1
|
Whelan R, Cyganek M, Oxley CL, Dickins B, Thomas JC, McVicker G. Genetic and phenotypic analysis of the virulence plasmid of a non-Shigatoxigenic enteroaggregative Escherichia coli O104:H4 outbreak strain. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001550. [PMID: 40146611 PMCID: PMC11950199 DOI: 10.1099/mic.0.001550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Enteroaggregative Escherichia coli O104:H4 is best known for causing a worldwide outbreak in 2011 due to the acquisition of a Shiga-like toxin alongside traditional enteroaggregative virulence traits; however, whilst the 2011 outbreak strain has been well studied, the virulence plasmid of O104:H4 has been subjected to far less experimental analysis. In this paper, we analyse the genetic and phenotypic contribution of the pAA virulence plasmid to a non-Shigatoxigenic O104:H4 strain (1070/13) that was nonetheless implicated in a substantial UK outbreak in 2013. We find that pAA1070 is 99.95% identical across 88% of the plasmid sequence to pTY2 from the 2011 outbreak strain and has a copy number of ~2-3 plasmid molecules per chromosome. We demonstrate that pAA1070 carries a functional CcdAB plasmid addiction system that only marginally impacts its stability under the conditions tested. None of the other toxin-antitoxin systems encoded by the plasmid appear to be functional, though we note a surprisingly high stability of the plasmid in vitro regardless. We demonstrate the expected contribution of pAA1070 to intestinal cell adhesion but find that it does not contribute to biofilm formation. When assessing the impact of pAA1070 on motility, we discovered a region of the O104:H4 chromosome that can be excised, abolishing motility via truncation of the fliR gene. Ultimately, this work demonstrates the importance of mobile genetic elements to enteroaggregative E. coli as a pathovar in its own right and highlights the complexity but necessity of experimentally characterizing genuine outbreak strains rather than laboratory strains in order to understand virulence phenotypes.
Collapse
Affiliation(s)
- Rachel Whelan
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Martyna Cyganek
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Charlotte L. Oxley
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Benjamin Dickins
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Jonathan C. Thomas
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Gareth McVicker
- Department of Biosciences, Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| |
Collapse
|
2
|
Sarpong DD, Murphy ER. RNA Regulated Toxin-Antitoxin Systems in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:661026. [PMID: 34084755 PMCID: PMC8167048 DOI: 10.3389/fcimb.2021.661026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
The dynamic host environment presents a significant hurdle that pathogenic bacteria must overcome to survive and cause diseases. Consequently, these organisms have evolved molecular mechanisms to facilitate adaptation to environmental changes within the infected host. Small RNAs (sRNAs) have been implicated as critical regulators of numerous pathways and systems in pathogenic bacteria, including that of bacterial Toxin-Antitoxin (TA) systems. TA systems are typically composed of two factors, a stable toxin, and a labile antitoxin which functions to protect against the potentially deleterious activity of the associated toxin. Of the six classes of bacterial TA systems characterized to date, the toxin component is always a protein. Type I and Type III TA systems are unique in that the antitoxin in these systems is an RNA molecule, whereas the antitoxin in all other TA systems is a protein. Though hotly debated, the involvement of TA systems in bacterial physiology is recognized by several studies, with the Type II TA system being the most extensively studied to date. This review focuses on RNA-regulated TA systems, highlighting the role of Type I and Type III TA systems in several pathogenic bacteria.
Collapse
Affiliation(s)
- David D. Sarpong
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Erin R. Murphy
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Heritage College of Osteopathic Medicine, Athens, OH, United States
| |
Collapse
|
3
|
Combinatorial strategy towards the efficient expression of lipoxygenase in Escherichia coli at elevated temperatures. Appl Microbiol Biotechnol 2020; 104:10047-10057. [PMID: 33037915 DOI: 10.1007/s00253-020-10941-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/31/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023]
Abstract
Lipoxygenases (LOXs) are a family of non-heme iron oxidoreductases, which catalyze the addition of oxygen into polyunsaturated fatty acids. They have applications in the food and medical industries. In most studies, the soluble expression of LOXs in microbes requires low temperature (< 20 °C), which increases the cost and fermentation time. Achievement of soluble expression in elevated temperatures (> 30 °C) would shorten the production phase, leading to cost-efficient industrial applications. In this study, a combinatorial strategy was used to enhance the expression of soluble LOXs, comprising plasmid stability systems plus optimized carbon source used for auto-induction expression. Plasmid stability analysis suggested that both active partition systems and plasmid-dependent systems were essential for plasmid stability. Among them, the parBCA in it resulted in the enzyme activity increasing by a factor of 2 (498 ± 13 units per gram dry cell weight (U/g-DCW) after 6-h induction). Furthermore, the optimized carbon source, composed of glucose, lactose, and glycerol, could be used as an auto-induction expression medium and effectively improve the total and soluble expression of LOX, which resulted in the soluble expression of LOX increased by 7 times. Finally, the soluble expression of LOX was 11 times higher with a combinatorial strategy that included both optimized plasmid partition and auto-induction medium. Our work provides a broad, generalizable, and combinatorial strategy for the efficient production of heterologous proteins at elevated temperatures in the E. coli system. KEY POINTS : • Soluble expression of lipoxygenase at 30 °C or higher temperatures is industrially beneficial. • Strategies comprise plasmid partition and optimized auto-induction medium with glucose, lactose, and glycerol as carbon source. • Combinatorial strategy further improved LOX soluble expression at 30 °C and 37 °C.
Collapse
|
4
|
McVicker G, Hollingshead S, Pilla G, Tang CM. Maintenance of the virulence plasmid in Shigella flexneri is influenced by Lon and two functional partitioning systems. Mol Microbiol 2019; 111:1355-1366. [PMID: 30767313 PMCID: PMC6519299 DOI: 10.1111/mmi.14225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2019] [Indexed: 11/30/2022]
Abstract
Members of the genus Shigella carry a large plasmid, pINV, which is essential for virulence. In Shigella flexneri, pINV harbours three toxin‐antitoxin (TA) systems, CcdAB, GmvAT and VapBC that promote vertical transmission of the plasmid. Type II TA systems, such as those on pINV, consist of a toxic protein and protein antitoxin. Selective degradation of the antitoxin by proteases leads to the unopposed action of the toxin once genes encoding a TA system have been lost, such as following failure to inherit a plasmid harbouring a TA system. Here, we investigate the role of proteases in the function of the pINV TA systems and demonstrate that Lon, but not ClpP, is required for their activity during plasmid stability. This provides the first evidence that acetyltransferase family TA systems, such as GmvAT, can be regulated by Lon. Interestingly, S. flexneri pINV also harbours two putative partitioning systems, ParAB and StbAB. We show that both systems are functional for plasmid maintenance although their activity is masked by other systems on pINV. Using a model vector based on the pINV replicon, we observe temperature‐dependent differences between the two partitioning systems that contribute to our understanding of the maintenance of virulence in Shigella species.
Collapse
Affiliation(s)
- Gareth McVicker
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sarah Hollingshead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Giulia Pilla
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Christoph M Tang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
5
|
Abstract
Plasmids are extrachromosomal DNA elements that can be found throughout bacteria, as well as in other domains of life. Nonetheless, the evolutionary processes underlying the persistence of plasmids are incompletely understood. Bacterial plasmids may encode genes for traits that are sometimes beneficial to their hosts, such as antimicrobial resistance, virulence, heavy metal tolerance, and the catabolism of unique nutrient sources. In the absence of selection for these traits, however, plasmids generally impose a fitness cost on their hosts. As such, plasmid persistence presents a conundrum: models predict that costly plasmids will be lost over time or that beneficial plasmid genes will be integrated into the host genome. However, laboratory and comparative studies have shown that plasmids can persist for long periods, even in the absence of positive selection. Several hypotheses have been proposed to explain plasmid persistence, including host-plasmid co-adaptation, plasmid hitchhiking, cross-ecotype transfer, and high plasmid transfer rates, but there is no clear evidence that any one model adequately resolves the plasmid paradox.
Collapse
Affiliation(s)
- Amanda C Carroll
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Alex Wong
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.,Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
6
|
The Interplay between Different Stability Systems Contributes to Faithful Segregation: Streptococcus pyogenes pSM19035 as a Model. Microbiol Spectr 2016; 2:PLAS-0007-2013. [PMID: 26104212 DOI: 10.1128/microbiolspec.plas-0007-2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Streptococcus pyogenes pSM19035 low-copy-number θ-replicating plasmid encodes five segregation (seg) loci that contribute to plasmid maintenance. These loci map outside of the minimal replicon. The segA locus comprises β2 recombinase and two six sites, and segC includes segA and also the γ topoisomerase and two ssiA sites. Recombinase β2 plays a role both in maximizing random segregation by resolving plasmid dimers (segA) and in catalyzing inversion between two inversely oriented six sites. segA, in concert with segC, facilitates replication fork pausing at ssiA sites and overcomes the accumulation of "toxic" replication intermediates. The segB1 locus encodes ω, ε, and ζ genes. The short-lived ε2 antitoxin and the long-lived ζ toxin form an inactive ζε2ζ complex. Free ζ toxin halts cell proliferation upon decay of the ε2 antitoxin and enhances survival. If ε2 expression is not recovered, by loss of the plasmid, the toxin raises lethality. The segB2 locus comprises δ and ω genes and six parS sites. Proteins δ2 and ω2, by forming complexes with parS and chromosomal DNA, pair the plasmid copies at the nucleoid, leading to the formation of a dynamic δ2 gradient that separates the plasmids to ensure roughly equal distribution to daughter cells at cell division. The segD locus, which comprises ω2 (or ω2 plus ω22) and parS sites, coordinates expression of genes that control copy number, better-than-random segregation, faithful partition, and antibiotic resistance. The interplay of the seg loci and with the rep locus facilitates almost absolute plasmid stability.
Collapse
|
7
|
Werbowy O, Boratynski R, Dekowska A, Kaczorowski T. Genetic analysis of maintenance of pEC156, a naturally occurring Escherichia coli plasmid that carries genes of the EcoVIII restriction-modification system. Plasmid 2014; 77:39-50. [PMID: 25500017 DOI: 10.1016/j.plasmid.2014.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 11/16/2022]
Abstract
In the present study the role of the mechanisms responsible for maintenance of a natural plasmid pEC156, that carries genes of the EcoVIII restriction-modification system was investigated. Analysis of this plasmid's genetic content revealed the presence of genetic determinants suggesting two such mechanisms. The first of them relies on site specific recombination utilizing the Xer/cer molecular machinery, while the second involves a restriction-modification system as an addiction module. Our analysis indicated that three factors affect the maintenance of pEC156: (i) a cis-acting cer site involved in resolution of plasmid multimers, (ii) a gene coding for EcoVIII endonuclease, and (iii) plasmid copy number control. The lowest stability was observed with pEC156 derivatives deprived of the cer site. Decreased stability of pEC156 derivatives was also observed in E.coli strains deficient in genes coding for proteins involved in plasmid multimer resolution (XerC, XerD, ArgR and PepA). A similar effect, but to a much lesser extent was observed for the pEC156 derivative without a functional gene coding for EcoVIII endonuclease. Our results indicate that the presence of the cer site is more important for pEC156 stable maintenance than the presence of a functional gene coding for EcoVIII endonuclease. In our work we also tested maintenance of pEC156 possessing a ColE1-type replicon in bacteria belonging to Enterobacteriaceae family. We have found that pEC156 was most stably maintained in Enterobacter cloacae and Klebsiella oxytoca representing coli-type enterobacteria. We have found that in all enterobacteria tested pEC156 derivatives deficient in the cer site were significantly less stably maintained than cer(+) variants.
Collapse
Affiliation(s)
- Olesia Werbowy
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Robert Boratynski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Agnieszka Dekowska
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| |
Collapse
|
8
|
Cooper TF, Paixão T, Heinemann JA. Within-host competition selects for plasmid-encoded toxin-antitoxin systems. Proc Biol Sci 2010; 277:3149-55. [PMID: 20504809 DOI: 10.1098/rspb.2010.0831] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Toxin-antitoxin (TA) systems are commonly found on bacterial plasmids. The antitoxin inhibits toxin activity unless the system is lost from the cell. Then the shorter lived antitoxin degrades and the cell becomes susceptible to the toxin. Selection for plasmid-encoded TA systems was initially thought to result from their reducing the number of plasmid-free cells arising during growth in monoculture. However, modelling and experiments have shown that this mechanism can only explain the success of plasmid TA systems under a restricted set of conditions. Previously, we have proposed and tested an alternative model explaining the success of plasmid TA systems as a consequence of competition occurring between plasmids during co-infection of bacterial hosts. Here, we test a further prediction of this model, that competition between plasmids will lead to the biased accumulation of TA systems on plasmids relative to chromosomes. Transposon-encoded TA systems were added to populations of plasmid-containing cells, such that TA systems could insert into either plasmids or chromosomes. These populations were enriched for transposon-containing cells and then incubated in environments that did, or did not, allow effective within-host plasmid competition to occur. Changes in the ratio of plasmid- to chromosome-encoded TA systems were monitored. In agreement with our model, we found that plasmid-encoded TA systems had a competitive advantage, but only when host cells were sensitive to the effect of TA systems. This result demonstrates that within-host competition between plasmids can select for TA systems.
Collapse
Affiliation(s)
- Tim F Cooper
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | | |
Collapse
|
9
|
Plasmid pSM19035, a model to study stable maintenance in Firmicutes. Plasmid 2010; 64:1-17. [PMID: 20403380 DOI: 10.1016/j.plasmid.2010.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 04/09/2010] [Accepted: 04/13/2010] [Indexed: 12/15/2022]
Abstract
pSM19035 is a low-copy-number theta-replicating plasmid, which belongs to the Inc18 family. Plasmids of this family, which show a modular organization, are functional in evolutionarily diverse bacterial species of the Firmicutes Phylum. This review summarizes our understanding, accumulated during the last 20 years, on the genetics, biochemistry, cytology and physiology of the five pSM19035 segregation (seg) loci, which map outside of the minimal replicon. The segA locus plays a role both in maximizing plasmid random segregation, and in avoiding replication fork collapses in those plasmids with long inverted repeated regions. The segB1 locus, which acts as the ultimate determinant of plasmid maintenance, encodes a short-lived epsilon(2) antitoxin protein and a long-lived zeta toxin protein, which form a complex that neutralizes zeta toxicity. The cells that do not receive a copy of the plasmid halt their proliferation upon decay of the epsilon(2) antitoxin. The segB2 locus, which encodes two trans-acting, ParA- and ParB-like proteins and six cis-acting parS centromeres, actively ensures equal or roughly equal distribution of plasmid copies to daughter cells. The segC locus includes functions that promote the shift from the use of DNA polymerase I to the replicase (PolC-PolE DNA polymerases). The segD locus, which encodes a trans-acting transcriptional repressor, omega(2), and six cis-acting cognate sites, coordinates the expression of genes that control copy number, better-than-random segregation and partition, and assures the proper balance of these different functions. Working in concert the five different loci achieve almost absolute plasmid maintenance with a minimal growth penalty.
Collapse
|
10
|
Sletvold H, Johnsen PJ, Hamre I, Simonsen GS, Sundsfjord A, Nielsen KM. Complete sequence of Enterococcus faecium pVEF3 and the detection of an omega-epsilon-zeta toxin-antitoxin module and an ABC transporter. Plasmid 2008; 60:75-85. [PMID: 18511120 DOI: 10.1016/j.plasmid.2008.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 04/11/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
Abstract
Glycopeptide resistant Enterococcus faecium (GREF) persists on Norwegian poultry farms despite the ban on the growth promoter avoparcin. The biological basis for long-term persistence of avoparcin resistance is not fully understood. This study presents the complete DNA sequence of the E. faecium R-plasmid pVEF3 and functional studies of some plasmid-encoded traits (a toxin-antitoxin (TA) system and an ABC transporter) that may be of importance for plasmid persistence. The pVEF3 (63.1 kbp), isolated from an E. faecium strain of poultry origin sampled in Norway in 1999, has 71 coding sequences including the vanA avoparcin/vancomycin resistance encoding gene cluster. pVEF3 encodes the TA system omega-epsilon-zeta, and plasmid stability tests and transcription analysis show that omega-epsilon-zeta is functional in Enterococcus faecalis OGIX, although with decreasing effect over time. The predicted ABC transporter was not found to confer reduced susceptibility to any of the 28 substances tested. The TA system identified in the pVEF-type plasmids may contribute to vanA plasmid persistence on Norwegian poultry farms. However, size and compositional heterogeneity among E. faecium vanA plasmids suggest that additional plasmid maintenance systems in combination with host specific factors and frequent horizontal gene transfer and rearrangement causes the observed plasmid composition and distribution patterns.
Collapse
Affiliation(s)
- H Sletvold
- Department of Pharmacy, Faculty of Medicine, University of Tromsø, 9037 Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
11
|
Mattison K, Wilbur JS, So M, Brennan RG. Structure of FitAB from Neisseria gonorrhoeae Bound to DNA Reveals a Tetramer of Toxin-Antitoxin Heterodimers Containing Pin Domains and Ribbon-Helix-Helix Motifs. J Biol Chem 2006; 281:37942-51. [PMID: 16982615 DOI: 10.1074/jbc.m605198200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neisseria gonorrhoeae is a sexually transmitted pathogen that initiates infections in humans by adhering to the mucosal epithelium of the urogenital tract. The bacterium then enters the apical region of the cell and traffics across the cell to exit into the subepithelial matrix. Mutations in the fast intracellular trafficking (fitAB) locus cause the bacteria to transit a polarized epithelial monolayer more quickly than the wild-type parent and to replicate within cells at an accelerated rate. Here, we describe the crystal structure of the toxin-antitoxin heterodimer, FitAB, bound to a high affinity 36-bp DNA fragment from the fitAB promoter. FitA, the antitoxin, binds DNA through its ribbon-helix-helix motif and is tethered to FitB, the toxin, to form a heterodimer by the insertion of a four turn alpha-helix into an extensive FitB hydrophobic pocket. FitB is composed of a PIN (PilT N terminus) domain, with a central, twisted, 5-stranded parallel beta-sheet that is open on one side and flanked by five alpha-helices. FitB in the context of the FitAB complex does not display nuclease activity against tested PIN substrates. The FitAB complex points to the mechanism by which antitoxins with RHH motifs can block the activity of toxins with PIN domains. Interactions between two FitB molecules result in the formation of a tetramer of FitAB heterodimers, which binds to the 36-bp DNA fragment and provides an explanation for how FitB enhances the DNA binding affinity of FitA.
Collapse
Affiliation(s)
- Kirsten Mattison
- Department of Biochemistry, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
12
|
Dmowski M, Sitkiewicz I, Ceglowski P. Characterization of a novel partition system encoded by the delta and omega genes from the streptococcal plasmid pSM19035. J Bacteriol 2006; 188:4362-72. [PMID: 16740943 PMCID: PMC1482978 DOI: 10.1128/jb.01922-05] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High segregational stability of the streptococcal plasmid pSM19035 is achieved by the concerted action of systems involved in plasmid copy number control, multimer resolution, and postsegregational killing. In this study, we demonstrate the role of two genes, delta and omega, in plasmid stabilization by a partition mechanism. We show that these two genes can stabilize the native pSM19035 replicon as well as other theta- and sigma-type plasmids in Bacillus subtilis. In contrast to other known partition systems, in this case the two genes are transcribed separately; however, they are coregulated by the product of the parB-like gene omega. Analysis of mutants of the parA-like gene delta showed that the Walker A ATPase motif is necessary for plasmid stabilization. The ParB-like product of the omega gene binds to three regions containing repeated WATCACW heptamers, localized in the copS (regulation of plasmid copy number), delta, and omega promoter regions. We demonstrate that all three of these regions can cause partition-mediated incompatibility. Moreover, our data suggest that each of these could play the role of a centromere-like sequence. We conclude that delta and omega constitute a novel type of plasmid stabilization system.
Collapse
Affiliation(s)
- Michal Dmowski
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawiskiego 5A, 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
13
|
Froehlich B, Parkhill J, Sanders M, Quail MA, Scott JR. The pCoo plasmid of enterotoxigenic Escherichia coli is a mosaic cointegrate. J Bacteriol 2005; 187:6509-16. [PMID: 16159784 PMCID: PMC1236633 DOI: 10.1128/jb.187.18.6509-6516.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CS1 is the prototype of a class of pili of enterotoxigenic Escherichia coli (ETEC) associated with diarrheal disease in humans. The genes encoding this pilus are carried on a large plasmid, pCoo. We report the sequence of the complete 98,396-bp plasmid. Like many other virulence plasmids, pCoo is a mosaic consisting of regions derived from multiple sources. Complete and fragmented insertion sequences (IS) make up 24% of the total DNA and are scattered throughout the plasmid. The pCoo DNA between these IS elements has a wide range of G+C content (35 to 57%), suggesting that these regions have different ancestries. We find that the pCoo plasmid is a cointegrate of two functional replicons, related to R64 and R100, which are joined at a 1,953-bp direct repeat of IS100. Recombination between these repeats in the cointegrate generates the two smaller replicons which coexist with the cointegrate in the culture. Both of the smaller replicons have plasmid stability genes as well as genes that may be important in pathogenesis. Examination by PCR of 17 other unrelated CS1 ETEC strains with a variety of serotypes demonstrated that all contained at least parts of both replicons of pCoo and that strains of the O6 genotype appear to contain a cointegrate very similar to pCoo. The results suggest that this family of CS1-encoding plasmids is evolving rapidly.
Collapse
Affiliation(s)
- Barbara Froehlich
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
14
|
Sayeed S, Brendler T, Davis M, Reaves L, Austin S. Surprising dependence on postsegregational killing of host cells for maintenance of the large virulence plasmid of Shigella flexneri. J Bacteriol 2005; 187:2768-73. [PMID: 15805523 PMCID: PMC1070380 DOI: 10.1128/jb.187.8.2768-2773.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Low-copy-number plasmids all encode multiple systems to ensure their propagation, including replication, partition (active segregation), and postsegregational killing (PSK) systems. PSK systems kill those rare cells that lose the plasmid due to replication or segregation errors. PSK systems should not be used as the principle means of maintaining the plasmid. The metabolic cost of killing the many cured cells that would arise from random plasmid segregation is far too high. Here we describe an interesting exception to this rule. Maintenance of the large virulence plasmid of Shigella flexneri is highly dependent on one of its PSK systems, mvp, at 37 degrees C, the temperature experienced during pathogenesis. At 37 degrees C, the plasmid is very unstable and mvp efficiently kills the resulting cured bacterial cells. This imposes a major growth disadvantage on the virulent bacterial population. The systems that normally ensure accurate plasmid replication and segregation are attenuated or overridden at 37 degrees C. At 30 degrees C, a temperature encountered by Shigella in the outside environment, the maintenance systems function normally and the plasmid is no longer dependent on mvp. We discuss why the virulent pathogen tolerates this self-destructive method of propagation at the temperature of infection.
Collapse
Affiliation(s)
- Sameera Sayeed
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute--Frederick, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|