1
|
Guérin M, Vandevenne M, Brans A, Matagne A, Marquant R, Prost E, Octave S, Avalle B, Maffucci I, Padiolleau-Lefèvre S. Production, purification, and quality assessment of borrelial proteins CspZ from Borrelia burgdorferi and FhbA from Borrelia hermsii. Appl Microbiol Biotechnol 2024; 108:425. [PMID: 39042328 PMCID: PMC11266248 DOI: 10.1007/s00253-024-13195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 07/24/2024]
Abstract
Borrelia, spirochetes transmitted by ticks, are the etiological agents of numerous multisystemic diseases, such as Lyme borreliosis (LB) and tick-borne relapsing fever (TBRF). This study focuses on two surface proteins from two Borrelia subspecies involved in these diseases: CspZ, expressed by Borrelia burgdorferi sensu stricto (also named BbCRASP-2 for complement regulator-acquiring surface protein 2), and the factor H binding A (FhbA), expressed by Borrelia hermsii. Numerous subspecies of Borrelia, including these latter, are able to evade the immune defenses of a variety of potential vertebrate hosts in a number of ways. In this context, previous data suggested that both surface proteins play a role in the immune evasion of both Borrelia subspecies by interacting with key regulators of the alternative pathway of the human complement system, factor H (FH) and FH-like protein 1 (FHL-1). The recombinant proteins, CspZ and FhbA, were expressed in Escherichia coli and purified by one-step metal-affinity chromatography, with yields of 15 and 20 mg or pure protein for 1 L of cultured bacteria, respectively. The purity was evaluated by SDS-PAGE and HPLC and is close to about 95%. The mass of CspZ and FhbA was checked by mass spectrometry (MS). Proper folding of CspZ and FhbA was confirmed by circular dichroism (CD), and their biological activity, namely their interaction with purified FH from human serum (recombinant FH15-20 and recombinant FHL-1), was characterized by SPR. Such a study provides the basis for the biochemical characterization of the studied proteins and their biomolecular interactions which is a necessary prerequisite for the development of new approaches to improve the current diagnosis of LB and TBRF. KEY POINTS: • DLS, CD, SEC-MALS, NMR, HPLC, and MS are tools for protein quality assessment • Borrelia spp. possesses immune evasion mechanisms, including human host complement • CspZ and FhbA interact with high affinity (pM to nM) to human FH and rFHL-1.
Collapse
Affiliation(s)
- Mickaël Guérin
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Marylène Vandevenne
- Robotein®, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Sart-Tilman, Liège, 4000, Belgium
- Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Liège, Sart- Tilman), 4000, Belgium
| | - Alain Brans
- Protein Factory, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Sart-Tilman, Liège, 4000, Belgium
- Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Liège, Sart- Tilman), 4000, Belgium
| | - André Matagne
- Laboratory of Enzymology and Protein Folding, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Sart-Tilman, Liège, 4000, Belgium
- Centre for Protein Engineering, InBioS Research Unit, University of Liège, Building B6, Quartier Agora, Allée du 6 Août, 13, Liège, Sart- Tilman), 4000, Belgium
| | - Rodrigue Marquant
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Elise Prost
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Stéphane Octave
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Bérangère Avalle
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Irene Maffucci
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France
| | - Séverine Padiolleau-Lefèvre
- Unité de Génie Enzymatique et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, Compiègne, 60203, France.
| |
Collapse
|
2
|
Cramer NA, Socarras KM, Earl J, Ehrlich GD, Marconi RT. Borreliella burgdorferi factor H-binding proteins are not required for serum resistance and infection in mammals. Infect Immun 2024; 92:e0052923. [PMID: 38289123 PMCID: PMC10929407 DOI: 10.1128/iai.00529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 03/13/2024] Open
Abstract
The causative agent of Lyme disease (LD), Borreliella burgdorferi, binds factor H (FH) and other complement regulatory proteins to its surface. B. burgdorferi B31 (type strain) encodes five FH-binding proteins (FHBPs): CspZ, CspA, and the OspE paralogs OspEBBN38, OspEBBL39, and OspEBBP38. This study assessed potential correlations between the production of individual FHBPs, FH-binding ability, and serum resistance using a panel of infectious B. burgdorferi clonal populations recovered from dogs. FHBP production was assessed in cultivated spirochetes and by antibody responses in naturally infected humans, dogs, and eastern coyotes (wild canids). FH binding specificity and sensitivity to dog and human serum were also assessed and compared. No correlation was observed between the production of individual FHBPs and FH binding with serum resistance, and CspA was determined to not be produced in animals. Notably, one or more clones isolated from dogs lacked CspZ or the OspE proteins (a finding confirmed by genome sequence determination) and did not bind FH derived from canines. The data presented do not support a correlation between FH binding and the production of individual FHBPs with serum resistance and infectivity. In addition, the limited number and polymorphic nature of cp32s in B. burgdorferi clone DRI85A that were identified through genome sequencing suggest no strict requirement for a defined set of these replicons for infectivity. This study reveals that the immune evasion mechanisms employed by B. burgdorferi are diverse, complex, and yet to be fully defined.
Collapse
Affiliation(s)
- Nicholas A. Cramer
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Kalya M. Socarras
- Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Joshua Earl
- Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Garth D. Ehrlich
- Department of Microbiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| |
Collapse
|
3
|
Roy S, Booth CE, Powell-Pierce AD, Schulz AM, Skare JT, Garcia BL. Conformational dynamics of complement protease C1r inhibitor proteins from Lyme disease- and relapsing fever-causing spirochetes. J Biol Chem 2023; 299:104972. [PMID: 37380082 PMCID: PMC10413161 DOI: 10.1016/j.jbc.2023.104972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Borrelial pathogens are vector-borne etiological agents known to cause Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind components of the human complement system to evade host immunity. One borrelial lipoprotein, BBK32, protects the Lyme disease spirochete from complement-mediated attack via an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical complement pathway, C1r. In addition, the B. miyamotoi BBK32 orthologs FbpA and FbpB also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever-causing spirochetes, remains unknown. Here, we report the crystal structure of the C-terminal domain of Borrelia hermsii FbpC to a limiting resolution of 1.5 Å. We used surface plasmon resonance and assays of complement function to demonstrate that FbpC retains potent BBK32-like anticomplement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. Taken together, these results advance our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveal a surprising plasticity in the structures of borrelial C1r inhibitors.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Charles E Booth
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Alexandra D Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas, USA
| | - Anna M Schulz
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jon T Skare
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas, USA.
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
4
|
Roy S, Booth CE, Powell-Pierce AD, Schulz AM, Skare JT, Garcia BL. "Conformational dynamics of C1r inhibitor proteins from Lyme disease and relapsing fever spirochetes". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530473. [PMID: 36909632 PMCID: PMC10002728 DOI: 10.1101/2023.03.01.530473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Borrelial pathogens are vector-borne etiological agents of Lyme disease, relapsing fever, and Borrelia miyamotoi disease. These spirochetes each encode several surface-localized lipoproteins that bind to components of the human complement system. BBK32 is an example of a borrelial lipoprotein that protects the Lyme disease spirochete from complement-mediated attack. The complement inhibitory activity of BBK32 arises from an alpha helical C-terminal domain that interacts directly with the initiating protease of the classical pathway, C1r. Borrelia miyamotoi spirochetes encode BBK32 orthologs termed FbpA and FbpB, and these proteins also inhibit C1r, albeit via distinct recognition mechanisms. The C1r-inhibitory activities of a third ortholog termed FbpC, which is found exclusively in relapsing fever spirochetes, remains unknown. Here we report the crystal structure of the C-terminal domain of B. hermsii FbpC to a limiting resolution of 1.5 Å. Surface plasmon resonance studies and assays of complement function demonstrate that FbpC retains potent BBK32-like anti-complement activities. Based on the structure of FbpC, we hypothesized that conformational dynamics of the complement inhibitory domains of borrelial C1r inhibitors may differ. To test this, we utilized the crystal structures of the C-terminal domains of BBK32, FbpA, FbpB, and FbpC to carry out 1 µs molecular dynamics simulations, which revealed borrelial C1r inhibitors adopt energetically favored open and closed states defined by two functionally critical regions. This study advances our understanding of how protein dynamics contribute to the function of bacterial immune evasion proteins and reveals a surprising plasticity in the structures of borrelial C1r inhibitors.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Charles E. Booth
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Alexandra D. Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Anna M. Schulz
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Jon T. Skare
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Brandon L. Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| |
Collapse
|
5
|
Kogan K, Haapasalo K, Kotila T, Moore R, Lappalainen P, Goldman A, Meri T. Mechanism of Borrelia immune evasion by FhbA-related proteins. PLoS Pathog 2022; 18:e1010338. [PMID: 35303742 PMCID: PMC8967061 DOI: 10.1371/journal.ppat.1010338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/30/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Immune evasion facilitates survival of Borrelia, leading to infections like relapsing fever and Lyme disease. Important mechanism for complement evasion is acquisition of the main host complement inhibitor, factor H (FH). By determining the 2.2 Å crystal structure of Factor H binding protein A (FhbA) from Borrelia hermsii in complex with FH domains 19–20, combined with extensive mutagenesis, we identified the structural mechanism by which B. hermsii utilizes FhbA in immune evasion. Moreover, structure-guided sequence database analysis identified a new family of FhbA-related immune evasion molecules from Lyme disease and relapsing fever Borrelia. Conserved FH-binding mechanism within the FhbA-family was verified by analysis of a novel FH-binding protein from B. duttonii. By sequence analysis, we were able to group FH-binding proteins of Borrelia into four distinct phyletic types and identified novel putative FH-binding proteins. The conserved FH-binding mechanism of the FhbA-related proteins could aid in developing new approaches to inhibit virulence and complement resistance in Borrelia. Relapsing fever and Lyme Disease are infectious diseases caused by borrelia bacteria. Relapsing fever occurs sporadically worldwide, whereas distribution of Lyme Disease is restricted to the Northern Hemisphere. Both infections are transmitted to humans by blood eating ticks or lice. These infections are often difficult to diagnose due to nonspecific symptoms. To be able to cause infection, borrelia must circumvent the human immune responses. Here we describe a mechanism, how borrelia bacteria protect themselves in the human host by utilizing host proteins. By using X-ray crystallography, we solved the structure of an outer membrane protein FhbA from a relapsing fever causing borreliae, Borrelia hermsii, in complex with human complement regulator factor H. FhbA has a unique alpha-helical fold that has not been reported earlier. The structure of the complex revealed how FhbA binds factor H in a very specific manner. Factor H bound to FhbA on the surface of borrelia protects bacteria from the complement system and lysis. Based on the structure, we performed structure-guided sequence database analysis, which suggests that similar proteins are present in all relapsing fever causing borrelia and possibly in some Lyme disease agents.
Collapse
Affiliation(s)
- Konstantin Kogan
- HiLife Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Tommi Kotila
- HiLife Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Robin Moore
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pekka Lappalainen
- HiLife Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Adrian Goldman
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Astbury Center for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Taru Meri
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
6
|
Abstract
The Borrelia spp. are tick-borne pathogenic spirochetes that include the agents of Lyme disease and relapsing fever. As part of their life cycle, the spirochetes traffic between the tick vector and the vertebrate host, which requires significant physiological changes and remodeling of their outer membranes and proteome. This crucial proteome resculpting is carried out by a diverse set of proteases, adaptor proteins, and related chaperones. Despite its small genome, Borrelia burgdorferi has dedicated a large percentage of its genome to proteolysis, including a full complement of ATP-dependent proteases. Energy-driven proteolysis appears to be an important physiological feature of this dual-life-cycle bacterium. The proteolytic arsenal of Borrelia is strategically deployed for disposal of proteins no longer required as they move from one stage to another or are transferred from one host to another. Likewise, the Borrelia spp. are systemic organisms that need to break down and move through host tissues and barriers, and so their unique proteolytic resources, both endogenous and borrowed, make movement more feasible. Both the Lyme disease and relapsing fever Borrelia spp. bind plasminogen as well as numerous components of the mammalian plasminogen-activating system. This recruitment capacity endows the spirochetes with a borrowed proteolytic competency that can lead to increased invasiveness.
Collapse
|
7
|
Moore SR, Menon SS, Cortes C, Ferreira VP. Hijacking Factor H for Complement Immune Evasion. Front Immunol 2021; 12:602277. [PMID: 33717083 PMCID: PMC7947212 DOI: 10.3389/fimmu.2021.602277] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The complement system is an essential player in innate and adaptive immunity. It consists of three pathways (alternative, classical, and lectin) that initiate either spontaneously (alternative) or in response to danger (all pathways). Complement leads to numerous outcomes detrimental to invaders, including direct killing by formation of the pore-forming membrane attack complex, recruitment of immune cells to sites of invasion, facilitation of phagocytosis, and enhancement of cellular immune responses. Pathogens must overcome the complement system to survive in the host. A common strategy used by pathogens to evade complement is hijacking host complement regulators. Complement regulators prevent attack of host cells and include a collection of membrane-bound and fluid phase proteins. Factor H (FH), a fluid phase complement regulatory protein, controls the alternative pathway (AP) both in the fluid phase of the human body and on cell surfaces. In order to prevent complement activation and amplification on host cells and tissues, FH recognizes host cell-specific polyanionic markers in combination with complement C3 fragments. FH suppresses AP complement-mediated attack by accelerating decay of convertases and by helping to inactivate C3 fragments on host cells. Pathogens, most of which do not have polyanionic markers, are not recognized by FH. Numerous pathogens, including certain bacteria, viruses, protozoa, helminths, and fungi, can recruit FH to protect themselves against host-mediated complement attack, using either specific receptors and/or molecular mimicry to appear more like a host cell. This review will explore pathogen complement evasion mechanisms involving FH recruitment with an emphasis on: (a) characterizing the structural properties and expression patterns of pathogen FH binding proteins, as well as other strategies used by pathogens to capture FH; (b) classifying domains of FH important in pathogen interaction; and (c) discussing existing and potential treatment strategies that target FH interactions with pathogens. Overall, many pathogens use FH to avoid complement attack and appreciating the commonalities across these diverse microorganisms deepens the understanding of complement in microbiology.
Collapse
Affiliation(s)
- Sara R Moore
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
8
|
Abstract
Relapsing fever (RF) is caused by several species of Borrelia; all, except two species, are transmitted to humans by soft (argasid) ticks. The species B. recurrentis is transmitted from one human to another by the body louse, while B. miyamotoi is vectored by hard-bodied ixodid tick species. RF Borrelia have several pathogenic features that facilitate invasion and dissemination in the infected host. In this article we discuss the dynamics of vector acquisition and subsequent transmission of RF Borrelia to their vertebrate hosts. We also review taxonomic challenges for RF Borrelia as new species have been isolated throughout the globe. Moreover, aspects of pathogenesis including symptomology, neurotropism, erythrocyte and platelet adhesion are discussed. We expound on RF Borrelia evasion strategies for innate and adaptive immunity, focusing on the most fundamental pathogenetic attributes, multiphasic antigenic variation. Lastly, we review new and emerging species of RF Borrelia and discuss future directions for this global disease.
Collapse
Affiliation(s)
- Job Lopez
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston TX, USA
| | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Amsterdam Medical centers, location Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sven Bergström
- Department of Molecular Biology, Umeå Center for Microbial Research, Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
9
|
Röttgerding F, Kraiczy P. Immune Evasion Strategies of Relapsing Fever Spirochetes. Front Immunol 2020; 11:1560. [PMID: 32793216 PMCID: PMC7390862 DOI: 10.3389/fimmu.2020.01560] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
Relapsing fever (RF) is claimed a neglected arthropod-borne disease caused by a number of diverse human pathogenic Borrelia (B.) species. These RF borreliae are separated into the groups of tick-transmitted species including B. duttonii, B. hermsii, B. parkeri, B. turicatae, B. hispanica, B. persica, B. caucasica, and B. myiamotoi, and the louse-borne Borrelia species B. recurrentis. As typical blood-borne pathogens achieving high cell concentrations in human blood, RF borreliae (RFB) must outwit innate immunity, in particular complement as the first line of defense. One prominent strategy developed by RFB to evade innate immunity involves inactivation of complement by recruiting distinct complement regulatory proteins, e.g., C1 esterase inhibitor (C1-INH), C4b-binding protein (C4BP), factor H (FH), FH-like protein-1 (FHL-1), and factor H-related proteins FHR-1 and FHR-2, or binding of individual complement components and plasminogen, respectively. A number of multi-functional, complement and plasminogen-binding molecules from distinct Borrelia species have previously been identified and characterized, exhibiting considerable heterogeneity in their sequences, structures, gene localization, and their capacity to bind host-derived proteins. In addition, RFB possess a unique system of antigenic variation, allowing them to change the composition of surface-exposed variable major proteins, thus evading the acquired immune response of the human host. This review focuses on the current knowledge of the immune evasion strategies by RFB and highlights the role of complement-interfering and infection-associated molecules for the pathogenesis of RFB.
Collapse
Affiliation(s)
- Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
10
|
A soft tick Ornithodoros moubata salivary protein OmCI is a potent inhibitor to prevent avian complement activation. Ticks Tick Borne Dis 2019; 11:101354. [PMID: 31866440 DOI: 10.1016/j.ttbdis.2019.101354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/15/2019] [Accepted: 12/02/2019] [Indexed: 01/15/2023]
Abstract
Complement is a key first line innate host defense system in the blood of vertebrates. Upon activation, this powerful defense mechanism can elicit inflammatory responses, lyse non-self-cells, or mark them for opsonophagocytic removal. Blood-feeding arthropods thus require the ability to block host complement activation in the bloodmeal to prevent undesired cell or tissue damage during feeding. The soft tick Ornithodoros moubata produces a complement inhibitory protein, OmCI. This protein binds to a mammalian complement protein C5 and blocks further activation of complement cascades, which results in the prevention of complement-mediated bacterial killing through membrane attack complex. Interestingly, the amino acids involved in OmCI binding are highly conserved among mammalian and avian C5, but the ability of this protein to inhibit the complement from birds remains unclear. Here we demonstrated that OmCI is capable of preventing quail complement-mediated erythrocyte lysis, inhibiting the capability of this animal's complement to eliminate a serum-sensitive Lyme disease bacterial strain. We also found that the ability of OmCI to inhibit quail complement-mediated killing of Lyme disease bacteria can be extended to different domestic and wild birds. Our results illustrate the utility of OmCI to block bird complement. These results provide the foundation for further use of this protein as a tool to study the molecular basis of avian complement and pathogen evasion to such a defense mechanism.
Collapse
|
11
|
Navasa N, Fikrig E, Anguita J. Host Defenses to Spirochetes. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Bencurova E, Gupta SK, Oskoueian E, Bhide M, Dandekar T. Omics and bioinformatics applied to vaccine development against Borrelia. Mol Omics 2018; 14:330-340. [PMID: 30113617 DOI: 10.1039/c8mo00130h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Borrelia burgdorferi is an extracellular spirochete that causes Lyme disease. Currently, no effective vaccine is available for humans and animals except for dogs. In the present study, an extensive bioinformatics pipeline was established to predict new candidates that can be used for vaccine development including building the protein-protein interaction network based on orthologues of experimentally verified protein-protein interaction networks, elucidation of the proteins involved in the immune response, selection of the topologically-interesting proteins and their prioritization based on their antigenicity. Proteomic network analysis yielded an interactome network with 120 nodes with 97 interactions. Proteins were selected to obtain a subnet containing only the borrelial membrane proteins and immune-related host proteins. This strategy resulted in the selection of 15 borrelial targets, which were subjected to extensive bioinformatics analysis to predict their antigenic properties. Based on the strategy applied in this study the proteins encoded by erpX (ErpX proteins, UniProt ID: H7C7L6), erpL (ErpL protein, UniProt ID: H7C7M3) and erpY (ErpY protein, UniProt ID: Q9S0D9) are suggested as a novel set of vaccine targets to control Lyme disease. Moreover, five different tools were used to validate their antigenicity regarding B-cells. The combination of all these proteins in a vaccine should allow improved protection against Borrelia infection.
Collapse
Affiliation(s)
- Elena Bencurova
- Department of Bioinformatics, Biocenter, Am Hubland, D-97074 Wuerzburg, Germany.
| | | | | | | | | |
Collapse
|
13
|
Röttgerding F, Wagemakers A, Koetsveld J, Fingerle V, Kirschfink M, Hovius JW, Zipfel PF, Wallich R, Kraiczy P. Immune evasion of Borrelia miyamotoi: CbiA, a novel outer surface protein exhibiting complement binding and inactivating properties. Sci Rep 2017; 7:303. [PMID: 28331202 PMCID: PMC5428533 DOI: 10.1038/s41598-017-00412-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/27/2017] [Indexed: 12/13/2022] Open
Abstract
Borrelia (B.) miyamotoi, an emerging tick-borne relapsing fever spirochete, resists complement-mediated killing. To decipher the molecular principles of immune evasion, we sought to identify determinants contributing to complement resistance. Employing bioinformatics, we identified a gene encoding for a putative Factor H-binding protein, termed CbiA (complement binding and inhibitory protein A). Functional analyses revealed that CbiA interacted with complement regulator Factor H (FH), C3, C3b, C4b, C5, and C9. Upon binding to CbiA, FH retained its cofactor activity for Factor I-mediated inactivation of C3b. The Factor H-binding site within CbiA was mapped to domain 20 whereby the C-terminus of CbiA was involved in FH binding. Additionally, CbiA directly inhibited the activation of the classical pathway and the assembly of the terminal complement complex. Of importance, CbiA displayed inhibitory activity when ectopically produced in serum-sensitive B. garinii G1, rendering this surrogate strain resistant to human serum. In addition, long-term in vitro cultivation lead to an incremental loss of the cbiA gene accompanied by an increase in serum susceptibility. In conclusion, our data revealed a dual strategy of B. miyamotoi to efficiently evade complement via CbiA, which possesses complement binding and inhibitory activities.
Collapse
Affiliation(s)
- Florian Röttgerding
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany
| | - Alex Wagemakers
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Joris Koetsveld
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Volker Fingerle
- National Reference Center for Borrelia, Oberschleißheim, Germany
| | | | - Joppe W Hovius
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Reinhard Wallich
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt, Frankfurt, Germany.
| |
Collapse
|
14
|
Marcinkiewicz AL, Kraiczy P, Lin YP. There Is a Method to the Madness: Strategies to Study Host Complement Evasion by Lyme Disease and Relapsing Fever Spirochetes. Front Microbiol 2017; 8:328. [PMID: 28303129 PMCID: PMC5332432 DOI: 10.3389/fmicb.2017.00328] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Lyme disease and relapsing fever are caused by various Borrelia species. Lyme disease borreliae, the most common vector-borne pathogens in both the U.S. and Europe, are transmitted by Ixodes ticks and disseminate from the site of tick bites to tissues leading to erythema migrans skin rash, arthritis, carditis, and neuroborreliosis. Relapsing fever borreliae, carried by ticks and lice, trigger reoccurring fever episodes. Following transmission, spirochetes survive in the blood to induce bacteremia at the early stages of infection, which is thought to promote evasion of the host complement system. The complement system acts as an important innate immune defense mechanism in humans and vertebrates. Upon activation, the cleaved complement components form complexes on the pathogen surface to eventually promote bacteriolysis. The complement system is negatively modulated by a number of functionally diverse regulators to avoid tissue damage. To evade and inhibit the complement system, spirochetes are capable of binding complement components and regulators. Complement inhibition results in bacterial survival in serum (serum resistance) and is thought to promote bloodstream survival, which facilitates spirochete dissemination and disease manifestations. In this review, we discuss current methodologies to elucidate the mechanisms of Borrelia spp. that promote serum resistance and bloodstream survival, as well as novel methods to study factors responsible for bloodstream survival of Lyme disease borreliae that can be applied to relapsing fever borreliae. Understanding the mechanisms these pathogens utilize to evade the complement system will ultimately aid in the development of novel therapeutic strategies and disease prevention to improve human health.
Collapse
Affiliation(s)
- Ashley L Marcinkiewicz
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health Albany, NY, USA
| | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital of Frankfurt am Main Frankfurt am Main, Germany
| | - Yi-Pin Lin
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health Albany, NY, USA
| |
Collapse
|
15
|
Stone BL, Brissette CA. Host Immune Evasion by Lyme and Relapsing Fever Borreliae: Findings to Lead Future Studies for Borrelia miyamotoi. Front Immunol 2017; 8:12. [PMID: 28154563 PMCID: PMC5243832 DOI: 10.3389/fimmu.2017.00012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
The emerging pathogen, Borrelia miyamotoi, is a relapsing fever spirochete vectored by the same species of Ixodes ticks that carry the causative agents of Lyme disease in the US, Europe, and Asia. Symptoms caused by infection with B. miyamotoi are similar to a relapsing fever infection. However, B. miyamotoi has adapted to different vectors and reservoirs, which could result in unique physiology, including immune evasion mechanisms. Lyme Borrelia utilize a combination of Ixodes-produced inhibitors and native proteins [i.e., factor H-binding proteins (FHBPs)/complement regulator-acquiring surface proteins, p43, BBK32, BGA66, BGA71, CD59-like protein] to inhibit complement, while some relapsing fever spirochetes use C4b-binding protein and likely Ornithodoros-produced inhibitors. To evade the humoral response, Borrelia utilize antigenic variation of either outer surface proteins (Osps) and the Vmp-like sequences (Vls) system (Lyme borreliae) or variable membrane proteins (Vmps, relapsing fever borreliae). B. miyamotoi possesses putative FHBPs and antigenic variation of Vmps has been demonstrated. This review summarizes and compares the common mechanisms utilized by Lyme and relapsing fever spirochetes, as well as the current state of understanding immune evasion by B. miyamotoi.
Collapse
Affiliation(s)
- Brandee L Stone
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota , Grand Forks, ND , USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota , Grand Forks, ND , USA
| |
Collapse
|
16
|
Abstract
The complement system plays an important role in the innate and acquired immune response against pathogens. A sophisticated network of activating and regulating proteins allows the distinction between intact and damaged host and non-host surfaces such as bacteria and other parasites. Non-host structures trigger the alternative pathway which may lead to their elimination by phagocytosis or cell lysis. In addition, complement proteins such as C1q, mannose binding lectin (MBL), and ficolins act as pathogen pattern-recognition molecules. Biological functions such as opsonization, activation of B lymphocytes and production of antibodies, degranulation of mast cells and basophils, and cell lysis that are important for elimination of microorganisms are dependent on complement activation. However, several pathogens including spirochetes have developed several specialized mechanisms to evade the complement system, thereby contributing to survival in the host. In this review, we give a brief overview of complement activation and regulation, and discuss in detail the strategies used by spirochetes from the genera Borrelia, Leptospira, and Treponema to overcome complement activation.
Collapse
|
17
|
The Treponema denticola FhbB Protein Is a Dominant Early Antigen That Elicits FhbB Variant-Specific Antibodies That Block Factor H Binding and Cleavage by Dentilisin. Infect Immun 2016; 84:2051-2058. [PMID: 27113359 DOI: 10.1128/iai.01542-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/19/2016] [Indexed: 12/19/2022] Open
Abstract
The Treponema denticola FhbB protein contributes to immune evasion by binding factor H (FH). Cleavage of FH by the T. denticola protease, dentilisin, may contribute to the local immune dysregulation that is characteristic of periodontal disease (PD). Although three FhbB phyletic types have been defined (FhbB1, FhbB2, and FhbB3), the in vivo expression patterns and antigenic heterogeneity of FhbB have not been assessed. Here, we demonstrate that FhbB is a dominant early antigen that elicits FhbB type-specific antibody (Ab) responses. Using the murine skin abscess model, we demonstrate that the presence or absence of FhbB or dentilisin significantly influences Ab responses to infection and skin abscess formation. Competitive binding analyses revealed that α-FhbB Ab can compete with FH for binding to T. denticola and block dentilisin-mediated FH cleavage. Lastly, we demonstrate that dentilisin cleavage sites reside within critical functional domains of FH, including the complement regulatory domain formed by CCPs 1 to 4. Analysis of the FH cleavage products revealed that they lack cofactor activity. The data presented here provide insight into the in vivo significance of dentilisin, FhbB and its antigenic diversity, and the potential impact of FH cleavage on the regulation of complement activation.
Collapse
|
18
|
Marcsisin RA, Lewis ERG, Barbour AG. Expression of the Tick-Associated Vtp Protein of Borrelia hermsii in a Murine Model of Relapsing Fever. PLoS One 2016; 11:e0149889. [PMID: 26918760 PMCID: PMC4769344 DOI: 10.1371/journal.pone.0149889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
Borrelia hermsii, a spirochete and cause of relapsing fever, is notable for its immune evasion by multiphasic antigenic variation within its vertebrate host. This is based on a diverse repertoire of surface antigen genes, only one of which is expressed at a time. Another major surface protein, the Variable Tick Protein (Vtp), is expressed in the tick vector and is invariable at its genetic locus. Given the limited immune systems of ticks, the finding of considerable diversity among the Vtp proteins of different strains of B. hermsii was unexpected. We investigated one explanation for this diversity of Vtp proteins, namely expression of the protein in mammals and a consequent elicitation of a specific immune response. Mice were infected with B. hermsii of either the HS1 or CC1 strain, which have antigenically distinctive Vtp proteins but otherwise have similar repertoires of the variable surface antigens. Subsequently collected sera were examined for antibody reactivities against Vtp and other antigens using Western blot analysis, dot blot, and protein microarray. Week-6 sera of infected mice contained antibodies that were largely specific for the Vtp of the infecting strain and were not attributable to antibody cross-reactivities. The antibody responses of the mice infected with different strains were otherwise similar. Further evidence of in vivo expression of the vtp gene was from enumeration of cDNA sequence reads that mapped to a set of selected B. hermsii genes. This measure of transcription of the infecting strain’s vtp gene was ~10% of that for the abundantly-expressed, serotype-defining variable antigen gene but similar to that of genes known for in vivo expression. The findings of Vtp expression in a vertebrate host and elicitation of a specific anti-Vtp antibody response support the view that balancing selection by host adaptive immunity accounts in part for the observed diversity of Vtp proteins.
Collapse
Affiliation(s)
- Renee A Marcsisin
- Department of Microbiology and Molecular Genetics and Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Eric R G Lewis
- Department of Microbiology and Molecular Genetics and Department of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Alan G Barbour
- Department of Microbiology and Molecular Genetics and Department of Medicine, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
19
|
Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. PLoS Pathog 2016; 12:e1005404. [PMID: 26808924 PMCID: PMC4725857 DOI: 10.1371/journal.ppat.1005404] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/26/2015] [Indexed: 12/03/2022] Open
Abstract
Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems. The human complement system is a connected network of blood proteins capable of recognizing and eliminating microbial intruders. To avoid the destructive force of complement activation, many microorganisms that enter the bloodstream express molecules that disrupt key steps of the complement cascade by interacting with specific complement components. In this study we show that the causative agent of Lyme disease, Borrelia burgdorferi, expresses a surface-protein termed BBK32 that targets and inhibits the first component of complement, designated C1. Upon binding to human C1, BBK32 traps this initiating protease complex of the classical pathway of complement in an inactive state, and prevents the downstream proteolytic events of the pathway. Our study defines a new mechanism by which microbes are able to escape the human innate immune system and identifies complement protease C1r as a previously unknown target of bacterial anti-complement molecules. Thus, discovery of the complement inhibitory activity of the borrelial protein BBK32 significantly advances our understanding of how disease-causing bacteria survive in immune competent hosts.
Collapse
|
20
|
Vieira ML, Nascimento ALTO. Interaction of spirochetes with the host fibrinolytic system and potential roles in pathogenesis. Crit Rev Microbiol 2015; 42:573-87. [PMID: 25914944 DOI: 10.3109/1040841x.2014.972336] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The pathogenic spirochetes Borrelia burgdorferi, B. hermsii, B. recurrentis, Treponema denticola and Leptospira spp. are the etiologic agents of Lyme disease, relapsing fever, periodontitis and leptospirosis, respectively. Lyme borreliosis is a multi-systemic disorder and the most prevalent tick-borne disease in the northern hemisphere. Tick-borne relapsing fever is persistent in endemic areas worldwide, representing a significant burden in some African regions. Periodontal disease, a chronic inflammatory disorder that often leads to tooth loss, is caused by several potential pathogens found in the oral cavity including T. denticola. Leptospirosis is considered the most widespread zoonosis, and the predominant human disease in tropical, undeveloped regions. What these diseases have in common is that they are a significant burden to healthcare costs in the absence of prophylactic measures. This review addresses the interaction of these spirochetes with the fibrinolytic system, plasminogen (Plg) binding to the surface of bacteria and the generation of plasmin (Pla) on their surface. The consequences on host-pathogen interactions when the spirochetes are endowed with this proteolytic activity are discussed on the basis of the results reported in the literature. Spirochetes equipped with Pla activity have been shown to degrade extracellular matrix (ECM) components, in addition to digesting fibrin, facilitating bacterial invasion and dissemination. Pla generation triggers the induction of matrix metalloproteases (MMPs) in a cascade of events that enhances the proteolytic capacity of the spirochetes. These activities in concert with the interference exerted by the Plg/Pla on the complement system - helping the bacteria to evade the immune system - should illuminate our understanding of the mechanisms involved in host infection.
Collapse
|
21
|
The relapsing fever spirochete Borrelia miyamotoi resists complement-mediated killing by human serum. Ticks Tick Borne Dis 2014; 5:898-901. [DOI: 10.1016/j.ttbdis.2014.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/10/2014] [Indexed: 11/22/2022]
|
22
|
Kelesidis T. The Cross-Talk between Spirochetal Lipoproteins and Immunity. Front Immunol 2014; 5:310. [PMID: 25071771 PMCID: PMC4075078 DOI: 10.3389/fimmu.2014.00310] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 06/17/2014] [Indexed: 12/11/2022] Open
Abstract
Spirochetal diseases such as syphilis, Lyme disease, and leptospirosis are major threats to public health. However, the immunopathogenesis of these diseases has not been fully elucidated. Spirochetes interact with the host through various structural components such as lipopolysaccharides (LPS), surface lipoproteins, and glycolipids. Although spirochetal antigens such as LPS and glycolipids may contribute to the inflammatory response during spirochetal infections, spirochetes such as Treponema pallidum and Borrelia burgdorferi lack LPS. Lipoproteins are most abundant proteins that are expressed in all spirochetes and often determine how spirochetes interact with their environment. Lipoproteins are pro-inflammatory, may regulate responses from both innate and adaptive immunity and enable the spirochetes to adhere to the host or the tick midgut or to evade the immune system. However, most of the spirochetal lipoproteins have unknown function. Herein, the immunomodulatory effects of spirochetal lipoproteins are reviewed and are grouped into two main categories: effects related to immune evasion and effects related to immune activation. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate immunopathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and to inflammatory events associated with spirochetal diseases.
Collapse
Affiliation(s)
- Theodoros Kelesidis
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
23
|
Miller DP, McDowell JV, Bell JK, Goetting-Minesky MP, Fenno JC, Marconi RT. Analysis of the complement sensitivity of oral treponemes and the potential influence of FH binding, FH cleavage and dentilisin activity on the pathogenesis of periodontal disease. Mol Oral Microbiol 2014; 29:194-207. [PMID: 24815960 DOI: 10.1111/omi.12054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2014] [Indexed: 12/28/2022]
Abstract
Treponema denticola, a periopathogen, evades complement-mediated killing by binding the negative complement regulatory protein factor H (FH) to its surface via the FhbB protein. Paradoxically, bound FH is cleaved by T. denticola's dentilisin protease, a process hypothesized to trigger localized dysregulation of complement activation in periodontal pockets. The ability of other oral treponemes to evade complement-mediated killing and bind and cleave FH has not been assessed. In this report, we demonstrate that representative isolates of Treponema socranskii, Treponema medium, Treponema pectinovorum and Treponema maltophilum are also serum resistant, whereas Treponema vincentii and Treponema amylovorum are serum sensitive. Although T. denticola's ability to evade complement-mediated killing is strictly dependent on FH binding, other serum-resistant treponemal species lack FhbB and do not bind FH, indicating an FH-independent mechanism of complement evasion. To assess the influence of FhbB sequence variation on FH binding and cleavage by T. denticola, fhbB sequences were determined for 30 isolates. Three distinct phyletic types were identified. All T. denticola strains bound FH and were serum resistant, but differences in binding kinetics, dentilisin activity and FH cleavage ability were observed. Based on these analyses, we hypothesize that the composition of the T. denticola population is a determining factor that influences the progression and severity of periodontal disease.
Collapse
Affiliation(s)
- D P Miller
- Department of Microbiology and Immunology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
24
|
The Borrelia hermsii factor H binding protein FhbA is not required for infectivity in mice or for resistance to human complement in vitro. Infect Immun 2014; 82:3324-32. [PMID: 24866803 DOI: 10.1128/iai.01892-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The primary causative agent of tick-borne relapsing fever in North America is Borrelia hermsii. It has been hypothesized that B. hermsii evades complement-mediated destruction by binding factor H (FH), a host-derived negative regulator of complement. In vitro, B. hermsii produces a single FH binding protein designated FhbA (FH binding protein A). The properties and ligand binding activity of FhbA suggest that it plays multiple roles in pathogenesis. It binds plasminogen and has been identified as a significant target of a B1b B cell-mediated IgM response in mice. FhbA has also been explored as a potential diagnostic antigen for B. hermsii infection in humans. The ability to test the hypothesis that FhbA is a critical virulence factor in vivo has been hampered by the lack of well-developed systems for the genetic manipulation of the relapsing fever spirochetes. In this report, we have successfully generated a B. hermsii fhbA deletion mutant (the B. hermsii YORΔfhbA strain) through allelic exchange mutagenesis. Deletion of fhbA abolished FH binding by the YORΔfhbA strain and eliminated cleavage of C3b on the cell surface. However, the YORΔfhbA strain remained infectious in mice and retained resistance to killing in vitro by human complement. Collectively, these results indicate that B. hermsii employs an FhbA/FH-independent mechanism of complement evasion that allows for resistance to killing by human complement and persistence in mice.
Collapse
|
25
|
Fibronectin-binding protein of Borrelia hermsii expressed in the blood of mice with relapsing fever. Infect Immun 2014; 82:2520-31. [PMID: 24686059 DOI: 10.1128/iai.01582-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To identify and characterize surface proteins expressed by the relapsing fever (RF) agent Borrelia hermsii in the blood of infected mice, we used a cell-free filtrate of their blood to immunize congenic naive mice. The resultant antiserum was used for Western blotting of cell lysates, and gel slices corresponding to reactive bands were subjected to liquid chromatography-tandem mass spectrometry, followed by a search of the proteome database with the peptides. One of the immunogens was identified as the BHA007 protein, which is encoded by a 174-kb linear plasmid. BHA007 had sequence features of lipoproteins, was surface exposed by the criteria of in situ protease susceptibility and agglutination of Vtp(-) cells by anti-BHA007 antibodies, and was not essential for in vitro growth. BHA007 elicited antibodies during experimental infection of mice, but immunization with recombinant protein did not confer protection against needle-delivered infection. Open reading frames (ORFs) orthologous to BHA007 were found on large plasmids of other RF species, including the coding sequences for the CihC proteins of Borrelia duttonii and B. recurrentis, but not in Lyme disease Borrelia species. Recombinant BHA007 bound both human and bovine fibronectin with Kd (dissociation constant) values of 22 and 33 nM, respectively, and bound to C4-binding protein with less affinity. The distant homology of BHA007 and its orthologs to BBK32 proteins of Lyme disease species, as well as to previously described BBK32-like proteins in relapsing fever species, indicates that BHA007 is a member of a large family of multifunctional proteins in Borrelia species that bind to fibronectin as well as other host proteins.
Collapse
|
26
|
Efficient B cell responses to Borrelia hermsii infection depend on BAFF and BAFFR but not TACI. Infect Immun 2013; 82:453-9. [PMID: 24218480 DOI: 10.1128/iai.01147-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T cell-independent antibody responses develop rapidly, within 3 to 4 days, and are critical for preventing blood-borne pathogens from evolving into life-threatening infections. The interaction of BAFF, also known as BLyS, with its receptors BAFFR and TACI on B cells is critical for B cell homeostasis and function. Using a synthetic polysaccharide antigen, it has previously been shown that TACI is critical for T cell-independent antibody responses. To examine the role of BAFFR and TACI in T cell-independent antibody responses to an active infection, we utilized the Borrelia hermsii infection system. In this infection system, T cell-independent responses mediated by the B1b cell subset are critical for controlling bacteremia. We found that B1b cells express BAFFR and TACI and that the surface expression of both receptors is upregulated on B1b cells following exposure to whole B. hermsii cells. Surprisingly, we found that TACI(-/-) mice are not impaired either in specific antibody responses to B. hermsii or in controlling B. hermsii bacteremia. In contrast, TACI-deficient mice immunized with heat-killed type 3 serotype pneumococcus cells are impaired in generating pneumococcal polysaccharide-specific responses and succumb to challenge with live type 3 serotype pneumococcus, indicating that TACI is required for T cell-independent antibody responses to bacterial-associated polysaccharides. Although we have found that TACI is dispensable for controlling B. hermsii infection, mice deficient in BAFFR or BAFF exhibit impairment in B. hermsii-specific IgM responses and clearance of bacteremia. Collectively, these data indicate a disparity in the roles for TACI and BAFFR in primary T cell-independent antibody responses to bacterial pathogens.
Collapse
|
27
|
Miller DP, McDowell JV, Rhodes DV, Allard A, Caimano M, Bell J, Marconi RT. Sequence divergence in the Treponema denticola FhbB protein and its impact on factor H binding. Mol Oral Microbiol 2013; 28:316-30. [PMID: 23601078 PMCID: PMC3785937 DOI: 10.1111/omi.12027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2013] [Indexed: 12/18/2022]
Abstract
Treponema denticola is an anaerobic spirochete whose abundance in the subgingival crevice correlates with the development and severity of periodontal disease. The ability of T. denticola to survive and thrive in the hostile environment of the periodontal pocket is due, at least in part, to its ability to bind factor H (FH), a negative regulator of the alternative complement pathway. The FH binding protein of T. denticola has been identified as FhbB and its atomic structure has been determined. The interaction of FH with T. denticola is unique in that FH bound to the cell surface is cleaved by the T. denticola protease, dentilisin. It has been postulated that FH cleavage by T. denticola leads to immune dysregulation in periodontal pockets. In this study, we conduct a comparative assessment of the sequence, properties, structure and ligand binding kinetics of the FhbB proteins of strains 33521 and 35405. The biological outcome of the interaction of these strains with FH could differ significantly as 33521 lacks dentilisin activity. The data presented here offer insight into our understanding of the interactions of T. denticola with the host and its potential to influence disease progression.
Collapse
Affiliation(s)
- Daniel P. Miller
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - John V. McDowell
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - DeLacy V. Rhodes
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - Anna Allard
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Melissa Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Jessica Bell
- Department of Biochemistry and Molecular Biology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| | - Richard T. Marconi
- Department of Microbiology and Immunology, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
- Center for the Study of Biological Complexity, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
28
|
Abstract
Borrelia species of relapsing fever (RF) and Lyme disease (LD) lineages have linear chromosomes and both linear and circular plasmids. Unique to RF species, and little characterized to date, are large linear plasmids of ∼160 kb, or ∼10% of the genome. By a combination of Sanger and next-generation methods, we determined the sequences of large linear plasmids of two New World species: Borrelia hermsii, to completion of its 174-kb length, and B. turicatae, partially to 114 kb of its 150 kb. These sequences were then compared to corresponding sequences of the Old World species B. duttonii and B. recurrentis and to plasmid sequences of LD Borrelia species. The large plasmids were largely colinear, except for their left ends, about 27 kb of which was inverted in New World species. Approximately 60% of the B. hermsii lp174 plasmid sequence was repetitive for 6 types of sequence, and half of its open reading frames encoded hypothetical proteins not discernibly similar to proteins in the database. The central ∼25 kb of all 4 linear plasmids was syntenic for orthologous genes for plasmid maintenance or partitioning in Borrelia species. Of all the sequenced linear and circular plasmids in Borrelia species, the large plasmid's putative partition/replication genes were most similar to those of the 54-kb linear plasmids of LD species. Further evidence for shared ancestry was the observation that two of the hypothetical proteins were predicted to be structurally similar to the LD species' CspA proteins, which are encoded on the 54-kb plasmids.
Collapse
|
29
|
Mapping the ligand-binding region of Borrelia hermsii fibronectin-binding protein. PLoS One 2013; 8:e63437. [PMID: 23658828 PMCID: PMC3642150 DOI: 10.1371/journal.pone.0063437] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/02/2013] [Indexed: 12/23/2022] Open
Abstract
Many pathogenic microorganisms express fibronectin-binding molecules that facilitate their adherence to the extracellular matrix and/or entry into mammalian cells. We have previously described a Borrelia recurrentis gene, cihC that encodes a 40-kDa surface receptor for both, fibronectin and the complement inhibitors C4bp and C1-Inh. We now provide evidence for the expression of a group of highly homologues surface proteins, termed FbpA, in three B. hermsii isolates and two tick-borne relapsing fever spirochetes, B. parkeri and B. turicatae. When expressed in Escherichia coli or B. burgdorferi, four out of five proteins were shown to selectively bind fibronectin, whereas none of five proteins were able to bind the human complement regulators, C4bp and C1-Inh. By applying deletion mutants of the B. hermsii fibronectin-binding proteins a putative high-affinity binding site for fibronectin was mapped to its central region. In addition, the fibronectin-binding proteins of B. hermsii were found to share sequence homology with BBK32 of the Lyme disease spirochete B. burgdorferi with similar function suggesting its involvement in persistence and/or virulence of relapsing fever spirochetes.
Collapse
|
30
|
Meri T, Amdahl H, Lehtinen MJ, Hyvärinen S, McDowell JV, Bhattacharjee A, Meri S, Marconi R, Goldman A, Jokiranta TS. Microbes bind complement inhibitor factor H via a common site. PLoS Pathog 2013; 9:e1003308. [PMID: 23637600 PMCID: PMC3630169 DOI: 10.1371/journal.ppat.1003308] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 03/02/2013] [Indexed: 11/18/2022] Open
Abstract
To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH). FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19–20 (FH19-20). We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii). We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens via utilization of a “superevasion site.” Complement is an important arm of innate immunity. Activation of this plasma protein cascade leads to opsonization of targets for phagocytosis, direct lysis of Gram-negative bacteria, and enhancement of the inflammatory and acquired immune responses. No specific signal is needed for activation of the alternative pathway of complement, leading to its activation on all unprotected surfaces. Pathogenic microbes need to evade this pathway, and several species are known to recruit host complement inhibitor factor H (FH) to prevent the activation. FH is important for protection of host cells, too, as defects in FH lead to a severe autoreactive disease, atypical hemolytic uremic syndrome. We have now identified at the molecular level a common mechanism by which seven different microbes, Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumoniae, Candida albicans, Borrelia burgdorferi and B. hermsii, recruit FH. All microbes bind FH via a common site on domain 20, which facilitates formation of a tripartite complex between the microbial protein, the main complement opsonin C3b, and FH. We show that, by utilizing the common microbial binding site on FH20, microbes can inhibit complement more efficiently. This detailed knowledge on mechanism of complement evasion can be used in developing novel antimicrobial chemotherapy.
Collapse
Affiliation(s)
- T Meri
- Haartman Institute, Department of Bacteriology and Immunology and Immunobiology Research Program, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Potempa M, Potempa J. Protease-dependent mechanisms of complement evasion by bacterial pathogens. Biol Chem 2013; 393:873-88. [PMID: 22944688 DOI: 10.1515/hsz-2012-0174] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/06/2012] [Indexed: 12/11/2022]
Abstract
The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonization of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host.
Collapse
Affiliation(s)
- Michal Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | | |
Collapse
|
32
|
Lsa30, a novel adhesin of Leptospira interrogans binds human plasminogen and the complement regulator C4bp. Microb Pathog 2012; 53:125-34. [DOI: 10.1016/j.micpath.2012.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 11/23/2022]
|
33
|
Domingos RF, Vieira ML, Romero EC, Gonçales AP, de Morais ZM, Vasconcellos SA, Nascimento ALTO. Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions. BMC Microbiol 2012; 12:50. [PMID: 22463075 PMCID: PMC3444417 DOI: 10.1186/1471-2180-12-50] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/30/2012] [Indexed: 11/10/2022] Open
Abstract
Background Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (KD) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a KD of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.
Collapse
Affiliation(s)
- Renan F Domingos
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Alp, an arthropod-associated outer membrane protein of Borrelia species that cause relapsing fever. Infect Immun 2012; 80:1881-90. [PMID: 22354035 DOI: 10.1128/iai.06419-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia hermsii and other relapsing fever (RF) species are noted for their highly polymorphic surface antigens, the variable major proteins (VMP). Less is known about other surface proteins of these pathogens in either their vertebrate reservoirs or arthropod vectors. To further characterize these proteins, we elicited antibodies against VMP-less cells, noted antibody reactions against whole cells and cell components, and then subjected selected antigens to mass spectroscopy for amino acid sequencing for comparison against a B. hermsii genome database. One of the derived monoclonal antibodies, H0120, agglutinated spirochetes, and in Western blot analyses, it bound to a 14-kDa protein of whole cells and their membrane fractions but not after protease treatment. A search of open reading frames of the B. hermsii genome with extracted peptides identified the 14-kDa protein with bha128, a 453-nucleotide gene of the 175-kb linear plasmid. The bha128 gene was synthesized and expressed in Escherichia coli. The protein product was bound by antibody H0120. Genes homologous to bha128 occur in the RF species Borrelia turicatae, B. duttonii, and B. recurrentis but not in Lyme disease Borrelia species or other organisms. The following findings indicated an association of BHA128, renamed Alp, with the tick environment: (i) Alp was produced at higher levels at 23°C than at 34 °C; (ii) almost all spirochetes in tick salivary glands were bound by the H0120 antibody, but only ~1% of spirochetes in the blood of infected mice were bound; and (iii) infected mice produced antibodies to several B. hermsii antigens but not detectably to native or recombinant Alp.
Collapse
|
35
|
Miller DP, McDowell JV, Bell JK, Marconi RT. Crystallization of the factor H-binding protein, FhbB, from the periopathogen Treponema denticola. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:678-81. [PMID: 21636910 DOI: 10.1107/s1744309111011298] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/26/2011] [Indexed: 11/10/2022]
Abstract
Treponema denticola is a primary etiological agent of periodontal disease. T. denticola evades complement-mediated killing by binding to the host's factor H (FH), a negative regulator of the alternative complement pathway. The T. denticola FH-binding protein has been identified and designated as factor H-binding protein B (FhbB). Crystals of recombinant FhbB were obtained by the hanging-drop vapor-diffusion method using sodium citrate and 0.2 M sodium thiocyanate. FhbB crystals diffracted to 1.8 Å resolution and belonged to space group P4(3)2(1)2 or P4(1)2(1)2, with unit-cell parameters a = b = 46.76, c = 167.68 Å. Two FhbB molecules per asymmetric unit gave a Matthews coefficient of 2.2 Å(3) Da(-1) and a solvent content of 44%. FhbB is the smallest bacterially produced FH-binding protein identified to date. Determination of its structure will provide unique insight into the minimal structural determinants required for FH binding.
Collapse
Affiliation(s)
- Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
36
|
Genetic transformation of the relapsing fever spirochete Borrelia hermsii: stable integration and expression of green fluorescent protein from linear plasmid 200. J Bacteriol 2011; 193:3241-5. [PMID: 21551306 DOI: 10.1128/jb.05037-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tick-borne relapsing fever (TBRF) is a spirochetal disease caused by at least 15 different Borrelia species. It is a serious human health concern in regions of endemicity throughout the world. Transmission to humans occurs through the bites of infected Ornithodoros ticks. In North America, the primary Borrelia species associated with human disease are B. hermsii and B. turicatae. Direct demonstration of the role of putative TBRF spirochete virulence factors in the disease process has been hindered by the lack of a genetic manipulation system and complete genome sequences. Expanding on recent developments in these areas, here we demonstrate the successful generation of a clone of B. hermsii YOR that constitutively produces green fluorescent protein (GFP) (B. hermsii YOR::kan gfp). This strain was generated through introduction of a kan-gfp cassette into a noncoding region of the 200-kb B. hermsii linear plasmid lp200. Genetic manipulation did not affect the growth rate or trigger the loss of native plasmids. B. hermsii YOR::kan gfp retained infectivity and elicited host seroconversion. Stable production of GFP was demonstrated both in vitro and in vivo. This study represents a significant step forward in the development of tools that can be employed to study the virulence mechanisms of TBRF spirochetes.
Collapse
|
37
|
McDowell JV, Frederick J, Miller DP, Goetting-Minesky MP, Goodman H, Fenno JC, Marconi RT. Identification of the primary mechanism of complement evasion by the periodontal pathogen, Treponema denticola. Mol Oral Microbiol 2011; 26:140-9. [PMID: 21375704 PMCID: PMC3053026 DOI: 10.1111/j.2041-1014.2010.00598.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treponema denticola, a periodontal pathogen, binds the complement regulatory protein Factor H (FH). Factor H binding protein B (FhbB) is the sole FH binding protein produced by T. denticola. The interaction of FhbB with FH is unique in that FH is bound to the cell and then cleaved by the T. denticola protease, dentilisin. A ∼ 50-kDa product generated by dentilisin cleavage is retained at the cell surface. Until this study, a direct role for the FhbB-FH interaction in complement evasion and serum sensitivity had not been demonstrated. Here we assess the serum resistance of T. denticola strain 35405 (Td35405wt) and isogenic mutants deficient in dentilisin (Td35405-CCE) and FhbB production (Td35405ΔfhbB), respectively. Both dentilisin and FhbB have been postulated to be key virulence factors that mediate complement evasion. Consistent with conditions in the subgingival crevice, an environment with a significant concentration of complement, Td35405wt was resistant to serum concentrations as high as 25%. Deletion of fhbB (Td35405ΔfhbB), which resulted in the complete loss of FH binding ability, but not inactivation of dentilisin activity (Td35405-CCE), rendered T. denticola highly sensitive to 25% human serum with 80% of the cells being disrupted after 4 h of incubation. Heat treatment of the serum to inactivate complement confirmed that killing was mediated by complement. These results indicate that the FH-FhbB interaction is required for serum resistance whereas dentilisin is not. This report provides new insight into the novel complement evasion mechanisms of T. denticola.
Collapse
Affiliation(s)
- John V. McDowell
- Department of Microbiology and Immunology Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678
| | - Jesse Frederick
- Department of Microbiology and Immunology Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678
| | - Daniel P. Miller
- Department of Microbiology and Immunology Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678
| | - M. Paula Goetting-Minesky
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Heather Goodman
- Department of Microbiology and Immunology Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678
| | - J. Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan
| | - Richard T. Marconi
- Center for the Study of Biological Complexity, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678
| |
Collapse
|
38
|
Abstract
The complement system is an essential component of the innate immune system that participates in elimination of pathogens and altered host cells and comprises an essential link between the innate and adaptive immune system. Soluble and membrane-bound complement regulators protect cells and tissues from unintended complement-mediated injury. Complement factor H is a soluble complement regulator essential for controlling the alternative pathway in blood and on cell surfaces. Normal recognition of self-cell markers (i.e. polyanions) and C3b/C3d fragments is necessary for factor H function. Inadequate recognition of host cell surfaces by factor H due to mutations and polymorphisms have been associated with complement-mediated tissue damage and disease. On the other hand, unwanted recognition of pathogens and altered self-cells (i.e. cancer) by factor H is used as an immune evasion strategy. This review will focus on the current knowledge related to these versatile recognition properties of factor H.
Collapse
Affiliation(s)
- Viviana P Ferreira
- Department of Medical Microbiology and Immunology, College of Medicine, University of Toledo, Toledo, OH 43614, United States.
| | | | | |
Collapse
|
39
|
Grosskinsky S, Schott M, Brenner C, Cutler SJ, Simon MM, Wallich R. Human complement regulators C4b-binding protein and C1 esterase inhibitor interact with a novel outer surface protein of Borrelia recurrentis. PLoS Negl Trop Dis 2010; 4:e698. [PMID: 20532227 PMCID: PMC2879370 DOI: 10.1371/journal.pntd.0000698] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 04/06/2010] [Indexed: 11/23/2022] Open
Abstract
The spirochete Borrelia recurrentis is the causal agent of louse-borne relapsing fever and is transmitted to humans by the infected body louse Pediculus humanus. We have recently demonstrated that the B. recurrentis surface receptor, HcpA, specifically binds factor H, the regulator of the alternative pathway of complement activation, thereby inhibiting complement mediated bacteriolysis. Here, we show that B. recurrentis spirochetes express another potential outer membrane lipoprotein, termed CihC, and acquire C4b-binding protein (C4bp) and human C1 esterase inhibitor (C1-Inh), the major inhibitors of the classical and lectin pathway of complement activation. A highly homologous receptor for C4bp was also found in the African tick-borne relapsing fever spirochete B. duttonii. Upon its binding to B. recurrentis or recombinant CihC, C4bp retains its functional potential, i.e. facilitating the factor I-mediated degradation of C4b. The additional finding that ectopic expression of CihC in serum sensitive B. burgdorferi significantly increased spirochetal resistance against human complement suggests this receptor to substantially contribute, together with other known strategies, to immune evasion of B. recurrentis. Borrelia recurrentis, the causal agent of louse-borne relapsing fever is transmitted to humans via infected body lice. Infection with B. recurrentis has been achieved only in humans and is accompanied by a systemic inflammatory disease, multiple relapses of fever and massive spirochetemia. A key virulence factor of B. recurrentis is their potential to undergo antigenic variation. However, for survival in the blood during the early phase of infection and for persistence in human tissues, spirochetes must be endowed with robust tools to escape innate immunity. We have recently shown that B. recurrentis acquires the serum-derived regulator factor H, thereby blocking the alternative complement pathway. Here, we show that B. recurrentis expresses in addition a novel outer surface lipoprotein that selectively binds serum-derived C4b-binding protein and C1 esterase inhibitor, two endogenous regulators of the classical and lectin pathway of complement activation. The combined data underscore the versatility of B. recurrentis to effectively evade innate and adaptive immunity, including serum resistance. Thus, the present study elucidates a new mechanism of B. recurrentis important for its evasion from complement attack and will be helpful for the development of new drugs against this fatal infection.
Collapse
Affiliation(s)
- Sonja Grosskinsky
- Infectious Immunology Group, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Melanie Schott
- Infectious Immunology Group, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Christiane Brenner
- Infectious Immunology Group, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Sally J. Cutler
- School of Health and Bioscience, University of East London, Stratford, London, United Kingdom
| | - Markus M. Simon
- Infectious Immunology Group, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
| | - Reinhard Wallich
- Infectious Immunology Group, Institute for Immunology, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
40
|
Donoso LA, Vrabec T, Kuivaniemi H. The role of complement Factor H in age-related macular degeneration: a review. Surv Ophthalmol 2010; 55:227-46. [PMID: 20385334 DOI: 10.1016/j.survophthal.2009.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 10/20/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022]
Abstract
Factor H is a 155kDa sialic acid containing glycoprotein that plays an integral role in the regulation of the complement-mediated immune system that is involved in microbial defense, immune complex processing, and programmed cell death. These events take place primarily in fluid phase and on the cell surface and are particularly important in the context of distinguishing self from non-self. Activation of the complement system occurs within seconds and results in a proteolytic cascade eventually forming the membrane attack complex leading to cell lysis. Factor H protects host cells from injury resulting from unrestrained complement activation. Mutations and SNPs (single nucleotide polymorphisms) in Factor H have been implicated in a variety of human conditions including age-related macular degeneration (AMD), atypical hemolytic uremic syndrome, and membranoproliferative glomuleronephritis type II or dense deposit disease. It should not be surprising that these seemingly unrelated diseases involving mutations in Factor H may share common features. Because the immune process involves, in part, an inflammatory response and common or similar surface antigens, it is also not unexpected to observe features of inflammation, including deposition of bioactive complement fragments such as C3a and C5a, a cellular influx of immune related cells such as lymphocytes, and the potential for multiple organ involvement. We review recent developments in molecular genetics; SNPs, including Y402H; the three-dimensional structure; and mass spectroscopy of Factor H as it relates to the pathogenesis of eye disease. In addition, we discuss the concepts of molecular mimicry, sequestered or hidden antigens, and antigenic cross reactivity, and propose that AMD should not simply be considered to be an eye disease, but rather a systemic vascular disease where the eye has the ability to self regulate a local immune response. Identification of the initial event or inciting antigen has yet to be determined and will significantly advance the understanding of the pathogenesis of AMD.
Collapse
Affiliation(s)
- Larry A Donoso
- The Philadelphia Retina Endowment Fund, The Eye Research Institute, Philadelphia, PA, USA.
| | | | | |
Collapse
|
41
|
Molecular characterization of the interaction of Borrelia parkeri and Borrelia turicatae with human complement regulators. Infect Immun 2010; 78:2199-208. [PMID: 20231403 DOI: 10.1128/iai.00089-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In North America, tick-borne relapsing fever is caused by the species Borrelia hermsii, B. parkeri, and B. turicatae, which are transmitted to humans through the bite of the respective infected tick vectors. Here we describe the identification and functional characterization of a surface lipoprotein of B. parkeri, designated BpcA, that binds the human complement regulators factor H and factor H-related protein 1 and, simultaneously, the host protease plasminogen. In contrast, the homologous B. turicatae protein failed to bind human factor H and factor H-related protein 1 but retained its plasminogen binding capacity. Factor H bound to BpcA maintains its regulatory capacity to control C3b deposition and C3 convertase activity. Ectopic expression of BpcA in a serum-sensitive B. burgdorferi strain protects transformed cells from complement-mediated killing. Furthermore, bound plasminogen/plasmin endows B. parkeri and B. turicatae with the potential to degrade extracellular matrix components. These findings expand our understanding of the putative recent evolutionary separation of Borrelia parkeri and Borrelia turicatae, provide evidence that B. parkeri differs from B. turicatae in its ability to resist complement attack, and may help in understanding the pathological processes underlying tick-borne relapsing fever.
Collapse
|
42
|
Cutler SJ, Abdissa A, Trape JF. New concepts for the old challenge of African relapsing fever borreliosis. Clin Microbiol Infect 2009; 15:400-6. [PMID: 19489922 DOI: 10.1111/j.1469-0691.2009.02819.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Relapsing fever, caused by spirochaetes belonging to the genus Borrelia, was once the cause of worldwide epidemic disease. This was largely through infection with the louse-borne form of the disease, caused by Borrelia recurrentis (louse-borne relapsing fever (LBRF)). During the last century, we have witnessed the demise of this infection, largely owing to improved standards of living and the introduction of the insecticide DDT, resulting in a reduction in the incidence of the body louse, the vector for relapsing fever. In areas of extreme poverty this disease persists, causing a significant burden of disease. It is now looking probable that this infection is caused by a louse-adapted variant of Borrelia duttonii, transmitted by Ornithodoros moubata 'soft' ticks in East Africa. Like LBRF, infection still causes impact, particularly affecting young children and pregnant women. Over recent years, the true burden of relapsing fever caused by infection with the closely related Borrelia crocidurae, transmitted by Ornithodoros sonrai ticks, has only just begun to emerge. Here, the current state of knowledge concerning relapsing fever in Africa is reviewed.
Collapse
Affiliation(s)
- S J Cutler
- School of Health & Bioscience, University of East London, London, UK.
| | | | | |
Collapse
|
43
|
Comparative analysis of the properties and ligand binding characteristics of CspZ, a factor H binding protein, derived from Borrelia burgdorferi isolates of human origin. Infect Immun 2009; 77:4396-405. [PMID: 19620346 DOI: 10.1128/iai.00393-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi CspZ (BBH06/BbCRASP-2) binds the complement regulatory protein factor H (FH) and additional unidentified serum proteins. The goals of this study were to assess the ligand binding capability of CspZ orthologs derived from an extensive panel of human Lyme disease isolates and to further define the molecular basis of the interaction between FH and CspZ. While most B. burgdorferi CspZ orthologs analyzed bound FH, specific, naturally occurring polymorphisms, most of which clustered in a specific loop domain of CspZ, prevented FH binding in some orthologs. Sequence analyses also revealed the existence of CspZ phyletic groups that correlate with FH binding and with the relationships inferred from ribosomal spacer types (RSTs). CspZ type 1 (RST1) and type 3 (RST3) strains bind FH, while CspZ type 2 (RST2) strains do not. Antibody responses to CspZ were also assessed. Anti-CspZ antibodies were detected in mice by week 2 of infection, indicating that there was expression during early-stage infection. Analyses of sera collected from infected mice suggested that CspZ production continued over the course of long-term infection as the antibody titer increased over time. While antibody to CspZ was detected in several human Lyme disease serum samples, the response was not universal, and the titers were generally low. Vaccination studies with mice demonstrated that while CspZ is immunogenic, it does not elicit an antibody that is protective or that inhibits dissemination. The data presented here provide significant new insight into the interaction between CspZ and FH and suggest that there is a correlation between CspZ production and dissemination. However, in spite of its possible contributory role in pathogenesis, the immunological analyses indicated that CspZ is likely to have limited potential as a diagnostic marker and vaccine candidate for Lyme disease.
Collapse
|
44
|
Bhide MR, Escudero R, Camafeita E, Gil H, Jado I, Anda P. Complement factor H binding by different Lyme disease and relapsing fever Borrelia in animals and human. BMC Res Notes 2009; 2:134. [PMID: 19604355 PMCID: PMC2717971 DOI: 10.1186/1756-0500-2-134] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 07/15/2009] [Indexed: 11/19/2022] Open
Abstract
Background Borreliae employ multiple immune evasive strategies such as binding to complement regulatory proteins [factor H (fH) and factor H like-1 (FHL1)], differential regulation of surface membrane proteins, antigenic variation, and binding of plasminogen/plasmin and matrix metalloproteinases. As a complement regulatory subunit, fH serves as a cofactor for the factor I-mediated cleavage of C3b. fH binding by Borrelia has been correlated with pathogenesis as well as with host diversity. Here we show the differential binding of borrelial proteins to fH from human and animal sera. Findings Affinity ligand binding experiments, 2-D electrophoresis, and protein identification and peptide de novo sequencing based on mass spectrometry, revealed novel fH putative binding proteins of Lyme- and relapsing fever Borrelia. An OspA serotype-associated differential human and animal fH binding by B. garinii was also observed, which could be related with the ability of some strains from serotypes 4 and 7 to invade non-nervous system tissues. Also, the variable affinity of binding proteins expressed by different Borrelia to animal fH correlated with their host selectivity. Conclusion The novel animal and human putative fH binding proteins (FHBPs) in this study underscore the importance of evasion of complement in the pathogenesis of Borrelia infections.
Collapse
Affiliation(s)
- Mangesh R Bhide
- Laboratorio de Espiroquetas y Patógenos Especiales, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
45
|
Woodman ME, Cooley AE, Avdiushko R, Bowman A, Botto M, Wooten RM, van Rooijen N, Cohen DA, Stevenson B. Roles for phagocytic cells and complement in controlling relapsing fever infection. J Leukoc Biol 2009; 86:727-36. [PMID: 19458267 DOI: 10.1189/jlb.0309169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Relapsing fever spirochetes, such as Borrelia hermsii, proliferate to high levels in their hosts' bloodstream until production of IgM against borrelial surface proteins promotes bacterial clearance. The mechanisms by which B. hermsii survives in host blood, as well as the immune mediators that control this infection, remain largely unknown. It has been hypothesized that B. hermsii is naturally resistant to killing by the alternative pathway of complement activation as a result of its ability to bind factor H, a host complement regulator. However, we found that Cfh(-/-) mice were infected to levels identical to those seen in wild-type mice. Moreover, only a small minority of B. hermsii in the blood of wild-type mice had detectable levels of factor H adhered to their outer surfaces. In vitro, complement was found to play a statistically significant role in antibody-mediated inactivation of B. hermsii, although in vivo studies indicated that complement is not essential for host control of B. hermsii. Depletion of mphi and DC from mice had significant impacts on B. hermsii infection, and depleted mice were unable to control bloodstream infections, leading to death. Infection studies using muMT indicated a significant antibody-independent role for mphi and/or DC in host control of relapsing fever infection. Together, these findings indicate mphi and/or DC play a critical role in the production of B. hermsii-specific IgM and for antibody-independent control of spirochete levels.
Collapse
Affiliation(s)
- Michael E Woodman
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Analysis of a unique interaction between the complement regulatory protein factor H and the periodontal pathogen Treponema denticola. Infect Immun 2009; 77:1417-25. [PMID: 19204088 DOI: 10.1128/iai.01544-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Treponema denticola, a spirochete associated with periodontitis, is abundant at the leading edge of subgingival plaque, where it interacts with gingival epithelia. T. denticola produces a number of virulence factors, including dentilisin, a protease which is cytopathic to host cells, and FhbB, a unique T. denticola lipoprotein that binds complement regulatory proteins. Earlier analyses suggested that FhbB specifically bound to factor H (FH)-like protein 1 (FHL-1). However, by using dentilisin-deficient mutants of T. denticola, we found that T. denticola preferentially binds FH and not FHL-1, and that FH is then cleaved by dentilisin to yield an FH subfragment of approximately 50 kDa. FH bound to dentilisin-deficient mutants but was not cleaved and retained its ability to serve as a cofactor for factor I in the cleavage of C3b. To assess the molecular basis of the interaction of FhbB with FH, mutational analyses were conducted. Replacement of specific residues in widely separated domains of FhbB and disruption of a central alpha helix with coiled-coil formation probability attenuated or eliminated FH binding. The data presented here are the first to demonstrate the retention at the cell surface of a proteolytic cleavage product of FH. The precise role of this FH fragment in the host-pathogen interaction remains to be determined.
Collapse
|
47
|
Jongerius I, Ram S, Rooijakkers S. Bacterial complement escape. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:32-48. [PMID: 20054973 DOI: 10.1007/978-1-4419-1601-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Complement activation is a crucial step in our innate immune defense against invading bacteria. Complement proteins can quickly recognize invading bacteria and subsequently label them for phagocytosis or kill them by direct lysis. In order to survive in the human host, bacterial pathogens have evolved a number of excreted and membrane-bound proteins that interfere with several steps of the complement cascade. In this chapter we summarize the most successful complement-modulating strategies by human bacterial pathogens.
Collapse
Affiliation(s)
- Ilse Jongerius
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
48
|
Lopez JE, Schrumpf ME, Raffel SJ, Policastro PF, Porcella SF, Schwan TG. Relapsing fever spirochetes retain infectivity after prolonged in vitro cultivation. Vector Borne Zoonotic Dis 2008; 8:813-20. [PMID: 18637723 PMCID: PMC2605162 DOI: 10.1089/vbz.2008.0033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Borrelia hermsii and Borrelia burgdorferi, two closely related spirochetes, are the etiological agents of tick-borne relapsing fever and Lyme disease, respectively. Previous studies have shown the loss of infectivity of B. burgdorferi is associated with in vitro cultivation. This diminished infectivity of B. burgdorferi has occurred as early as three in vitro passages, and the loss of plasmids have been observed with these less virulent to noninfective cultures. The effects of long-term in vitro cultivation on B. hermsii have not been investigated. However, understanding the degree of genomic degradation during in vitro cultivation is important for investigating pathogenic mechanisms of spirochetes. In this study, we analyzed the effects of continuous in vitro cultivation on the genomic composition and infectivity of B. hermsii and B. turicatae.We report that all seven isolates of B. hermsii and the one isolate of B. turicatae examined retained infectivity in mice after 1 year of continuous in vitro cultivation. Furthermore, there were few apparent differences in the plasmid profiles after long-term cultivation. Two isolates of B. hermsii remained infective after high passage despite losing a portion of the 200-kb linear plasmid containing the fhbA gene encoding the factor H binding protein. Also, sequence analysis of multiple B. hermsii isolates demonstrated two types of fhbA with complete congruence with the two genomic groups of B. hermsii spirochetes. Therefore, these results suggest that relapsing fever spirochetes are genetically stable during in vitro cultivation, and the fhbA-containing segment of DNA that is lost during cultivation is not required for infection.
Collapse
Affiliation(s)
- Job E Lopez
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Rossmann E, Kraiczy P, Herzberger P, Skerka C, Kirschfink M, Simon MM, Zipfel PF, Wallich R. BhCRASP-1 of the relapsing fever spirochete Borrelia hermsii is a factor H- and plasminogen-binding protein. Int J Med Microbiol 2008. [DOI: 10.1016/j.ijmm.2008.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
Colombo MJ, Alugupalli KR. Complement factor H-binding protein, a putative virulence determinant of Borrelia hermsii, is an antigenic target for protective B1b lymphocytes. THE JOURNAL OF IMMUNOLOGY 2008; 180:4858-64. [PMID: 18354209 DOI: 10.4049/jimmunol.180.7.4858] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vaccination is the most effective way to control infectious diseases. A variety of microbial pathogens use antigenic variation, an immune evasion strategy that poses a challenge for vaccine development. To understand protective immune responses against such pathogens, we have been studying Borrelia hermsii, a bacterium that causes recurrent bacteremia due to antigenic variation. An IgM response is necessary and sufficient to control B. hermsii infection. We have recently found a selective expansion of B1b cells concurrent with the resolution of B. hermsii bacteremia. B1b cells from convalescent but not naive mice confer long-lasting immunity, but the Ag(s) driving the protective IgM responses is unknown. Herein we demonstrate that convalescent B1b cell-derived IgM recognizes complement factor H-binding protein (FhbA), a B. hermsii outer-surface protein and putative virulence factor that does not undergo antigenic variation and is expressed by all clinical isolates. A progressive increase in the IgM response to FhbA correlated with the kinetics of B1b cell expansion, diminished the severity of bacteremic episodes, and led to the eventual resolution of the infection. These data indicate that FhbA is a specific target for protective B1b cell responses. Ags recognized by B1b cells may be considered as an important component in vaccination strategies.
Collapse
Affiliation(s)
- Matthew J Colombo
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|