1
|
Rossine F, Sanchez C, Eaton D, Paulsson J, Baym M. Intracellular competition shapes plasmid population dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639193. [PMID: 40027608 PMCID: PMC11870584 DOI: 10.1101/2025.02.19.639193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Conflicts between levels of biological organization are central to evolution, from populations of multicellular organisms to selfish genetic elements in microbes. Plasmids are extrachromosomal, self-replicating genetic elements that underlie much of the evolutionary flexibility of bacteria. Evolving plasmids face selective pressures on their hosts, but also compete within the cell for replication, making them an ideal system for studying the joint dynamics of multilevel selection. While theory indicates that within-cell selection should matter for plasmid evolution, experimental measurement of within-cell plasmid fitness and its consequences has remained elusive. Here we measure the within-cell fitness of competing plasmids and characterize drift and selective dynamics. We achieve this by the controlled splitting of synthetic plasmid dimers to create balanced competition experiments. We find that incompatible plasmids co-occur for longer than expected due to methylation-based plasmid eclipsing. During this period of co-occurrence, less transcriptionally active plasmids display a within-cell selective advantage over their competing plasmids, leading to preferential fixation of silent plasmids. When the transcribed gene is beneficial to the cell, for example an antibiotic resistance gene, there is a cell-plasmid fitness tradeoff mediated by the dominance of the beneficial trait. Surprisingly, more dominant plasmid-encoded traits are less likely to fix but more likely to initially invade than less dominant traits. Taken together, our results show that plasmid evolution is driven by dynamics at two levels, with a transient, but critical, contribution of within-cell fitness.
Collapse
Affiliation(s)
- Fernando Rossine
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Carlos Sanchez
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Daniel Eaton
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Johan Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Michael Baym
- Departments of Biomedical Informatics and Microbiology, and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
von Mentzer A, Svennerholm AM. Colonization factors of human and animal-specific enterotoxigenic Escherichia coli (ETEC). Trends Microbiol 2024; 32:448-464. [PMID: 38052687 DOI: 10.1016/j.tim.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023]
Abstract
Colonization factors (CFs) are major virulence factors of enterotoxigenic Escherichia coli (ETEC). This pathogen is among the most common causes of bacterial diarrhea in children in low- and middle-income countries, travelers, and livestock. CFs are major candidate antigens in vaccines under development as preventive measures against ETEC infections in humans and livestock. Recent molecular studies have indicated that newly identified CFs on human ETEC are closely related to animal ETEC CFs. Increased knowledge of pathogenic mechanisms, immunogenicity, regulation, and expression of ETEC CFs, as well as the possible spread of animal ETEC to humans, may facilitate the future development of ETEC vaccines for humans and animals. Here, we present an updated review of CFs in ETEC.
Collapse
Affiliation(s)
- Astrid von Mentzer
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Sweden; Wellcome Sanger Institute, Hinxton, UK.
| | - Ann-Mari Svennerholm
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
3
|
Azam MW, Zarrilli R, Khan AU. Updates on the Virulence Factors Produced by Multidrug-Resistant Enterobacterales and Strategies to Control Their Infections. Microorganisms 2023; 11:1901. [PMID: 37630461 PMCID: PMC10456890 DOI: 10.3390/microorganisms11081901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The Enterobacterales order is a massive group of Gram-negative bacteria comprised of pathogenic and nonpathogenic members, including beneficial commensal gut microbiota. The pathogenic members produce several pathogenic or virulence factors that enhance their pathogenic properties and increase the severity of the infection. The members of Enterobacterales can also develop resistance against the common antimicrobial agents, a phenomenon called antimicrobial resistance (AMR). Many pathogenic Enterobacterales members are known to possess antimicrobial resistance. This review discusses the virulence factors, pathogenicity, and infections caused by multidrug-resistant Enterobacterales, especially E. coli and some other bacterial species sharing similarities with the Enterobacterales members. We also discuss both conventional and modern approaches used to combat the infections caused by them. Understanding the virulence factors produced by the pathogenic bacteria will help develop novel strategies and methods to treat infections caused by them.
Collapse
Affiliation(s)
- Mohd W. Azam
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Asad U. Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
4
|
Dewan I, Uecker H. A mathematician's guide to plasmids: an introduction to plasmid biology for modellers. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001362. [PMID: 37505810 PMCID: PMC10433428 DOI: 10.1099/mic.0.001362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Plasmids, extrachromosomal DNA molecules commonly found in bacterial and archaeal cells, play an important role in bacterial genetics and evolution. Our understanding of plasmid biology has been furthered greatly by the development of mathematical models, and there are many questions about plasmids that models would be useful in answering. In this review, we present an introductory, yet comprehensive, overview of the biology of plasmids suitable for modellers unfamiliar with plasmids who want to get up to speed and to begin working on plasmid-related models. In addition to reviewing the diversity of plasmids and the genes they carry, their key physiological functions, and interactions between plasmid and host, we also highlight selected plasmid topics that may be of particular interest to modellers and areas where there is a particular need for theoretical development. The world of plasmids holds a great variety of subjects that will interest mathematical biologists, and introducing new modellers to the subject will help to expand the existing body of plasmid theory.
Collapse
Affiliation(s)
- Ian Dewan
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Hildegard Uecker
- Research Group Stochastic Evolutionary Dynamics, Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
5
|
Plasmid Replicon Diversity of Clinical Uropathogenic Escherichia coli Isolates from Riyadh, Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to identify and compare the plasmid replicons of clinical uropathogenic Escherichia coli (UPEC) isolates, involving extended spectrum β-lactamase (ESBL)-positive and ESBL-negative, E. coli ST131 and non-ST131 and various ST131 subclones. Plasmid replicon typing on 24 clinical UPEC isolates was carried out using polymerase chain reaction-based replicon typing. A statistical analysis was performed to assess the associations between plasmid replicon types and ESBL carriage, and to evaluate the link between ST131 isolates and high replicon carriage. Eight replicons, I1α, N2, Iγ, X1, FIIS, K, FIA, and FII were detected. The FII was the most common replicon identified here. ESBL-positive E. coli isolates were highly associated with I1α, N2, Iγ, X1, and FIIS replicons, while FIA was present only in ESBL-negative group. ST131 isolates were highly associated with I1α and N2 replicons compared to non-ST131. No link was found between replicon carriage and the number or type of ESBLs in E. coli isolates. The diversity observed in replicon patterns of our clinical E. coli isolates indicates that they might be originated from different sources. The presence of replicons reported previously in animal sources suggests a possible transfer of antimicrobial resistance between animal and human bacterial isolates.
Collapse
|
6
|
Genetic Context Diversity of Plasmid-Borne blaCTX-M-55 in Escherichia coli Isolated from Waterfowl. J Glob Antimicrob Resist 2022; 28:185-194. [DOI: 10.1016/j.jgar.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
|
7
|
Wang Y, Lu J, Zhang S, Li J, Mao L, Yuan Z, Bond PL, Guo J. Non-antibiotic pharmaceuticals promote the transmission of multidrug resistance plasmids through intra- and intergenera conjugation. THE ISME JOURNAL 2021; 15:2493-2508. [PMID: 33692486 PMCID: PMC8397710 DOI: 10.1038/s41396-021-00945-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/30/2022]
Abstract
Antibiotic resistance is a global threat to public health. The use of antibiotics at sub-inhibitory concentrations has been recognized as an important factor in disseminating antibiotic resistance via horizontal gene transfer. Although non-antibiotic, human-targeted pharmaceuticals are widely used by society (95% of the pharmaceuticals market), the potential contribution to the spread of antibiotic resistance is not clear. Here, we report that commonly consumed, non-antibiotic pharmaceuticals, including nonsteroidal anti-inflammatories (ibuprofen, naproxen, diclofenac), a lipid-lowering drug (gemfibrozil), and a β-blocker (propranolol), at clinically and environmentally relevant concentrations, significantly accelerated the dissemination of antibiotic resistance via plasmid-borne bacterial conjugation. Various indicators were used to study the bacterial response to these drugs, including monitoring reactive oxygen species (ROS) and cell membrane permeability by flow cytometry, cell arrangement, and whole-genome RNA and protein sequencing. Enhanced conjugation correlated well with increased production of ROS and cell membrane permeability. Additionally, these non-antibiotic pharmaceuticals induced responses similar to those detected when bacteria are exposed to antibiotics, such as inducing the SOS response and enhancing efflux pumps. The findings advance understanding of the transfer of antibiotic resistance genes, emphasizing the concern that non-antibiotic, human-targeted pharmaceuticals enhance the spread of antibiotic resistance among bacterial populations.
Collapse
Affiliation(s)
- Yue Wang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Ji Lu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Shuai Zhang
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Jie Li
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Likai Mao
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Philip L Bond
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD, Australia.
| |
Collapse
|
8
|
Kim JW, Bugata V, Cortés-Cortés G, Quevedo-Martínez G, Camps M. Mechanisms of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0026-2019. [PMID: 33210586 PMCID: PMC7724965 DOI: 10.1128/ecosalplus.esp-0026-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 11/20/2022]
Abstract
Plasmids are autonomously replicating sequences that help cells adapt to diverse stresses. Theta plasmids are the most frequent plasmid class in enterobacteria. They co-opt two host replication mechanisms: replication at oriC, a DnaA-dependent pathway leading to replisome assembly (theta class A), and replication fork restart, a PriA-dependent pathway leading to primosome assembly through primer extension and D-loop formation (theta classes B, C, and D). To ensure autonomy from the host's replication and to facilitate copy number regulation, theta plasmids have unique mechanisms of replication initiation at the plasmid origin of replication (ori). Tight plasmid copy number regulation is essential because of the major and direct impact plasmid gene dosage has on gene expression. The timing of plasmid replication and segregation are also critical for optimizing plasmid gene expression. Therefore, we propose that plasmid replication needs to be understood in its biological context, where complex origins of replication (redundant origins, mosaic and cointegrated replicons), plasmid segregation, and toxin-antitoxin systems are often present. Highlighting their tight functional integration with ori function, we show that both partition and toxin-antitoxin systems tend to be encoded in close physical proximity to the ori in a large collection of Escherichia coli plasmids. We also propose that adaptation of plasmids to their host optimizes their contribution to the host's fitness while restricting access to broad genetic diversity, and we argue that this trade-off between adaptation to host and access to genetic diversity is likely a determinant factor shaping the distribution of replicons in populations of enterobacteria.
Collapse
Affiliation(s)
- Jay W Kim
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Vega Bugata
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Giselle Quevedo-Martínez
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| |
Collapse
|
9
|
Skarżyńska M, Zając M, Kamińska E, Bomba A, Żmudzki J, Jabłoński A, Wasyl D. Salmonella and Antimicrobial Resistance in Wild Rodents-True or False Threat? Pathogens 2020; 9:pathogens9090771. [PMID: 32967245 PMCID: PMC7559071 DOI: 10.3390/pathogens9090771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
Transmission of pathogenic and resistant bacteria from wildlife to the bacterial gene pool in nature affects the ecosystem. Hence, we studied intestine content of five wild rodent species: the yellow-necked wood mouse (Apodemus flavicollis, n = 121), striped field mouse (Apodemus agrarius, n = 75), common vole (Microtus arvalis, n = 37), bank vole (Myodes glareolus, n = 3), and house mouse (Mus musculus, n = 1) to assess their potential role as an antimicrobial resistance (AMR) and Salmonella vector. The methods adopted from official AMR monitoring of slaughtered animals were applied and supplemented with colistin resistance screening. Whole-genome sequencing of obtained bacteria elucidated their epidemiological relationships and zoonotic potential. The study revealed no indications of public health relevance of wild rodents from the sampled area in Salmonella spread and their limited role in AMR dissemination. Of 263 recovered E. coli, the vast majority was pan-susceptible, and as few as 5 E. coli showed any resistance. In four colistin-resistant strains neither the known mcr genes nor known mutations in pmr genes were found. One of these strains was tetracycline-resistant due to tet(B). High diversity of virulence factors (n = 43) noted in tested strains including ibeA, cdtB, air, eilA, astA, vat, pic reported in clinically relevant types of enteric E. coli indicate that rodents may be involved in the ecological cycle of these bacteria. Most of the strains represented unique sequence types and ST10805, ST10806, ST10810, ST10824 were revealed for the first time, showing genomic heterogeneity of the strains. The study broadened the knowledge on phylogenetic diversity and structure of the E. coli population in wild rodents.
Collapse
Affiliation(s)
- Magdalena Skarżyńska
- Department of Microbiology, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.Z.); (D.W.)
- Correspondence: ; Tel.: +48-81-889-3370
| | - Magdalena Zając
- Department of Microbiology, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.Z.); (D.W.)
| | - Ewelina Kamińska
- Department of Omics Analyses, National Veterinary Research Institute, 24-100 Puławy, Poland; (E.K.); (A.B.)
| | - Arkadiusz Bomba
- Department of Omics Analyses, National Veterinary Research Institute, 24-100 Puławy, Poland; (E.K.); (A.B.)
| | - Jacek Żmudzki
- Department of Swine Diseases, National Veterinary Research Institute, 24-100 Puławy, Poland;
| | - Artur Jabłoński
- Department of Clinic Large Animal Diseases, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Dariusz Wasyl
- Department of Microbiology, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.Z.); (D.W.)
- Department of Omics Analyses, National Veterinary Research Institute, 24-100 Puławy, Poland; (E.K.); (A.B.)
| |
Collapse
|
10
|
Hamza D, Dorgham S, Ismael E, El-Moez SIA, Elhariri M, Elhelw R, Hamza E. Emergence of β-lactamase- and carbapenemase- producing Enterobacteriaceae at integrated fish farms. Antimicrob Resist Infect Control 2020; 9:67. [PMID: 32430083 PMCID: PMC7236517 DOI: 10.1186/s13756-020-00736-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epidemiological studies suggested that determinants for antibiotic resistance have originated in aquaculture. Recently, the integrated agriculture-aquaculture system has been implemented, where fish are raised in ponds that receive agriculture drainage water. The present study aims to investigate the occurrence of β-lactamase and carbapenemase-producing Enterobacteriaceae in the integrated agriculture-aquaculture and the consequent public health implication. METHODS Samples were collected from fish, fishpond water inlets, tap water, outlet water, and workers at sites of integrated agriculture-aquacultures. Samples were also taken from inhabitants of the aquaculture surrounding areas. All samples were cultured on MacConkey agar, the Enterobacteriaceae isolates were tested for susceptibility to cephalosporins and carbapenems, and screened for blaCTX-M-15, blaSHV, blaOXA-1, blaTEM, blaPER-1, blaKPC, blaOXA-48, and blaNDM. Strains having similar resistance phenotype and genotype were examined for the presence of Incompatible (Inc) plasmids. RESULTS A major proportion of the Enterobacteriaceae isolates were resistant to cephalosporins and carbapenems. Among the 66 isolates from fish, 34 were resistant to both cephalosporin and carbapenem groups, 26 to carbapenems alone, and 4 to cephalosporins alone. Of the 15 isolates from fishpond water inlets, 8 showed resistance to both groups, 1 to carbapenems alone, and 5 to cephalosporins alone. Out of the 33 isolates from tap water, 17 were resistant to both groups, and 16 to cephalosporins alone. Similarly, of the 16 outlet water isolates, 10 were resistant to both groups, and 6 to cephalosporins alone. Furthermore, of the 30 examined workers, 15 carried Enterobacteriaceae resistant strains, 10 to both groups, and 5 to cephalosporins alone. Similar strains were isolated from the inhabitants of the aquaculture surrounding areas. Irrespective of source of samples, strains resistant to all examined antibiotics, carried predominantly the carbapenemase gene blaKPC either alone or with the β-lactamase genes (blaCTX-M-15, blaSHV, blaTEM, and blaPER-1). The isolates from fish, water, and workers harboured a wide-range of multi-drug-resistance Inc. plasmids, which were similar among all isolates. CONCLUSION The present findings suggest transmission of the resistance genes among Enterobacteriaceae strains from different sources. This reiterates the need for control strategies that focus on humans, animals, water, and sewage systems to solve the antibiotic resistance problem.
Collapse
Affiliation(s)
- Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza square, PO Box 12211, Cairo, Egypt
| | - Sohad Dorgham
- Department of Microbiology and Immunology, National Research Centre, Giza, Egypt
| | - Elshaimaa Ismael
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Mahmoud Elhariri
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rehab Elhelw
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza square, PO Box 12211, Cairo, Egypt.
| |
Collapse
|
11
|
Mo SS, Telke AA, Osei KO, Sekse C, Slettemeås JS, Urdahl AM, Ilag HK, Leangapichart T, Sunde M. bla CTX-M- 1/IncI1-Iγ Plasmids Circulating in Escherichia coli From Norwegian Broiler Production Are Related, but Distinguishable. Front Microbiol 2020; 11:333. [PMID: 32194533 PMCID: PMC7066084 DOI: 10.3389/fmicb.2020.00333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/17/2020] [Indexed: 01/04/2023] Open
Abstract
Escherichia coli carrying blaCTX–M–1 mediating resistance to extended-spectrum cephalosporins was recently described as a new genotype in Norwegian broiler production. The aim of this study was to characterize these isolates (n = 31) in order to determine whether the emergence of the genotype was caused by clonal expansion or horizontal dissemination of blaCTX–M–1-carrying plasmids. All included isolates were subjected to whole genome sequencing. Plasmid transferability was determined by conjugation, and plasmid replicons in the transconjugants were described using PCR-based replicon typing. Plasmid sizes were determined using S1 nuclease digestion. Plasmids in a subset of strains were reconstructed and compared to plasmids from broiler production in other European countries. The isolates belonged to nine different sequence types (STs), with the largest group being ST57 (n = 12). The vast majority of blaCTX–M–1-carrying plasmids were conjugative. All transconjugants were positive for the IncI1-Iγ replicon, and several also harbored the IncFIB replicon. Highly similar plasmids were present in different E. coli STs. Additionally, high similarity to previously published plasmids was detected. A reconstructed plasmid from an ST57 isolate harbored both IncI1-Iγ and IncFIB replicons and was considered to be co-integrated. The presence of one large plasmid was confirmed by S1 nuclease digestion. Our results show that dissemination of blaCTX–M–1 in Norwegian broiler production is due to both clonal expansion and horizontal transfer of plasmids carrying blaCTX–M–1. The blaCTX–M–1/IncI1-Iγ plasmids grouped into two main lineages, namely clonal complex (CC)-3 and CC-7. The genetic diversity at both strain and plasmid level indicates multiple introductions to Norway. We also show that the blaCTX–M–1 plasmids circulating in Norwegian broiler production are highly similar to plasmids previously described in other countries.
Collapse
Affiliation(s)
- Solveig Sølverød Mo
- Section for Food Safety and Animal Health Research, Department of Animal Helath, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Amar Anandrao Telke
- Section for Food Safety and Animal Health Research, Department of Animal Helath, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Kingsley Oteng Osei
- Section for Food Safety and Animal Health Research, Department of Animal Helath, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway.,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Camilla Sekse
- Section for Food Safety and Animal Health Research, Department of Animal Helath, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Jannice Schau Slettemeås
- Section for Food Safety and Animal Health Research, Department of Animal Helath, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Anne Margrete Urdahl
- Section for Food Safety and Animal Health Research, Department of Animal Helath, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Hanna Karin Ilag
- Section for Microbiology, Department of Analysis and Diagnostics, Norwegian Veterinary Institute, Oslo, Norway
| | - Thongpan Leangapichart
- Section for Food Safety and Animal Health Research, Department of Animal Helath, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Marianne Sunde
- Section for Food Safety and Animal Health Research, Department of Animal Helath, Welfare and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
12
|
Anaerobic Degradation of Syringic Acid by an Adapted Strain of Rhodopseudomonas palustris. Appl Environ Microbiol 2020; 86:AEM.01888-19. [PMID: 31732577 PMCID: PMC6974649 DOI: 10.1128/aem.01888-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Lignin is the most abundant aromatic polymer on Earth and a resource that could eventually substitute for fossil fuels as a source of aromatic compounds for industrial and biotechnological applications. Engineering microorganisms for the production of aromatic-based biochemicals requires detailed knowledge of the metabolic pathways for the degradation of aromatics that are present in lignin. Our isolation and analysis of a Rhodopseudomonas palustris strain capable of syringic acid degradation reveal a previously unknown metabolic route for aromatic degradation in R. palustris. This study highlights several key features of this pathway and sets the stage for a more complete understanding of the microbial metabolic repertoire required to metabolize aromatic compounds from lignin and other renewable sources. While lignin represents a major fraction of the carbon in plant biomass, biological strategies to convert the components of this heterogeneous polymer into products of industrial and biotechnological value are lacking. Syringic acid (3,5-dimethoxy-4-hydroxybenzoic acid) is a by-product of lignin degradation, appearing in lignocellulosic hydrolysates, deconstructed lignin streams, and other agricultural products. Rhodopseudomonas palustris CGA009 is a known degrader of phenolic compounds under photoheterotrophic conditions via the benzoyl coenzyme A (CoA) degradation (BAD) pathway. However, R. palustris CGA009 is reported to be unable to metabolize meta-methoxylated phenolics, such as syringic acid. We isolated a strain of R. palustris (strain SA008.1.07), adapted from CGA009, which can grow on syringic acid under photoheterotrophic conditions, utilizing it as a sole source of organic carbon and reducing power. An SA008.1.07 mutant with an inactive benzoyl-CoA reductase structural gene was able to grow on syringic acid, demonstrating that the metabolism of this aromatic compound is not through the BAD pathway. Comparative gene expression analyses of SA008.1.07 implicated the involvement of products of the vanARB operon (rpa3619, rpa3620, rpa3621), which has been described as catalyzing aerobic aromatic ring demethylation in other bacteria, in anaerobic syringic acid degradation. In addition, experiments with a vanARB deletion mutant demonstrated the involvement of the vanARB operon in anaerobic syringic acid degradation. These observations provide new insights into the anaerobic degradation of meta-methoxylated and other aromatics by R. palustris. IMPORTANCE Lignin is the most abundant aromatic polymer on Earth and a resource that could eventually substitute for fossil fuels as a source of aromatic compounds for industrial and biotechnological applications. Engineering microorganisms for the production of aromatic-based biochemicals requires detailed knowledge of the metabolic pathways for the degradation of aromatics that are present in lignin. Our isolation and analysis of a Rhodopseudomonas palustris strain capable of syringic acid degradation reveal a previously unknown metabolic route for aromatic degradation in R. palustris. This study highlights several key features of this pathway and sets the stage for a more complete understanding of the microbial metabolic repertoire required to metabolize aromatic compounds from lignin and other renewable sources.
Collapse
|
13
|
Rasko DA, Del Canto F, Luo Q, Fleckenstein JM, Vidal R, Hazen TH. Comparative genomic analysis and molecular examination of the diversity of enterotoxigenic Escherichia coli isolates from Chile. PLoS Negl Trop Dis 2019; 13:e0007828. [PMID: 31747410 PMCID: PMC6901236 DOI: 10.1371/journal.pntd.0007828] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/09/2019] [Accepted: 10/04/2019] [Indexed: 02/02/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the most common diarrheal pathogens in the low- and middle-income regions of the world, however a systematic examination of the genomic content of isolates from Chile has not yet been undertaken. Whole genome sequencing and comparative analysis of a collection of 125 ETEC isolates from three geographic locations in Chile, allowed the interrogation of phylogenomic groups, sequence types and genes specific to isolates from the different geographic locations. A total of 80.8% (101/125) of the ETEC isolates were identified in E. coli phylogroup A, 15.2% (19/125) in phylogroup B, and 4.0% (5/125) in phylogroup E. The over-representation of genomes in phylogroup A was significantly different from other global ETEC genomic studies. The Chilean ETEC isolates could be further subdivided into sub-clades similar to previously defined global ETEC reference lineages that had conserved multi-locus sequence types and toxin profiles. Comparison of the gene content of the Chilean ETEC identified genes that were unique based on geographic location within Chile, phylogenomic classifications or sequence type. Completion of a limited number of genomes provided insight into the ETEC plasmid content, which is conserved in some phylogenomic groups and not conserved in others. These findings suggest that the Chilean ETEC isolates contain unique virulence factor combinations and genomic content compared to global reference ETEC isolates.
Collapse
Affiliation(s)
- David A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Felipe Del Canto
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Qingwei Luo
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - James M. Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Veterans Affairs Medical Center, Saint Louis, Missouri, United States of America
| | - Roberto Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Tracy H. Hazen
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
14
|
Awosile B, Reyes-Velez J, Cuesta-Astroz Y, Rodríguez-Lecompte JC, Saab ME, Heider LC, Keefe G, Sánchez J, McClure JT. Short communication: Whole-genome sequence analysis of 4 fecal bla CMY-2-producing Escherichia coli isolates from Holstein dairy calves. J Dairy Sci 2019; 103:877-883. [PMID: 31733866 DOI: 10.3168/jds.2019-16560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022]
Abstract
This study was carried out to determine the antimicrobial resistance (AMR) genes and mobile genetic elements of 4 fecal blaCMY-2-producing Escherichia coli isolated from Holstein dairy calves on the same farm using whole-genome sequencing. Genomic analysis revealed that 3 of the 4 isolates shared similar genetic features, including sequence type (ST), serotype, plasmid characteristics, insertion ST, and virulence genes. In addition to genes encoding for complex multidrug resistance efflux systems, all 4 isolates were carriers of genes conferring resistance to β-lactams (blaCMY-2, blaTEM-1B), tetracyclines (tetA, tetB, tetD), aminoglycosides [aadA1, aph(3")-lb, aph(6)-ld], sulfonamides (sul2), and trimethoprim (dfrA1). We also detected 4 incompatibility plasmid groups: Inc.F, Inc.N, Inc.I, and Inc.Q. A novel ST showing a new purA and mdh allelic combination was found. The 4 isolates were likely enterotoxigenic pathotypes of E. coli, based on serotype and presence of the plasmid Inc.FII(pCoo). This study provides information for comparative genomic analysis of AMR genes and mobile genetic elements. This analysis could give some explanation to the multidrug resistance characteristics of bacteria colonizing the intestinal tract of dairy calves in the first few weeks of life.
Collapse
Affiliation(s)
- Babafela Awosile
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3.
| | - Julian Reyes-Velez
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3; Tropical Medicine Colombian Institute, CES University, Sabaneta, Antioquia, Colombia
| | - Yesid Cuesta-Astroz
- Tropical Medicine Colombian Institute, CES University, Sabaneta, Antioquia, Colombia
| | - Juan Carlos Rodríguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| | - Matthew E Saab
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3; Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| | - Luke C Heider
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| | - Greg Keefe
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| | - Javier Sánchez
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| | - J Trenton McClure
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada C1A 4P3
| |
Collapse
|
15
|
Abstract
Plasmids have a major role in the development of disease caused by enteric bacterial pathogens. Virulence plasmids are usually large (>40 kb) low copy elements and encode genes that promote host-pathogen interactions. Although virulence plasmids provide advantages to bacteria in specific conditions, they often impose fitness costs on their host. In this Review, we discuss virulence plasmids in Enterobacteriaceae that are important causes of diarrhoea in humans, Shigella spp., Salmonella spp., Yersinia spp and pathovars of Escherichia coli. We contrast these plasmids with those that are routinely used in the laboratory and outline the mechanisms by which virulence plasmids are maintained in bacterial populations. We highlight examples of virulence plasmids that encode multiple mechanisms for their maintenance (for example, toxin-antitoxin and partitioning systems) and speculate on how these might contribute to their propagation and success.
Collapse
|
16
|
Genomic and antimicrobial resistance genes diversity in multidrug-resistant CTX-M-positive isolates of Escherichia coli at a health care facility in Jeddah. J Infect Public Health 2019; 13:94-100. [PMID: 31279801 DOI: 10.1016/j.jiph.2019.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Whole genome sequencing has revolutionized epidemiological investigations of multidrug-resistant pathogenic bacteria worldwide. Aim of this study was to perform comprehensive characterization of ESBL-positive isolates of Escherichia coli obtained from clinical samples at the King Abdulaziz University Hospital utilizing whole genome sequencing. METHODS Isolates were identified by MALDI-TOF mass spectrometry. Genome sequencing was performed using a paired-end strategy on the MiSeq platform. RESULTS Nineteen isolates were clustered into different clades in a phylogenetic tree based on single nucleotide polymorphisms in core genomes. Seventeen sequence types were identified in the extended-spectrum β-lactamase (ESBL)-positive isolates, and 11 subtypes were identified based on distinct types of fimH alleles. Forty-one acquired resistance genes were found in the 19 genomes. The blaCTX-M-15 gene, which encodes ESBL, was found in 15 isolates and was the most predominant resistance gene. Other antimicrobial resistance genes (ARGs) found in the isolates were associated with resistance to tetracycline (tetA), aminoglycoside [aph(3″)-Ib, and aph(6)-Id], and sulfonamide (sul1, and sul2). Nonsynonymous chromosomal mutations in the housekeeping genes parC and gyrA were commonly found in several genomes. CONCLUSION Several other ARGs were found in CTX-M-positive E. coli isolates confer resistance to clinically important antibiotics used to treat infections caused by Gram-negative bacteria.
Collapse
|
17
|
Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 2019; 73:1121-1137. [PMID: 29370371 DOI: 10.1093/jac/dkx488] [Citation(s) in RCA: 578] [Impact Index Per Article: 96.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial antimicrobial resistance (AMR) is constantly evolving and horizontal gene transfer through plasmids plays a major role. The identification of plasmid characteristics and their association with different bacterial hosts provides crucial knowledge that is essential to understand the contribution of plasmids to the transmission of AMR determinants. Molecular identification of plasmid and strain genotypes elicits a distinction between spread of AMR genes by plasmids and dissemination of these genes by spread of bacterial clones. For this reason several methods are used to type the plasmids, e.g. PCR-based replicon typing (PBRT) or relaxase typing. Currently, there are 28 known plasmid types in Enterobacteriaceae distinguished by PBRT. Frequently reported plasmids [IncF, IncI, IncA/C, IncL (previously designated IncL/M), IncN and IncH] are the ones that bear the greatest variety of resistance genes. The purpose of this review is to provide an overview of all known AMR-related plasmid families in Enterobacteriaceae, the resistance genes they carry and their geographical distribution.
Collapse
Affiliation(s)
- M Rozwandowicz
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M S M Brouwer
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - J Fischer
- Department of Biological Safety, Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - J A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - B Gonzalez-Zorn
- Department of Animal Health and VISAVET, Complutense University of Madrid, Madrid, Spain
| | - B Guerra
- Department of Biological Safety, Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - D J Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - J Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid 2019; 102:29-36. [DOI: 10.1016/j.plasmid.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
|
19
|
Dagher C, Salloum T, Alousi S, Arabaghian H, Araj GF, Tokajian S. Molecular characterization of Carbapenem resistant Escherichia coli recovered from a tertiary hospital in Lebanon. PLoS One 2018; 13:e0203323. [PMID: 30188911 PMCID: PMC6126819 DOI: 10.1371/journal.pone.0203323] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/17/2018] [Indexed: 12/15/2022] Open
Abstract
The emergence of carbapenem resistant Escherichia coli represents a serious public health concern. This study investigated the resistome, virulence, plasmids content and clonality of 27 carbapenem resistant E. coli isolated from 27 hospitalized patients at the American University of Beirut Medical Center (AUBMC) in Lebanon between 2012 and 2016. Whole-genome sequencing (WGS) data were used to identify resistance determinants. Multilocus sequence typing (MLST), pulsed field gel electrophoresis (PFGE), phylogenetic grouping and PCR-based replicon typing (PBRT) were also performed. The 27 isolates were distributed into 15 STs, of which ST405 (14.8%; n = 4) was the most prevalent. All of the 27 isolates were carbapenem resistant and 20 (74%) were extended-spectrum β-lactamase (ESBL) gene carriers. The predominant detected carbapenemases were blaOXA-48 (48.1%; n = 13) and blaOXA-181 (7.4%; n = 2), for the ESBLs it was blaCTX-M-15 (55.6%; n = 15) and blaCTX-M-24 (18.5%; n = 5), and for the AmpC-type β-lactamases, blaCMY-42 (40.7%; n = 11) and blaCMY-2 (3.7%; n = 1). Thirteen replicons were identified among the 27 E. coli isolates including: IncL/M, IncFIA, IncFIB, IncFII, IncI1, and IncX3. PFGE revealed a high genetic diversity with the 27 isolates being grouped in 21 different pulsotypes. SNPs analysis and PFGE showed a possible clonal dissemination of ST405, ST1284, ST354 and ST410 and the dominance of certain STs, monitoring of which could help in elucidating routes of transmission. This study represents the first WGS-based in depth analysis of the resistomes and mobilomes of carbapenem resistant E. coli in Lebanon.
Collapse
Affiliation(s)
- Christel Dagher
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Tamara Salloum
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Sahar Alousi
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - Harout Arabaghian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
| | - George F. Araj
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
- * E-mail:
| |
Collapse
|
20
|
Riveros M, García W, García C, Durand D, Mercado E, Ruiz J, Ochoa TJ. Molecular and Phenotypic Characterization of Diarrheagenic Escherichia coli Strains Isolated from Bacteremic Children. Am J Trop Med Hyg 2017; 97:1329-1336. [PMID: 29016293 DOI: 10.4269/ajtmh.17-0066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Escherichia coli is an important cause of Gram-negative bacteremia. The aim of this study was to characterize at the molecular and phenotypic levels E. coli strains belonging to different diarrheagenic pathotypes [diarrheagenic E. coli (DEC)] isolated from bacteremia in children younger than 5 years of age. Seventy bacteremia E. coli strains were collected in a prospective study in 12 hospitals in Lima, Peru. The presence of virulence genes associated with DEC [enterotoxigenic (lt and st), enteropathogenic (eaeA), shiga toxin-producing (stx1and stx2), enteroinvasive (ipaH), enteroaggregative (aggR), and diffusely adherent (daaD)] was determined by multiplex real-time polymerase chain reaction (PCR). Those positive E. coli strains were further analyzed for 18 additional virulence factors encoding genes and others phenotypic features. Virulence genes associated with DEC were identified in seven bacteremic children (10%), including: one aggR-positive [enteroaggregative E. coli (EAEC)], one eaeA-positive [enteropathogenic E. coli (EPEC)], one st-positive [enterotoxigenic E. coli (ETEC)], one daaD-positive [diffusely adherent E. coli (DAEC)], and three strain positive for aggR and daaD (EAEC/DAEC) at the same time. All strains, except EPEC, had the Ag43 adhesin, and all, except ETEC had the siderophore gene fyuA. The phylogenetic profile of these strains was variable, two (B2), two (D), two (A), and one (B1) strain. These isolates were susceptible to all tested antibacterial agents except to ampicillin and gentamicin. The three EAEC/DAEC strains showed biofilm formation and aggregative adhesion and had the same repetitive extragenic palindromic-PCR patterns. These findings suggest that some DEC strains, especially agg-R and daa-D positive, might cause bacteremia in children.
Collapse
Affiliation(s)
- Maribel Riveros
- Universidad Nacional Federico Villarreal, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Wilfredo García
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Coralith García
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - David Durand
- Universidad Nacional Federico Villarreal, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erik Mercado
- Universidad Nacional Federico Villarreal, Lima, Peru.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joaquim Ruiz
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Theresa J Ochoa
- University of Texas Health Science Center at Houston, School of Public Health, Houston, Texas.,Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
21
|
Comparative genomics and transcriptomics of Escherichia coli isolates carrying virulence factors of both enteropathogenic and enterotoxigenic E. coli. Sci Rep 2017; 7:3513. [PMID: 28615618 PMCID: PMC5471185 DOI: 10.1038/s41598-017-03489-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/28/2017] [Indexed: 12/21/2022] Open
Abstract
Escherichia coli that are capable of causing human disease are often classified into pathogenic variants (pathovars) based on their virulence gene content. However, disease-associated hybrid E. coli, containing unique combinations of multiple canonical virulence factors have also been described. Such was the case of the E. coli O104:H4 outbreak in 2011, which caused significant morbidity and mortality. Among the pathovars of diarrheagenic E. coli that cause significant human disease are the enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC). In the current study we use comparative genomics, transcriptomics, and functional studies to characterize isolates that contain virulence factors of both EPEC and ETEC. Based on phylogenomic analysis, these hybrid isolates are more genomically-related to EPEC, but appear to have acquired ETEC virulence genes. Global transcriptional analysis using RNA sequencing, demonstrated that the EPEC and ETEC virulence genes of these hybrid isolates were differentially-expressed under virulence-inducing laboratory conditions, similar to reference isolates. Immunoblot assays further verified that the virulence gene products were produced and that the T3SS effector EspB of EPEC, and heat-labile toxin of ETEC were secreted. These findings document the existence and virulence potential of an E. coli pathovar hybrid that blurs the distinction between E. coli pathovars.
Collapse
|
22
|
Jin J, Hsieh YH, Cui J, Damera K, Dai C, Chaudhary AS, Zhang H, Yang H, Cao N, Jiang C, Vaara M, Wang B, Tai PC. Using Chemical Probes to Assess the Feasibility of Targeting SecA for Developing Antimicrobial Agents against Gram-Negative Bacteria. ChemMedChem 2016; 11:2511-2521. [PMID: 27753464 PMCID: PMC5189635 DOI: 10.1002/cmdc.201600421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/25/2016] [Indexed: 11/07/2022]
Abstract
With the widespread emergence of drug resistance, there is an urgent need to search for new antimicrobials, especially those against Gram-negative bacteria. Along this line, the identification of viable targets is a critical first step. The protein translocase SecA is commonly believed to be an excellent target for the development of broad-spectrum antimicrobials. In recent years, we developed three structural classes of SecA inhibitors that have proven to be very effective against Gram-positive bacteria. However, we have not achieved the same level of success against Gram-negative bacteria, despite the potent inhibition of SecA in enzyme assays by the same inhibitors. In this study, we use representative inhibitors as chemical probes to gain an understanding as to why these inhibitors were not effective against Gram-negative bacteria. The results validate our initial postulation that the major difference in effectiveness against Gram-positive and Gram-negative bacteria is in the additional permeability barrier posed by the outer membrane of Gram-negative bacteria. We also found that the expression of efflux pumps, which are responsible for multidrug resistance (MDR), have no effect on the effectiveness of these SecA inhibitors. Identification of an inhibitor-resistant mutant and complementation tests of the plasmids containing secA in a secAts mutant showed that a single secA-azi-9 mutation increased the resistance, providing genetic evidence that SecA is indeed the target of these inhibitors in bacteria. Such results strongly suggest SecA as an excellent target for developing effective antimicrobials against Gram-negative bacteria with the intrinsic ability to overcome MDR. A key future research direction should be the optimization of membrane permeability.
Collapse
Affiliation(s)
- Jinshan Jin
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Ying-Hsin Hsieh
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Jianmei Cui
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Krishna Damera
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Chaofeng Dai
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Arpana S. Chaudhary
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hao Zhang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hsiuchin Yang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Nannan Cao
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Chun Jiang
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Martti Vaara
- Division of Clinical Microbiology, Helsinki University Hospital, FI-00029 HUSLAB, Helsinki, Finland, and Northern Antibiotics Ltd, FI-00720, Helsinki, Finland
| | - Binghe Wang
- Department of Chemistry, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Phang C. Tai
- Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
23
|
Ban E, Yoshida Y, Wakushima M, Wajima T, Hamabata T, Ichikawa N, Abe H, Horiguchi Y, Hara-Kudo Y, Kage-Nakadai E, Yamamoto T, Wada T, Nishikawa Y. Characterization of unstable pEntYN10 from enterotoxigenic Escherichia coli (ETEC) O169:H41. Virulence 2016; 6:735-44. [PMID: 26575107 DOI: 10.1080/21505594.2015.1094606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) serotype O169:H41 has been an extremely destructive epidemic ETEC type worldwide. The strain harbors a large unstable plasmid that is regarded as responsible for its virulence, although its etiology has remained unknown. To examine its genetic background specifically on the unstable retention and responsibility in the unique adherence to epithelial cells and enterotoxin production, the complete sequence of a plasmid, pEntYN10, purified from the serotype strain was determined. The length is 145,082 bp; its GC content is 46.15%. It contains 182 CDSs, which include 3 colonization factors (CFs), an enterotoxin, and large number of insertion sequences. The repertory of plasmid stability genes was extraordinarily scant. Uniquely, results showed that 3 CFs, CS6, CS8 (CFA/III)-like, and K88 (F4)-like were encoded redundantly in the plasmid with unique variations among previously known subtypes. These three CFs preserved their respective gene structures similarly to those of other ETEC strains reported previously with unique sequence variations respectively. It is particularly interesting that the K88-like gene cluster of pEntYN10 had 2 paralogous copies of faeG, which encodes the major component of fimbrial structure. It remains to be verified how the unique variations found in the CFs respectively affect the affinity to infected cells, host range, and virulence of the ETEC strain.
Collapse
Affiliation(s)
- Erika Ban
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Yuka Yoshida
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Mitsuko Wakushima
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Takeaki Wajima
- b Department of Microbiology ; School of Pharmacy; Tokyo University of Pharmacy and Life Sciences ; Tokyo , Japan
| | - Takashi Hamabata
- c Research Institute; National Center for Global Health and Medicine ; Tokyo , Japan
| | - Naoki Ichikawa
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| | - Hiroyuki Abe
- d Department of Molecular Bacteriology ; Research Institute for Microbial Diseases; Osaka University ; Osaka , Japan
| | - Yasuhiko Horiguchi
- d Department of Molecular Bacteriology ; Research Institute for Microbial Diseases; Osaka University ; Osaka , Japan
| | - Yukiko Hara-Kudo
- e Division of Microbiology; National Institute of Health Sciences ; Tokyo , Japan
| | - Eriko Kage-Nakadai
- f The OCU Advanced Research Institute for Natural Science and Technology; Osaka City University ; Osaka , Japan
| | - Taro Yamamoto
- g Department of International Health ; Institute of Tropical Medicine; Nagasaki University ; Nagasaki , Japan
| | - Takayuki Wada
- g Department of International Health ; Institute of Tropical Medicine; Nagasaki University ; Nagasaki , Japan
| | - Yoshikazu Nishikawa
- a Department of Food and Human Health Sciences ; Graduate School of Human Life Science; Osaka City University ; Osaka , Japan
| |
Collapse
|
24
|
Characterization of an Enterobacter cloacae Strain Producing both KPC and NDM Carbapenemases by Whole-Genome Sequencing. Antimicrob Agents Chemother 2015; 59:6625-8. [PMID: 26248381 DOI: 10.1128/aac.01275-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 07/19/2015] [Indexed: 02/05/2023] Open
Abstract
A carbapenem-resistant Enterobacter cloacae strain, WCHECl-14653, causing a fatal bloodstream infection, was characterized by genome sequencing and conjugation experiments. The strain carried two carbapenemase genes, blaNDM-1 and blaKPC-2, on separate IncF plasmids. The coexistence of blaNDM-1 and blaKPC-2 conferred slightly higher-level carbapenem resistance compared with that of blaNDM-1 or blaKPC-2 alone, and the coexistence of two IncF plasmids may generate new platforms for spreading carbapenemase genes.
Collapse
|
25
|
Kartsev NN, Fursova NK, Pachkunov DM, Bannov VA, Eruslanov BV, Svetoch EA, Dyatlov IA. Molecular Characterization of Enterotoxin-Producing Escherichia coli Collected in 2011-2012, Russia. PLoS One 2015; 10:e0123357. [PMID: 25923803 PMCID: PMC4414545 DOI: 10.1371/journal.pone.0123357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/03/2015] [Indexed: 11/20/2022] Open
Abstract
Enterotoxin-producing Escherichia coli (ETEC) are one of the main causative agents of diarrhea in children especially in developing countries and travel diarrhoea in adults. Pathogenic properties of ETEC associated with their ability to produce a heat-stable (ST) and/or heat-labile (LT) enterotoxins, as well as adhesins providing bacterial adhesion to intestinal epithelial cells. This study presents the molecular characterization of the ETEC isolates collected from the Central and Far-Eastern regions of Russia in 2011–2012. It was shown that all ETEC under study (n=18) had the heat-labile enterotoxin-coding operon elt, and had no the genes of the heat-stable enterotoxin operon est. DNA sequencing revealed two types of nucleotide exchanges in the eltB gene coding subunit B of LT in isolates collected from Cherepovets city (Central region, Russia) and Vladivostok city (Far-East region, Russia). Only one ETEC strain carried genes cfaA, cfaB, cfaC and cfaD coding adhesion factor CFA/I. Expression of LT in four ETEC isolates in the agglutination reaction was detected using a latex test-system. The isolates were assigned to serogroups O142 (n = 6), О6 (n = 4), О25 (n = 5), О26 (n = 2), and O115 (n = 1). Genotyping showed that they belonged to an earlier described sequence-type ST4 (n = 3) as well as to 11 novel sequence-types ST1043, ST1312, ST3697, ST3707, ST3708, ST3709, ST3710, ST3755, ST3756, ST3757 and ST4509. The ETEC isolates displayed different levels of antimicrobial resistance. Eight isolates were resistant to only one drug, three isolates—to two drugs, one isolate—to three drugs, two isolates—to four antibacterials, and only one isolate to each of the five, six and ten antibacterials simultaneously. Genetic determinants of the resistance to beta-lactams and other classes of antibacterials on the ETEC genomes were identified. There are blaTEM (n = 10), blaCTX-M-15 (n = 1), class 1 integron (n = 3) carrying resistance cassettes to aminoglycosides and sulphonamides dfrA17-aadA5 and dfrA12-orfF-aadA2. One isolate ETEC_Ef-6 was found to be a multidrug-resistant (MDR) pathogen that carried both the beta-lactamase gene and class 1 integron. These data suggest the circulation of ETEC in Russia. Further investigations are necessary to study the spread of the revealed ETEC sequence types (STs) and serotypes. Their role in the etiology of diarrhea should be also estimated.
Collapse
Affiliation(s)
- Nikolay N. Kartsev
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
- * E-mail:
| | - Nadezhda K. Fursova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
| | - Dmitry M. Pachkunov
- Department of Innovation Research, Volga State Technological University, Yoshkar-Ola, Russian Federation
| | - Vasiliy A. Bannov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
| | - Boris V. Eruslanov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
| | - Edward A. Svetoch
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
| | - Ivan A. Dyatlov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russian Federation
| |
Collapse
|
26
|
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of life-threatening diarrheal disease around the world. The major aspects of ETEC virulence are colonization of the small intestine and the secretion of enterotoxins which elicit diarrhea. Intestinal colonization is mediated, in part, by adhesins displayed on the bacterial cell surface. As colonization of the intestine is the critical first step in the establishment of an infection, it represents a potential point of intervention for the prevention of infections. Therefore, colonization factors (CFs) have been important subjects of research in the field of ETEC virulence. Research in this field has revealed that ETEC possesses a large array of serologically distinct CFs that differ in composition, structure, and function. Most ETEC CFs are pili (fimbriae) or related fibrous structures, while other adhesins are simple outer membrane proteins lacking any macromolecular structure. This chapter reviews the genetics, structure, function, and regulation of ETEC CFs and how such studies have contributed to our understanding of ETEC virulence and opened up potential opportunities for the development of preventive and therapeutic interventions.
Collapse
|
27
|
Identification of enterotoxigenic Escherichia coli (ETEC) clades with long-term global distribution. Nat Genet 2014; 46:1321-6. [PMID: 25383970 DOI: 10.1038/ng.3145] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 10/17/2014] [Indexed: 12/15/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC), a major cause of infectious diarrhea, produce heat-stable and/or heat-labile enterotoxins and at least 25 different colonization factors that target the intestinal mucosa. The genes encoding the enterotoxins and most of the colonization factors are located on plasmids found across diverse E. coli serogroups. Whole-genome sequencing of a representative collection of ETEC isolated between 1980 and 2011 identified globally distributed lineages characterized by distinct colonization factor and enterotoxin profiles. Contrary to current notions, these relatively recently emerged lineages might harbor chromosome and plasmid combinations that optimize fitness and transmissibility. These data have implications for understanding, tracking and possibly preventing ETEC disease.
Collapse
|
28
|
Oh KH, Kim DW, Jung SM, Cho SH. Molecular characterization of Enterotoxigenic Escherichia coli strains isolated from diarrheal patients in Korea during 2003-2011. PLoS One 2014; 9:e96896. [PMID: 24841334 PMCID: PMC4026316 DOI: 10.1371/journal.pone.0096896] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 04/12/2014] [Indexed: 11/18/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is one of the major causes of infectious diarrhea in developing countries. In order to characterize the molecular features of human ETEC isolates from Korea, we investigated the profiles of enterotoxin and colonization factor (CF) genes by polymerase chain reaction (PCR) and performed multilocus sequence typing (MLST) with a total of 291 ETEC strains. The specimens comprised 258 domestic strains isolated from patients who had diarrhea and were from widely separated geographic regions in Korea and 33 inflow strains isolated from travelers visiting other Asian countries. Heat-stable toxin (STh)-possessing ETEC strains were more frequent than heat-labile toxin (LT)-possessing ETEC strains in the domestic isolates, while the detection rates of both enterotoxin genes were similar in the inflow isolates. The profile of CF genes of domestic isolates was similar to that of inflow isolates and the major CF types of the strains were CS3-CS21-CS1/PCF071 and CS2-CS3-CS21. Most of these 2 CF types were detected in ETEC strains that possess both lt and sth genes. The major MLSTST types of domestic isolates were ST171 and ST955. Moreover, the 2 major CF types were usually found concomitantly with the 2 major MLST STs, ST171 and ST955. In conclusion, our genotyping results may provide useful information for guiding the development of geographically specific vaccines against human ETEC isolates.
Collapse
Affiliation(s)
- Kyung-Hwan Oh
- Division of Enteric Bacterial Infections, Center for Infectious Diseases, Korea National Institute of Health, Osong-eup, Chungcheongbuk-do, Republic of Korea
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Kyeonggi-do, Republic of Korea
| | - Su-Mi Jung
- Division of Enteric Bacterial Infections, Center for Infectious Diseases, Korea National Institute of Health, Osong-eup, Chungcheongbuk-do, Republic of Korea
| | - Seung-Hak Cho
- Division of Enteric Bacterial Infections, Center for Infectious Diseases, Korea National Institute of Health, Osong-eup, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
29
|
Lima AAM, Fonteles MC. From Escherichia coli heat-stable enterotoxin to mammalian endogenous guanylin hormones. ACTA ACUST UNITED AC 2014; 47:179-91. [PMID: 24652326 PMCID: PMC3982939 DOI: 10.1590/1414-431x20133063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/15/2013] [Indexed: 12/16/2022]
Abstract
The isolation of heat-stable enterotoxin (STa) from Escherichia coli and cholera toxin from Vibrio cholerae has increased our knowledge of specific mechanisms of action that could be used as pharmacological tools to understand the guanylyl cyclase-C and the adenylyl cyclase enzymatic systems. These discoveries have also been instrumental in increasing our understanding of the basic mechanisms that control the electrolyte and water balance in the gut, kidney, and urinary tracts under normal conditions and in disease. Herein, we review the evolution of genes of the guanylin family and STa genes from bacteria to fish and mammals. We also describe new developments and perspectives regarding these novel bacterial compounds and peptide hormones that act in electrolyte and water balance. The available data point toward new therapeutic perspectives for pathological features such as functional gastrointestinal disorders associated with constipation, colorectal cancer, cystic fibrosis, asthma, hypertension, gastrointestinal barrier function damage associated with enteropathy, enteric infection, malnutrition, satiety, food preferences, obesity, metabolic syndrome, and effects on behavior and brain disorders such as attention deficit, hyperactivity disorder, and schizophrenia.
Collapse
Affiliation(s)
- A A M Lima
- Unidade de Pesquisas Clinicas, Instituto de Biomedicina, Departamento de Fisiologia e Farmacologia, Escola de Medicina, Universidade Federal do Ceara, Fortaleza, CE, Brasil
| | - M C Fonteles
- Unidade de Pesquisas Clinicas, Instituto de Biomedicina, Departamento de Fisiologia e Farmacologia, Escola de Medicina, Universidade Federal do Ceara, Fortaleza, CE, Brasil
| |
Collapse
|
30
|
Wajima T, Sabui S, Kano S, Ramamurthy T, Chatterjee NS, Hamabata T. Entire sequence of the colonization factor coli surface antigen 6-encoding plasmid pCss165 from an enterotoxigenic Escherichia coli clinical isolate. Plasmid 2013; 70:343-52. [DOI: 10.1016/j.plasmid.2013.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/15/2013] [Accepted: 07/28/2013] [Indexed: 11/15/2022]
|
31
|
Transcriptional modulation of enterotoxigenic Escherichia coli virulence genes in response to epithelial cell interactions. Infect Immun 2012; 81:259-70. [PMID: 23115039 DOI: 10.1128/iai.00919-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a leading cause of morbidity and mortality due to diarrheal illness in developing countries. There is currently no effective vaccine against these important pathogens. Because genes modulated by pathogen-host interactions potentially encode putative vaccine targets, we investigated changes in gene expression and surface morphology of ETEC upon interaction with intestinal epithelial cells in vitro. Pan-genome microarrays, quantitative reverse transcriptase PCR (qRT-PCR), and transcriptional reporter fusions of selected promoters were used to study changes in ETEC transcriptomes. Flow cytometry, immunofluorescence microscopy, and scanning electron microscopy were used to investigate alterations in surface antigen expression and morphology following pathogen-host interactions. Following host cell contact, genes for motility, adhesion, toxin production, immunodominant peptides, and key regulatory molecules, including cyclic AMP (cAMP) receptor protein (CRP) and c-di-GMP, were substantially modulated. These changes were accompanied by visible changes in both ETEC architecture and the expression of surface antigens, including a novel highly conserved adhesin molecule, EaeH. The studies reported here suggest that pathogen-host interactions are finely orchestrated by ETEC and are characterized by coordinated responses involving the sequential deployment of multiple virulence molecules. Elucidation of the molecular details of these interactions could highlight novel strategies for development of vaccines for these important pathogens.
Collapse
|
32
|
Tamminen M, Virta M, Fani R, Fondi M. Large-scale analysis of plasmid relationships through gene-sharing networks. Mol Biol Evol 2011; 29:1225-40. [PMID: 22130968 DOI: 10.1093/molbev/msr292] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Plasmids are vessels of genetic exchange in microbial communities. They are known to transfer between different host organisms and acquire diverse genetic elements from chromosomes and/or other plasmids. Therefore, they constitute an important element in microbial evolution by rapidly disseminating various genetic properties among different communities. A paradigmatic example of this is the dissemination of antibiotic resistance (AR) genes that has resulted in the emergence of multiresistant pathogenic bacterial strains. To globally analyze the evolutionary dynamics of plasmids, we built a large graph in which 2,343 plasmids (nodes) are connected according to the proteins shared by each other. The analysis of this gene-sharing network revealed an overall coherence between network clustering and the phylogenetic classes of the corresponding microorganisms, likely resulting from genetic barriers to horizontal gene transfer between distant phylogenetic groups. Habitat was not a crucial factor in clustering as plasmids from organisms inhabiting different environments were often found embedded in the same cluster. Analyses of network metrics revealed a statistically significant correlation between plasmid mobility and their centrality within the network, providing support to the observation that mobile plasmids are particularly important in spreading genes in microbial communities. Finally, our study reveals an extensive (and previously undescribed) sharing of AR genes between Actinobacteria and Gammaproteobacteria, suggesting that the former might represent an important reservoir of AR genes for the latter.
Collapse
Affiliation(s)
- Manu Tamminen
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
33
|
Johnson TJ, Shepard SM, Rivet B, Danzeisen JL, Carattoli A. Comparative genomics and phylogeny of the IncI1 plasmids: A common plasmid type among porcine enterotoxigenic Escherichia coli. Plasmid 2011; 66:144-51. [DOI: 10.1016/j.plasmid.2011.07.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/17/2011] [Accepted: 07/19/2011] [Indexed: 11/25/2022]
|
34
|
Roy K, Kansal R, Bartels SR, Hamilton DJ, Shaaban S, Fleckenstein JM. Adhesin degradation accelerates delivery of heat-labile toxin by enterotoxigenic Escherichia coli. J Biol Chem 2011; 286:29771-9. [PMID: 21757737 PMCID: PMC3191018 DOI: 10.1074/jbc.m111.251546] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Indexed: 12/12/2022] Open
Abstract
Many enteric pathogens, including enterotoxigenic Escherichia coli (ETEC), produce one or more serine proteases that are secreted via the autotransporter (or type V) bacterial secretion pathway. These molecules have collectively been referred to as SPATE proteins (serine protease autotransporter of the Enterobacteriaceae). EatA, an autotransporter previously identified in ETEC, possesses a functional serine protease motif within its secreted amino-terminal passenger domain. Although this protein is expressed by many ETEC strains and is highly immunogenic, its precise function is unknown. Here, we demonstrate that EatA degrades a recently characterized adhesin, EtpA, resulting in modulation of bacterial adhesion and accelerated delivery of the heat-labile toxin, a principal ETEC virulence determinant. Antibodies raised against the passenger domain of EatA impair ETEC delivery of labile toxin to epithelial cells suggesting that EatA may be an effective target for vaccine development.
Collapse
Affiliation(s)
| | - Rita Kansal
- Research Services, Veterans Affairs Medical Center, Memphis, Tennessee 38104, and
| | | | | | - Salwa Shaaban
- the Faculty of Pharmacy, Beni-Sueif University, 62514 Beni-Sueif, Egypt
| | - James M. Fleckenstein
- From the Departments of Medicine
- Molecular Sciences, University of Tennessee Health Sciences Center, Memphis, Tennessee 38163
- the Medicine and
| |
Collapse
|
35
|
Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp. Appl Environ Microbiol 2011; 77:3255-67. [PMID: 21421789 DOI: 10.1128/aem.03023-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cronobacter spp. are emerging neonatal pathogens that cause meningitis, sepsis, and necrotizing enterocolitis. The genus Chronobacter consists of six species: C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, and Cronobacter genomospecies group 1. Whole-genome sequencing of C. sakazakii BAA-894 and C. turicensis z3032 revealed that they harbor similarly sized plasmids identified as pESA3 (131 kb) and pCTU1 (138 kb), respectively. In silico analysis showed that both plasmids encode a single RepFIB-like origin of replication gene, repA, as well as two iron acquisition systems (eitCBAD and iucABCD/iutA). In a chrome azurol S agar diffusion assay, it was demonstrated that siderophore activity was associated with the presence of pESA3 or pCTU1. Additionally, pESA3 contains a cpa (Cronobacter plasminogen activator) gene and a 17-kb type 6 secretion system (T6SS) locus, while pCTU1 contains a 27-kb region encoding a filamentous hemagglutinin gene (fhaB), its specifc transporter gene (fhaC), and associated putative adhesins (FHA locus), suggesting that these are virulence plasmids. In a repA-targeted PCR assay, 97% of 229 Cronobacter species isolates were found to possess a homologous RepFIB plasmid. All repA PCR-positive strains were also positive for the eitCBAD and iucABCD/iutA iron acquisition systems. However, the presence of cpa, T6SS, and FHA loci depended on species, demonstrating a strong correlation with the presence of virulence traits, plasmid type, and species. These results support the hypothesis that these plasmids have evolved from a single archetypical plasmid backbone through the cointegration, or deletion, of specific virulence traits in each species.
Collapse
|
36
|
Sahl JW, Lloyd AL, Redman JC, Cebula TA, Wood DP, Mobley HLT, Rasko DA. Genomic characterization of asymptomatic Escherichia coli isolated from the neobladder. MICROBIOLOGY-SGM 2011; 157:1088-1102. [PMID: 21252277 DOI: 10.1099/mic.0.043018-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The replacement of the bladder with a neobladder made from ileal tissue is the prescribed treatment in some cases of bladder cancer or trauma. Studies have demonstrated that individuals with an ileal neobladder have recurrent colonization by Escherichia coli and other species that are commonly associated with urinary tract infections; however, pyelonephritis and complicated symptomatic infections with ileal neobladders are relatively rare. This study examines the genomic content of two E. coli isolates from individuals with neobladders using comparative genomic hybridization (CGH) with a pan-E. coli/Shigella microarray. Comparisons of the neobladder genome hybridization patterns with reference genomes demonstrate that the neobladder isolates are more similar to the commensal, laboratory-adapted E. coli and a subset of enteroaggregative E. coli than they are to uropathogenic E. coli isolates. Genes identified by CGH as exclusively present in the neobladder isolates among the 30 examined isolates were primarily from large enteric isolate plasmids. Isolations identified a large plasmid in each isolate, and sequencing confirmed similarity to previously identified plasmids of enteric species. Screening, via PCR, of more than 100 isolates of E. coli from environmental, diarrhoeagenic and urinary tract sources did not identify neobladder-specific genes that were widely distributed in these populations. These results taken together demonstrate that the neobladder isolates, while distinct, are genomically more similar to gastrointestinal or commensal E. coli, suggesting why they can colonize the transplanted intestinal tissue but rarely progress to acute pyelonephritis or more severe disease.
Collapse
Affiliation(s)
- Jason W Sahl
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Amanda L Lloyd
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109, USA
| | - Julia C Redman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A Cebula
- Johns Hopkins University, Department of Biology, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - David P Wood
- University of Michigan Medical School, Department of Urology, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 West Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109, USA
| | - David A Rasko
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
37
|
Complete genome sequence of the incompatibility group I1 plasmid R64. Plasmid 2010; 64:92-103. [DOI: 10.1016/j.plasmid.2010.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 11/20/2022]
|
38
|
A commensal gone bad: complete genome sequence of the prototypical enterotoxigenic Escherichia coli strain H10407. J Bacteriol 2010; 192:5822-31. [PMID: 20802035 DOI: 10.1128/jb.00710-10] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In most cases, Escherichia coli exists as a harmless commensal organism, but it may on occasion cause intestinal and/or extraintestinal disease. Enterotoxigenic E. coli (ETEC) is the predominant cause of E. coli-mediated diarrhea in the developing world and is responsible for a significant portion of pediatric deaths. In this study, we determined the complete genomic sequence of E. coli H10407, a prototypical strain of enterotoxigenic E. coli, which reproducibly elicits diarrhea in human volunteer studies. We performed genomic and phylogenetic comparisons with other E. coli strains, revealing that the chromosome is closely related to that of the nonpathogenic commensal strain E. coli HS and to those of the laboratory strains E. coli K-12 and C. Furthermore, these analyses demonstrated that there were no chromosomally encoded factors unique to any sequenced ETEC strains. Comparison of the E. coli H10407 plasmids with those from several ETEC strains revealed that the plasmids had a mosaic structure but that several loci were conserved among ETEC strains. This study provides a genetic context for the vast amount of experimental and epidemiological data that have been published.
Collapse
|
39
|
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrhea among children living in and among travelers visiting developing countries. Human ETEC strains represent an epidemiologically and phenotypically diverse group of pathogens, and there is a need to identify natural groupings of these organisms that may help to explain this diversity. Here, we sought to identify most of the important human ETEC lineages that exist in the E. coli population, because strains that originate from the same lineage may also have inherited many of the same epidemiological and phenotypic traits. We performed multilocus sequence typing (MLST) on 1,019 ETEC isolates obtained from humans in different countries and analyzed the data against a backdrop of MLST data from 1,250 non-ETEC E. coli and eight ETEC isolates from pigs. A total of 42 different lineages were identified, 15 of which, representing 792 (78%) of the strains, were estimated to have emerged >900 years ago. Twenty of the lineages were represented in more than one country. There was evidence of extensive exchange of enterotoxin and colonization factor genes between different lineages. Human and porcine ETEC have probably emerged from the same ancestral ETEC lineage on at least three occasions. Our findings suggest that most ETEC strains circulating in the human population today originate from well-established, globally widespread ETEC lineages. Some of the more important lineages identified here may represent a smaller and more manageable target for the ongoing efforts to develop effective ETEC vaccines.
Collapse
|
40
|
Enterotoxigenic Escherichia coli elicits immune responses to multiple surface proteins. Infect Immun 2010; 78:3027-35. [PMID: 20457787 DOI: 10.1128/iai.00264-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes considerable morbidity and mortality due to diarrheal illness in developing countries, particularly in young children. Despite the global importance of these heterogeneous pathogens, a broadly protective vaccine is not yet available. While much is known regarding the immunology of well-characterized virulence proteins, in particular the heat-labile toxin (LT) and colonization factors (CFs), to date, evaluation of the immune response to other antigens has been limited. However, the availability of genomic DNA sequences for ETEC strains coupled with proteomics technology affords opportunities to examine novel uncharacterized antigens that might also serve as targets for vaccine development. Analysis of whole or fractionated bacterial proteomes with convalescent-phase sera can potentially accelerate identification of secreted or surface-expressed targets that are recognized during the course of infection. Here we report results of an immunoproteomics approach to antigen discovery with ETEC strain H10407. Immunoblotting of proteins separated by two-dimensional electrophoresis (2DE) with sera from mice infected with strain H10407 or with convalescent human sera obtained following natural ETEC infections demonstrated multiple immunoreactive molecules in culture supernatant, outer membrane, and outer membrane vesicle preparations, suggesting that many antigens are recognized during the course of infection. Proteins identified by this approach included established virulence determinants, more recently identified putative virulence factors, as well as novel secreted and outer membrane proteins. Together, these studies suggest that existing and emerging proteomics technologies can provide a useful complement to ongoing approaches to ETEC vaccine development.
Collapse
|
41
|
A novel IS26 structure surrounds bla
CTX-M genes in different plasmids from German clinical Escherichia coli isolates. J Med Microbiol 2010; 59:580-587. [DOI: 10.1099/jmm.0.016188-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This report focuses on the molecular characterization of 22 extended-spectrum β-lactamase-producing Escherichia coli isolates collected in a German university hospital during a period of 9 months in 2006. Relationship analysis of clinical isolates was done via PFGE, multilocus sequence typing, plasmid profiling and additionally PCR for bla
ESBL detection and determination of phylogroups. After conjugal transfer, plasmid isolation and subsequent PCR for bla
ESBL detection and determination of incompatibility groups were performed. Using one-primer walking, up to 3600 bp upstream and downstream of different bla
CTX-M genes could be sequenced. β-Lactamases found were TEM-1 (n=14), SHV-5 (n=1) and a wide variety of CTX-M types (n=21), i.e. CTX-M-15 (n=12), CTX-M-1 (n=4), CTX-M-14 (n=2), CTX-M-9 (n=1), CTX-M-3 (n=1) and one new type, CTX-M-65 (n=1). In 18 isolates, bla
ESBL genes were located on conjugative plasmids of sizes between 40 and 180 kbp belonging to incompatibility groups FII (n=9), N (n=5) and I1 (n=4). bla
CTX-M was found to be associated with the common elements ISEcp1, IS26 and IS903-D, but with unusual spacer sequences for ISEcp1 in two isolates. These insertion sequences, connected to bla
CTX-M as well as other genes, were located between two IS26 elements in a configuration that has not yet been described. The results reveal the emergence of bla
ESBL, predominantly bla
CTX-M, located on different plasmids harboured by genotypically different E. coli strains. The identical gene arrangement in the bla
CTX-M neighbourhood in plasmids of different incompatibility groups indicates a main role of IS26 in distribution of mobile resistance elements between different plasmids.
Collapse
|
42
|
Abstract
Bacterial plasmids are self-replicating, extrachromosomal elements that are key agents of change in microbial populations. They promote the dissemination of a variety of traits, including virulence, enhanced fitness, resistance to antimicrobial agents, and metabolism of rare substances. Escherichia coli, perhaps the most studied of microorganisms, has been found to possess a variety of plasmid types. Included among these are plasmids associated with virulence. Several types of E. coli virulence plasmids exist, including those essential for the virulence of enterotoxigenic E. coli, enteroinvasive E. coli, enteropathogenic E. coli, enterohemorrhagic E. coli, enteroaggregative E. coli, and extraintestinal pathogenic E. coli. Despite their diversity, these plasmids belong to a few plasmid backbones that present themselves in a conserved and syntenic manner. Thanks to some recent research, including sequence analysis of several representative plasmid genomes and molecular pathogenesis studies, the evolution of these virulence plasmids and the implications of their acquisition by E. coli are now better understood and appreciated. Here, work involving each of the E. coli virulence plasmid types is summarized, with the available plasmid genomic sequences for several E. coli pathotypes being compared in an effort to understand the evolution of these plasmid types and define their core and accessory components.
Collapse
|
43
|
Fleckenstein JM, Hardwidge PR, Munson GP, Rasko DA, Sommerfelt H, Steinsland H. Molecular mechanisms of enterotoxigenic Escherichia coli infection. Microbes Infect 2010; 12:89-98. [PMID: 19883790 PMCID: PMC10647112 DOI: 10.1016/j.micinf.2009.10.002] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/22/2009] [Accepted: 10/24/2009] [Indexed: 10/20/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are a major cause of diarrheal illness in developing countries, and perennially the most common cause of traveller's diarrhea. ETEC constitute a diverse pathotype that elaborate heat-labile and/or heat-stable enterotoxins. Recent molecular pathogenesis studies reveal sophisticated pathogen-host interactions that might be exploited in efforts to prevent these important infections. While vaccine development for these important pathogens remains a formidable challenge, extensive efforts that attempt to exploit new genomic and proteomic technology platforms in discovery of novel targets are presently ongoing.
Collapse
|
44
|
Ochi S, Shimizu T, Ohtani K, Ichinose Y, Arimitsu H, Tsukamoto K, Kato M, Tsuji T. Nucleotide sequence analysis of the enterotoxigenic Escherichia coli Ent plasmid. DNA Res 2009; 16:299-309. [PMID: 19767599 PMCID: PMC2762410 DOI: 10.1093/dnares/dsp015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We report here the complete nucleotide sequence of pEntH10407 (65 147 bp), an enterotoxigenic Escherichia coli enterotoxin plasmid (Ent plasmid), which is self-transmissible at low frequency. Within the plasmid, we identified 100 open reading frames (ORFs) which could encode polypeptides. These ORFs included regions encoding heat-labile (LT) and heat-stable (STIa) enterotoxins, regions encoding tools for plasmid replication and an incomplete tra (conjugation) region. The LT and STIa region was located 13.5 kb apart and was surrounded by three IS1s and an IS600 in opposite reading orientations, indicating that the enterotoxin genes may have been horizontally transferred into the plasmid. We identified a single RepFIIA replication region (2.0 kb) including RepA proteins similar to RepA1, RepA2, RepA3 and RepA4. The incomplete tra region was made up of 17 tra genes, which were nearly identical to the corresponding genes of R100, and showed evidence of multiple insertions of ISEc8 and ISEc8-like elements. These data suggest that pEntH10407 has the mosaic nature characteristic of bacterial virulence plasmids, which contains information about its evolution. Although the tra genes might originally have rendered pEntH10407 self-transferable to the same degree as R100, multiple insertion events have occurred in the tra region of pEntH10407 to make it less mobile. Another self-transmissible plasmid might help pEntH10407 to transfer efficiently into H10407 strain. In this paper, we suggest another possibility: that the enterotoxigenic H10407 strain might be formed by auto-transfer of pEntH10407 at a low rate using the incomplete tra region.
Collapse
Affiliation(s)
- Sadayuki Ochi
- Department of Microbiology, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Shearer JE, Summers AO. Intracellular Steady-State Concentration of Integron Recombination Products Varies with Integrase Level and Growth Phase. J Mol Biol 2009; 386:316-31. [DOI: 10.1016/j.jmb.2008.12.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 12/04/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
|
46
|
Abstract
Are plasmids selfish parasitic DNA molecules or an integrated part of the bacterial genome? This chapter reviews the current understanding of the persistence mechanisms of conjugative plasmids harbored by bacterial cells and populations. The diversity and intricacy of mechanisms affecting the successful propagation and long-term continued existence of these extra-chromosomal elements is extensive. Apart from the accessory genetic elements that may provide plasmid-harboring cells a selective advantage, special focus is placed on the mechanisms conjugative plasmids employ to ensure their stable maintenance in the host cell. These importantly include the ability to self-mobilize in a process termed conjugative transfer, which may occur across species barriers. Other plasmid stabilizing mechanisms include the multimer resolution system, active partitioning, and post-segregational-killing of plasmid-free cells. Finally, various molecular adaptations of plasmids to better match the genetic background of their bacterial host cell will be described.
Collapse
|
47
|
The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 2008; 190:6881-93. [PMID: 18676672 DOI: 10.1128/jb.00619-08] [Citation(s) in RCA: 584] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-genome sequencing has been skewed toward bacterial pathogens as a consequence of the prioritization of medical and veterinary diseases. However, it is becoming clear that in order to accurately measure genetic variation within and between pathogenic groups, multiple isolates, as well as commensal species, must be sequenced. This study examined the pangenomic content of Escherichia coli. Six distinct E. coli pathovars can be distinguished using molecular or phenotypic markers, but only two of the six pathovars have been subjected to any genome sequencing previously. Thus, this report provides a seminal description of the genomic contents and unique features of three unsequenced pathovars, enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. We also determined the first genome sequence of a human commensal E. coli isolate, E. coli HS, which will undoubtedly provide a new baseline from which workers can examine the evolution of pathogenic E. coli. Comparison of 17 E. coli genomes, 8 of which are new, resulted in identification of approximately 2,200 genes conserved in all isolates. We were also able to identify genes that were isolate and pathovar specific. Fewer pathovar-specific genes were identified than anticipated, suggesting that each isolate may have independently developed virulence capabilities. Pangenome calculations indicate that E. coli genomic diversity represents an open pangenome model containing a reservoir of more than 13,000 genes, many of which may be uncharacterized but important virulence factors. This comparative study of the species E. coli, while descriptive, should provide the basis for future functional work on this important group of pathogens.
Collapse
|
48
|
Norman A, Hansen LH, She Q, Sørensen SJ. Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. Plasmid 2008; 60:59-74. [PMID: 18440636 DOI: 10.1016/j.plasmid.2008.03.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 12/01/2022]
Abstract
The large conjugative multidrug resistance (MDR) plasmid pOLA52 was sequenced and annotated. The plasmid encodes two phenotypes normally associated with the chromosomes of opportunistic pathogens, namely MDR via a resistance-nodulation-division (RND)-type efflux-pump (oqxAB), and the formation of type 3 fimbriae (mrkABCDF). The plasmid was found to be 51,602 bp long with 68 putative genes. About half of the plasmid constituted a conserved IncX1-type backbone with predicted regions for conjugation, replication and partitioning, as well as a toxin/antitoxin (TA) plasmid addiction system. The plasmid was also classified as IncX1 with incompatibility testing. The conjugal transfer and plasmid maintenance regions of pOLA52 therefore seem to represent IncX1 orthologues of the well-characterized IncX2 plasmid R6K. Sequence homology searches in GenBank also suggested a considerably higher prevalence of IncX1 group plasmids than IncX2. The 21 kb 'genetic load' region of pOLA52 was shown to consist of a mosaic, among other things a fragmented Tn3 transposon encoding ampicillin resistance. Most notably the oqxAB and mrkABCDF cassettes were contained within two composite transposons (Tn6010 and Tn6011) that seemed to originate from Klebsiella pneumoniae, thus demonstrating the capability of IncX1 plasmids of facilitating lateral transfer of gene cassettes between different Enterobacteriaceae.
Collapse
Affiliation(s)
- Anders Norman
- Department of Biology, Evolution and Microbiology Section, University of Copenhagen, Sølvgade 83H, DK-1307 Copenhagen K, Denmark
| | | | | | | |
Collapse
|
49
|
Nuccio SP, Bäumler AJ. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 2007; 71:551-75. [PMID: 18063717 PMCID: PMC2168650 DOI: 10.1128/mmbr.00014-07] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many Proteobacteria use the chaperone/usher pathway to assemble proteinaceous filaments on the bacterial surface. These filaments can curl into fimbrial or nonfimbrial surface structures (e.g., a capsule or spore coat). This article reviews the phylogeny of operons belonging to the chaperone/usher assembly class to explore the utility of establishing a scheme for subdividing them into clades of phylogenetically related gene clusters. Based on usher amino acid sequence comparisons, our analysis shows that the chaperone/usher assembly class is subdivided into six major phylogenetic clades, which we have termed alpha-, beta-, gamma-, kappa-, pi-, and sigma-fimbriae. Members of each clade share related operon structures and encode fimbrial subunits with similar protein domains. The proposed classification system offers a simple and convenient method for assigning newly discovered chaperone/usher systems to one of the six major phylogenetic groups.
Collapse
Affiliation(s)
- Sean-Paul Nuccio
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave., Davis, CA 95616-8645, USA
| | | |
Collapse
|
50
|
Pilonieta MC, Bodero MD, Munson GP. CfaD-dependent expression of a novel extracytoplasmic protein from enterotoxigenic Escherichia coli. J Bacteriol 2007; 189:5060-7. [PMID: 17496090 PMCID: PMC1951884 DOI: 10.1128/jb.00131-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
H10407 is a strain of enterotoxigenic Escherichia coli (ETEC) that utilizes CFA/I pili to adhere to surfaces of the small intestine, where it elaborates toxins that cause profuse watery diarrhea in humans. Expression of the CFA/I pilus is positively regulated at the level of transcription by CfaD, a member of the AraC/XylS family. DNase I footprinting revealed that the activator has two binding sites upstream of the pilus promoter cfaAp. One site extends from positions -23 to -56, and the other extends from positions -73 to -103 (numbering relative to the transcription start site of cfaAp). Additional CfaD binding sites were predicted within the genome of H10407 by computational analysis. Two of these sites lie upstream of a previously uncharacterized gene, cexE. In vitro DNase I footprinting confirmed that both sites are genuine binding sites, and cexEp::lacZ reporters demonstrated that CfaD is required for the expression of cexE in vivo. The amino terminus of CexE contains a secretory signal peptide that is removed during translocation across the cytoplasmic membrane through the general secretory pathway. These studies suggest that CexE may be a novel ETEC virulence factor because its expression is controlled by the virulence regulator CfaD, and its distribution is restricted to ETEC.
Collapse
MESH Headings
- Antigens, Bacterial/genetics
- Antigens, Bacterial/physiology
- Base Sequence
- Binding Sites
- Biological Transport
- Cytoplasm/metabolism
- DNA Footprinting
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Electrophoresis, Polyacrylamide Gel
- Enterotoxigenic Escherichia coli/genetics
- Enterotoxigenic Escherichia coli/metabolism
- Enterotoxigenic Escherichia coli/pathogenicity
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/physiology
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/physiology
- Gene Expression Regulation, Bacterial
- Molecular Sequence Data
- Promoter Regions, Genetic
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Virulence/genetics
Collapse
Affiliation(s)
- M Carolina Pilonieta
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, P.O. Box 016960 (R-138), Miami, FL 33101, USA
| | | | | |
Collapse
|