1
|
Jiang H, Milanov M, Jüngert G, Angebauer L, Flender C, Smudde E, Gather F, Vogel T, Jessen HJ, Koch HG. Control of a chemical chaperone by a universally conserved ATPase. iScience 2024; 27:110215. [PMID: 38993675 PMCID: PMC11237923 DOI: 10.1016/j.isci.2024.110215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
The universally conserved YchF/Ola1 ATPases regulate stress response pathways in prokaryotes and eukaryotes. Deletion of YchF/Ola1 leads to increased resistance against environmental stressors, such as reactive oxygen species, while their upregulation is associated with tumorigenesis in humans. The current study shows that in E. coli, the absence of YchF stimulates the synthesis of the alternative sigma factor RpoS by a transcription-independent mechanism. Elevated levels of RpoS then enhance the transcription of major stress-responsive genes. In addition, the deletion of ychF increases the levels of polyphosphate kinase, which in turn boosts the production of the evolutionary conserved and ancient chemical chaperone polyphosphate. This potentially provides a unifying concept for the increased stress resistance in bacteria and eukaryotes upon YchF/Ola1 deletion. Intriguingly, the simultaneous deletion of ychF and the polyphosphate-degrading enzyme exopolyphosphatase causes synthetic lethality in E. coli, demonstrating that polyphosphate production needs to be fine-tuned to prevent toxicity.
Collapse
Affiliation(s)
- Hong Jiang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Martin Milanov
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Gabriela Jüngert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Larissa Angebauer
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Clara Flender
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Eva Smudde
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Fabian Gather
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Tanja Vogel
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Henning J. Jessen
- Institute for Organic Chemistry, Faculty of Chemistry and Pharmacy, University Freiburg 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Ni C, Prather KLJ. Consistent biosynthesis of D-glycerate from variable mixed substrates. Metab Eng 2024; 82:41-48. [PMID: 38185463 DOI: 10.1016/j.ymben.2024.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
The use of waste streams and other renewable feedstocks in microbial biosynthesis has long been a goal for metabolic engineers. Microbes can utilize the substrate mixtures found in waste streams, though they are more technically challenging to convert to useful products compared to the single substrates of standard practice. It is difficult to achieve consistent biosynthesis in the face of the temporally changing nature of waste streams. Furthermore, the expression of all the enzymes necessary to convert mixed substrates into a product likely presents significant metabolic burden, which already plagues processes that utilize a single substrate. We developed an approach to utilize mixed feedstocks for production by activating expression of each biosynthetic pathway in the presence of its substrate. This expression control was used for two novel pathways that converted two substrates, galacturonate and gluconate, into a single product, D-glycerate. A production strain harboring both pathway plasmids produced 1.8 ± 0.3 and 1.64 ± 0.09 g L-1 of D-glycerate from galacturonate and gluconate alone, respectively. Fermentations that were fed a mixture of the two substrates, at different ratios, resulted in product titers between 1.48 ± 0.03 and 1.8 ± 0.1 g L-1. All fermentations were fed a total of 10 g L-1 substrate and there was no statistically significant difference in D-glycerate titer from the single or mixed substrate fermentations. We thus demonstrated consistent D-glycerate biosynthesis from single and mixed substrates as an example of robust conversion of complex feedstocks.
Collapse
Affiliation(s)
- Cynthia Ni
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
3
|
Zhang Y, Wu Q, Forsythe S, Liu C, Chen N, Li Y, Zhang J, Wang J, Ding Y. The cascade regulation of small RNA and quorum sensing system: Focusing on biofilm formation of foodborne pathogens in food industry. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Mohiuddin SG, Ghosh S, Ngo HG, Sensenbach S, Karki P, Dewangan NK, Angardi V, Orman MA. Cellular Self-Digestion and Persistence in Bacteria. Microorganisms 2021; 9:2269. [PMID: 34835393 PMCID: PMC8626048 DOI: 10.3390/microorganisms9112269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/30/2022] Open
Abstract
Cellular self-digestion is an evolutionarily conserved process occurring in prokaryotic cells that enables survival under stressful conditions by recycling essential energy molecules. Self-digestion, which is triggered by extracellular stress conditions, such as nutrient depletion and overpopulation, induces degradation of intracellular components. This self-inflicted damage renders the bacterium less fit to produce building blocks and resume growth upon exposure to fresh nutrients. However, self-digestion may also provide temporary protection from antibiotics until the self-digestion-mediated damage is repaired. In fact, many persistence mechanisms identified to date may be directly or indirectly related to self-digestion, as these processes are also mediated by many degradative enzymes, including proteases and ribonucleases (RNases). In this review article, we will discuss the potential roles of self-digestion in bacterial persistence.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mehmet A. Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77004, USA; (S.G.M.); (S.G.); (H.G.N.); (S.S.); (P.K.); (N.K.D.); (V.A.)
| |
Collapse
|
5
|
Ni C, Fox KJ, Prather KLJ. Substrate-activated expression of a biosynthetic pathway in Escherichia coli. Biotechnol J 2021; 17:e2000433. [PMID: 34050620 DOI: 10.1002/biot.202000433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/12/2022]
Abstract
Microbes can facilitate production of valuable chemicals more sustainably than traditional chemical processes in many cases: they utilize renewable feedstocks, require less energy intensive process conditions, and perform a variety of chemical reactions using endogenous or heterologous enzymes. In response to the metabolic burden imposed by production pathways, chemical inducers are frequently used to initiate gene expression after the cells have reached sufficient density. While chemically inducible promoters are a common research tool used for pathway expression, they introduce a compound extrinsic to the process along with the associated costs. We developed an expression control system for a biosynthetic pathway for the production of d-glyceric acid that utilizes galacturonate as both the inducer and the substrate, thereby eliminating the need for an extrinsic chemical inducer. Activation of expression in response to the feed is actuated by a galacturonate-responsive transcription factor biosensor. We constructed variants of the galacturonate biosensor with a heterologous transcription factor and cognate hybrid promoter, and selected for the best performer through fluorescence characterization. We showed that native E. coli regulatory systems do not interact with our biosensor and favorable biosensor response exists in the presence and absence of galacturonate consumption. We then employed the control circuit to regulate the expression of the heterologous genes of a biosynthetic pathway for the production d-glyceric acid that was previously developed in our lab. Productivity via substrate-induction with our control circuit was comparable to IPTG-controlled induction and significantly outperformed a constitutive expression control, producing 2.13 ± 0.03 g L-1 d-glyceric acid within 6 h of galacturonate substrate addition. This work demonstrated feed-activated pathway expression to be an attractive control strategy for more readily scalable microbial biosynthesis.
Collapse
Affiliation(s)
- Cynthia Ni
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kevin J Fox
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kristala L J Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
TusA Is a Versatile Protein That Links Translation Efficiency to Cell Division in Escherichia coli. J Bacteriol 2021; 203:JB.00659-20. [PMID: 33526615 DOI: 10.1128/jb.00659-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
To enable accurate and efficient translation, sulfur modifications are introduced posttranscriptionally into nucleosides in tRNAs. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems for the incorporation of sulfur atoms in different nucleosides of tRNA. One of the proteins that is involved in inserting the sulfur for 5-methylaminomethyl-2-thiouridine (mnm5s2U34) modifications in tRNAs is the TusA protein. TusA, however, is a versatile protein that is also involved in numerous other cellular pathways. Despite its role as a sulfur transfer protein for the 2-thiouridine formation in tRNA, a fundamental role of TusA in the general physiology of Escherichia coli has also been discovered. Poor viability, a defect in cell division, and a filamentous cell morphology have been described previously for tusA-deficient cells. In this report, we aimed to dissect the role of TusA for cell viability. We were able to show that the lack of the thiolation status of wobble uridine (U34) nucleotides present on Lys, Gln, or Glu in tRNAs has a major consequence on the translation efficiency of proteins; among the affected targets are the proteins RpoS and Fis. Both proteins are major regulatory factors, and the deregulation of their abundance consequently has a major effect on the cellular regulatory network, with one consequence being a defect in cell division by regulating the FtsZ ring formation.IMPORTANCE More than 100 different modifications are found in RNAs. One of these modifications is the mnm5s2U modification at the wobble position 34 of tRNAs for Lys, Gln, and Glu. The functional significance of U34 modifications is substantial since it restricts the conformational flexibility of the anticodon, thus providing translational fidelity. We show that in an Escherichia coli TusA mutant strain, involved in sulfur transfer for the mnm5s2U34 thio modifications, the translation efficiency of RpoS and Fis, two major cellular regulatory proteins, is altered. Therefore, in addition to the transcriptional regulation and the factors that influence protein stability, tRNA modifications that ensure the translational efficiency provide an additional crucial regulatory factor for protein synthesis.
Collapse
|
7
|
Zheng J, Zheng J, Ma Y, Zuo G, Feng Y. The role of Lys2-Cl - -Lys2 salt linkages in oligomeric intermediates of RbsD protein in Escherichia coli. J Basic Microbiol 2019; 60:185-194. [PMID: 31588591 DOI: 10.1002/jobm.201900337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 11/06/2022]
Abstract
As a homo-oligomeric protein, the disassembly of Escherichia coli RbsD decamer produces a urea-unfolded oligomeric intermediate structure, as the dissociation speed of the protein is lower than that of the unfolding process. There are five Lys2-Cl- -Lys2 salt linkages to connect these subunits. To explore the role of the salt linkages in these oligomeric intermediates, the Lys2Ala mutated in the N-terminal of E. coli RbsD protein subunit was designed. It was found that the RbsD mutation protein (RbsD:K2A) loses its minor larger oligomers, which exist in RbsD, and displays other several oligomeric states (less than decamers), meanwhile the state of the oligomers depends on the protein concentration. It was also found that compared with RbsD, the crosslinking capability of the subunits of RbsD:K2A is weaker, while the crosslinking rate of dimers is higher, RbsD:K2A needs to substantially adjust its conformation to meet the space requirements when combined with d-ribose. On the basis of these results, we suggest that Lys2-Cl- -Lys2 salt linkages in E. coli RbsD protein play an important role in stabilizing the intermediate products of oligomers and maintaining interaction between the intermediate products of oligomers, which may shed light on the study of these oligomeric proteins.
Collapse
Affiliation(s)
- Jing Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jie Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuanwu Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Guocai Zuo
- School of Software and Information Engineering, Hunan Software Vocational Institute, Xiangtan, China
| | - Yongjun Feng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
8
|
Kim W, Lee Y. Mechanism for coordinate regulation of rpoS by sRNA-sRNA interaction in Escherichia coli. RNA Biol 2019; 17:176-187. [PMID: 31552789 DOI: 10.1080/15476286.2019.1672514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
RpoS is a key regulator of general stress responses in Escherichia coli. Its expression is post-transcriptionally up-regulated by the small RNAs (sRNAs), ArcZ, DsrA and RprA, through sRNA-rpoS mRNA interactions. Although overexpression of the sRNA, CyaR, was reported to down-regulate rpoS expression, how CyaR regulates rpoS has not been determined. Here, we report that CyaR represses rpoS expression by base-pairing with a region next to the ArcZ binding site in the 5' UTR of rpoS mRNA and that CyaR expression itself is down-regulated by ArcZ through sRNA-sRNA interaction. The short form of ArcZ, but not the full-length form, can base-pair with CyaR. This ArcZ-CyaR interaction triggers degradation of CyaR by RNase E, alleviating the CyaR-mediated rpoS repression. These results suggest that ArcZ not only participates in rpoS translation as an activator, but also acts as a regulator of the reciprocally acting CyaR, maximizing its rpoS-activating effect.
Collapse
|
9
|
Ayala JC, Benitez JA, Silva AJ. A proteome-wide screen to identify transcription factors interacting with the Vibrio cholerae rpoS promoter. J Microbiol Methods 2019; 165:105702. [PMID: 31454505 DOI: 10.1016/j.mimet.2019.105702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/26/2022]
Abstract
We describe a proteomic approach to identify transcription factors binding to a target promoter. The method's usefulness was tested by identifying proteins binding to the Vibrio cholerae rpoS promoter in response to cell density. Proteins identified in this screen included the nucleoid-associated protein Fis and the quorum sensing regulator HapR.
Collapse
Affiliation(s)
- Julio C Ayala
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW, Atlanta, GA 30310, USA
| | - Jorge A Benitez
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW, Atlanta, GA 30310, USA.
| | - Anisia J Silva
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW, Atlanta, GA 30310, USA.
| |
Collapse
|
10
|
Gottesman S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. J Biol Chem 2019; 294:11685-11700. [PMID: 31197038 DOI: 10.1074/jbc.rev119.005593] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria can rapidly and reversibly respond to changing environments via complex transcriptional and post-transcriptional regulatory mechanisms. Many of these adaptations are specific, with the regulatory output tailored to the inducing signal (for instance, repairing damage to cell components or improving acquisition and use of growth-limiting nutrients). However, the general stress response, activated in bacterial cells entering stationary phase or subjected to nutrient depletion or cellular damage, is unique in that its common, broad output is induced in response to many different signals. In many different bacteria, the key regulator for the general stress response is a specialized sigma factor, the promoter specificity subunit of RNA polymerase. The availability or activity of the sigma factor is regulated by complex regulatory circuits, the majority of which are post-transcriptional. In Escherichia coli, multiple small regulatory RNAs, each made in response to a different signal, positively regulate translation of the general stress response sigma factor RpoS. Stability of RpoS is regulated by multiple anti-adaptor proteins that are also synthesized in response to different signals. In this review, the modes of signaling to and levels of regulation of the E. coli general stress response are discussed. They are also used as a basis for comparison with the general stress response in other bacteria with the aim of extracting key principles that are common among different species and highlighting important unanswered questions.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
11
|
Tkachenko AG, Kashevarova NM, Tyuleneva EA, Shumkov MS. Stationary-phase genes upregulated by polyamines are responsible for the formation of Escherichia coli persister cells tolerant to netilmicin. FEMS Microbiol Lett 2017; 364:3739793. [PMID: 28431088 DOI: 10.1093/femsle/fnx084] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022] Open
Abstract
Persisters are rare phenotypic variants of regular bacterial cells that survive lethal antibiotics or stresses owing to slowing down of their metabolism. Recently, we have shown that polyamine putrescine can upregulate persister cell formation in Escherichia coli via the stimulation of rpoS expression, encoding a master regulator of general stress response. We hypothesized that rmf and yqjD, the stationary-phase genes responsible for ribosome inactivation, might be good candidates for the similar role owing to their involvement in translational arrest and the ability to be affected by polyamines. Using reporter gene fusions or single and multiple knockout mutations in rpoS, rmf and yqjD genes, we show in this work that (i) E. coli polyamines spermidine and cadaverine can upregulate persistence, like putrescine; (ii) polyamine effects on persister cell formation are mediated through stimulation of expression of rpoS, rmf and yqjD genes; (iii) these genes are involved in persister cell formation sequentially in a dynamic fashion as cells enter the stationary phase. The data obtained in this work can be used to develop novel tools relying on a suppression of polyamine metabolism in bacteria to combat persister cells as an important cause of infections refractory to antibiotics.
Collapse
Affiliation(s)
- Alexander G Tkachenko
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, 13 Golev str., Perm 614081, Russia.,Perm State National Research University, 15 Bukirev str., Perm 614068, Russia
| | - Natalya M Kashevarova
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, 13 Golev str., Perm 614081, Russia
| | - Elena A Tyuleneva
- Laboratory of Microbial Adaptation, Institute of Ecology and Genetics of Microorganisms, Russian Academy of Sciences, 13 Golev str., Perm 614081, Russia
| | - Mikhail S Shumkov
- Laboratory of Biochemistry of Stresses in Microorganisms, Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 33 Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
12
|
He X, Chen Y, Liang Q, Qi Q. Autoinduced AND Gate Controls Metabolic Pathway Dynamically in Response to Microbial Communities and Cell Physiological State. ACS Synth Biol 2017; 6:463-470. [PMID: 27997131 DOI: 10.1021/acssynbio.6b00177] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Quorum sensing (QS) systems have been widely applied in biotechnology and synthetic biology that require coordinated, community-level behaviors. Meanwhile, the cell physiological state is another key parameter that affects metabolic pathway regulation. Here, we designed an autoinduced AND gate that responds to both microbial communities and the cell physiological state. A series of tunable QS systems in response to different cell densities were obtained through random mutagenesis of LuxR and optimization of the luxRI promoter; the corresponding suitable stationary phase sensing system was selected after monitoring the fluorescence process during cell growth. The application of the final synthetic device was demonstrated using the polyhydroxybutyrate (PHB) production system. The AND gate system increased PHB production by 1-2-fold in Escherichia coli. This synthetic logic gate is a tool for developing a general dynamic regulation system in metabolic engineering in response to complex signals, without using a specific sensor.
Collapse
Affiliation(s)
- Xinyuan He
- State Key Laboratory of Microbial
Technology, Shandong University, Jinan 250100, P. R. China
| | - Yan Chen
- State Key Laboratory of Microbial
Technology, Shandong University, Jinan 250100, P. R. China
| | - Quanfeng Liang
- State Key Laboratory of Microbial
Technology, Shandong University, Jinan 250100, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial
Technology, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
13
|
Meng L, Alter T, Aho T, Huehn S. Gene expression profiles of Vibrio parahaemolyticus in the early stationary phase. Lett Appl Microbiol 2015; 61:231-7. [PMID: 26118852 DOI: 10.1111/lam.12452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED Vibrio (V.) parahaemolyticus is an aquatic bacterium capable of causing foodborne gastroenteritis. In the environment or the food chain, V. parahaemolyticus cells are usually forced into the stationary phase, the common phase for bacterial survival in the environment. So far, little is known about whole genomic expression of V. parahaemolyticus in the early stationary phase compared with the exponential growth phase. We performed whole transcriptomic profiling of V. parahaemolyticus cells in both phases (exponential and early stationary phase). Our data showed in total that 172 genes were induced in early stationary phase, while 61 genes were repressed in early stationary phase compared with the exponential phase. Three functional categories showed stable gene expression in the early stationary phase. Eleven functional categories showed that up-regulation of genes was dominant over down-regulation in the early stationary phase. Although genes related to endogenous metabolism were repressed in the early stationary phase, massive regulation of gene expression occurred in the early stationary phase, indicating the expressed gene set of V. parahaemolyticus in the early stationary phase impacts environmental survival. SIGNIFICANCE AND IMPACT OF THE STUDY Vibrio (V.) parahaemolyticus is one of the main bacterial causes of foodborne intestinal infections. This bacterium usually is forced into stationary phase in the environment, which includes, e.g. seafood. When bacteria are in stationary phase, physiological changes can lead to a resistance to many stresses, including physical and chemical challenges during food processing. To the best of our knowledge, highlighting the whole genome expression changes in the early stationary phase compared with exponential phase, as well as the investigation of physiological changes of V. parahaemolyticus such as the survival mechanism in the stationary phase has been the very first study in this field.
Collapse
Affiliation(s)
- L Meng
- Institute of Food Hygiene, Freie Universitaet Berlin, Berlin, Germany
| | - T Alter
- Institute of Food Hygiene, Freie Universitaet Berlin, Berlin, Germany
| | - T Aho
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - S Huehn
- Institute of Food Hygiene, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
14
|
Effects of sublethal heat, bile and organic acid treatments on the tolerance of Vibrio parahaemolyticus to lethal low-salinity. Food Control 2012. [DOI: 10.1016/j.foodcont.2012.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
YqjD is an inner membrane protein associated with stationary-phase ribosomes in Escherichia coli. J Bacteriol 2012; 194:4178-83. [PMID: 22661687 DOI: 10.1128/jb.00396-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we provide evidence that YqjD, a hypothetical protein of Escherichia coli, is an inner membrane and ribosome binding protein. This protein is expressed during the stationary growth phase, and expression is regulated by stress response sigma factor RpoS. YqjD possesses a transmembrane motif in the C-terminal region and associates with 70S and 100S ribosomes at the N-terminal region. Interestingly, E. coli possesses two paralogous proteins of YqjD, ElaB and YgaM, which are expressed and bind to ribosomes in a similar manner to YqjD. Overexpression of YqjD leads to inhibition of cell growth. It has been suggested that YqjD loses ribosomal activity and localizes ribosomes to the membrane during the stationary phase.
Collapse
|
16
|
Taylor MP, Mulako I, Tuffin M, Cowan D. Understanding physiological responses to pre-treatment inhibitors in ethanologenic fermentations. Biotechnol J 2012; 7:1169-81. [PMID: 22331581 DOI: 10.1002/biot.201100335] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 12/15/2011] [Accepted: 01/17/2012] [Indexed: 11/10/2022]
Abstract
Alcohol-based liquid fuels feature significantly in the political and social agendas of many countries, seeking energy sustainability. It is certain that ethanol will be the entry point for many sustainable processes. Conventional ethanol production using maize- and sugarcane-based carbohydrates with Saccharomyces cerevisiae is well established, while lignocellulose-based processes are receiving growing interest despite posing greater technical and scientific challenges. A significant challenge that arises from the chemical hydrolysis of lignocellulose is the generation of toxic compounds in parallel with the release of sugars. These compounds, collectively termed pre-treatment inhibitors, impair metabolic functionality and growth. Their removal, pre-fermentation or their abatement, via milder hydrolysis, are currently uneconomic options. It is widely acknowledged that a more cost effective strategy is to develop resistant process strains. Here we describe and classify common inhibitors and describe in detail the reported physiological responses that occur in second-generation strains, which include engineered yeast and mesophilic and thermophilic prokaryotes. It is suggested that a thorough understanding of tolerance to common pre-treatment inhibitors should be a major focus in ongoing strain engineering. This review is a useful resource for future metabolic engineering strategies.
Collapse
Affiliation(s)
- Mark P Taylor
- TMO Renewables Ltd., The Surrey Research Park, Guildford, UK
| | | | | | | |
Collapse
|
17
|
Pal RR, Das B, Dasgupta S, Bhadra RK. Genetic components of stringent response in Vibrio cholerae. Indian J Med Res 2011; 133:212-7. [PMID: 21415497 PMCID: PMC3089054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Nutritional stress elicits stringent response in bacteria involving modulation of expression of several genes. This is mainly triggered by the intracellular accumulation of two small molecules, namely, guanosine 3'-diphosphate 5'-triphosphate and guanosine 3',5'-bis(diphosphate), collectively called (p)ppGpp. Like in other Gram-negative bacteria, the cellular level of (p)ppGpp is maintained in Vibrio cholerae, the causative bacterial pathogen of the disease cholera, by the products of two genes relA and spoT. However, apart from relA and spoT, a novel gene relV has recently been identified in V. cholerae, the product of which has been shown to be involved in (p)ppGpp synthesis under glucose or fatty acid starvation in a ∆relA ∆spoT mutant background. Furthermore, the GTP binding essential protein CgtA and a non-DNA binding transcription factor DksA also seem to play several important roles in modulating stringent response and regulation of other genes in this pathogen. The present review briefly discusses about the role of all these genes mainly in the management of stringent response in V. cholerae.
Collapse
Affiliation(s)
- Ritesh Ranjan Pal
- Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata, India
| | - Bhabatosh Das
- Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata, India,Present address: Centre de Genetique Moleculaire, Batiment 26, CNRS UPR2167, Avenue de la Terrasse 91198, Gif Sur Yvette, France
| | - Shreya Dasgupta
- Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata, India
| | - Rupak K. Bhadra
- Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology (CSIR), Kolkata, India,Reprint requests: Dr Rupak K. Bhadra, Infectious Diseases & Immunology Division, Indian Institute of Chemical Biology (CSIR) 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India e-mail:
| |
Collapse
|
18
|
Jesudhasan PR, Cepeda ML, Widmer K, Dowd SE, Soni KA, Hume ME, Zhu J, Pillai SD. Transcriptome analysis of genes controlled by luxS/autoinducer-2 in Salmonella enterica serovar Typhimurium. Foodborne Pathog Dis 2010; 7:399-410. [PMID: 19909098 DOI: 10.1089/fpd.2009.0372] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The enteric pathogen Salmonella enterica serovar Typhimurium uses autoinducer-2 (AI-2) as a signaling molecule. AI-2 requires the luxS gene for its synthesis. The regulation of global gene expression in Salmonella Typhimurium by luxS/AI-2 is currently not known; therefore, the focus of this study was to elucidate the global gene expression patterns in Salmonella Typhimurium as regulated by luxS/AI-2. The genes controlled by luxS/AI-2 were identified using microarrays with RNA samples from wild-type (WT) Salmonella Typhimurium and its isogenic DeltaluxS mutant, in two growth conditions (presence and absence of glucose) at mid-log and early stationary phases. The results indicate that luxS/AI-2 has very different effects in Salmonella Typhimurium depending on the stage of cell growth and the levels of glucose. Genes with p < or = 0.05 were considered to be significantly expressed differentially between WT and DeltaluxS mutant. In the mid-log phase of growth, AI-2 activity was higher (1500-fold) in the presence of glucose than in its absence (450-fold). There was differential gene expression of 13 genes between the WT and its isogenic DeltaluxS mutant in the presence of glucose and 547 genes in its absence. In early stationary phase, AI-2 activity was higher (650-fold) in the presence of glucose than in its absence (1.5-fold). In the presence of glucose, 16 genes were differentially expressed, and in its absence, 60 genes were differentially expressed. Our microarray study indicates that both luxS and AI-2 could play a vital role in several cellular processes including metabolism, biofilm formation, transcription, translation, transport, and binding proteins, signal transduction, and regulatory functions in addition to previously identified functions. Phenotypic analysis of DeltaluxS mutant confirmed the microarray results and revealed that luxS did not influence growth but played a role in the biofilm formation and motility.
Collapse
Affiliation(s)
- Palmy R Jesudhasan
- Food Safety and Environmental Microbiology Program, Department of Poultry Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen WL, Oliver JD, Wong HC. Adaptation of Vibrio vulnificus and an rpoS mutant to bile salts. Int J Food Microbiol 2010; 140:232-8. [PMID: 20406715 DOI: 10.1016/j.ijfoodmicro.2010.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 12/18/2009] [Accepted: 03/16/2010] [Indexed: 01/05/2023]
Abstract
Vibrio vulnificus is an opportunistic pathogen commonly found in oyster and marine environments, which frequently encounters different stresses in its natural habitat, food processing environment and during infection. In this paper, the adaptation of V. vulnificus to bile and the role of RpoS in this process were examined using a wild-type strain and an rpoS isogenic mutant. Adaptation to bile was readily induced in the exponential phase cells in phosphate-buffered saline with 2% bile salts, and the adapted cells exhibited enhanced tolerance against 10% bile. Addition of 1% Brain Heart Infusion medium to the adaptation medium significantly increased the survival of V. vulnificus against bile. The bile-adapted cells were cross-protected against alkaline treatment but sensitized against acid, heat, high salinity and detergents (sodium dodecyl sulfate, Triton X-100, 3-[(3-cholamidopropyl) dimethylammonio]- 1- propanesulfonate, and cetylpyridinium bromide). Addition of efflux pump inhibitor (carbonyl cyanide m-chlorophenylhydrazone) or protein synthesis inhibitor (chloramphenicol) completely eliminated or down-graded the enhanced bile tolerance of the adapted cells, respectively. Production of GroEL was not markedly influenced but DnaK was inhibited in the bile-adapted cells. The bile-adapted parent strain exhibited significantly higher survival than the rpoS mutant against the challenge of high pH, heat, high salinity and detergents. The induction of bile-adaptation in the rpoS mutant occurred at a significantly slower rate than for the parent strain. Results indicate that RpoS plays a significant role in the response of V. vulnificus to bile.
Collapse
Affiliation(s)
- Wei-Lun Chen
- Department of Microbiology, Soochow University, Taipei, Taiwan 111, Republic of China
| | | | | |
Collapse
|
20
|
Navarro Llorens JM, Tormo A, Martínez-García E. Stationary phase in gram-negative bacteria. FEMS Microbiol Rev 2010; 34:476-95. [PMID: 20236330 DOI: 10.1111/j.1574-6976.2010.00213.x] [Citation(s) in RCA: 329] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Conditions that sustain constant bacterial growth are seldom found in nature. Oligotrophic environments and competition among microorganisms force bacteria to be able to adapt quickly to rough and changing situations. A particular lifestyle composed of continuous cycles of growth and starvation is commonly referred to as feast and famine. Bacteria have developed many different mechanisms to survive in nutrient-depleted and harsh environments, varying from producing a more resistant vegetative cell to complex developmental programmes. As a consequence of prolonged starvation, certain bacterial species enter a dynamic nonproliferative state in which continuous cycles of growth and death occur until 'better times' come (restoration of favourable growth conditions). In the laboratory, microbiologists approach famine situations using batch culture conditions. The entrance to the stationary phase is a very regulated process governed by the alternative sigma factor RpoS. Induction of RpoS changes the gene expression pattern, aiming to produce a more resistant cell. The study of stationary phase revealed very interesting phenomena such as the growth advantage in stationary phase phenotype. This review focuses on some of the interesting responses of gram-negative bacteria when they enter the fascinating world of stationary phase.
Collapse
|
21
|
Tidhar A, Flashner Y, Cohen S, Levi Y, Zauberman A, Gur D, Aftalion M, Elhanany E, Zvi A, Shafferman A, Mamroud E. The NlpD lipoprotein is a novel Yersinia pestis virulence factor essential for the development of plague. PLoS One 2009; 4:e7023. [PMID: 19759820 PMCID: PMC2736372 DOI: 10.1371/journal.pone.0007023] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/13/2009] [Indexed: 12/22/2022] Open
Abstract
Yersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the pcm gene was disrupted. In the present study, we investigated the expression and the role of pcm locus genes in Y. pestis pathogenesis using a set of isogenic surE, pcm, nlpD and rpoS mutants of the fully virulent Kimberley53 strain. We show that in Y. pestis, nlpD expression is controlled from elements residing within the upstream genes surE and pcm. The NlpD lipoprotein is the only factor encoded from the pcm locus that is essential for Y. pestis virulence. A chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence to an LD(50) of at least 10(7) cfu for subcutaneous and airway routes of infection. The mutant was unable to colonize mouse organs following infection. The filamented morphology of the nlpD mutant indicates that NlpD is involved in cell separation; however, deletion of nlpD did not affect in vitro growth rate. Trans-complementation experiments with the Y. pestis nlpD gene restored virulence and all other phenotypic defects. Finally, we demonstrated that subcutaneous administration of the nlpD mutant could protect animals against bubonic and primary pneumonic plague. Taken together, these results demonstrate that Y. pestis NlpD is a novel virulence factor essential for the development of bubonic and pneumonic plague. Further, the nlpD mutant is superior to the EV76 prototype live vaccine strain in immunogenicity and in conferring effective protective immunity. Thus it could serve as a basis for a very potent live vaccine against bubonic and pneumonic plague.
Collapse
Affiliation(s)
- Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yehuda Flashner
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sara Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yinon Levi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Eytan Elhanany
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail:
| |
Collapse
|
22
|
Kang Z, Wang Q, Zhang H, Qi Q. Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl Microbiol Biotechnol 2008; 79:203-8. [DOI: 10.1007/s00253-008-1428-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Revised: 02/20/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
|
23
|
Ling J, Sharma M, Bhagwat AA. Role of RNA polymerase sigma-factor (RpoS) in induction of glutamate-dependent acid-resistance of Escherichia albertii under anaerobic conditions. FEMS Microbiol Lett 2008; 283:75-82. [PMID: 18422618 DOI: 10.1111/j.1574-6968.2008.01153.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Escherichia albertii is a potential enteric food-borne pathogen with poorly defined genetic and biochemical properties. Acid resistance is perceived to be an important property of enteric pathogens, enabling them to survive passage through stomach acidity so that they may colonize the mammalian gastrointestinal tract. We analyzed glutamate-dependent acid-resistance pathway (GDAR) in five E. albertii strains that have been identified so far. We observed that the strains were unable to induce GDAR under aerobic growth conditions. Mobilization of the rpoS gene restored aerobic induction of this acid-resistance pathway, indicating that all five strains may have a dysfunctional sigma-factor. On the other hand, under anaerobic growth conditions where GDAR is induced in an RpoS-independent manner (i.e. in Shigella spp. and Escherichia coli O157:H7 strains), only three out of five E. albertii strains successfully induced GDAR. The remainder of the two strains exhibited dependence on functional RpoS even under anaerobic conditions to express GDAR, a regulatory function previously considered to be redundant. The data indicate that certain E. albertii strains may have an alternate RpoS-dependent pathway for acid-resistance under anaerobic growth conditions.
Collapse
Affiliation(s)
- Jason Ling
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD, USA
| | | | | |
Collapse
|
24
|
Han KY, Park JS, Seo HS, Ahn KY, Lee J. Multiple Stressor-Induced Proteome Responses of Escherichia coli BL21(DE3). J Proteome Res 2008; 7:1891-903. [DOI: 10.1021/pr700631c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kyung-Yeon Han
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-713, South Korea
| | - Jin-Seung Park
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-713, South Korea
| | - Hyuk-Seong Seo
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-713, South Korea
| | - Keum-Young Ahn
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-713, South Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-713, South Korea
| |
Collapse
|
25
|
Park JS, Han KY, Lee JH, Song JA, Ahn KY, Seo HS, Sim SJJ, Kim SW, Lee J. Solubility enhancement of aggregation-prone heterologous proteins by fusion expression using stress-responsive Escherichia coli protein, RpoS. BMC Biotechnol 2008; 8:15. [PMID: 18282304 PMCID: PMC2278137 DOI: 10.1186/1472-6750-8-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 02/19/2008] [Indexed: 11/10/2022] Open
Abstract
Background The most efficient method for enhancing solubility of recombinant proteins appears to use the fusion expression partners. Although commercial fusion partners including maltose binding protein and glutathione-S-transferase have shown good performance in enhancing the solubility, they cannot be used for the proprietory production of commercially value-added proteins and likely cannot serve as universal helpers to solve all protein solubility and folding issues. Thus, novel fusion partners will continue to be developed through systematic investigations including proteome mining presented in this study. Results We analyzed the Escherichia coli proteome response to the exogenous stress of guanidine hydrochloride using 2-dimensional gel electrophoresis and found that RpoS (RNA polymerase sigma factor) was significantly stress responsive. While under the stress condition the total number of soluble proteins decreased by about 7 %, but a 6-fold increase in the level of RpoS was observed, indicating that RpoS is a stress-induced protein. As an N-terminus fusion expression partner, RpoS increased significantly the solubility of many aggregation-prone heterologous proteins in E. coli cytoplasm, indicating that RpoS is a very effective solubility enhancer for the synthesis of many recombinant proteins. RpoS was also well suited for the production of a biologically active fusion mutant of Pseudomonas putida cutinase. Conclusion RpoS is highly effective as a strong solubility enhancer for aggregation-prone heterologous proteins when it is used as a fusion expression partner in an E. coli expression system. The results of these findings may, therefore, be useful in the production of other biologically active industrial enzymes, as successfully demonstrated by cutinase.
Collapse
Affiliation(s)
- Jin-Seung Park
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Sungbuk-Ku, Seoul 136-713, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Evolutionary loss of the rdar morphotype in Salmonella as a result of high mutation rates during laboratory passage. ISME JOURNAL 2008; 2:293-307. [PMID: 18256702 DOI: 10.1038/ismej.2008.4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapid evolution of microbes under laboratory conditions can lead to domestication of environmental or clinical strains. In this work, we show that domestication due to laboratory passage in rich medium is extremely rapid. Passaging of wild-type Salmonella in rich medium led to diversification of genotypes contributing to the loss of a spatial phenotype, called the rdar morphotype, within days. Gene expression analysis of the rdar regulatory network demonstrated that mutations were primarily within rpoS, indicating that the selection pressure for scavenging during stationary phase had the secondary effect of impairing this highly conserved phenotype. If stationary phase was omitted from the experiment, radiation of genotypes and loss of the rdar morphotype was also demonstrated, but due to mutations within the cellulose biosynthesis pathway and also in an unknown upstream regulator. Thus regardless of the selection pressure, rapid regulatory changes can be observed on laboratory timescales. The speed of accumulation of rpoS mutations during daily passaging could not be explained by measured fitness and mutation rates. A model of mutation accumulation suggests that to generate the observed accumulation of sigma 38 mutations, this locus must experience a mutation rate of approximately 10(-4) mutations/gene/generation. Sequencing and gene expression of population isolates indicated that there were a wide variety of sigma 38 phenotypes within each population. This suggests that the rpoS locus is highly mutable by an unknown pathway, and that these mutations accumulate rapidly under common laboratory conditions.
Collapse
|
27
|
RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol Genet Genomics 2007; 279:267-77. [PMID: 18158608 DOI: 10.1007/s00438-007-0311-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Accepted: 12/03/2007] [Indexed: 12/12/2022]
Abstract
RpoS is a major regulator of genes required for adaptation to stationary phase in E. coli. However, the exponential phase expression of some genes is affected by rpoS mutation, suggesting RpoS may also have an important physiological role in growing cells. To test this hypothesis, we examined the regulatory role of RpoS in exponential phase using both genomic and biochemical approaches. Microarray expression data revealed that, in the rpoS mutant, the expression of 268 genes was attenuated while the expression of 24 genes was enhanced. Genes responsible for carbon source transport (the mal operon for maltose), protein folding (dnaK and mopAB), and iron acquisition (fepBD, entCBA, fecI, and exbBD) were positively controlled by RpoS. The importance of RpoS-mediated control of iron acquisition was confirmed by cellular metal analysis which revealed that the intracellular iron content of wild type cells was two-fold higher than in rpoS mutant cells. Surprisingly, many previously identified RpoS stationary-phase dependent genes were not controlled by RpoS in exponential phase and several genes were RpoS-regulated only in exponential phase, suggesting the involvement of other regulators. The expression of RpoS-dependent genes osmY, tnaA and malK was controlled by Crl, a transcriptional regulator that modulates RpoS activity. In summary, the identification of a group of exponential phase genes controlled by RpoS reveals a novel aspect of RpoS function.
Collapse
|
28
|
Ranquet C, Gottesman S. Translational regulation of the Escherichia coli stress factor RpoS: a role for SsrA and Lon. J Bacteriol 2007; 189:4872-9. [PMID: 17449615 PMCID: PMC1913435 DOI: 10.1128/jb.01838-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli cell viability during starvation is strongly dependent on the expression of the rpoS gene, encoding the RpoS sigma subunit of RNA polymerase. RpoS abundance has been reported to be regulated at many levels, including transcription initiation, translation, and protein stability. The regulatory RNA SsrA (or tmRNA) has both tRNA and mRNA activities, relieving ribosome stalling and cotranslationally tagging proteins. We report here that SsrA is needed for the correct high-level translation of RpoS. The ATP-dependent protease Lon was also found to negatively affect RpoS translation, but only at low temperature. We suggest that SsrA may indirectly improve RpoS translation by limiting ribosome stalling and depletion of some component of the translation machinery.
Collapse
Affiliation(s)
- Caroline Ranquet
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892-4264, USA
| | | |
Collapse
|
29
|
Klauck E, Typas A, Hengge R. The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci Prog 2007; 90:103-27. [PMID: 17725229 PMCID: PMC10368345 DOI: 10.3184/003685007x215922] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sigmaS (RpoS) subunit of RNA polymerase in Escherichia coli is a key master regulator which allows this bacterial model organism and important pathogen to adapt to and survive environmentally rough times. While hardly present in rapidly growing cells, sigmaS strongly accumulates in response to many different stress conditions, partly replaces the vegetative sigma subunit in RNA polymerase and thereby reprograms this enzyme to transcribe sigmaS-dependent genes (up to 10% of the E. coli genes). In this review, we summarize the extremely complex regulation of sigmaS itself and multiple signal input at the level of this master regulator, we describe the way in which sigmaS specifically recognizes "stress" promoters despite their similarity to vegetative promoters, and, while being far from comprehensive, we give a short overview of the far-reaching physiological impact of sigmaS. With sigmaS being a central and multiple signal integrator and master regulator of hundreds of genes organized in regulatory cascades and sub-networks or regulatory modules, this system also represents a key model system for analyzing complex cellular information processing and a starting point for understanding the complete regulatory network of an entire cell.
Collapse
Affiliation(s)
| | - Athanasios Typas
- Aristotle University of Thessaloniki in Greece, Freie Universität Berlin
| | - Regine Hengge
- University of Konstanz. University of Princeton (NJ, USA)
| |
Collapse
|
30
|
Bhagwat AA, Tan J, Sharma M, Kothary M, Low S, Tall BD, Bhagwat M. Functional heterogeneity of RpoS in stress tolerance of enterohemorrhagic Escherichia coli strains. Appl Environ Microbiol 2006; 72:4978-86. [PMID: 16820496 PMCID: PMC1489321 DOI: 10.1128/aem.02842-05] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The stationary-phase sigma factor (RpoS) regulates many cellular responses to environmental stress conditions such as heat, acid, and alkali shocks. On the other hand, mutations at the rpoS locus have frequently been detected among pathogenic as well as commensal strains of Escherichia coli. The objective of this study was to perform a functional analysis of the RpoS-mediated stress responses of enterohemorrhagic E. coli strains from food-borne outbreaks. E. coli strains belonging to serotypes O157:H7, O111:H11, and O26:H11 exhibited polymorphisms for two phenotypes widely used to monitor rpoS mutations, heat tolerance and glycogen synthesis, as well as for two others, alkali tolerance and adherence to Caco-2 cells. However, these strains synthesized the oxidative acid resistance system through an rpoS-dependent pathway. During the transition from mildly acidic growth conditions (pH 5.5) to alkaline stress (pH 10.2), cell survival was dependent on rpoS functionality. Some strains were able to overcome negative regulation by RpoS and induced higher beta-galactosidase activity without compromising their acid resistance. There were no major differences in the DNA sequences in the rpoS coding regions among the tested strains. The heterogeneity of rpoS-dependent phenotypes observed for stress-related phenotypes was also evident in the Caco-2 cell adherence assay. Wild-type O157:H7 strains with native rpoS were less adherent than rpoS-complemented counterpart strains, suggesting that rpoS functionality is needed. These results show that some pathogenic E. coli strains can maintain their acid tolerance capability while compromising other RpoS-dependent stress responses. Such adaptation processes may have significant impact on a pathogen's survival in food processing environments, as well in the host's stomach and intestine.
Collapse
Affiliation(s)
- Arvind A Bhagwat
- Produce Quality and Safety Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Bldg. 002, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA.
| | | | | | | | | | | | | |
Collapse
|