1
|
Su Y, Zhang W, Liang Y, Wang H, Liu Y, Zheng K, Liu Z, Yu H, Ren L, Shao H, Sung YY, Mok WJ, Wong LL, Zhang YZ, McMinn A, Wang M. Identification and genomic analysis of temperate Halomonas bacteriophage vB_HmeY_H4907 from the surface sediment of the Mariana Trench at a depth of 8,900 m. Microbiol Spectr 2023; 11:e0191223. [PMID: 37728551 PMCID: PMC10580944 DOI: 10.1128/spectrum.01912-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/04/2023] [Indexed: 09/21/2023] Open
Abstract
Viruses play crucial roles in the ecosystem by modulating the host community structure, mediating biogeochemical cycles, and compensating for the metabolism of host cells. Mariana Trench, the world's deepest hadal habitat, harbors a variety of unique microorganisms that have adapted to its extreme conditions of low temperatures, high pressure, and nutrient scarcity. However, our knowledge about isolated hadal phage strains in the hadal trench is still limited. This study reported the discovery of a temperate phage, vB_HmeY_H4907, infecting Halomonas meridiana H4907, isolated from surface sediment from the Mariana Trench at a depth of 8,900 m. To our best knowledge, it is the deepest isolated siphovirus from the ocean. Its 40,452 bp linear dsDNA genome has 57.64% GC content and 55 open reading frames, and it is highly homologous to its host. Phylogenetic analysis and average nucleotide sequence identification reveal that vB_HmeY_H4907 is separated from the isolated phages and represents a new family, Suviridae, with eight predicted proviruses and six uncultured viral genomes. They are widely distributed in the ocean, suggesting a prevalence of this viral family in the deep sea. These findings expand our understanding of the phylogenetic diversity and genomic features of hadal lysogenic phages, provide essential information for further studies of phage-host interactions and evolution, and may reveal new insights into the lysogenic lifestyles of viruses inhabiting the hadal ocean. IMPORTANCE Halomonas phage vB_HmeY_H4907 is the deepest isolated siphovirus from the ocean, and it represents a novel abundant viral family in the ocean. This study provides insights into the genomic, phylogenetic, and ecological characteristics of the new viral family, namely, Suviridae.
Collapse
Affiliation(s)
- Yue Su
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Wenjing Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Ziqi Liu
- Department of Integrated Global Studies, School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Hao Yu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Linyi Ren
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Ambros CL, Ehrmann MA. Distribution, inducibility, and characteristics of Latilactobacillus curvatus temperate phages. MICROBIOME RESEARCH REPORTS 2023; 2:34. [PMID: 38045928 PMCID: PMC10688831 DOI: 10.20517/mrr.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 12/05/2023]
Abstract
Aim: Temperate phages are known to heavily impact the growth of their host, be it in a positive way, e.g., when beneficial genes are provided by the phage, or negatively when lysis occurs after prophage induction. This study provides an in-depth look into the distribution and variety of prophages in Latilactobacillus curvatus (L. curvatus). This species is found in a wide variety of ecological niches and is routinely used as a meat starter culture. Methods: Fourty five L. curvatus genomes were screened for prophages. The intact predicted prophages and their chromosomal integration loci were described. Six L. curvatus lysogens were analysed for phage-mediated lysis post induction via UV light and/or mitomycin C. Their lysates were analysed for phage particles via viral DNA sequencing and transmission electron microscopy. Results: Two hundred and six prophage sequences of any completeness were detected within L. curvatus genomes. The 50 as intact predicted prophages show high levels of genetic diversity on an intraspecies level with conserved regions mostly in the replication and head/tail gene clusters. Twelve chromosomal loci, mostly tRNA genes, were identified, where intact L. curvatus phages were integrated. The six analysed L. curvatus lysogens showed strain-dependent lysis in various degrees after induction, yet only four of their lysates appeared to contain fully assembled virions with the siphovirus morphotype. Conclusion: Our data demonstrate that L. curvatus is a (pro)phage-susceptible species, harbouring multiple intact prophages and remnant sequences thereof. This knowledge provides a basis to study phage-host interaction influencing microbial communities in food fermentations.
Collapse
Affiliation(s)
| | - Matthias A. Ehrmann
- Chair of Microbiology, School of Life Sciences, Technical University Munich (TUM), Freising 85354, Germany
| |
Collapse
|
3
|
An investigation of Burkholderia cepacia complex methylomes via SMRT sequencing and mutant analysis. J Bacteriol 2021; 203:e0068320. [PMID: 33753468 DOI: 10.1128/jb.00683-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacterial genomes can be methylated at particular motifs by methyltransferases (M). This DNA modification allows restriction endonucleases (R) to discriminate between self and foreign DNA. While the accepted primary function of such restriction modification (RM) systems is to degrade incoming foreign DNA, other roles of RM systems and lone R or M components have been found in genome protection, stability and the regulation of various phenotypes. The Burkholderia cepacia complex (Bcc) is a group of closely related opportunistic pathogens with biotechnological potential. Here, we constructed and analysed mutants lacking various RM components in the clinical Bcc isolate Burkholderia cenocepacia H111 and used SMRT sequencing of single mutants to assign the B. cenocepacia H111 Ms to their cognate motifs. DNA methylation is shown to affect biofilm formation, cell shape, motility, siderophore production and membrane vesicle production. Moreover, DNA methylation had a large effect on the maintenance of the Bcc virulence megaplasmid pC3. Our data also suggest that the gp51 M-encoding gene, which is essential in H111 and is located within a prophage, is required for maintaining the bacteriophage in a lysogenic state, thereby ensuring a constant, low level of phage production within the bacterial population.ImportanceWhile genome sequence determines an organism's proteins, methylation of the nucleotides themselves can confer additional properties. In bacteria, Ms modify specific nucleotide motifs to allow discrimination of 'self' from 'non-self' DNA, e.g. from bacteriophages. Restriction enzymes detect 'non-self' methylation patterns and cut foreign DNA. Furthermore, methylation of promoter regions can influence gene expression and hence affect various phenotypes. In this study, we determined the methylated motifs of four strains from the Burkholderia cepacia complex of opportunistic pathogens. We deleted all genes encoding the restriction and modification components in one of these strains, Burkholderia cenocepacia H111. It is shown that DNA methylation affects various phenotypic traits, the most noteworthy being lysogenicity of a bacteriophage and maintenance of a virulence megaplasmid.
Collapse
|
4
|
Crispim JS, Dias RS, Laguardia CN, Araújo LC, da Silva JD, Vidigal PMP, de Sousa MP, da Silva CC, Santana MF, de Paula SO. Desulfovibrio alaskensis prophages and their possible involvement in the horizontal transfer of genes by outer membrane vesicles. Gene 2019; 703:50-57. [DOI: 10.1016/j.gene.2019.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 12/15/2022]
|
5
|
Maciejewska B, Roszniowski B, Espaillat A, Kęsik-Szeloch A, Majkowska-Skrobek G, Kropinski AM, Briers Y, Cava F, Lavigne R, Drulis-Kawa Z. Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol 2016; 101:673-684. [PMID: 27766357 PMCID: PMC5219037 DOI: 10.1007/s00253-016-7928-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 12/21/2022]
Abstract
Lytic bacteriophages and phage-encoded endolysins (peptidoglycan hydrolases) provide a source for the development of novel antimicrobial strategies. In the present study, we focus on the closely related (96 % DNA sequence identity) environmental myoviruses vB_KpnM_KP15 (KP15) and vB_KpnM_KP27 (KP27) infecting multidrug-resistant Klebsiella pneumoniae and Klebsiella oxytoca strains. Their genome organisation and evolutionary relationship are compared to Enterobacter phage phiEap-3 and Klebsiella phages Matisse and Miro. Due to the shared and distinct evolutionary history of these phages, we propose to create a new phage genus “Kp15virus” within the Tevenvirinae subfamily. In silico genome analysis reveals two unique putative homing endonucleases of KP27 phage, probably involved in unrevealed mechanism of DNA modification and resistance to restriction digestion, resulting in a broader host spectrum. Additionally, we identified in KP15 and KP27 a complete set of lysis genes, containing holin, antiholin, spanin and endolysin. By turbidimetric assays on permeabilized Gram-negative strains, we verified the ability of the KP27 endolysin to destroy the bacterial peptidoglycan. We confirmed high stability, absence of toxicity on a human epithelial cell line and the enzymatic specificity of endolysin, which was found to possess endopeptidase activity, cleaving the peptide stem between l-alanine and d-glutamic acid.
Collapse
Affiliation(s)
- Barbara Maciejewska
- Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Bartosz Roszniowski
- Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden, Molecular Biology Department, Umeå University, SE-901 87, Umeå, Sweden
| | - Agata Kęsik-Szeloch
- Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Grazyna Majkowska-Skrobek
- Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Andrew M Kropinski
- Departments of Food Science, Molecular and Cellular Biology, and Pathobiology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Yves Briers
- Department Applied Biosciences, Ghent University, Valentin Vaerwyckweg 1, 9000, Ghent, Belgium
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Molecular Biology Department, Umeå University, SE-901 87, Umeå, Sweden
| | - Rob Lavigne
- Laboratory of Gene Technology, KULeuven, Leuven Kasteelpark Arenberg 21 Box 2462, 3001, Leuven, Belgium
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| |
Collapse
|
6
|
Niu YD, Cook SR, Wang J, Klima CL, Hsu YH, Kropinski AM, Turner D, McAllister TA. Comparative analysis of multiple inducible phages from Mannheimia haemolytica. BMC Microbiol 2015; 15:175. [PMID: 26318735 PMCID: PMC4553209 DOI: 10.1186/s12866-015-0494-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 07/24/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Mannheimia haemolytica is a commensal bacterium that resides in the upper respiratory tract of cattle that can play a role in bovine respiratory disease. Prophages are common in the M. haemolytica genome and contribute significantly to host diversity. The objective of this research was to undertake comparative genomic analysis of phages induced from strains of M. haemolytica serotype A1 (535A and 2256A), A2 (587A and 1127A) and A6 (1152A and 3927A). RESULTS Overall, four P2-like (535AP1, 587AP1, 1127AP1 and 2256AP1; genomes: 34.9-35.7 kb; G+C content: 41.5-42.1 %; genes: 51-53 coding sequences, CDSs), four λ-like (535AP2, 587AP2, 1152AP2 and 3927AP1; genomes: 48.6-52.1 kb; 41.1-41.4 % mol G+C; genes: 77-83 CDSs and 2 tRNAs) and one Mu-like (3927AP2; genome: 33.8 kb; 43.1 % mol G+C; encoding 50 CDSs) phages were identified. All P2-like phages are collinear with the temperate phage φMhaA1-PHL101 with 535AP1, 2256AP1 and 1152AP1 being most closely related, followed by 587AP1 and 1127AP1. Lambdoid phages are not collinear with any other known λ-type phages, with 587AP2 being distinct from 535AP2, 3927AP1 and 1152AP2. All λ-like phages contain genes encoding a toxin-antitoxin (TA) system and cell-associated haemolysin XhlA. The Mu-like phage induced from 3927A is closely related to the phage remnant φMhaMu2 from M. haemolytica PHL21, with similar Mu-like phages existing in the genomes of M. haemolytica 535A and 587A. CONCLUSIONS This is among the first reports of both λ- and Mu-type phages being induced from M. haemolytica. Compared to phages induced from commensal strains of M. haemolytica serotype A2, those induced from the more virulent A1 and A6 serotypes are more closely related. Moreover, when P2-, λ- and Mu-like phages co-existed in the M. haemolytica genome, only P2- and λ-like phages were detected upon induction, suggesting that Mu-type phages may be more resistant to induction. Toxin-antitoxin gene cassettes in λ-like phages may contribute to their genomic persistence or the establishment of persister subpopulations of M. haemolytica. Further work is required to determine if the cell-associated haemolysin XhlA encoded by λ-like phages contributes to the pathogenicity and ecological fitness of M. haemolytica.
Collapse
Affiliation(s)
- Yan D Niu
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada. .,Alberta Agriculture and Rural Development, Agriculture Centre, Lethbridge, AB, T1J 4V6, Canada.
| | - Shaun R Cook
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| | - Jiaying Wang
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada. .,College of Veterinary Medicine, South China Agricultural University, Guangdong, 510642, People's Republic of China.
| | - Cassidy L Klima
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| | - Yu-hung Hsu
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada. .,Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Andrew M Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, ON, N1G 3W4, Canada. .,Department of Molecular Biology, Cellular Biology and Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Dann Turner
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| |
Collapse
|
7
|
Chiou CS, Li HY, Tung SK, Chen CY, Teng CH, Shu JC, Tseng JT, Hsu CY, Chen CC. Identification of prophage gene z2389 in Escherichia coli EDL933 encoding a DNA cytosine methyltransferase for full protection of NotI sites. Int J Med Microbiol 2010; 300:296-303. [DOI: 10.1016/j.ijmm.2009.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/27/2009] [Accepted: 11/15/2009] [Indexed: 10/20/2022] Open
|
8
|
Summer EJ, Gill JJ, Upton C, Gonzalez CF, Young R. Role of phages in the pathogenesis of Burkholderia, or 'Where are the toxin genes in Burkholderia phages?'. Curr Opin Microbiol 2007; 10:410-7. [PMID: 17719265 PMCID: PMC2064068 DOI: 10.1016/j.mib.2007.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 01/13/2023]
Abstract
Most bacteria of the genus Burkholderia are soil- and rhizosphere-associated, and rhizosphere associated, noted for their metabolic plasticity in the utilization of a wide range of organic compounds as carbon sources. Many Burkholderia species are also opportunistic human and plant pathogens, and the distinction between environmental, plant, and human pathogens is not always clear. Burkholderia phages are not uncommon and multiple cryptic prophages are identifiable in the sequenced Burkholderia genomes. Phages have played a crucial role in the transmission of virulence factors among many important pathogens; however, the data do not yet support a significant correlation between phages and pathogenicity in the Burkholderia. This may be due to the role of Burkholderia as a 'versaphile' such that selection is occurring in several niches, including as a pathogen and in the context of environmental survival.
Collapse
Affiliation(s)
- Elizabeth J. Summer
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128: ,
| | - Jason J. Gill
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128: ,
| | - Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, 150 Petch Building, PO Box 3055, V8W 3P6, Victoria, BC, Canada:
| | - Carlos F. Gonzalez
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2132:
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128: ,
- Corresponding author:
| |
Collapse
|
9
|
Hens DK, Chatterjee NC, Kumar R. New temperate DNA phage BcP15 acts as a drug resistance vector. Arch Virol 2006; 151:1345-53. [PMID: 16463125 DOI: 10.1007/s00705-005-0713-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Accepted: 12/16/2005] [Indexed: 10/25/2022]
Abstract
This study was designed to determine the role of a new temperate DNA phage BcP15 in relation to drug resistance. The multidrug resistant Shigella flexneri NK1925 was isolated from a patient of Infectious Diseases Hospital, Kolkata, India. This strain contained five plasmids ranging in size from 3 to 212 kb. After curing of five plasmids, this strain became sensitive to antibiotics. A plasmidless multidrug-resistant strain Burkholderia cepacia DR11 was isolated during the survey of microorganisms from coastal waters of deltaic Sunderbans. This strain always released a temperate phage BcP15 into culture supernatant. Turbid plaque formation was observed on the lawn of a plasmidless version (Pl(-)35) of Shigella flexneri NK1925. A few distinct clones (Pl(-)35R) appeared within the region of each plaque after 18 h incubation. S. flexneri NK1925, Pl(-)35, and Pl(-)35R clones showed the same PFGE band pattern of XbaI-digested chromosomal DNA. However, Pl(-)35R clones were resistant to co-trimoxazole, trimethoprim, and eryth- romycin, to which B. cepacia DR11 was also resistant. Southern hybridization results indicated that these three antibiotic resistances in Pl(-)35R clones were due to a BcP15 phage lysogen in the Pl(-)35 version of S. flexneri NK1925.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Bacteriophages/genetics
- Blotting, Southern
- Burkholderia cepacia/drug effects
- Burkholderia cepacia/virology
- DNA Fingerprinting
- DNA, Bacterial/genetics
- DNA, Viral/analysis
- Deoxyribonucleases, Type II Site-Specific
- Drug Resistance, Multiple, Bacterial/genetics
- Dysentery, Bacillary/microbiology
- Electrophoresis, Gel, Pulsed-Field
- Erythromycin/pharmacology
- Gene Transfer, Horizontal
- Humans
- India
- Plasmids/genetics
- Polymorphism, Restriction Fragment Length
- Prophages/genetics
- Shigella flexneri/drug effects
- Shigella flexneri/isolation & purification
- Shigella flexneri/virology
- Trimethoprim/pharmacology
- Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology
- Viral Plaque Assay
Collapse
Affiliation(s)
- D K Hens
- Sonamukhi College, Sonamukhi, Bankura, India
| | | | | |
Collapse
|
10
|
Comeau AM, Krisch HM. War is peace--dispatches from the bacterial and phage killing fields. Curr Opin Microbiol 2005; 8:488-94. [PMID: 15979391 DOI: 10.1016/j.mib.2005.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 06/10/2005] [Indexed: 11/23/2022]
Abstract
Large-scale sequence analyses of phage and bacteria have provided new insights into the diverse and multifaceted interactions of these genomes. Such interactions are important because they determine the partitioning of a large fraction of global biomass. Furthermore, the struggle between phage and bacteria has had a significant impact on the evolution of the biosphere. This competition for resources has created an enormous pool of genetic diversity. Eons of horizontal genetic transfer have permitted the entire biosphere to directly benefit from a bargain-basement source of evolutionary innovation.
Collapse
Affiliation(s)
- André M Comeau
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS UMR-5100, 118 Route de Narbonne, 31062 Toulouse, Cedex, France
| | | |
Collapse
|
11
|
Hens DK, Ghosh AN, Kumar R. A new small temperate DNA phage BcP15 isolated from Burkholderia cepacia DR11. Arch Virol 2005; 150:2421-8. [PMID: 16052281 DOI: 10.1007/s00705-005-0601-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Accepted: 06/08/2005] [Indexed: 10/25/2022]
Abstract
A Burkholderia cepacia DR11 strain was isolated during the survey of microorganisms from coastal water of deltaic Sunderbans. This strain always released temperate phage BcP15 into culture supernatant. UV irradiation of the strain also induced phage induction. The phage titer was 2.3 x 10(8). New temperate phage BcP15 has unusual structure. It has a hexagonal head, 65 nm in diameter and a tail 200 nm long, attached with single thick wavy tail fiber (424-705 nm). Phage DNA is double stranded 11.9 kb long. Southern hybridization result indicated that the phage DNA was in lysogenic state into the B. cepacia DR11 genome. SDS-PAGE of phage protein showed two major bands of molecular weight 20 kDa and 40 kDa.
Collapse
Affiliation(s)
- D K Hens
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | | |
Collapse
|