) and EGFP (green) were studied in the gnotobiotic plant nodulation assay. It was shown that both strains had a wide range of host specificity, including species of different legume genera from two tribes (Galegeae and Trifolieae). The effects of co-microsymbionts on plants depended on the plant species and varied from decrease, no effect, to increase in the number of nodules, nitrogen-fixing activity and plant biomass. One of the reasons for this phenomenon may be the discovered complementarity in co-microsymbionts of symbiotic genes responsible for the specific modification of Nod-factors and nitrogenase activity. Localization and co-localization of the strains in nodules was confirmed by the confocal microscopy. Analysis of histological and ultrastructural organization of A. chorinensis and O. popoviana root nodules was performed. It can be concluded that the strains M. kowhaii Ach-343 and M. japonicum Opo-235 demonstrate lack of high symbiotic specificity that is characteristic for primitive legume-rhizobia systems. Further study of the root nodule bacteria having complementary sets of symbiotic genes will contribute to clarify the evolutionary paths of legume-rhizobia relationships and the mechanisms of effective integration between partners.
Collapse
Affiliation(s)
- Vera Safronova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Elizaveta Chirak
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Irina Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Evgeny Andronov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Alexander Pinaev
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Anna Tsyganova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Elena Seliverstova
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Anna Kitaeva
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Viktor Tsyganov
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology, Saint Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
35
|
Characterization of l-Carnitine Metabolism in Sinorhizobium meliloti. J Bacteriol 2019; 201:JB.00772-18. [PMID: 30670548 DOI: 10.1128/jb.00772-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/15/2019] [Indexed: 11/20/2022] Open
Abstract
l-Carnitine is a trimethylammonium compound mostly known for its contribution to fatty acid transport into mitochondria. In bacteria, it is synthesized from γ-butyrobetaine (GBB) and can be used as a carbon source. l-Carnitine can be formed directly by GBB hydroxylation or synthesized via a biosynthetic route analogous to fatty acid degradation. However, this multistep pathway has not been experimentally characterized. In this work, we identified by gene context analysis a cluster of l-carnitine anabolic genes next to those involved in its catabolism and proceeded to the complete in vitro characterization of l-carnitine biosynthesis and degradation in Sinorhizobium meliloti The five enzymes catalyzing the seven steps that convert GBB to glycine betaine are described. Metabolomic analysis confirmed the multistage synthesis of l-carnitine in GBB-grown cells but also revealed that GBB is synthesized by S. meliloti To our knowledge, this is the first report of aerobic GBB synthesis in bacteria. The conservation of l-carnitine metabolism genes in different bacterial taxonomic classes underscores the role of l-carnitine as a ubiquitous nutrient.IMPORTANCE The experimental characterization of novel metabolic pathways is essential for realizing the value of genome sequences and improving our knowledge of the enzymatic capabilities of the bacterial world. However, 30% to 40% of genes of a typical genome remain unannotated or associated with a putative function. We used enzyme kinetics, liquid chromatography-mass spectroscopy (LC-MS)-based metabolomics, and mutant phenotyping for the characterization of the metabolism of l-carnitine in Sinorhizobium meliloti to provide an accurate annotation of the corresponding genes. The occurrence of conserved gene clusters for carnitine metabolism in soil, plant-associated, and marine bacteria underlines the environmental abundance of carnitine and suggests this molecule might make a significant contribution to ecosystem nitrogen and carbon cycling.
Collapse
|
36
|
Schut GJ, Mohamed-Raseek N, Tokmina-Lukaszewska M, Mulder DW, Nguyen DMN, Lipscomb GL, Hoben JP, Patterson A, Lubner CE, King PW, Peters JW, Bothner B, Miller AF, Adams MWW. The catalytic mechanism of electron-bifurcating electron transfer flavoproteins (ETFs) involves an intermediary complex with NAD<sup/>. J Biol Chem 2019; 294:3271-3283. [PMID: 30567738 PMCID: PMC6398123 DOI: 10.1074/jbc.ra118.005653] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Electron bifurcation plays a key role in anaerobic energy metabolism, but it is a relatively new discovery, and only limited mechanistic information is available on the diverse enzymes that employ it. Herein, we focused on the bifurcating electron transfer flavoprotein (ETF) from the hyperthermophilic archaeon Pyrobaculum aerophilum The EtfABCX enzyme complex couples NADH oxidation to the endergonic reduction of ferredoxin and exergonic reduction of menaquinone. We developed a model for the enzyme structure by using nondenaturing MS, cross-linking, and homology modeling in which EtfA, -B, and -C each contained FAD, whereas EtfX contained two [4Fe-4S] clusters. On the basis of analyses using transient absorption, EPR, and optical titrations with NADH or inorganic reductants with and without NAD+, we propose a catalytic cycle involving formation of an intermediary NAD+-bound complex. A charge transfer signal revealed an intriguing interplay of flavin semiquinones and a protein conformational change that gated electron transfer between the low- and high-potential pathways. We found that despite a common bifurcating flavin site, the proposed EtfABCX catalytic cycle is distinct from that of the genetically unrelated bifurcating NADH-dependent ferredoxin NADP+ oxidoreductase (NfnI). The two enzymes particularly differed in the role of NAD+, the resting and bifurcating-ready states of the enzymes, how electron flow is gated, and the two two-electron cycles constituting the overall four-electron reaction. We conclude that P. aerophilum EtfABCX provides a model catalytic mechanism that builds on and extends previous studies of related bifurcating ETFs and can be applied to the large bifurcating ETF family.
Collapse
Affiliation(s)
- Gerrit J Schut
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | | | | | - David W Mulder
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Diep M N Nguyen
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - Gina L Lipscomb
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229
| | - John P Hoben
- the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Angela Patterson
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Carolyn E Lubner
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Paul W King
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - John W Peters
- the Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164
| | - Brian Bothner
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Anne-Frances Miller
- the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Michael W W Adams
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229,
| |
Collapse
|
37
|
Villagrasa E, Ferrer-Miralles N, Millach L, Obiol A, Creus J, Esteve I, Solé A. Morphological responses to nitrogen stress deficiency of a new heterotrophic isolated strain of Ebro Delta microbial mats. PROTOPLASMA 2019; 256:105-116. [PMID: 29987389 DOI: 10.1007/s00709-018-1263-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Microorganisms living in hypersaline microbial mats frequently form consortia under stressful and changing environmental conditions. In this paper, the heterotrophic strain DE2010 from a microalgae consortium (Scenedesmus sp. DE2009) from Ebro Delta microbial mats has been phenotypically and genotypically characterized and identified. In addition, changes in the morphology and biomass of this bacterium in response to nitrogen deficiency stress have been evaluated by correlative light and electron microscopy (CLEM) combining differential interference contrast (DIC) microscopy and transmission electron microscopy (TEM) and scanning electron microscopy (SEM). These isolated bacteria are chemoorganoheterotrophic, gram-negative, and strictly aerobic bacteria that use a variety of amino acids, organic acids, and carbohydrates as carbon and energy sources, and they grow optimally at 27 °C in a pH range of 5 to 9 and tolerate salinity from 0 to 70‰ NaCl. The DNA-sequencing analysis of the 16S rRNA and nudC and fixH genes and the metabolic characterization highlight that strain DE2010 corresponds to the species Ochrobactrum anthropi. Cells are rod shaped, 1-3 μm in length, and 0.5 μm wide, but under deprived nitrogen conditions, cells are less abundant and become more round, reducing their length and area and, consequently, their biomass. An increase in the number of pleomorphic cells is observed in cultures grown without nitrogen using different optical and electron microscopy techniques. In addition, the amplification of the fixH gene confirms that Ochrobactrum anthropi DE2010 has the capacity to fix nitrogen, overcoming N2-limiting conditions through a nifH-independent mechanism that is still unidentified.
Collapse
Affiliation(s)
- Eduard Villagrasa
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Neus Ferrer-Miralles
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Laia Millach
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Aleix Obiol
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Jordi Creus
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Isabel Esteve
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Antonio Solé
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| |
Collapse
|
38
|
Canniffe DP, Thweatt JL, Gomez Maqueo Chew A, Hunter CN, Bryant DA. A paralog of a bacteriochlorophyll biosynthesis enzyme catalyzes the formation of 1,2-dihydrocarotenoids in green sulfur bacteria. J Biol Chem 2018; 293:15233-15242. [PMID: 30126840 PMCID: PMC6166724 DOI: 10.1074/jbc.ra118.004672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/17/2018] [Indexed: 12/03/2022] Open
Abstract
Chlorobaculum tepidum, a green sulfur bacterium, utilizes chlorobactene as its major carotenoid, and this organism also accumulates a reduced form of this monocyclic pigment, 1′,2′-dihydrochlorobactene. The protein catalyzing this reduction is the last unidentified enzyme in the biosynthetic pathways for all of the green sulfur bacterial pigments used for photosynthesis. The genome of C. tepidum contains two paralogous genes encoding members of the FixC family of flavoproteins: bchP, which has been shown to encode an enzyme of bacteriochlorophyll biosynthesis; and bchO, for which a function has not been assigned. Here we demonstrate that a bchO mutant is unable to synthesize 1′,2′-dihydrochlorobactene, and when bchO is heterologously expressed in a neurosporene-producing mutant of the purple bacterium, Rhodobacter sphaeroides, the encoded protein is able to catalyze the formation of 1,2-dihydroneurosporene, the major carotenoid of the only other organism reported to synthesize 1,2-dihydrocarotenoids, Blastochloris viridis. Identification of this enzyme completes the pathways for the synthesis of photosynthetic pigments in Chlorobiaceae, and accordingly and consistent with its role in carotenoid biosynthesis, we propose to rename the gene cruI. Notably, the absence of cruI in B. viridis indicates that a second 1,2-carotenoid reductase, which is structurally unrelated to CruI (BchO), must exist in nature. The evolution of this carotenoid reductase in green sulfur bacteria is discussed herein.
Collapse
Affiliation(s)
- Daniel P Canniffe
- From the Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom, .,the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Jennifer L Thweatt
- the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - Aline Gomez Maqueo Chew
- the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and
| | - C Neil Hunter
- From the Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Donald A Bryant
- the Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, and .,the Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
39
|
Poudel S, Dunham EC, Lindsay MR, Amenabar MJ, Fones EM, Colman DR, Boyd ES. Origin and Evolution of Flavin-Based Electron Bifurcating Enzymes. Front Microbiol 2018; 9:1762. [PMID: 30123204 PMCID: PMC6085437 DOI: 10.3389/fmicb.2018.01762] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022] Open
Abstract
Twelve evolutionarily unrelated oxidoreductases form enzyme complexes that catalyze the simultaneous coupling of exergonic and endergonic oxidation–reduction reactions to circumvent thermodynamic barriers and minimize free energy loss in a process known as flavin-based electron bifurcation. Common to these 12 bifurcating (Bf) enzymes are protein-bound flavin, the proposed site of bifurcation, and the electron carrier ferredoxin. Despite the documented role of Bf enzymes in balancing the redox state of intracellular electron carriers and in improving the efficiency of cellular metabolism, a comprehensive description of the diversity and evolutionary history of Bf enzymes is lacking. Here, we report the taxonomic distribution, functional diversity, and evolutionary history of Bf enzyme homologs in 4,588 archaeal, bacterial, and eukaryal genomes and 3,136 community metagenomes. Bf homologs were primarily detected in the genomes of anaerobes, including those of sulfate-reducers, acetogens, fermenters, and methanogens. Phylogenetic analyses of Bf enzyme catalytic subunits (oxidoreductases) suggest they were not a property of the Last Universal Common Ancestor of Archaea and Bacteria, which is consistent with the limited and unique taxonomic distributions of enzyme homologs among genomes. Further, phylogenetic analyses of oxidoreductase subunits reveal that non-Bf homologs predate Bf homologs. These observations indicate that multiple independent recruitments of flavoproteins to existing oxidoreductases enabled coupling of numerous new electron Bf reactions. Consistent with the role of these enzymes in the energy metabolism of anaerobes, homologs of Bf enzymes were enriched in metagenomes from subsurface environments relative to those from surface environments. Phylogenetic analyses of homologs from metagenomes reveal that the earliest evolving homologs of most Bf enzymes are from subsurface environments, including fluids from subsurface rock fractures and hydrothermal systems. Collectively, these data suggest strong selective pressures drove the emergence of Bf enzyme complexes via recruitment of flavoproteins that allowed for an increase in the efficiency of cellular metabolism and improvement in energy capture in anaerobes inhabiting a variety of subsurface anoxic habitats where the energy yield of oxidation-reduction reactions is generally low.
Collapse
Affiliation(s)
- Saroj Poudel
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Eric C Dunham
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Maximiliano J Amenabar
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Elizabeth M Fones
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
40
|
Safronova VI, Belimov AA, Sazanova AL, Chirak ER, Verkhozina AV, Kuznetsova IG, Andronov EE, Puhalsky JV, Tikhonovich IA. Taxonomically Different Co-Microsymbionts of a Relict Legume, Oxytropis popoviana, Have Complementary Sets of Symbiotic Genes and Together Increase the Efficiency of Plant Nodulation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:833-841. [PMID: 29498565 DOI: 10.1094/mpmi-01-18-0011-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ten rhizobial strains were isolated from root nodules of a relict legume Oxytropis popoviana Peschkova. For identification of the isolates, sequencing of rrs, the internal transcribed spacer region, and housekeeping genes recA, glnII, and rpoB was used. Nine fast-growing isolates were Mesorhizobium-related; eight strains were identified as M. japonicum and one isolate belonged to M. kowhaii. The only slow-growing isolate was identified as a Bradyrhizobium sp. Two strains, M. japonicum Opo-242 and Bradyrhizobium sp. strain Opo-243, were isolated from the same nodule. Symbiotic genes of these isolates were searched throughout the whole-genome sequences. The common nodABC genes and other symbiotic genes required for plant nodulation and nitrogen fixation were present in the isolate Opo-242. Strain Opo-243 did not contain the principal nod, nif, and fix genes; however, five genes (nodP, nodQ, nifL, nolK, and noeL) affecting the specificity of plant-rhizobia interactions but absent in isolate Opo-242 were detected. Strain Opo-243 could not induce nodules but significantly accelerated the root nodule formation after coinoculation with isolate Opo-242. Thus, we demonstrated that taxonomically different strains of the archaic symbiotic system can be co-microsymbionts infecting the same nodule and promoting the nodulation process due to complementary sets of symbiotic genes.
Collapse
Affiliation(s)
- Vera I Safronova
- 1 All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St. Petersburg, sh. Podbelskogo 3, Russian Federation
| | - Andrey A Belimov
- 1 All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St. Petersburg, sh. Podbelskogo 3, Russian Federation
| | - Anna L Sazanova
- 1 All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St. Petersburg, sh. Podbelskogo 3, Russian Federation
| | - Elizaveta R Chirak
- 1 All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St. Petersburg, sh. Podbelskogo 3, Russian Federation
| | - Alla V Verkhozina
- 2 Siberian Institute of Plant Physiology and Biochemistry (SIPPB), 664033, Irkutsk, P.O.Box 1243, Russian Federation; and
| | - Irina G Kuznetsova
- 1 All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St. Petersburg, sh. Podbelskogo 3, Russian Federation
| | - Evgeny E Andronov
- 1 All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St. Petersburg, sh. Podbelskogo 3, Russian Federation
| | - Jan V Puhalsky
- 1 All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St. Petersburg, sh. Podbelskogo 3, Russian Federation
| | - Igor A Tikhonovich
- 1 All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608, St. Petersburg, sh. Podbelskogo 3, Russian Federation
- 3 Saint Petersburg State University, Department of Genetics and Biotechnology, 199034, St. Petersburg, Universitetskaya Emb. 7/9, Russian Federation
| |
Collapse
|
41
|
Electron Transfer to Nitrogenase in Different Genomic and Metabolic Backgrounds. J Bacteriol 2018; 200:JB.00757-17. [PMID: 29483165 DOI: 10.1128/jb.00757-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/16/2018] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase catalyzes the reduction of dinitrogen (N2) using low-potential electrons from ferredoxin (Fd) or flavodoxin (Fld) through an ATP-dependent process. Since its emergence in an anaerobic chemoautotroph, this oxygen (O2)-sensitive enzyme complex has evolved to operate in a variety of genomic and metabolic backgrounds, including those of aerobes, anaerobes, chemotrophs, and phototrophs. However, whether pathways of electron delivery to nitrogenase are influenced by these different metabolic backgrounds is not well understood. Here, we report the distribution of homologs of Fds, Flds, and Fd-/Fld-reducing enzymes in 359 genomes of putative N2 fixers (diazotrophs). Six distinct lineages of nitrogenase were identified, and their distributions largely corresponded to differences in the host cells' ability to integrate O2 or light into energy metabolism. The predicted pathways of electron transfer to nitrogenase in aerobes, facultative anaerobes, and phototrophs varied from those in anaerobes at the levels of Fds/Flds used to reduce nitrogenase, the enzymes that generate reduced Fds/Flds, and the putative substrates of these enzymes. Proteins that putatively reduce Fd with hydrogen or pyruvate were enriched in anaerobes, while those that reduce Fd with NADH/NADPH were enriched in aerobes, facultative anaerobes, and anoxygenic phototrophs. The energy metabolism of aerobic, facultatively anaerobic, and anoxygenic phototrophic diazotrophs often yields reduced NADH/NADPH that is not sufficiently reduced to drive N2 reduction. At least two mechanisms have been acquired by these taxa to overcome this limitation and to generate electrons with potentials capable of reducing Fd. These include the bifurcation of electrons or the coupling of Fd reduction to reverse ion translocation.IMPORTANCE Nitrogen fixation supplies fixed nitrogen to cells from a variety of genomic and metabolic backgrounds, including those of aerobes, facultative anaerobes, chemotrophs, and phototrophs. Here, using informatics approaches applied to genomic data, we show that pathways of electron transfer to nitrogenase in metabolically diverse diazotrophic taxa have diversified primarily in response to host cells' acquired ability to integrate O2 or light into their energy metabolism. The acquisition of two key enzyme complexes enabled aerobic and facultatively anaerobic phototrophic taxa to generate electrons of sufficiently low potential to reduce nitrogenase: the bifurcation of electrons via the Fix complex or the coupling of Fd reduction to reverse ion translocation via the Rhodobacter nitrogen fixation (Rnf) complex.
Collapse
|
42
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, A New Mechanism of Biological Energy Coupling. Chem Rev 2018; 118:3862-3886. [PMID: 29561602 DOI: 10.1021/acs.chemrev.7b00707] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There are two types of electron bifurcation (EB), either quinone- or flavin-based (QBEB/FBEB), that involve reduction of a quinone or flavin by a two-electron transfer and two reoxidations by a high- and low-potential one-electron acceptor with a reactive semiquinone intermediate. In QBEB, the reduced low-potential acceptor (cytochrome b) is exclusively used to generate ΔμH+. In FBEB, the "energy-rich" low-potential reduced ferredoxin or flavodoxin has dual function. It can give rise to ΔμH+/Na+ via a ferredoxin:NAD reductase (Rnf) or ferredoxin:proton reductase (Ech) or conducts difficult reductions such as CO2 to CO. The QBEB membrane complexes are similar in structure and function and occur in all domains of life. In contrast, FBEB complexes are soluble and occur only in strictly anaerobic bacteria and archaea (FixABCX being an exception). The FBEB complexes constitute a group consisting of four unrelated families that contain (1) electron-transferring flavoproteins (EtfAB), (2) NAD(P)H dehydrogenase (NuoF homologues), (3) heterodisulfide reductase (HdrABC) or HdrABC homologues, and (4) NADH-dependent ferredoxin:NADP reductase (NfnAB). The crystal structures and electron transport of EtfAB-butyryl-CoA dehydrogenase and NfnAB are compared with those of complex III of the respiratory chain (cytochrome bc1), whereby unexpected common features have become apparent.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| | - Rudolf K Thauer
- Fachbereich Biologie , Philipps-Universität , 35032 Marburg , Germany.,Max-Planck-Institut für Terrestrische Mikrobiologie , 35043 Marburg , Germany
| |
Collapse
|
43
|
Buckel W, Thauer RK. Flavin-Based Electron Bifurcation, Ferredoxin, Flavodoxin, and Anaerobic Respiration With Protons (Ech) or NAD + (Rnf) as Electron Acceptors: A Historical Review. Front Microbiol 2018; 9:401. [PMID: 29593673 PMCID: PMC5861303 DOI: 10.3389/fmicb.2018.00401] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 02/21/2018] [Indexed: 12/19/2022] Open
Abstract
Flavin-based electron bifurcation is a newly discovered mechanism, by which a hydride electron pair from NAD(P)H, coenzyme F420H2, H2, or formate is split by flavoproteins into one-electron with a more negative reduction potential and one with a more positive reduction potential than that of the electron pair. Via this mechanism microorganisms generate low- potential electrons for the reduction of ferredoxins (Fd) and flavodoxins (Fld). The first example was described in 2008 when it was found that the butyryl-CoA dehydrogenase-electron-transferring flavoprotein complex (Bcd-EtfAB) of Clostridium kluyveri couples the endergonic reduction of ferredoxin (E0′ = −420 mV) with NADH (−320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (−10 mV) with NADH. The discovery was followed by the finding of an electron-bifurcating Fd- and NAD-dependent [FeFe]-hydrogenase (HydABC) in Thermotoga maritima (2009), Fd-dependent transhydrogenase (NfnAB) in various bacteria and archaea (2010), Fd- and H2-dependent heterodisulfide reductase (MvhADG-HdrABC) in methanogenic archaea (2011), Fd- and NADH-dependent caffeyl-CoA reductase (CarCDE) in Acetobacterium woodii (2013), Fd- and NAD-dependent formate dehydrogenase (HylABC-FdhF2) in Clostridium acidi-urici (2013), Fd- and NADP-dependent [FeFe]-hydrogenase (HytA-E) in Clostridium autoethanogrenum (2013), Fd(?)- and NADH-dependent methylene-tetrahydrofolate reductase (MetFV-HdrABC-MvhD) in Moorella thermoacetica (2014), Fd- and NAD-dependent lactate dehydrogenase (LctBCD) in A. woodii (2015), Fd- and F420H2-dependent heterodisulfide reductase (HdrA2B2C2) in Methanosarcina acetivorans (2017), and Fd- and NADH-dependent ubiquinol reductase (FixABCX) in Azotobacter vinelandii (2017). The electron-bifurcating flavoprotein complexes known to date fall into four groups that have evolved independently, namely those containing EtfAB (CarED, LctCB, FixBA) with bound FAD, a NuoF homolog (HydB, HytB, or HylB) harboring FMN, NfnB with bound FAD, or HdrA harboring FAD. All these flavoproteins are cytoplasmic except for the membrane-associated protein FixABCX. The organisms—in which they have been found—are strictly anaerobic microorganisms except for the aerobe A. vinelandii. The electron-bifurcating complexes are involved in a variety of processes such as butyric acid fermentation, methanogenesis, acetogenesis, anaerobic lactate oxidation, dissimilatory sulfate reduction, anaerobic- dearomatization, nitrogen fixation, and CO2 fixation. They contribute to energy conservation via the energy-converting ferredoxin: NAD+ reductase complex Rnf or the energy-converting ferredoxin-dependent hydrogenase complex Ech. This Review describes how this mechanism was discovered.
Collapse
Affiliation(s)
- Wolfgang Buckel
- Laboratory for Microbiology, Faculty of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Rudolf K Thauer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
44
|
Duan HD, Lubner CE, Tokmina-Lukaszewska M, Gauss GH, Bothner B, King PW, Peters JW, Miller AF. Distinct properties underlie flavin-based electron bifurcation in a novel electron transfer flavoprotein FixAB from Rhodopseudomonas palustris. J Biol Chem 2018; 293:4688-4701. [PMID: 29462786 DOI: 10.1074/jbc.ra117.000707] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/08/2018] [Indexed: 11/06/2022] Open
Abstract
A newly recognized third fundamental mechanism of energy conservation in biology, electron bifurcation, uses free energy from exergonic redox reactions to drive endergonic redox reactions. Flavin-based electron bifurcation furnishes low-potential electrons to demanding chemical reactions, such as reduction of dinitrogen to ammonia. We employed the heterodimeric flavoenzyme FixAB from the diazotrophic bacterium Rhodopseudomonas palustris to elucidate unique properties that underpin flavin-based electron bifurcation. FixAB is distinguished from canonical electron transfer flavoproteins (ETFs) by a second FAD that replaces the AMP of canonical ETF. We exploited near-UV-visible CD spectroscopy to resolve signals from the different flavin sites in FixAB and to interrogate the putative bifurcating FAD. CD aided in assigning the measured reduction midpoint potentials (E° values) to individual flavins, and the E° values tested the accepted model regarding the redox properties required for bifurcation. We found that the higher-E° flavin displays sequential one-electron (1-e-) reductions to anionic semiquinone and then to hydroquinone, consistent with the reactivity seen in canonical ETFs. In contrast, the lower-E° flavin displayed a single two-electron (2-e-) reduction without detectable accumulation of semiquinone, consistent with unstable semiquinone states, as required for bifurcation. This is the first demonstration that a FixAB protein possesses the thermodynamic prerequisites for bifurcating activity, and the separation of distinct optical signatures for the two flavins lays a foundation for mechanistic studies to learn how electron flow can be directed in a protein environment. We propose that a novel optical signal observed at long wavelength may reflect electron delocalization between the two flavins.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | | | | | - George H Gauss
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Paul W King
- National Renewable Energy Laboratory, Golden, Colorado 80401
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99163
| | | |
Collapse
|
45
|
Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family. J Bacteriol 2017; 199:JB.00440-17. [PMID: 28808132 DOI: 10.1128/jb.00440-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/09/2017] [Indexed: 11/20/2022] Open
Abstract
Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes.IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs.
Collapse
|
46
|
Zhang P, Yuly JL, Lubner CE, Mulder DW, King PW, Peters JW, Beratan DN. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry. Acc Chem Res 2017; 50:2410-2417. [PMID: 28876046 DOI: 10.1021/acs.accounts.7b00327] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
How can proteins drive two electrons from a redox active donor onto two acceptors at very different potentials and distances? And how can this transaction be conducted without dissipating very much energy or violating the laws of thermodynamics? Nature appears to have addressed these challenges by coupling thermodynamically uphill and downhill electron transfer reactions, using two-electron donor cofactors that have very different potentials for the removal of the first and second electron. Although electron bifurcation is carried out with near perfection from the standpoint of energy conservation and electron delivery yields, it is a biological energy transduction paradigm that has only come into focus recently. This Account provides an exegesis of the biophysical principles that underpin electron bifurcation. Remarkably, bifurcating electron transfer (ET) proteins typically send one electron uphill and one electron downhill by similar energies, such that the overall reaction is spontaneous, but not profligate. Electron bifurcation in the NADH-dependent reduced ferredoxin: NADP+ oxidoreductase I (Nfn) is explored in detail here. Recent experimental progress in understanding the structure and function of Nfn allows us to dissect its workings in the framework of modern ET theory. The first electron that leaves the two-electron donor flavin (L-FAD) executes a positive free energy "uphill" reaction, and the departure of this electron switches on a second thermodynamically spontaneous ET reaction from the flavin along a second pathway that moves electrons in the opposite direction and at a very different potential. The singly reduced ET products formed from the bifurcating flavin are more than two nanometers distant from each other. In Nfn, the second electron to leave the flavin is much more reducing than the first: the potentials are said to be "crossed." The eventually reduced cofactors, NADH and ferredoxin in the case of Nfn, perform crucial downstream redox processes of their own. We dissect the thermodynamics and kinetics of electron bifurcation in Nfn and find that the key features of electron bifurcation are (1) spatially separated transfer pathways that diverge from a two-electron donor, (2) one thermodynamically uphill and one downhill redox pathway, with a large negative shift in the donor's reduction potential after departure of the first electron, and (3) electron tunneling and activation factors that enable bifurcation, producing a 1:1 partitioning of electrons onto the two pathways. Electron bifurcation is found in the CO2 reducing pathways of methanogenic archaea, in the hydrogen pathways of hydrogenases, in the nitrogen fixing pathway of Fix, and in the mitochondrial charge transfer chain of complex III, cytochrome bc1. While crossed potentials may offer the biological advantage of producing tightly regulated high energy reactive species, neither kinetic nor thermodynamic considerations mandate crossed potentials to generate successful electron bifurcation. Taken together, the theoretical framework established here, focusing on the underpinning electron tunneling barriers and activation free energies, explains the logic of electron bifurcation that enables energy conversion and conservation in Nfn, points toward bioinspired schemes to execute multielectron redox chemistry, and establishes a roadmap for examining novel electron bifurcation networks in nature.
Collapse
Affiliation(s)
| | | | - Carolyn E. Lubner
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - David W. Mulder
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Paul W. King
- National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - John W. Peters
- Institute
of Biological Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - David N. Beratan
- Department
of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
47
|
Ledbetter RN, Garcia Costas AM, Lubner CE, Mulder DW, Tokmina-Lukaszewska M, Artz JH, Patterson A, Magnuson TS, Jay ZJ, Duan HD, Miller J, Plunkett MH, Hoben JP, Barney BM, Carlson RP, Miller AF, Bothner B, King PW, Peters JW, Seefeldt LC. The Electron Bifurcating FixABCX Protein Complex from Azotobacter vinelandii: Generation of Low-Potential Reducing Equivalents for Nitrogenase Catalysis. Biochemistry 2017; 56:4177-4190. [PMID: 28704608 DOI: 10.1021/acs.biochem.7b00389] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The biological reduction of dinitrogen (N2) to ammonia (NH3) by nitrogenase is an energetically demanding reaction that requires low-potential electrons and ATP; however, pathways used to deliver the electrons from central metabolism to the reductants of nitrogenase, ferredoxin or flavodoxin, remain unknown for many diazotrophic microbes. The FixABCX protein complex has been proposed to reduce flavodoxin or ferredoxin using NADH as the electron donor in a process known as electron bifurcation. Herein, the FixABCX complex from Azotobacter vinelandii was purified and demonstrated to catalyze an electron bifurcation reaction: oxidation of NADH (Em = -320 mV) coupled to reduction of flavodoxin semiquinone (Em = -460 mV) and reduction of coenzyme Q (Em = 10 mV). Knocking out fix genes rendered Δrnf A. vinelandii cells unable to fix dinitrogen, confirming that the FixABCX system provides another route for delivery of electrons to nitrogenase. Characterization of the purified FixABCX complex revealed the presence of flavin and iron-sulfur cofactors confirmed by native mass spectrometry, electron paramagnetic resonance spectroscopy, and transient absorption spectroscopy. Transient absorption spectroscopy further established the presence of a short-lived flavin semiquinone radical, suggesting that a thermodynamically unstable flavin semiquinone may participate as an intermediate in the transfer of an electron to flavodoxin. A structural model of FixABCX, generated using chemical cross-linking in conjunction with homology modeling, revealed plausible electron transfer pathways to both high- and low-potential acceptors. Overall, this study informs a mechanism for electron bifurcation, offering insight into a unique method for delivery of low-potential electrons required for energy-intensive biochemical conversions.
Collapse
Affiliation(s)
- Rhesa N Ledbetter
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| | - Amaya M Garcia Costas
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Carolyn E Lubner
- National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - David W Mulder
- National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - Monika Tokmina-Lukaszewska
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Jacob H Artz
- Institute of Biological Chemistry, Washington State University , Pullman, Washington 99163, United States
| | - Angela Patterson
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Timothy S Magnuson
- Department of Biological Sciences, Idaho State University , Pocatello, Idaho 83201, United States
| | - Zackary J Jay
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering and Thermal Biology Institute, Montana State University , Bozeman, Montana 59717, United States
| | - H Diessel Duan
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Jacquelyn Miller
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Mary H Plunkett
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - John P Hoben
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Brett M Barney
- Department of Bioproducts and Biosystems Engineering and Biotechnology Institute, University of Minnesota , St. Paul, Minnesota 55108, United States
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering and Thermal Biology Institute, Montana State University , Bozeman, Montana 59717, United States
| | - Anne-Frances Miller
- Department of Chemistry, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Paul W King
- National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States.,Institute of Biological Chemistry, Washington State University , Pullman, Washington 99163, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University , Logan, Utah 84322, United States
| |
Collapse
|
48
|
Kopat VV, Chirak ER, Kimeklis AK, Safronova VI, Belimov AA, Kabilov MR, Andronov EE, Provorov NA. Evolution of fixNOQP genes encoding cytochrome oxidase with high affinity to oxygen in rhizobia and related bacteria. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417070067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Affiliation(s)
- Maeva Fincker
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| | - Alfred M. Spormann
- Department of Civil and Environmental Engineering and Department of Chemical Engineering, Stanford University, Stanford, California 94305;,
| |
Collapse
|
50
|
Hoben JP, Lubner CE, Ratzloff MW, Schut GJ, Nguyen DMN, Hempel KW, Adams MWW, King PW, Miller AF. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation. J Biol Chem 2017; 292:14039-14049. [PMID: 28615449 DOI: 10.1074/jbc.m117.794214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/11/2017] [Indexed: 11/06/2022] Open
Abstract
Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase I and can be an indication of capacity for electron bifurcation.
Collapse
Affiliation(s)
- John P Hoben
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | | | | | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Karl W Hempel
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Paul W King
- National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Anne-Frances Miller
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506.
| |
Collapse
|