1
|
Barenkamp SJ, Chonmaitree T, Hakansson AP, Heikkinen T, King S, Nokso-Koivisto J, Novotny LA, Patel JA, Pettigrew M, Swords WE. Panel 4: Report of the Microbiology Panel. Otolaryngol Head Neck Surg 2017; 156:S51-S62. [PMID: 28372529 PMCID: PMC5490388 DOI: 10.1177/0194599816639028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Objective To perform a comprehensive review of the literature from July 2011 until June 2015 on the virology and bacteriology of otitis media in children. Data Sources PubMed database of the National Library of Medicine. Review Methods Two subpanels comprising experts in the virology and bacteriology of otitis media were created. Each panel reviewed the relevant literature in the fields of virology and bacteriology and generated draft reviews. These initial reviews were distributed to all panel members prior to meeting together at the Post-symposium Research Conference of the 18th International Symposium on Recent Advances in Otitis Media, National Harbor, Maryland, in June 2015. A final draft was created, circulated, and approved by all panel members. Conclusions Excellent progress has been made in the past 4 years in advancing our understanding of the microbiology of otitis media. Numerous advances were made in basic laboratory studies, in animal models of otitis media, in better understanding the epidemiology of disease, and in clinical practice. Implications for Practice (1) Many viruses cause acute otitis media without bacterial coinfection, and such cases do not require antibiotic treatment. (2) When respiratory syncytial virus, metapneumovirus, and influenza virus peak in the community, practitioners can expect to see an increase in clinical otitis media cases. (3) Biomarkers that predict which children with upper respiratory tract infections will develop otitis media may be available in the future. (4) Compounds that target newly identified bacterial virulence determinants may be available as future treatment options for children with otitis media.
Collapse
Affiliation(s)
- Stephen J. Barenkamp
- Department of Pediatrics, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Tasnee Chonmaitree
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Samantha King
- The Research Institute at Nationwide Children’s Hospital and Ohio State University, Columbus, Ohio, USA
| | - Johanna Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Laura A. Novotny
- The Research Institute at Nationwide Children’s Hospital and Ohio State University, Columbus, Ohio, USA
| | - Janak A. Patel
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Melinda Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - W. Edward Swords
- Department of Microbiology and Immunology, Wake Forest University, Winston-Salem, North Carolina, USA
| |
Collapse
|
2
|
Liu YL, Li DF, Xu HP, Xiao M, Cheng JW, Zhang L, Xu ZP, Chen XX, Zhang G, Kudinha T, Kong F, Gong YP, Wang XY, Zhang YX, Wu HL, Xu YC. Use of next generation sequence to investigate potential novel macrolide resistance mechanisms in a population of Moraxella catarrhalis isolates. Sci Rep 2016; 6:35711. [PMID: 27774989 PMCID: PMC5075928 DOI: 10.1038/srep35711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
Although previous studies have confirmed that 23S rRNA gene mutation could be responsible for most of macrolide resistance in M. catarrhalis, a recent study suggested otherwise. Next generation sequence based comparative genomics has revolutionized the mining of potential novel drug resistant mechanisms. In this study, two pairs of resistant and susceptible M. catarrhalis isolates with different multilocus sequence types, were investigated for potential differential genes or informative single nucleotide polymorphisms (SNPs). The identified genes and SNPs were evaluated in 188 clinical isolates. From initially 12 selected differential genes and 12 informative SNPs, 10 differential genes (mboIA, mcbC, mcbI, mboIB, MCR_1794, MCR_1795, lgt2B/C, dpnI, mcbB, and mcbA) and 6 SNPs (C619T of rumA, T140C of rplF, G643A of MCR_0020, T270G of MCR_1465, C1348A of copB, and G238A of rrmA) were identified as possibly linked to macrolide resistance in M. catarrhalis. Most of the identified differential genes and SNPs are related to methylation of ribosomal RNA (rRNA) or DNA, especially MCR_0020 and rrmA. Further studies are needed to determine the function and/or evolution process, of the identified genes or SNPs, to establish whether some novel or combined mechanisms are truly involved in M. catarrhalis macrolide resistance mechanism.
Collapse
Affiliation(s)
- Ya-Li Liu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Dong-Fang Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - He-Ping Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Meng Xiao
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Jing-Wei Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Li Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Zhi-Peng Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Xin-Xin Chen
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Ge Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| | - Timothy Kudinha
- Charles Sturt University, Leeds Parade, Orange, New South Wales 2687, Australia.,Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, University of Sydney, Darcy Road, Westmead, New South Wales 2145, Australia
| | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR - Pathology West, Westmead Hospital, University of Sydney, Darcy Road, Westmead, New South Wales 2145, Australia
| | - Yan-Ping Gong
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Xin-Ying Wang
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Yin-Xin Zhang
- Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Hong-Long Wu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.,Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China.,Tianjin Translational Genomics Center, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China
| | - Ying-Chun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100736, China
| |
Collapse
|
3
|
Zhou Q, Feng S, Zhang J, Jia A, Yang K, Xing K, Liao M, Fan H. Two Glycosyltransferase Genes of Haemophilus parasuis SC096 Implicated in Lipooligosaccharide Biosynthesis, Serum Resistance, Adherence, and Invasion. Front Cell Infect Microbiol 2016; 6:100. [PMID: 27672622 PMCID: PMC5018477 DOI: 10.3389/fcimb.2016.00100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/29/2016] [Indexed: 12/03/2022] Open
Abstract
Haemophilus parasuis is a common opportunistic pathogen known for its ability to colonize healthy piglets and causes Glässer's disease. The lipooligosaccharide (LOS) of H. parasuis is a potential virulence-associated factor. In this study, two putative glycosyltransferases that might be involved in LOS synthesis in H. parasuis SC096 were identified (lgtB and lex-1). Mutants were constructed to investigate the roles of the lgtB and lex-1 genes. The LOS from the ΔlgtB or Δlex-1 mutant showed truncated structure on silver-stained SDS-PAGE gel compared to the wild-type strain. The ΔlgtB and Δlex-1 mutants were significantly more sensitive to 50% porcine serum, displaying 15.0 and 54.46% survival rates, respectively. Complementation of the lex-1 mutant restored the serum-resistant phenotype. Additionally, the ΔlgtB and Δlex-1 strains showed impaired ability to adhere to and invade porcine kidney epithelial cells (PK-15). The above results suggested that the lgtB and lex-1 genes of the H. parasuis SC096 strain participated in LOS synthesis and were involved in serum resistance, adhesion and invasion.
Collapse
Affiliation(s)
- Qi Zhou
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Saixiang Feng
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Jianmin Zhang
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Aiqing Jia
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China; Guangdong Haid Institute of Animal Husbandry and VeterinaryGuangzhou, China
| | - Kaijie Yang
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Kaixiang Xing
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Ming Liao
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Huiying Fan
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| |
Collapse
|
4
|
De Maayer P, Cowan DA. Flashy flagella: flagellin modification is relatively common and highly versatile among the Enterobacteriaceae. BMC Genomics 2016; 17:377. [PMID: 27206480 PMCID: PMC4875605 DOI: 10.1186/s12864-016-2735-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/12/2016] [Indexed: 11/16/2022] Open
Abstract
Background Post-translational glycosylation of the flagellin protein is relatively common among Gram-negative bacteria, and has been linked to several phenotypes, including flagellar biosynthesis and motility, biofilm formation, host immune evasion and manipulation and virulence. However to date, despite extensive physiological and genetic characterization, it has never been reported for the peritrichously flagellate Enterobacteriaceae. Results Using comparative genomic approaches we analyzed 2,000 representative genomes of Enterobacteriaceae, and show that flagellin glycosylation islands are relatively common and extremely versatile among members of this family. Differences in the G + C content of the FGIs and the rest of the genome and the presence of mobile genetic elements provide evidence of horizontal gene transfer occurring within the FGI loci. These loci therefore encode highly variable flagellin glycan structures, with distinct sugar backbones, heavily substituted with formyl, methyl, acetyl, lipoyl and amino groups. Additionally, an N-lysine methylase, FliB, previously identified only in the enterobacterial pathogen Salmonella enterica, is relatively common among several distinct taxa within the family. These flagellin methylase island loci (FMIs), in contrast to the FGI loci, appear to be stably maintained within these diverse lineages. Conclusions The prevalence and versatility of flagellin modification loci, both glycosylation and methylation loci, suggests they play important biological roles among the Enterobacteriaceae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2735-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pieter De Maayer
- Centre for Microbial Ecology and Genomics, University of Pretoria, 0002, Pretoria, South Africa. .,Department of Microbiology, University of Pretoria, 0002, Pretoria, South Africa.
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, 0002, Pretoria, South Africa
| |
Collapse
|
5
|
Identification and characterisation of a biosynthetic locus for Moraxella bovis lipo-oligosaccharide. Carbohydr Res 2016; 421:9-16. [DOI: 10.1016/j.carres.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/13/2015] [Accepted: 12/03/2015] [Indexed: 01/10/2023]
|
6
|
Frank M, Collins PM, Peak IR, Grice ID, Wilson JC. An Unusual Carbohydrate Conformation is Evident in Moraxella catarrhalis Oligosaccharides. Molecules 2015; 20:14234-53. [PMID: 26251889 PMCID: PMC6332130 DOI: 10.3390/molecules200814234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 01/28/2023] Open
Abstract
Oligosaccharide structures derived from the lipooligosaccharide of M. catarrhalis show that the highly branched glucose-rich inner core of the oligosaccharide has an altered conformation compared to the most truncated tetra-glucose-Kdo lgt1/4Δ oligosaccharide structure. Addition of one residue each to the (1-4) and (1-6) chains to give the lgt2Δ oligosaccharide is the minimum requirement for this conformational change to occur. Extensive molecular modeling and NMR investigations have shown that the (1-3), (1-4), and (1-6) glycosidic linkages from the central α-d-Glcp have significantly altered conformational preferences between the two structures. For the lgt1/4Δ oligosaccharide the (1-3) and (1-4) linkage populates predominantly the syn minimum on the conformational free energy map and for the (1-6) linkage conformational flexibility is observed, which is supported by 1H-NMR T1 measurements. For the lgt2Δ oligosaccharide the unusual “(1-4)anti-ψ(1-6)gg” conformation, which could be confirmed by long-range NOE signals, is a dominant conformation in which the oligosaccharide is very compact with the terminal α-d-GlcNAc residue folding back towards the center of the molecule leading to an extensive intra-molecular hydrophobic interaction between the terminal residues. Comparing effective H-H distances, which were calculated for conformational sub-ensembles, with the NOE distances revealed that typically multiple conformations could be present without significantly violating the measured NOE restraints. For lgt2Δ the presence of more than one conformation is supported by the NOE data.
Collapse
Affiliation(s)
- Martin Frank
- Biognos AB, Generatorsgatan 1, 41705 Gothenburg, Sweden.
| | - Patrick M Collins
- Institute for Glycomics, Gold Coast Campus, Griffith University, 4222 Queensland, Australia.
| | - Ian R Peak
- Institute for Glycomics and School of Medical Science, Gold Coast Campus, Griffith University, 4222 Queensland, Australia.
| | - I Darren Grice
- Institute for Glycomics and School of Medical Science, Gold Coast Campus, Griffith University, 4222 Queensland, Australia.
| | - Jennifer C Wilson
- Menzies Health Institute and School of Medical Science, Gold Coast Campus, Griffith University, 4222 Queensland, Australia.
| |
Collapse
|
7
|
Elucidation of the structure of the oligosaccharide from wild type Moraxella bovis Epp63 lipooligosaccharide. Carbohydr Res 2014; 388:81-6. [DOI: 10.1016/j.carres.2013.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/26/2013] [Accepted: 10/14/2013] [Indexed: 01/19/2023]
|
8
|
de Vries SPW, Eleveld MJ, Hermans PWM, Bootsma HJ. Characterization of the molecular interplay between Moraxella catarrhalis and human respiratory tract epithelial cells. PLoS One 2013; 8:e72193. [PMID: 23936538 PMCID: PMC3735583 DOI: 10.1371/journal.pone.0072193] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/05/2013] [Indexed: 12/31/2022] Open
Abstract
Moraxella catarrhalis is a mucosal pathogen that causes childhood otitis media and exacerbations of chronic obstructive pulmonary disease in adults. During the course of infection, M. catarrhalis needs to adhere to epithelial cells of different host niches such as the nasopharynx and lungs, and consequently, efficient adhesion to epithelial cells is considered an important virulence trait of M. catarrhalis. By using Tn-seq, a genome-wide negative selection screenings technology, we identified 15 genes potentially required for adherence of M. catarrhalis BBH18 to pharyngeal epithelial Detroit 562 and lung epithelial A549 cells. Validation with directed deletion mutants confirmed the importance of aroA (3-phosphoshikimate 1-carboxyvinyl-transferase), ecnAB (entericidin EcnAB), lgt1 (glucosyltransferase), and MCR_1483 (outer membrane lipoprotein) for cellular adherence, with ΔMCR_1483 being most severely attenuated in adherence to both cell lines. Expression profiling of M. catarrhalis BBH18 during adherence to Detroit 562 cells showed increased expression of 34 genes in cell-attached versus planktonic bacteria, among which ABC transporters for molybdate and sulfate, while reduced expression of 16 genes was observed. Notably, neither the newly identified genes affecting adhesion nor known adhesion genes were differentially expressed during adhesion, but appeared to be constitutively expressed at a high level. Profiling of the transcriptional response of Detroit 562 cells upon adherence of M. catarrhalis BBH18 showed induction of a panel of pro-inflammatory genes as well as genes involved in the prevention of damage of the epithelial barrier. In conclusion, this study provides new insight into the molecular interplay between M. catarrhalis and host epithelial cells during the process of adherence.
Collapse
Affiliation(s)
- Stefan P. W. de Vries
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marc J. Eleveld
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter W. M. Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Hester J. Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Luke-Marshall NR, Edwards KJ, Sauberan S, St Michael F, Vinogradov EV, Cox AD, Campagnari AA. Characterization of a trifunctional glucosyltransferase essential for Moraxella catarrhalis lipooligosaccharide assembly. Glycobiology 2013; 23:1013-21. [PMID: 23720461 DOI: 10.1093/glycob/cwt042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human respiratory tract pathogen Moraxella catarrhalis expresses lipooligosaccharides (LOS), glycolipid surface moieties that are associated with enhanced colonization and virulence. Recent studies have delineated the major steps required for the biosynthesis and assembly of the M. catarrhalis LOS molecule. We previously demonstrated that the glucosyltransferase enzyme Lgt3 is responsible for the addition of at least one glucose (Glc) molecule, at the β-(1-4) position, to the inner core of the LOS molecule. Our data further suggested a potential multifunctional role for Lgt3 in LOS biosynthesis. The studies reported here demonstrate that the Lgt3 enzyme possesses two glycosyltransferase domains (A1 and A2) similar to that of other bifunctional glycosyltransferase enzymes involved in surface polysaccharide biosynthesis in Escherichia coli, Pasteurella multocida and Streptococcus pyogenes. Each Lgt3 domain contains a conserved DXD motif, shown to be involved in the catalytic activity of other glycosyltransferases. To determine the function of each domain, A1 (N-terminal), A2 (C-terminal) and double A1A2 site-directed DAD to AAA mutants were constructed and the resulting LOS phenotypes of these modified strains were analyzed. Our studies indicate that the Lgt3 N-terminal A1 catalytic domain is responsible for the addition of the first β-(1-3) Glc to the first Glc on the inner core. The C-terminal catalytic domain A2 then adds the β-(1-4) Glc and the β-(1-6) Glc, confirming the bifunctional nature of this domain. The results from these experiments demonstrate that Lgt3 is a novel, multifunctional transferase responsible for the addition of three Glcs with differing linkages onto the inner core of M. catarrhalis LOS.
Collapse
Affiliation(s)
- Nicole R Luke-Marshall
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Russo TA, Beanan JM, Olson R, MacDonald U, Cox AD, St Michael F, Vinogradov EV, Spellberg B, Luke-Marshall NR, Campagnari AA. The K1 capsular polysaccharide from Acinetobacter baumannii is a potential therapeutic target via passive immunization. Infect Immun 2013; 81:915-22. [PMID: 23297385 PMCID: PMC3584894 DOI: 10.1128/iai.01184-12] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/24/2012] [Indexed: 01/10/2023] Open
Abstract
The emergence of extremely resistant and panresistant Gram-negative bacilli, such as Acinetobacter baumannii, requires consideration of nonantimicrobial therapeutic approaches. The goal of this report was to evaluate the K1 capsular polysaccharide from A. baumannii as a passive immunization target. Its structure was determined by a combination of mass spectrometric and nuclear magnetic resonance (NMR) techniques. Molecular mimics that might raise the concern for autoimmune disease were not identified. Immunization of CD1 mice demonstrated that the K1 capsule is immunogenic. The monoclonal antibody (MAb) 13D6, which is directed against the K1 capsule from A. baumannii, was used to determine the seroprevalence of the K1 capsule in a collection of 100 A. baumannii strains. Thirteen percent of the A. baumannii isolates from this collection were seroreactive to MAb 13D6. Opsonization of K1-positive strains, but not K1-negative strains, with MAb 13D6 significantly increased neutrophil-mediated bactericidal activity in vitro (P < 0.05). Lastly, treatment with MAb 13D6 3 and 24 h after bacterial challenge in a rat soft tissue infection model resulted in a significant decrease in the growth/survival of a K1-positive strain compared to that of a K1-negative strain or to treatment with a vehicle control (P < 0.0001). These data support the proof of principle that the K1 capsule is a potential therapeutic target via passive immunization. Other serotypes require assessment, and pragmatic challenges exist, such as the need to serotype infecting strains and utilize serotype-specific therapy. Nonetheless, this approach may become an important therapeutic option with increasing antimicrobial resistance and a diminishing number of active antimicrobials.
Collapse
Affiliation(s)
- Thomas A Russo
- Veterans Administration Western New York Healthcare System, University at Buffalo-State University of New York, Buffalo, New York, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Synthesis of a novel pentasaccharide core component from the lipooligosaccharide of Moraxella catarrhalis. Carbohydr Res 2011; 346:2805-11. [DOI: 10.1016/j.carres.2011.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 11/18/2022]
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
13
|
Moraxella catarrhalis Lgt2, a galactosyltransferase with broad acceptor substrate specificity. Carbohydr Res 2010; 345:2151-6. [PMID: 20832776 DOI: 10.1016/j.carres.2010.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/23/2010] [Accepted: 07/30/2010] [Indexed: 11/23/2022]
Abstract
The genetic basis of lipo-oligosaccharide (LOS) biosynthesis for the bacterium Moraxella catarrhalis has been elucidated and functions suggested for each of the glycosyltransferases. In this study we have expressed and characterised one of these enzymes, the putative galactosyltransferase Lgt2(B/C). The lgt2(B/C) gene was amplified from M. catarrhalis, expressed in Escherichia coli, and Lgt2(B/C) was purified. Analysis of its glycosyltransferase catalytic activity ascertained the pH and temperature optima. The donor specificity and acceptor specificity were examined and they showed that Lgt2(B/C) is a galactosyltransferase with relatively broad acceptor specificity with optimal activity in the presence of exogenous Mg(2+).
Collapse
|
14
|
Banoub JH, El Aneed A, Cohen AM, Joly N. Structural investigation of bacterial lipopolysaccharides by mass spectrometry and tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:606-650. [PMID: 20589944 DOI: 10.1002/mas.20258] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mass spectrometric studies are now playing a leading role in the elucidation of lipopolysaccharide (LPS) structures through the characterization of antigenic polysaccharides, core oligosaccharides and lipid A components including LPS genetic modifications. The conventional MS and MS/MS analyses together with CID fragmentation provide additional structural information complementary to the previous analytical experiments, and thus contribute to an integrated strategy for the simultaneous characterization and correct sequencing of the carbohydrate moiety.
Collapse
Affiliation(s)
- Joseph H Banoub
- Fisheries and Oceans Canada, Science Branch, Special Projects, P.O. Box 5667, St. John's, Newfoundland, Canada A1C 5X1.
| | | | | | | |
Collapse
|
15
|
Pinta E, Duda KA, Hanuszkiewicz A, Salminen TA, Bengoechea JA, Hyytiäinen H, Lindner B, Radziejewska-Lebrecht J, Holst O, Skurnik M. Characterization of the six glycosyltransferases involved in the biosynthesis of Yersinia enterocolitica serotype O:3 lipopolysaccharide outer core. J Biol Chem 2010; 285:28333-42. [PMID: 20595390 DOI: 10.1074/jbc.m110.111336] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yersinia enterocolitica (Ye) is a gram-negative bacterium; Ye serotype O:3 expresses lipopolysaccharide (LPS) with a hexasaccharide branch known as the outer core (OC). The OC is important for the resistance of the bacterium to cationic antimicrobial peptides and also functions as a receptor for bacteriophage phiR1-37 and enterocoliticin. The biosynthesis of the OC hexasaccharide is directed by the OC gene cluster that contains nine genes (wzx, wbcKLMNOPQ, and gne). In this study, we inactivated the six OC genes predicted to encode glycosyltransferases (GTase) one by one by nonpolar mutations to assign functions to their gene products. The mutants expressed no OC or truncated OC oligosaccharides of different lengths. The truncated OC oligosaccharides revealed that the minimum structural requirements for the interactions of OC with bacteriophage phiR1-37, enterocoliticin, and OC-specific monoclonal antibody 2B5 were different. Furthermore, using chemical and structural analyses of the mutant LPSs, we could assign specific functions to all six GTases and also revealed the exact order in which the transferases build the hexasaccharide. Comparative modeling of the catalytic sites of glucosyltransferases WbcK and WbcL followed by site-directed mutagenesis allowed us to identify Asp-182 and Glu-181, respectively, as catalytic base residues of these two GTases. In general, conclusive evidence for specific GTase functions have been rare due to difficulties in accessibility of the appropriate donors and acceptors; however, in this work we were able to utilize the structural analysis of LPS to get direct experimental evidence for five different GTase specificities.
Collapse
Affiliation(s)
- Elise Pinta
- Department of Bacteriology and Immunology, Infection Biology Research Program, Haartman Institute, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Biochemical analysis of Lgt3, a glycosyltransferase of the bacterium Moraxella catarrhalis. Biochem Biophys Res Commun 2010; 393:609-13. [PMID: 20153730 DOI: 10.1016/j.bbrc.2010.02.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/08/2010] [Indexed: 11/21/2022]
Abstract
The lipooligosaccharide (LOS) of Moraxella catarrhalis is unusual in that it lacks heptose. The sugar linking oligosaccharide to Lipid A is a trisubstituted glucose. A single enzyme, Lgt3, is suggested to trisubstitute this core sugar. The lgt3 gene encodes two distinct domains with high similarity to glucosyltransferases of the GT-A superfamily, thus encoding a bidomain, multifunctional glucosyltransferase. To characterise Lgt3, the gene was amplified from M. catarrhalis, expressed in Escherichia coli, and purified. Analysis of its glycosyltransferase catalytic activity ascertained the pH and temperature optima for Lgt3. The donor specificity and acceptor specificity were examined. This study confirms that Lgt3 is a glucosyltransferase which catalyses addition of glucose to its cognate receptor, a terminal glucose presented as the core region of LOS.
Collapse
|
17
|
Use of Moraxella catarrhalis lipooligosaccharide mutants to identify specific oligosaccharide epitopes recognized by human serum antibodies. Infect Immun 2009; 77:4548-58. [PMID: 19651870 DOI: 10.1128/iai.00294-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Moraxella catarrhalis is a causative agent of otitis media in children and lower respiratory tract infections in adults suffering from chronic obstructive pulmonary disease (COPD). This strict human pathogen continues to be a significant cause of disease in this broad spectrum of patients because there is no available vaccine. Although numerous putative vaccine antigens have been described, little is known about the human immune response to M. catarrhalis infection in vivo. Human serum antibodies are directed at a number of surface proteins, and lipooligosaccharides (LOS) and detoxified LOS may be an effective immunogen in mice. In this study, we used a specific LOS-based enzyme-linked immunosorbent assay (ELISA), containing the three major M. catarrhalis serotypes together with a complete series of truncated LOS mutants, to detect the development of new antibodies to specific regions of the oligosaccharide molecule. We compared serum samples from COPD patients who had recently cleared an M. catarrhalis infection to serum samples collected prior to their infection. Variability in the antibody response to LOS was observed, as some patients developed serotype-specific antibodies, others developed antibodies to the LOS of each serotype, others developed broadly cross-reactive antibodies, and some did not develop new antibodies. These newly developed human antibodies are directed at both side chains and core structures in the LOS molecule. This LOS-based ELISA can be used to dissect the human antibody response to both internal and external carbohydrate epitopes, thus providing a better understanding of the humoral immune response to M. catarrhalis LOS epitopes developed during natural infection.
Collapse
|
18
|
Claus H, Stummeyer K, Batzilla J, Mühlenhoff M, Vogel U. Amino acid 310 determines the donor substrate specificity of serogroup W-135 and Y capsule polymerases of Neisseria meningitidis. Mol Microbiol 2008; 71:960-71. [PMID: 19170877 DOI: 10.1111/j.1365-2958.2008.06580.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The capsular polysaccharides of serogroup W-135 and Y meningococci are sialic acid-containing heteropolymers, with either galactose or glucose as the second sugar residue. As shown previously, sequences of the predicted enzymes that catalyse capsule polymerization, i.e. SiaD(W-135) and SiaD(Y), differ in only a few amino acids. By in vitro assays with purified recombinant proteins, SiaD(W-135) and SiaD(Y) were now confirmed to be the capsule polymerases harbouring both hexosyltransferase and sialyltransferase activity. In order to identify amino acids crucial for substrate specificity of the capsule polymerases, polymorphic sites were narrowed down by DNA sequence comparisons and subsequent site-directed mutagenesis. Serogroup-specific amino acids were restricted to the N-terminal part of the proteins. Exclusively amino acid 310, located within the nucleotide recognition domain of the enzymes' predicted hexosyltransferase moiety, accounted for substrate specificity as shown by immunochemistry and in vitro activity assay. Pro-310 determined galactosyltransferase activity that resulted in a serogroup W-135 capsule and Gly-310 determined glucosyltransferase activity that resulted in a serogroup Y capsule. In silico analysis revealed a similar amino acid-based association in other members of the same glycosyltransferase family irrespective of the bacterial species.
Collapse
Affiliation(s)
- Heike Claus
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Comparative proteomic analysis of the Haemophilus ducreyi porin-deficient mutant 35000HP::P2AB. J Bacteriol 2008; 191:2144-52. [PMID: 19103932 DOI: 10.1128/jb.01487-08] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Haemophilus ducreyi is an obligate human pathogen and the causative agent of the sexually transmitted, genital ulcerative disease chancroid. The genome of strain 35000HP contains two known porin proteins, OmpP2A and OmpP2B. Loss of OmpP2A and OmpP2B expression in the mutant 35000HP::P2AB resulted in no obvious growth defect or phenotype. Comparison of outer membrane profiles indicated increased expression of the 58.5-kDa chaperone, GroEL, in the porin-deficient mutant. A proteomics-based comparison resulted in the identification of 231 proteins present in membrane-associated protein samples, of which a subset of 56 proteins was differentially expressed at a level of 1.5-fold or greater in the porin-deficient strain 35000HP::P2AB relative to that in 35000HP. Twenty of the differentially expressed proteins were selected for real-time PCR, resulting in the validation of 90% of the selected subgroup. Proteins identified in these studies suggested a decreased membrane stability phenotype, which was verified by disk diffusion assay. Loss of OmpP2A and OmpP2B resulted in global protein expression changes which appear to compensate for the absence of porin expression in 35000HP::P2AB.
Collapse
|
20
|
Gao S, Peng D, Zhang W, Muszyński A, Carlson RW, Gu XX. Identification of two late acyltransferase genes responsible for lipid A biosynthesis in Moraxella catarrhalis. FEBS J 2008; 275:5201-14. [PMID: 18795947 PMCID: PMC2585779 DOI: 10.1111/j.1742-4658.2008.06651.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipid A is a biological component of the lipo-oligosaccharide of a human pathogen, Moraxella catarrhalis. No other acyltransferases except for UDP-GlcNAc acyltransferase, responsible for lipid A biosynthesis in M. catarrhalis, have been identified. By bioinformatics, two late acyltransferase genes, lpxX and lpxL, responsible for lipid A biosynthesis were identified, and knockout mutants of each gene in M. catarrhalis strain O35E were constructed and named O35ElpxX and O35ElpxL. Structural analysis of lipid A from the parental strain and derived mutants showed that O35ElpxX lacked two decanoic acids (C10:0), whereas O35ElpxL lacked one dodecanoic (lauric) acid (C12:0), suggesting that lpxX encoded decanoyl transferase and lpxL encoded dodecanoyl transferase. Phenotypic analysis revealed that both mutants were similar to the parental strain in their toxicity in vitro. However, O35ElpxX was sensitive to the bactericidal activity of normal human serum and hydrophobic reagents. It had a reduced growth rate in broth and an accelerated bacterial clearance at 3 h (P < 0.01) or 6 h (P < 0.05) after an aerosol challenge in a murine model of bacterial pulmonary clearance. O35ElpxL presented similar patterns to those of the parental strain, except that it was slightly sensitive to the hydrophobic reagents. These results indicate that these two genes, particularly lpxX, encoding late acyltransferases responsible for incorporation of the acyloxyacyl-linked secondary acyl chains into lipid A, are important for the biological activities of M. catarrhalis.
Collapse
Affiliation(s)
- Song Gao
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA
| | - Daxin Peng
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA
| | - Wenhong Zhang
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Xin-Xing Gu
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA
| |
Collapse
|
21
|
Galactose residues on the lipooligosaccharide of Moraxella catarrhalis 26404 form the epitope recognized by the bactericidal antiserum from conjugate vaccination. Infect Immun 2008; 76:4251-8. [PMID: 18559429 DOI: 10.1128/iai.01570-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipooligosaccharide (LOS) from Moraxella catarrhalis has the potential to elicit bactericidal antibodies against the pathogen. We generated LOS-based conjugate vaccines that elicited bactericidal antibodies in animal models. However, epitopes on the LOS recognized by the functional anti-LOS antibodies remain unidentified. In this study, a mutant strain, D4, which lost the recognition by a bactericidal anti-LOS rabbit serum in Western blotting was generated from a serotype C strain 26404 by random transposon mutagenesis. Sequence analysis revealed there was an insertion of a kanamycin resistance gene in the lgt2 gene of D4, which encodes beta(1-4)-galactosyltransferase. An isogenic lgt2 mutant, 26404lgt2, was constructed. Structural analysis indicated that the mutant strain produced a truncated LOS lacking terminal galactoses from 4- and 6-linked oligosaccharide chains of strain 26404. Further studies showed that the antiserum lost the recognition of both mutant cells and LOSs in Western blotting, an enzyme-linked immunosorbent assay (ELISA), or a flow cytometry assay. The antiserum also lost the ability to kill the mutant strain in a bactericidal assay, whereas it showed a bactericidal titer of 1:80 to strain 26404. In an inhibition ELISA, d-(+)-galactose or 26404lgt2 LOS showed no inhibition. However, the 26404 LOS and a serotype A O35E LOS with terminal galactoses on its 6-linked oligosaccharide chain showed >90% inhibition, while a serotype B 26397 LOS showed >60% inhibition. These studies suggest that the terminal alpha-Gal-(1-->4)-beta-Gal on the 6-linked oligosaccharide chain of 26404 LOS plays a critical role in forming the epitope recognized by the bactericidal antiserum induced by immunization with our conjugate vaccine.
Collapse
|
22
|
Peng D, Hu WG, Choudhury BP, Muszyński A, Carlson RW, Gu XX. Role of different moieties from the lipooligosaccharide molecule in biological activities of the Moraxella catarrhalis outer membrane. FEBS J 2007; 274:5350-9. [PMID: 17892485 DOI: 10.1111/j.1742-4658.2007.06060.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipooligosaccharide (LOS), a major component of the outer membrane of Moraxella catarrhalis, consists of two major moieties: a lipid A and a core oligosaccharide (OS). The core OS can be dissected into a linker and three OS chains. To gain an insight into the biological activities of the LOS molecules of M. catarrhalis, we used a random transposon mutagenesis approach with an LOS specific monoclonal antibody to construct a serotype A O35Elgt3 LOS mutant. MALDI-TOF-MS of de-O-acylated LOS from the mutant and glycosyl composition, linkage, and NMR analysis of its OS indicated that the LOS contained a truncated core OS and consisted of a Glc-Kdo(2) (linker)-lipid A structure. Phenotypic analysis revealed that the mutant was similar to the wild-type strain in its growth rate, toxicity and susceptibility to hydrophobic reagents. However, the mutant was sensitive to bactericidal activity of normal human serum and had a reduced adherence to human epithelial cells. These data, combined with our previous data obtained from mutants which contained only lipid A or lacked LOS, suggest that the complete OS chain moiety of the LOS is important for serum resistance and adherence to epithelial cells, whereas the linker moiety is critical for maintenance of the outer membrane integrity and stability to preserve normal cell growth. Both the lipid A and linker moieties contribute to the LOS toxicity.
Collapse
MESH Headings
- Adult
- Animals
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/pharmacology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigens, Bacterial/blood
- Antigens, Bacterial/immunology
- Antigens, Bacterial/pharmacology
- Bacterial Adhesion/immunology
- Cell Adhesion/physiology
- Cell Membrane Structures/metabolism
- Female
- HeLa Cells
- Humans
- Lipid A/chemistry
- Lipid A/immunology
- Lipid A/metabolism
- Lipopolysaccharides/chemistry
- Lipopolysaccharides/immunology
- Lipopolysaccharides/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Moraxella catarrhalis/growth & development
- Moraxella catarrhalis/pathogenicity
- Moraxellaceae Infections/immunology
- Moraxellaceae Infections/metabolism
- Moraxellaceae Infections/pathology
- Mutagenesis
- Nasal Lavage Fluid/microbiology
- Nasopharynx/microbiology
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Daxin Peng
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD, USA
| | | | | | | | | | | |
Collapse
|
23
|
Peak IR, Grice ID, Faglin I, Klipic Z, Collins PM, van Schendel L, Hitchen PG, Morris HR, Dell A, Wilson JC. Towards understanding the functional role of the glycosyltransferases involved in the biosynthesis of Moraxella catarrhalis lipooligosaccharide. FEBS J 2007; 274:2024-37. [PMID: 17388814 DOI: 10.1111/j.1742-4658.2007.05746.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The glycosyltransferase enzymes (Lgts) responsible for the biosynthesis of the lipooligosaccharide-derived oligosaccharide structures from Moraxella catarrhalis have been investigated. This upper respiratory tract pathogen is responsible for a spectrum of illnesses, including otitis media (middle ear infection) in children, and contributes to exacerbations of chronic obstructive pulmonary disease in elderly patients. To investigate the function of the glycosyltransferase enzymes involved in the biosynthesis of lipooligosaccharide of M. catarrhalis and to gain some insight into the mechanism of serotype specificity for this microorganism, mutant strains of M. catarrhalis were produced. Examination by NMR and MS of the oligosaccharide structures produced by double-mutant strains (2951lgt1/4Delta and 2951lgt5/4Delta) and a single-mutant strain (2951lgt2Delta) of the bacterium has allowed us to propose a model for the serotype-specific expression of lipooligosaccharide in M. catarrhalis. According to this model, the presence/absence of Lgt4 and the Lgt2 allele determines the lipooligosaccharide structure produced by a strain. Furthermore, it is concluded that Lgt4 functions as an N-acetylglucosylamine transferase responsible for the addition of an alpha-D-GlcNAc (1-->2) glycosidic linkage to the (1-->4) branch, and also that there is competition between the glycosyltransferases Lgt1 and Lgt4. That is, in the presence of an active Lgt4, GlcNAc is preferentially added to the (1-->4) chain of the growing oligosaccharide, instead of Glc. In serotype B strains, which lack Lgt4, Lgt1 adds a Glc at this position. This implies that active Lgt4 has a much higher affinity/specificity for the beta-(1-->4)-linked Glc on the (1-->4) branch than does Lgt1.
Collapse
Affiliation(s)
- Ian R Peak
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wilson JC, Collins PM, Klipic Z, Grice ID, Peak IR. Identification of a novel glycosyltransferase involved in LOS biosynthesis of Moraxella catarrhalis. Carbohydr Res 2006; 341:2600-6. [PMID: 16934238 DOI: 10.1016/j.carres.2006.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 07/05/2006] [Accepted: 07/18/2006] [Indexed: 11/24/2022]
Abstract
Moraxella catarrhalis is an important human mucosal pathogen that contributes to otitis media in infants and exacerbates conditions such as chronic obstructive pulmonary disease in the elderly. This study describes the identification of a novel gene, lgt5 that encodes a glycosyltransferase involved in the LOS biosynthesis of M. catarrhalis. Analysis of NMR data of LOS-derived oligosaccharide from a Serotype A lgt5 mutant strain of M. catarrhalis indicate that lgt5 encodes an alpha-(1-->4)-galactosyltransferase.
Collapse
Affiliation(s)
- Jennifer C Wilson
- Institute for Glycomics, Griffith University, Gold Coast, 4215 QLD, Australia
| | | | | | | | | |
Collapse
|
25
|
Edwards KJ, Schwingel JM, Datta AK, Campagnari AA. Multiplex PCR assay that identifies the major lipooligosaccharide serotype expressed by Moraxella catarrhalis clinical isolates. J Clin Microbiol 2006; 43:6139-43. [PMID: 16333114 PMCID: PMC1317230 DOI: 10.1128/jcm.43.12.6139-6143.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A heterologous cluster of glycosyltransferase genes was identified in the three Moraxella catarrhalis LOS serotype strains. Multiple PCR primers designed to this region amplified products that differentiate between the serotypes more rapidly and efficiently than previously described serological analyses. This assay will be valuable for clinical and research-based studies.
Collapse
Affiliation(s)
- Katie J Edwards
- Department of Microbiology, University at Buffalo, Biomedical Research Bldg. Rm. 143, 3435 Main Street, Buffalo, NY 14214, USA
| | | | | | | |
Collapse
|
26
|
Peng D, Hong W, Choudhury BP, Carlson RW, Gu XX. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect Immun 2005; 73:7569-77. [PMID: 16239560 PMCID: PMC1273912 DOI: 10.1128/iai.73.11.7569-7577.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lipooligosaccharide (LOS) is a major surface component of Moraxella catarrhalis and a possible virulence factor in the pathogenesis of human infections caused by this organism. The presence of LOS on the bacterium is an obstacle to the development of vaccines derived from whole cells or outer membrane components of the bacterium. An lpxA gene encoding UDP-N-acetylglucosamine acyltransferase responsible for the first step of lipid A biosynthesis was identified by the construction and characterization of an isogenic M. catarrhalis lpxA mutant in strain O35E. The resulting mutant was viable despite the complete loss of LOS. The mutant strain showed significantly decreased toxicity by the Limulus amebocyte lysate assay, reduced resistance to normal human serum, reduced adherence to human epithelial cells, and enhanced clearance in lungs and nasopharynx in a mouse aerosol challenge model. Importantly, the mutant elicited high levels of antibodies with bactericidal activity and provided protection against a challenge with the wild-type strain. These data suggest that the null LOS mutant is attenuated and may be a potential vaccine candidate against M. catarrhalis.
Collapse
Affiliation(s)
- Daxin Peng
- Vaccine Research Section, National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850, USA
| | | | | | | | | |
Collapse
|