1
|
Ahamed F, Song HS, Ho YK. Modeling coordinated enzymatic control of saccharification and fermentation by Clostridium thermocellum during consolidated bioprocessing of cellulose. Biotechnol Bioeng 2021; 118:1898-1912. [PMID: 33547803 DOI: 10.1002/bit.27705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 11/09/2022]
Abstract
Consolidated bioprocessing (CBP) of cellulose is a cost-effective route to produce valuable biochemicals by integrating saccharification, fermentation and cellulase synthesis in a single step. However, the lack of understanding of governing factors of interdependent saccharification and fermentation in CBP eludes reliable process optimization. Here, we propose a new framework that synergistically couples population balances (to simulate cellulose depolymerization) and cybernetic models (to model enzymatic regulation of fermentation) to enable improved understanding of CBP. The resulting framework, named the unified cybernetic-population balance model (UC-PBM), enables simulation of CBP driven by coordinated control of enzyme synthesis through closed-loop interactions. UC-PBM considers two key aspects in controlling CBP: (1) heterogeneity in cellulose properties and (2) cellular regulation of competing cell growth and cellulase secretion. In a case study on Clostridium thermocellum, UC-PBM not only provides a decent fit with various exometabolomic data, but also reveals that: (i) growth-decoupled cellulase-secreting pathways are only activated during famine conditions to promote the production of growth substrates, and (ii) starting cellulose concentration has a strong influence on the overall flux distribution. Equipped with mechanisms of cellulose degradation and fermentative regulations, UC-PBM is practical to explore phenotypic functions for primary evaluation of microorganisms' potential for metabolic engineering and optimal design of bioprocess.
Collapse
Affiliation(s)
- Firnaaz Ahamed
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Hyun-Seob Song
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.,Department of Food Science and Technology, Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Yong Kuen Ho
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia.,Monash-Industry Palm Oil Education and Research Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
2
|
Transcriptomic analysis of a Clostridium thermocellum strain engineered to utilize xylose: responses to xylose versus cellobiose feeding. Sci Rep 2020; 10:14517. [PMID: 32884054 PMCID: PMC7471329 DOI: 10.1038/s41598-020-71428-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/10/2020] [Indexed: 12/20/2022] Open
Abstract
Clostridium (Ruminiclostridium) thermocellum is recognized for its ability to ferment cellulosic biomass directly, but it cannot naturally grow on xylose. Recently, C. thermocellum (KJC335) was engineered to utilize xylose through expressing a heterologous xylose catabolizing pathway. Here, we compared KJC335′s transcriptomic responses to xylose versus cellobiose as the primary carbon source and assessed how the bacteria adapted to utilize xylose. Our analyses revealed 417 differentially expressed genes (DEGs) with log2 fold change (FC) >|1| and 106 highly DEGs (log2 FC >|2|). Among the DEGs, two putative sugar transporters, cbpC and cbpD, were up-regulated, suggesting their contribution to xylose transport and assimilation. Moreover, the up-regulation of specific transketolase genes (tktAB) suggests the importance of this enzyme for xylose metabolism. Results also showed remarkable up-regulation of chemotaxis and motility associated genes responding to xylose feeding, as well as widely varying gene expression in those encoding cellulosomal enzymes. For the down-regulated genes, several were categorized in gene ontology terms oxidation–reduction processes, ATP binding and ATPase activity, and integral components of the membrane. This study informs potentially critical, enabling mechanisms to realize the conceptually attractive Next-Generation Consolidated BioProcessing approach where a single species is sufficient for the co-fermentation of cellulose and hemicellulose.
Collapse
|
3
|
López-Mondéjar R, Algora C, Baldrian P. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnol Adv 2019; 37:107374. [DOI: 10.1016/j.biotechadv.2019.03.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/06/2019] [Accepted: 03/21/2019] [Indexed: 12/12/2022]
|
4
|
Zhivin-Nissan O, Dassa B, Morag E, Kupervaser M, Levin Y, Bayer EA. Unraveling essential cellulosomal components of the ( Pseudo) Bacteroides cellulosolvens reveals an extensive reservoir of novel catalytic enzymes. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:115. [PMID: 31086567 PMCID: PMC6507058 DOI: 10.1186/s13068-019-1447-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/20/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND (Pseudo)Bacteroides cellulosolvens is a cellulolytic bacterium that produces the most extensive and intricate cellulosomal system known in nature. Recently, the elaborate architecture of the B. cellulosolvens cellulosomal system was revealed from analysis of its genome sequence, and the first evidence regarding the interactions between its structural and enzymatic components were detected in vitro. Yet, the understanding of the cellulolytic potential of the bacterium in carbohydrate deconstruction is inextricably linked to its high-molecular-weight protein complexes, which are secreted from the bacterium. RESULTS The current proteome-wide work reveals patterns of protein expression of the various cellulosomal components, and explores the signature of differential expression upon growth of the bacterium on two major carbon sources-cellobiose and microcrystalline cellulose. Mass spectrometry analysis of the bacterial secretome revealed the expression of 24 scaffoldin structural units and 166 dockerin-bearing components (mainly enzymes), in addition to free enzymatic subunits. The dockerin-bearing components comprise cell-free and cell-bound cellulosomes for more efficient carbohydrate degradation. Various glycoside hydrolase (GH) family members were represented among 102 carbohydrate-degrading enzymes, including the omnipresent, most abundant GH48 exoglucanase. Specific cellulosomal components were found in different molecular-weight fractions associated with cell growth on different carbon sources. Overall, microcrystalline cellulose-derived cellulosomes showed markedly higher expression levels of the structural and enzymatic components, and exhibited the highest degradation activity on five different cellulosic and/or hemicellulosic carbohydrates. The cellulosomal activity of B. cellulosolvens showed high degradation rates that are very promising in biotechnological terms and were compatible with the activity levels exhibited by Clostridium thermocellum purified cellulosomes. CONCLUSIONS The current research demonstrates the involvement of key cellulosomal factors that participate in the mechanism of carbohydrate degradation by B. cellulosolvens. The powerful ability of the bacterium to exhibit different degradation strategies on various carbon sources was revealed. The novel reservoir of cellulolytic components of the cellulosomal degradation machineries may serve as a pool for designing new cellulolytic cocktails for biotechnological purposes.
Collapse
Affiliation(s)
- Olga Zhivin-Nissan
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ely Morag
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- Proteomics Unit, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- Proteomics Unit, Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Edward A. Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Poudel S, Giannone RJ, Rodriguez M, Raman B, Martin MZ, Engle NL, Mielenz JR, Nookaew I, Brown SD, Tschaplinski TJ, Ussery D, Hettich RL. Integrated omics analyses reveal the details of metabolic adaptation of Clostridium thermocellum to lignocellulose-derived growth inhibitors released during the deconstruction of switchgrass. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:14. [PMID: 28077967 PMCID: PMC5223564 DOI: 10.1186/s13068-016-0697-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/24/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Clostridium thermocellum is capable of solubilizing and converting lignocellulosic biomass into ethanol. Although much of the work-to-date has centered on characterizing this microbe's growth on model cellulosic substrates, such as cellobiose, Avicel, or filter paper, it is vitally important to understand its metabolism on more complex, lignocellulosic substrates to identify relevant industrial bottlenecks that could undermine efficient biofuel production. To this end, we have examined a time course progression of C. thermocellum grown on switchgrass to assess the metabolic and protein changes that occur during the conversion of plant biomass to ethanol. RESULTS The most striking feature of the metabolome was the observed accumulation of long-chain, branched fatty acids over time, implying an adaptive restructuring of C. thermocellum's cellular membrane as the culture progresses. This is undoubtedly a response to the gradual accumulation of lignocellulose-derived inhibitory compounds as the organism deconstructs the switchgrass to access the embedded cellulose. Corroborating the metabolomics data, proteomic analysis revealed a corresponding time-dependent increase in various enzymes, including those involved in the interconversion of branched amino acids valine, leucine, and isoleucine to iso- and anteiso-fatty acid precursors. Additionally, the metabolic accumulation of hemicellulose-derived sugars and sugar alcohols concomitant with increased abundance of enzymes involved in C5 sugar metabolism/pentose phosphate pathway indicates that C. thermocellum shifts glycolytic intermediates to alternate pathways to modulate overall carbon flux in response to C5 sugar metabolites that increase during lignocellulose deconstruction. CONCLUSIONS Integrated omic platforms provided complementary systems biological information that highlight C. thermocellum's specific response to cytotoxic inhibitors released during the deconstruction and utilization of switchgrass. These additional viewpoints allowed us to fully realize the level to which the organism adapts to an increasingly challenging culture environment-information that will prove critical to C. thermocellum's industrial efficacy.
Collapse
Affiliation(s)
- Suresh Poudel
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831 USA
- Department of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | | | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831 USA
| | - Babu Raman
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831 USA
- Dow AgroSciences, 9330 Zionsville Road, Indianapolis, IN 46268 USA
| | - Madhavi Z. Martin
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831 USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831 USA
| | | | - Intawat Nookaew
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831 USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Steven D. Brown
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831 USA
- Department of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| | | | - David Ussery
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831 USA
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Robert L. Hettich
- Chemical Sciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831 USA
- Department of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996 USA
| |
Collapse
|
6
|
Sand A, Holwerda EK, Ruppertsberger NM, Maloney M, Olson DG, Nataf Y, Borovok I, Sonenshein AL, Bayer EA, Lamed R, Lynd LR, Shoham Y. Three cellulosomal xylanase genes inClostridium thermocellumare regulated by both vegetative SigA (σA) and alternative SigI6 (σI6) factors. FEBS Lett 2015; 589:3133-40. [DOI: 10.1016/j.febslet.2015.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 11/29/2022]
|
7
|
Munir RI, Spicer V, Shamshurin D, Krokhin OV, Wilkins J, Ramachandran U, Sparling R, Levin DB. Quantitative proteomic analysis of the cellulolytic system of Clostridium termitidis CT1112 reveals distinct protein expression profiles upon growth on α-cellulose and cellobiose. J Proteomics 2015; 125:41-53. [DOI: 10.1016/j.jprot.2015.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/13/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
|
8
|
Abstract
Clostridium clariflavum is an anaerobic, cellulosome-forming thermophile, containing in its genome genes for a large number of cellulosomal enzyme and a complex scaffoldin system. Previously, we described the major cohesin-dockerin interactions of the cellulosome components, and on this basis a model of diverse cellulosome assemblies was derived. In this work, we cultivated C. clariflavum on cellobiose-, microcrystalline cellulose-, and switchgrass-containing media and isolated cell-free cellulosome complexes from each culture. Gel filtration separation of the cellulosome samples revealed two major fractions, which were analyzed by label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to identify the key players of the cellulosome assemblies therein. From the 13 scaffoldins present in the C. clariflavum genome, 11 were identified, and a variety of enzymes from different glycoside hydrolase and carbohydrate esterase families were identified, including the glycoside hydrolase families GH48, GH9, GH5, GH30, GH11, and GH10. The expression level of the cellulosomal proteins varied as a function of the carbon source used for cultivation of the bacterium. In addition, the catalytic activity of each cellulosome was examined on different cellulosic substrates, xylan and switchgrass. The cellulosome isolated from the microcrystalline cellulose-containing medium was the most active of all the cellulosomes that were tested. The results suggest that the expression of the cellulosome proteins is regulated by the type of substrate in the growth medium. Moreover, both cell-free and cell-bound cellulosome complexes were produced which together may degrade the substrate in a synergistic manner. These observations are compatible with our previously published model of cellulosome assemblies in this bacterium. Because the reservoir of unsustainable fossil fuels, such as coal, petroleum, and natural gas, is overutilized and continues to contribute to environmental pollution and CO2 emission, the need for appropriate alternative energy sources becomes more crucial. Bioethanol produced from dedicated crops and cellulosic waste can provide a partial answer, yet a cost-effective production method must be developed. The cellulosome system of the anaerobic thermophile C. clariflavum comprises a large number of cellulolytic and hemicellulolytic enzymes, which self-assemble in a number of different cellulosome architectures for enhanced cellulosic biomass degradation. Identification of the major cellulosomal components expressed during growth of the bacterium and their influence on its catalytic capabilities provide insight into the performance of the remarkable cellulosome of this intriguing bacterium. The findings, together with the thermophilic characteristics of the proteins, render C. clariflavum of great interest for future use in industrial cellulose conversion processes.
Collapse
|
9
|
Akinosho H, Yee K, Close D, Ragauskas A. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front Chem 2014; 2:66. [PMID: 25207268 PMCID: PMC4143619 DOI: 10.3389/fchem.2014.00066] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/28/2014] [Indexed: 01/25/2023] Open
Abstract
First isolated in 1926, Clostridium thermocellum has recently received increased attention as a high utility candidate for use in consolidated bioprocessing (CBP) applications. These applications, which seek to process lignocellulosic biomass directly into useful products such as ethanol, are gaining traction as economically feasible routes toward the production of fuel and other high value chemical compounds as the shortcomings of fossil fuels become evident. This review evaluates C. thermocellum's role in this transitory process by highlighting recent discoveries relating to its genomic, transcriptomic, proteomic, and metabolomic responses to varying biomass sources, with a special emphasis placed on providing an overview of its unique, multivariate enzyme cellulosome complex and the role that this structure performs during biomass degradation. Both naturally evolved and genetically engineered strains are examined in light of their unique attributes and responses to various biomass treatment conditions, and the genetic tools that have been employed for their creation are presented. Several future routes for potential industrial usage are presented, and it is concluded that, although there have been many advances to significantly improve C. thermocellum's amenability to industrial use, several hurdles still remain to be overcome as this unique organism enjoys increased attention within the scientific community.
Collapse
Affiliation(s)
- Hannah Akinosho
- School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology Atlanta, GA, USA ; Oak Ridge National Laboratory, BioEnergy Science Center Oak Ridge, TN, USA
| | - Kelsey Yee
- Oak Ridge National Laboratory, BioEnergy Science Center Oak Ridge, TN, USA ; Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Dan Close
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Arthur Ragauskas
- Oak Ridge National Laboratory, BioEnergy Science Center Oak Ridge, TN, USA ; Department of Chemical and Biomolecular Engineering and Department of Forestry, Wildlife, and Fisheries, University of Tennessee Knoxville, TN, USA
| |
Collapse
|
10
|
Wei H, Fu Y, Magnusson L, Baker JO, Maness PC, Xu Q, Yang S, Bowersox A, Bogorad I, Wang W, Tucker MP, Himmel ME, Ding SY. Comparison of transcriptional profiles of Clostridium thermocellum grown on cellobiose and pretreated yellow poplar using RNA-Seq. Front Microbiol 2014; 5:142. [PMID: 24782837 PMCID: PMC3990059 DOI: 10.3389/fmicb.2014.00142] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/19/2014] [Indexed: 01/01/2023] Open
Abstract
The anaerobic, thermophilic bacterium, Clostridium thermocellum, secretes multi-protein enzyme complexes, termed cellulosomes, which synergistically interact with the microbial cell surface and efficiently disassemble plant cell wall biomass. C. thermocellum has also been considered a potential consolidated bioprocessing (CBP) organism due to its ability to produce the biofuel products, hydrogen, and ethanol. We found that C. thermocellum fermentation of pretreated yellow poplar (PYP) produced 30 and 39% of ethanol and hydrogen product concentrations, respectively, compared to fermentation of cellobiose. RNA-seq was used to analyze the transcriptional profiles of these cells. The PYP-grown cells taken for analysis at the late stationary phase showed 1211 genes up-regulated and 314 down-regulated by more than two-fold compared to the cellobiose-grown cells. These affected genes cover a broad spectrum of specific functional categories. The transcriptional analysis was further validated by sub-proteomics data taken from the literature; as well as by quantitative reverse transcription-PCR (qRT-PCR) analyses of selected genes. Specifically, 47 cellulosomal protein-encoding genes, genes for 4 pairs of SigI-RsgI for polysaccharide sensing, 7 cellodextrin ABC transporter genes, and a set of NAD(P)H hydogenase and alcohol dehydrogenase genes were up-regulated for cells growing on PYP compared to cellobiose. These genes could be potential candidates for future studies aimed at gaining insight into the regulatory mechanism of this organism as well as for improvement of C. thermocellum in its role as a CBP organism.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Yan Fu
- Center for Plant Genomics, Iowa State University Ames, IA, USA
| | - Lauren Magnusson
- Biosciences Center, National Renewable Energy Laboratory Golden, CO, USA
| | - John O Baker
- Biosciences Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Pin-Ching Maness
- Biosciences Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Qi Xu
- Biosciences Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Shihui Yang
- National Bioenergy Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Andrew Bowersox
- Biosciences Center, National Renewable Energy Laboratory Golden, CO, USA ; National Bioenergy Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Igor Bogorad
- Biosciences Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Wei Wang
- Biosciences Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Melvin P Tucker
- National Bioenergy Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Michael E Himmel
- Biosciences Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Shi-You Ding
- Biosciences Center, National Renewable Energy Laboratory Golden, CO, USA
| |
Collapse
|
11
|
St Brice LA, Shao X, Izquierdo JA, Lynd LR. OPTIMIZATION OF AFFINITY DIGESTION FOR THE ISOLATION OF CELLULOSOMES FROMClostridium thermocellum. Prep Biochem Biotechnol 2013; 44:206-16. [DOI: 10.1080/10826068.2013.829494] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Bae J, Morisaka H, Kuroda K, Ueda M. Cellulosome complexes: natural biocatalysts as arming microcompartments of enzymes. J Mol Microbiol Biotechnol 2013; 23:370-8. [PMID: 23920499 DOI: 10.1159/000351358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellulose, a primary component of lignocellulosic biomass, is the most abundant carbohydrate polymer in nature. Only a limited number of microorganisms are known to degrade cellulose, which is highly recalcitrant due to its crystal structure. Anaerobic bacteria efficiently degrade cellulose by producing cellulosomes, which are complexes of cellulases bound to scaffoldins. The underlying mechanisms that are responsible for the assembly and efficiency of cellulosomes are not yet fully understood. The cohesin-dockerin specificity has been extensively studied to understand cellulosome assembly. Moreover, the recent progress in proteomics has enabled integral analyses of the growth-substrate-dependent variations in cellulosomal systems. Furthermore, the proximity and targeting effects of cellulosomal synergistic actions have been investigated using designed minicellulosomes. The recent findings about cellulosome assembly, strategies for optimal cellulosome production, and beneficial features of cellulosomes as an arming microcompartment on the microbial cell surface are summarized here.
Collapse
Affiliation(s)
- Jungu Bae
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
13
|
Xu C, Huang R, Teng L, Wang D, Hemme CL, Borovok I, He Q, Lamed R, Bayer EA, Zhou J, Xu J. Structure and regulation of the cellulose degradome in Clostridium cellulolyticum. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:73. [PMID: 23657055 PMCID: PMC3656788 DOI: 10.1186/1754-6834-6-73] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/01/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Many bacteria efficiently degrade lignocellulose yet the underpinning genome-wide metabolic and regulatory networks remain elusive. Here we revealed the "cellulose degradome" for the model mesophilic cellulolytic bacterium Clostridium cellulolyticum ATCC 35319, via an integrated analysis of its complete genome, its transcriptomes under glucose, xylose, cellobiose, cellulose, xylan or corn stover and its extracellular proteomes under glucose, cellobiose or cellulose. RESULTS Proteins for core metabolic functions, environment sensing, gene regulation and polysaccharide metabolism were enriched in the cellulose degradome. Analysis of differentially expressed genes revealed a "core" set of 48 CAZymes required for degrading cellulose-containing substrates as well as an "accessory" set of 76 CAZymes required for specific non-cellulose substrates. Gene co-expression analysis suggested that Carbon Catabolite Repression (CCR) related regulators sense intracellular glycolytic intermediates and control the core CAZymes that mainly include cellulosomal components, whereas 11 sets of Two-Component Systems (TCSs) respond to availability of extracellular soluble sugars and respectively regulate most of the accessory CAZymes and associated transporters. Surprisingly, under glucose alone, the core cellulases were highly expressed at both transcript and protein levels. Furthermore, glucose enhanced cellulolysis in a dose-dependent manner, via inducing cellulase transcription at low concentrations. CONCLUSION A molecular model of cellulose degradome in C. cellulolyticum (Ccel) was proposed, which revealed the substrate-specificity of CAZymes and the transcriptional regulation of core cellulases by CCR where the glucose acts as a CCR inhibitor instead of a trigger. These features represent a distinct environment-sensing strategy for competing while collaborating for cellulose utilization, which can be exploited for process and genetic engineering of microbial cellulolysis.
Collapse
Affiliation(s)
- Chenggang Xu
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Ranran Huang
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Lin Teng
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Dongmei Wang
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Christopher L Hemme
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73072, USA
| | - Ilya Borovok
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Qiang He
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Edward A Bayer
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73072, USA
| | - Jian Xu
- BioEnergy Genome Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| |
Collapse
|
14
|
Burton E, Martin VJJ. Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose. Can J Microbiol 2012; 58:1378-88. [PMID: 23210995 DOI: 10.1139/cjm-2012-0412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Clostridium thermocellum is a Gram-positive thermophilic anaerobic bacterium with the ability to directly convert cellulosic biomass into useful products such as ethanol and hydrogen. In this study, a quantitative comparative proteomic analysis of the organism was performed to identify proteins and biochemical pathways that are differentially utilized by the organism after growth on cellobiose or cellulose. The cytoplasmic and membrane proteomes of C. thermocellum grown on cellulose or cellobiose were quantitatively compared using a metabolic (15)N isotope labelling method in conjunction with nanoLC-ESI-MS/MS (liquid chromatography - electrospray ionization - tandem mass spectrometry). In total, 1255 proteins were identified in the study, and 129 of those were able to have their relative abundance per cell compared in at least one cellular compartment in response to the substrate provided. This study reveals that cells grown on cellulose increase their abundance of phosphoenolpyruvate carboxykinase while decreasing the abundance of pyruvate dikinase and oxaloacetate decarboxylase, suggesting that the organism diverts carbon flow into a transhydrogenase-malate pathway that can increase the production of the biosynthetic intermediates NADPH and GTP. Glutamate dehydrogenase was also found to have increased abundance in cellulose-grown cells, suggesting that the assimilation of ammonia is upregulated in cells grown on the cellulosic substrates. The results illustrate a mechanism by which C. thermocellum can divert carbon into alternative pathways for the purpose of producing biosynthetic intermediates necessary to respond to growth on cellulose, including transhydrogenation of NADH to NADPH and increased nitrogen assimilation.
Collapse
Affiliation(s)
- Euan Burton
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | | |
Collapse
|
15
|
Rydzak T, McQueen PD, Krokhin OV, Spicer V, Ezzati P, Dwivedi RC, Shamshurin D, Levin DB, Wilkins JA, Sparling R. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. BMC Microbiol 2012; 12:214. [PMID: 22994686 PMCID: PMC3492117 DOI: 10.1186/1471-2180-12-214] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/11/2012] [Indexed: 01/21/2023] Open
Abstract
Background Clostridium thermocellum produces H2 and ethanol, as well as CO2, acetate, formate, and lactate, directly from cellulosic biomass. It is therefore an attractive model for biofuel production via consolidated bioprocessing. Optimization of end-product yields and titres is crucial for making biofuel production economically feasible. Relative protein expression profiles may provide targets for metabolic engineering, while understanding changes in protein expression and metabolism in response to carbon limitation, pH, and growth phase may aid in reactor optimization. We performed shotgun 2D-HPLC-MS/MS on closed-batch cellobiose-grown exponential phase C. thermocellum cell-free extracts to determine relative protein expression profiles of core metabolic proteins involved carbohydrate utilization, energy conservation, and end-product synthesis. iTRAQ (isobaric tag for relative and absolute quantitation) based protein quantitation was used to determine changes in core metabolic proteins in response to growth phase. Results Relative abundance profiles revealed differential levels of putative enzymes capable of catalyzing parallel pathways. The majority of proteins involved in pyruvate catabolism and end-product synthesis were detected with high abundance, with the exception of aldehyde dehydrogenase, ferredoxin-dependent Ech-type [NiFe]-hydrogenase, and RNF-type NADH:ferredoxin oxidoreductase. Using 4-plex 2D-HPLC-MS/MS, 24% of the 144 core metabolism proteins detected demonstrated moderate changes in expression during transition from exponential to stationary phase. Notably, proteins involved in pyruvate synthesis decreased in stationary phase, whereas proteins involved in glycogen metabolism, pyruvate catabolism, and end-product synthesis increased in stationary phase. Several proteins that may directly dictate end-product synthesis patterns, including pyruvate:ferredoxin oxidoreductases, alcohol dehydrogenases, and a putative bifurcating hydrogenase, demonstrated differential expression during transition from exponential to stationary phase. Conclusions Relative expression profiles demonstrate which proteins are likely utilized in carbohydrate utilization and end-product synthesis and suggest that H2 synthesis occurs via bifurcating hydrogenases while ethanol synthesis is predominantly catalyzed by a bifunctional aldehyde/alcohol dehydrogenase. Differences in expression profiles of core metabolic proteins in response to growth phase may dictate carbon and electron flux towards energy storage compounds and end-products. Combined knowledge of relative protein expression levels and their changes in response to physiological conditions may aid in targeted metabolic engineering strategies and optimization of fermentation conditions for improvement of biofuels production.
Collapse
Affiliation(s)
- Thomas Rydzak
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Draft genome sequences for Clostridium thermocellum wild-type strain YS and derived cellulose adhesion-defective mutant strain AD2. J Bacteriol 2012; 194:3290-1. [PMID: 22628515 DOI: 10.1128/jb.00473-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium thermocellum wild-type strain YS is an anaerobic, thermophilic, cellulolytic bacterium capable of directly converting cellulosic substrates into ethanol. Strain YS and a derived cellulose adhesion-defective mutant strain, AD2, played pivotal roles in describing the original cellulosome concept. We present their draft genome sequences.
Collapse
|
17
|
Raman B, McKeown CK, Rodriguez M, Brown SD, Mielenz JR. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation. BMC Microbiol 2011; 11:134. [PMID: 21672225 PMCID: PMC3130646 DOI: 10.1186/1471-2180-11-134] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 06/14/2011] [Indexed: 01/18/2023] Open
Abstract
Background The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. Results A time-series analysis of gene expression revealed changes in transcript levels of ~40% of genes (~1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Conclusions Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products, and nutrient gradients generated through the action of cell-free cellulosomes and, (iii) increase cellular motility for potentially orienting the cells' movement towards positive environmental signals leading to nutrient sources. Such a coordinated cellular strategy would increase its chances of survival in natural ecosystems where feast and famine conditions are frequently encountered.
Collapse
Affiliation(s)
- Babu Raman
- Biosciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA
| | | | | | | | | |
Collapse
|
18
|
Wilson DB. Microbial diversity of cellulose hydrolysis. Curr Opin Microbiol 2011; 14:259-63. [PMID: 21531609 DOI: 10.1016/j.mib.2011.04.004] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/31/2011] [Accepted: 04/06/2011] [Indexed: 01/10/2023]
Abstract
Enzymatic hydrolysis of cellulose by microorganisms is a key step in the global carbon cycle. Despite its abundance only a small percentage of microorganisms can degrade cellulose, probably because it is present in recalcitrant cell walls. There are at least five distinct mechanisms used by different microorganisms to degrade cellulose all of which involve cellulases. Cellulolytic organisms and cellulases are extremely diverse possibly because their natural substrates, plant cell walls, are very diverse. At this time the microbial ecology of cellulose degradation in any environment is still not clearly understood even though there is a great deal of information available about the bovine rumen. Two major problems that limit our understanding of this area are the vast diversity of organisms present in most cellulose degrading environments and the inability to culture most of them.
Collapse
Affiliation(s)
- David B Wilson
- Department of Molecular Biology & Genetics, 458 Biotechnology Building, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
19
|
Global gene expression patterns in Clostridium thermocellum as determined by microarray analysis of chemostat cultures on cellulose or cellobiose. Appl Environ Microbiol 2010; 77:1243-53. [PMID: 21169455 DOI: 10.1128/aem.02008-10] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A microarray study of chemostat growth on insoluble cellulose or soluble cellobiose has provided substantial new information on Clostridium thermocellum gene expression. This is the first comprehensive examination of gene expression in C. thermocellum under defined growth conditions. Expression was detected from 2,846 of 3,189 genes, and regression analysis revealed 348 genes whose changes in expression patterns were growth rate and/or substrate dependent. Successfully modeled genes included those for scaffoldin and cellulosomal enzymes, intracellular metabolic enzymes, transcriptional regulators, sigma factors, signal transducers, transporters, and hypothetical proteins. Unique genes encoding glycolytic pathway and ethanol fermentation enzymes expressed at high levels simultaneously with previously established maximal ethanol production were also identified. Ranking of normalized expression intensities revealed significant changes in transcriptional levels of these genes. The pattern of expression of transcriptional regulators, sigma factors, and signal transducers indicates that response to growth rate is the dominant global mechanism used for control of gene expression in C. thermocellum.
Collapse
|
20
|
Clostridium thermocellum cellulosomal genes are regulated by extracytoplasmic polysaccharides via alternative sigma factors. Proc Natl Acad Sci U S A 2010; 107:18646-51. [PMID: 20937888 DOI: 10.1073/pnas.1012175107] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium thermocellum produces a highly efficient cellulolytic extracellular complex, termed the cellulosome, for hydrolyzing plant cell wall biomass. The composition of the cellulosome is affected by the presence of extracellular polysaccharides; however, the regulatory mechanism is unknown. Recently, we have identified in C. thermocellum a set of putative σ and anti-σ factors that include extracellular polysaccharide-sensing components [Kahel-Raifer et al. (2010) FEMS Microbiol Lett 308:84-93]. These factor-encoding genes are homologous to the Bacillus subtilis bicistronic operon sigI-rsgI, which encodes for an alternative σ(I) factor and its cognate anti-σ(I) regulator RsgI that is functionally regulated by an extracytoplasmic signal. In this study, the binding of C. thermocellum putative anti-σ(I) factors to their corresponding σ factors was measured, demonstrating binding specificity and dissociation constants in the range of 0.02 to 1 μM. Quantitative real-time RT-PCR measurements revealed three- to 30-fold up-expression of the alternative σ factor genes in the presence of cellulose and xylan, thus connecting their expression to direct detection of their extracellular polysaccharide substrates. Cellulosomal genes that are putatively regulated by two of these σ factors, σ(I1) or σ(I6), were identified based on the sequence similarity of their promoters. The ability of σ(I1) to direct transcription from the sigI1 promoter and from the promoter of celS (encodes the family 48 cellulase) was demonstrated in vitro by runoff transcription assays. Taken together, the results reveal a regulatory mechanism in which alternative σ factors are involved in regulating the cellulosomal genes via an external carbohydrate-sensing mechanism.
Collapse
|
21
|
Demonstration of the importance for cellulose hydrolysis of CelS, the most abundant cellulosomal cellulase in Clostridium thermocellum [corrected]. Proc Natl Acad Sci U S A 2010; 107:17855-6. [PMID: 20921379 DOI: 10.1073/pnas.1012746107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
22
|
Bahari L, Gilad Y, Borovok I, Kahel-Raifer H, Dassa B, Nataf Y, Shoham Y, Lamed R, Bayer EA. Glycoside hydrolases as components of putative carbohydrate biosensor proteins in Clostridium thermocellum. J Ind Microbiol Biotechnol 2010; 38:825-32. [DOI: 10.1007/s10295-010-0848-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 08/16/2010] [Indexed: 11/28/2022]
|
23
|
Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. SYSTEMS AND SYNTHETIC BIOLOGY 2010; 4:193-201. [PMID: 21886683 DOI: 10.1007/s11693-010-9056-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 04/06/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
Cellulosomes are efficient cellulose-degradation systems produced by selected anaerobic bacteria. This multi-enzyme complex is assembled from a group of cellulases attached to a protein scaffold termed scaffoldin, mediated by a high-affinity protein-protein interaction between the enzyme-borne dockerin module and the cohesin module of the scaffoldin. The enzymatic complex is attached as a whole to the cellulosic substrate via a cellulose-binding module (CBM) on the scaffoldin subunit. In previous works, we have employed a synthetic biology approach to convert several of the free cellulases of the aerobic bacterium, Thermobifida fusca, into the cellulosomal mode by replacing each of the enzymes' CBM with a dockerin. Here we show that although family six enzymes are not a part of any known cellulosomal system, the two family six enzymes of the T. fusca system (endoglucanase Cel6A and exoglucanase Cel6B) can be converted to work as cellulosomal enzymes. Indeed, the chimaeric dockerin-containing family six endoglucanase worked well as a cellulosomal enzyme, and proved to be more efficient than the parent enzyme when present in designer cellulosomes. In stark contrast, the chimaeric family six exoglucanase was markedly less efficient than the wild-type enzyme when mixed with other T. fusca cellulases, thus indicating its incompatibility with the cellulosomal mode of action.
Collapse
|
24
|
Kahel-Raifer H, Jindou S, Bahari L, Nataf Y, Shoham Y, Bayer EA, Borovok I, Lamed R. The unique set of putative membrane-associated anti-sigma factors in Clostridium thermocellum suggests a novel extracellular carbohydrate-sensing mechanism involved in gene regulation. FEMS Microbiol Lett 2010; 308:84-93. [PMID: 20487018 DOI: 10.1111/j.1574-6968.2010.01997.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Genome analysis of the Gram-positive cellulolytic bacterium Clostridium thermocellum revealed the presence of multiple negative regulators of alternative sigma factors. Nine of the deduced proteins share a strong similarity in their N-terminal sequences to the Bacillus subtilis membrane-associated anti-sigma(I) factor RsgI and have an unusual domain organization. In six RsgI-like proteins, the C-terminal sequences contain predicted carbohydrate-binding modules. Three of these modules were overexpressed and shown to bind specifically to cellulose and/or pectin. Bioinformatic analysis of >1200 bacterial genomes revealed that the C. thermocellum RsgI-like proteins are unique to this species and are not present in other cellulolytic clostridial species (e.g. Clostridium cellulolyticum and Clostridium papyrosolvens). Eight of the nine genes encoding putative C. thermocellum RsgI-like anti-sigma factors form predicted bicistronic operons, in which the first gene encodes a putative alternative sigma factor, similar to B. subtilissigma(I), but lacking in one of its domains. These observations suggest a novel carbohydrate-sensing mechanism in C. thermocellum, whereby the presence of polysaccharide biomass components is detected extracellularly and the signal is transmitted intracellularly, resulting in the disruption of the interaction between RsgI-like proteins and sigma(I)-like factors, the latter of which serve to activate appropriate genes encoding proteins involved in cellulose utilization.
Collapse
Affiliation(s)
- Hamutal Kahel-Raifer
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Blouzard JC, Coutinho PM, Fierobe HP, Henrissat B, Lignon S, Tardif C, Pagès S, de Philip P. Modulation of cellulosome composition in Clostridium cellulolyticum
: Adaptation to the polysaccharide environment revealed by proteomic and carbohydrate-active enzyme analyses. Proteomics 2009; 10:541-54. [DOI: 10.1002/pmic.200900311] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Raman B, Pan C, Hurst GB, Rodriguez M, McKeown CK, Lankford PK, Samatova NF, Mielenz JR. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 2009; 4:e5271. [PMID: 19384422 PMCID: PMC2668762 DOI: 10.1371/journal.pone.0005271] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 02/12/2009] [Indexed: 11/30/2022] Open
Abstract
Background Economic feasibility and sustainability of lignocellulosic ethanol production requires the development of robust microorganisms that can efficiently degrade and convert plant biomass to ethanol. The anaerobic thermophilic bacterium Clostridium thermocellum is a candidate microorganism as it is capable of hydrolyzing cellulose and fermenting the hydrolysis products to ethanol and other metabolites. C. thermocellum achieves efficient cellulose hydrolysis using multiprotein extracellular enzymatic complexes, termed cellulosomes. Methodology/Principal Findings In this study, we used quantitative proteomics (multidimensional LC-MS/MS and 15N-metabolic labeling) to measure relative changes in levels of cellulosomal subunit proteins (per CipA scaffoldin basis) when C. thermocellum ATCC 27405 was grown on a variety of carbon sources [dilute-acid pretreated switchgrass, cellobiose, amorphous cellulose, crystalline cellulose (Avicel) and combinations of crystalline cellulose with pectin or xylan or both]. Cellulosome samples isolated from cultures grown on these carbon sources were compared to 15N labeled cellulosome samples isolated from crystalline cellulose-grown cultures. In total from all samples, proteomic analysis identified 59 dockerin- and 8 cohesin-module containing components, including 16 previously undetected cellulosomal subunits. Many cellulosomal components showed differential protein abundance in the presence of non-cellulose substrates in the growth medium. Cellulosome samples from amorphous cellulose, cellobiose and pretreated switchgrass-grown cultures displayed the most distinct differences in composition as compared to cellulosome samples from crystalline cellulose-grown cultures. While Glycoside Hydrolase Family 9 enzymes showed increased levels in the presence of crystalline cellulose, and pretreated switchgrass, in particular, GH5 enzymes showed increased levels in response to the presence of cellulose in general, amorphous or crystalline. Conclusions/Significance Overall, the quantitative results suggest a coordinated substrate-specific regulation of cellulosomal subunit composition in C. thermocellum to better suit the organism's needs for growth under different conditions. To date, this study provides the most comprehensive comparison of cellulosomal compositional changes in C. thermocellum in response to different carbon sources. Such studies are vital to engineering a strain that is best suited to grow on specific substrates of interest and provide the building blocks for constructing designer cellulosomes with tailored enzyme composition for industrial ethanol production.
Collapse
Affiliation(s)
- Babu Raman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Chongle Pan
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Gregory B. Hurst
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Catherine K. McKeown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Patricia K. Lankford
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Nagiza F. Samatova
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Computer Science, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jonathan R. Mielenz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zverlov VV, Schwarz WH. Bacterial cellulose hydrolysis in anaerobic environmental subsystems--Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders. Ann N Y Acad Sci 2008; 1125:298-307. [PMID: 18378600 DOI: 10.1196/annals.1419.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cellulose degradation is a rare trait in bacteria. However, the truly cellulolytic bacteria are extremely efficient hydrolyzers of plant cell wall polysaccharides, especially those in thermophilic anaerobic ecosystems. Clostridium stercorarium, a thermophilic ubiquitous soil dweller, has a simple cellulose hydrolyzing enzyme system of only two cellulases. However, it seems to be better suited for the hydrolysis of a wide range of hemicelluloses. Clostridium thermocellum, an ubiquitous thermophilic gram-type positive bacterium, is one of the most successful cellulose degraders known. Its extracellular enzyme complex, the cellulosome, was prepared from C. thermocellum cultures grown on cellulose, cellobiose, barley beta-1,3-1,4-glucan, or a mixture of xylan and cellulose. The single proteins were identified by peptide chromatography and MALDI-TOF-TOF. Eight cellulosomal proteins could be found in all eight preparations, 32 proteins occur in at least one preparation. A number of enzymatic components had not been identified previously. The proportion of components changes if C. thermocellum is grown on different substrates. Mutants of C. thermocellum, devoid of scaffoldin CipA, that now allow new types of experiments with in vitro cellulosome reassembly and a role in cellulose hydrolysis are described. The characteristics of these mutants provide strong evidence of the positive effect of complex (cellulosome) formation on hydrolysis of crystalline cellulose.
Collapse
Affiliation(s)
- Vladimir V Zverlov
- Department of Microbiology, Technische Universität München, Am Hochanger 4, D-85350 Freising, Germany
| | | |
Collapse
|
28
|
Transcriptional regulation of the Clostridium cellulolyticum cip-cel operon: a complex mechanism involving a catabolite-responsive element. J Bacteriol 2007; 190:1499-506. [PMID: 18156277 DOI: 10.1128/jb.01160-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cip-cel cluster of genes plays an important role in the catabolism of the substrate cellulose by Clostridium cellulolyticum. It encodes several key components of the cellulosomes, including the scaffolding protein CipC and the major cellulase Cel48F. All the genes of this cluster display linked transcription, focusing attention on the promoter upstream from the first gene, cipC. We analyzed the regulation of the cipC promoter using a transcriptional fusion approach. A single promoter is located between nucleotides -671 and -643 with respect to the ATG start codon, and the large mRNA leader sequence is processed at position -194. A catabolite-responsive element (CRE) 414 nucleotides downstream from the transcriptional start site has been shown to be involved in regulating this operon by a carbon catabolite repression mechanism. This CRE is thought to bind a CcpA-like regulator complexed with a P-Ser-Crh-like protein. Sequences surrounding the promoter sequence may also be involved in direct (sequence-dependent DNA curvature) or indirect (unknown regulator binding) regulation.
Collapse
|
29
|
Gold ND, Martin VJJ. Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 2007; 189:6787-95. [PMID: 17644599 PMCID: PMC2045192 DOI: 10.1128/jb.00882-07] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A metabolic isotope-labeling strategy was used in conjunction with nano-liquid chromatography-electrospray ionization mass spectrometry peptide sequencing to assess quantitative alterations in the expression patterns of subunits within cellulosomes of the cellulolytic bacterium Clostridium thermocellum, grown on either cellulose or cellobiose. In total, 41 cellulosomal proteins were detected, including 36 type I dockerin-containing proteins, which count among them all but three of the known docking components and 16 new subunits. All differential expression data were normalized to the scaffoldin CipA such that protein per cellulosome was compared for growth between the two substrates. Proteins that exhibited higher expression in cellulosomes from cellulose-grown cells than in cellobiose-grown cells were the cell surface anchor protein OlpB, exoglucanases CelS and CelK, and the glycoside hydrolase family 9 (GH9) endoglucanase CelJ. Conversely, lower expression in cellulosomes from cells grown on cellulose than on cellobiose was observed for the GH8 endoglucanase CelA; GH5 endoglucanases CelB, CelE, CelG; and hemicellulases XynA, XynC, XynZ, and XghA. GH9 cellulases were the most abundant group of enzymes per CipA when cells were grown on cellulose, while hemicellulases were the most abundant group on cellobiose. The results support the existing theory that expression of scaffoldin-related proteins is coordinately regulated by a catabolite repression type of mechanism, as well as the prior observation that xylanase expression is subject to a growth rate-independent type of regulation. However, concerning transcriptional control of cellulases, which had also been previously shown to be subject to catabolite repression, a novel distinction was observed with respect to endoglucanases.
Collapse
Affiliation(s)
- Nicholas D Gold
- Department of Biology, Concordia University, Montréal, Québec, Canada H4B 1R6
| | | |
Collapse
|
30
|
Abstract
The assembly of proteins that display complementary activities into supramolecular intra- and extracellular complexes is central to cellular function. One such nanomachine of considerable biological and industrial significance is the plant cell wall degrading apparatus of anaerobic bacteria termed the cellulosome. The Clostridium thermocellum cellulosome assembles through the interaction of a type I dockerin module in the catalytic entities with one of several type I cohesin modules in the non-catalytic scaffolding protein. Recent structural studies have provided the molecular details of how dockerin-cohesin interactions mediate both cellulosome assembly and the retention of the protein complex on the bacterial cell surface. The type I dockerin, which displays near-perfect sequence and structural symmetry, interacts with its cohesin partner through a dual binding mode in which either the N- or C-terminal helix dominate heterodimer formation. The biological significance of this dual binding mode is discussed with respect to the plasticity of the orientation of the catalytic subunits within this supramolecular assembly. The flexibility in the quaternary structure of the cellulosome may reflect the challenges presented by the degradation of a heterogenous recalcitrant insoluble substrate by an intricate macromolecular complex, in which the essential synergy between the catalytic subunits is a key feature of cellulosome function.
Collapse
Affiliation(s)
- Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
31
|
Newcomb M, Chen CY, Wu JHD. Induction of the celC operon of Clostridium thermocellum by laminaribiose. Proc Natl Acad Sci U S A 2007; 104:3747-52. [PMID: 17360424 PMCID: PMC1820655 DOI: 10.1073/pnas.0700087104] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clostridium thermocellum is an anaerobic, thermophilic, cellulolytic, and ethanogenic bacterium. It produces an extracellular multiprotein complex termed the cellulosome, which consists of >70 subunits, most of them glycosyl hydrolases. It also produces many free glycosyl hydrolases. How the organism commands such a large number of genes and proteins for biomass degradation is an intriguing yet unresolved question. We identified glyR3, which is cotranscribed with the cellulase/hemicellulase genes celC and licA, as a potential cellulase transcription regulator. The gel-shift assay (EMSA) revealed that the recombinant GlyR3 bound specifically to the celC promoter region. GlyR3 was also identified from the lysate of the lichenan-grown cells, which bound to the same sequence. DNase I footprinting and competitive EMSA showed the binding site to be an 18-bp palindromic sequence with one mismatch. The DNA-binding activity was specifically inhibited by laminaribiose, a beta-1-3 linked glucose dimer, in a dose-dependent manner. In in vitro transcription analysis, celC expression was repressed by rGlyR3 in a dose-dependent manner. The repression was relieved by laminaribiose, also in a dose-dependent manner. These results indicate that GlyR3 is a negative regulator of the celC operon consisting of celC, glyR3, and licA, and inducible by laminaribiose. Thus, the bacterium may modulate the biosynthesis of its enzyme components to optimize its activity on an available biomass substrate, in this case, beta-1-3 glucan, because both CelC and LicA are active on the substrate. The results further indicate that, despite the insolubility of the biomass substrate, regulation of the degradative enzymes can be accomplished through soluble sugars generated by the action of the enzymes.
Collapse
Affiliation(s)
- Michael Newcomb
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627-0166
| | - Chun-Yu Chen
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627-0166
| | - J. H. David Wu
- Department of Chemical Engineering, University of Rochester, Rochester, NY 14627-0166
- *To whom correspondence should be addressed at:
Department of Chemical Engineering, University of Rochester, Gavett Hall, Room 206, Rochester, NY 14627-0166. E-mail:
| |
Collapse
|
32
|
Kang S, Barak Y, Lamed R, Bayer EA, Morrison M. The functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitors. Mol Microbiol 2006; 60:1344-54. [PMID: 16796673 DOI: 10.1111/j.1365-2958.2006.05182.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Many of the Firmicutes bacteria responsible for plant polysaccharide degradation in Nature produce a multiprotein complex called a cellulosome, which co-ordinates glycoside hydrolase assembly, bacterial adhesion to substrate and polysaccharide hydrolysis. Cellulosomal proteins possess a dockerin module, which mediates their attachment to the scaffoldin protein via its interaction with cohesin modules, and only glycoside hydrolases and other carbohydrate active enzymes were known to reside within the cellulosome. We show here with Clostridium thermocellum ATCC 27405 that members of the serpin superfamily of serine proteinase inhibitors, which are best recognized for their conformational flexibility and co-ordination of key regulatory functions in multicellular eukaryotes, also reside within the cellulosome. These studies are the first to expand the cellulosome paradigm of protein complex assembly beyond glycoside hydrolase and carbohydrate active enzymes, and to include a newly identified functionality in the Firmicutes.
Collapse
Affiliation(s)
- Seungha Kang
- The MAPLE Research Initiative, Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
33
|
Schwarz WH, Zverlov VV. Protease inhibitors in bacteria: an emerging concept for the regulation of bacterial protein complexes? Mol Microbiol 2006; 60:1323-6. [PMID: 16796670 DOI: 10.1111/j.1365-2958.2006.05181.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Serine protease inhibitors (serpins), the antagonists of serine proteases, were unknown in the bacterial kingdom until recently. Kang et al. in this issue of Molecular Microbiology report the cloning and functional analysis of the three serpin genes from the thermophilic anaerobic bacterium Clostridium thermocellum. Two of the serpins contain a dockerin module for location in the extracellular hydrolytic multienzyme complex, the cellulosome. The susceptibility of cellulosome to proteolytic degradation and the presence of a serine protease in the same complex provoke speculation that protease inhibitor/protease pairs could play hitherto unrecognized roles in protein stability and regulation in bacteria.
Collapse
Affiliation(s)
- Wolfgang H Schwarz
- Institute for Microbiology, Technische Universität München, Am Hochanger 4, D-85350 Freising-Weihenstephan, Germany.
| | | |
Collapse
|
34
|
Percival Zhang YH, Himmel ME, Mielenz JR. Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 2006; 24:452-81. [PMID: 16690241 DOI: 10.1016/j.biotechadv.2006.03.003] [Citation(s) in RCA: 674] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/06/2006] [Accepted: 03/11/2006] [Indexed: 10/24/2022]
Abstract
Cellulose is the most abundant renewable natural biological resource, and the production of biobased products and bioenergy from less costly renewable lignocellulosic materials is important for the sustainable development of human beings. A reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. Here, we review quantitative cellulase activity assays using soluble and insoluble substrates, and focus on their advantages and limitations. Because there are no clear relationships between cellulase activities on soluble substrates and those on insoluble substrates, soluble substrates should not be used to screen or select improved cellulases for processing relevant solid substrates, such as plant cell walls. Cellulase improvement strategies based on directed evolution using screening on soluble substrates have been only moderately successful, and have primarily targeted improvement in thermal tolerance. Heterogeneity of insoluble cellulose, unclear dynamic interactions between insoluble substrate and cellulase components, and the complex competitive and/or synergic relationship among cellulase components limit rational design and/or strategies, depending on activity screening approaches. Herein, we hypothesize that continuous culture using insoluble cellulosic substrates could be a powerful selection tool for enriching beneficial cellulase mutants from the large library displayed on the cell surface.
Collapse
Affiliation(s)
- Y-H Percival Zhang
- Biological Systems Engineering Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|