1
|
Abu-Qatouseh LF, Ahmad MIA, Amorim CG, Al-Adham ISI, Collier PJ, Montenegro MCBSM. Insights into the molecular antimicrobial properties of ferulic acid against Helicobacter pylori. J Appl Microbiol 2025; 136:lxaf112. [PMID: 40336146 DOI: 10.1093/jambio/lxaf112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 04/16/2025] [Accepted: 05/06/2025] [Indexed: 05/09/2025]
Abstract
AIM Natural compounds have gained attention as potential alternatives or adjuvants to antibiotics against several pathogens. Ferulic acid, a natural plant product, has demonstrated promising antimicrobial properties against a wide range of microorganisms. This paper aims to characterize the molecular mechanism underlying the potential inhibitory effects of ferulic acid on Helicobacter pylori. METHODS AND RESULTS The impact of ferulic acid on the growth and expression of genes associated with urease enzyme, flagellar and motility, acid stability, toxin production, and quorum sensing in H. pylori using quantitative real-time polymerase chain reaction (qPCR) was investigated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ferulic acid were 167.7 ± 58.9 µg mL-1 and 250 µg mL-1, respectively. Exposure of H. pylori to 0.1% ferulic acid revealed strong induction of the regulatory genes hup and rpoN transcription factors and fliA flagellar regulatory factor and the cytotoxin genes cagA and vacA. CONCLUSIONS Results confirm the potent anti-Helicobacter pylori activity of ferulic acid affecting the expression of genes of its virulence factors, metabolism, and quorum sensing.
Collapse
Affiliation(s)
- Luay F Abu-Qatouseh
- Faculty of Pharmacy and Medical Sciences, University of Petra, 11196 Amman, Jordan
| | - Mohammad I A Ahmad
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological and Diagnostic Research Centre (PDRC), Al-Ahliyya Amman University, 19328 Amman, Jordan
| | - Célia G Amorim
- Department of Chemical Sciences, Faculty of Pharmacy, LAQV-REQUIMTE, University of Porto, Porto, 4169-007, Portugal
| | - Ibrahim S I Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, 11196 Amman, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy and Medical Sciences, University of Petra, 11196 Amman, Jordan
| | - Maria C B S M Montenegro
- Department of Chemical Sciences, Faculty of Pharmacy, LAQV-REQUIMTE, University of Porto, Porto, 4169-007, Portugal
| |
Collapse
|
2
|
Bisht R, Charlesworth PD, Sperandeo P, Polissi A. Breaking Barriers: Exploiting Envelope Biogenesis and Stress Responses to Develop Novel Antimicrobial Strategies in Gram-Negative Bacteria. Pathogens 2024; 13:889. [PMID: 39452760 PMCID: PMC11510100 DOI: 10.3390/pathogens13100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial resistance (AMR) has emerged as a global health threat, necessitating immediate actions to develop novel antimicrobial strategies and enforce strong stewardship of existing antibiotics to manage the emergence of drug-resistant strains. This issue is particularly concerning when it comes to Gram-negative bacteria, which possess an almost impenetrable outer membrane (OM) that acts as a formidable barrier to existing antimicrobial compounds. This OM is an asymmetric structure, composed of various components that confer stability, fluidity, and integrity to the bacterial cell. The maintenance and restoration of membrane integrity are regulated by envelope stress response systems (ESRs), which monitor its assembly and detect damages caused by external insults. Bacterial communities encounter a wide range of environmental niches to which they must respond and adapt for survival, sustenance, and virulence. ESRs play crucial roles in coordinating the expression of virulence factors, adaptive physiological behaviors, and antibiotic resistance determinants. Given their role in regulating bacterial cell physiology and maintaining membrane homeostasis, ESRs present promising targets for drug development. Considering numerous studies highlighting the involvement of ESRs in virulence, antibiotic resistance, and alternative resistance mechanisms in pathogens, this review aims to present these systems as potential drug targets, thereby encouraging further research in this direction.
Collapse
Affiliation(s)
| | | | - Paola Sperandeo
- Department of Pharmacological and Biomolecular Sciences, University of Milano, 20133 Milano, Italy; (R.B.); (P.D.C.); (A.P.)
| | | |
Collapse
|
3
|
Åberg A, Gideonsson P, Bhat A, Ghosh P, Arnqvist A. Molecular insights into the fine-tuning of pH-dependent ArsR-mediated regulation of the SabA adhesin in Helicobacter pylori. Nucleic Acids Res 2024; 52:5572-5595. [PMID: 38499492 PMCID: PMC11162790 DOI: 10.1093/nar/gkae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/28/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
Adaptation to variations in pH is crucial for the ability of Helicobacter pylori to persist in the human stomach. The acid responsive two-component system ArsRS, constitutes the global regulon that responds to acidic conditions, but molecular details of how transcription is affected by the ArsR response regulator remains poorly understood. Using a combination of DNA-binding studies, in vitro transcription assays, and H. pylori mutants, we demonstrate that phosphorylated ArsR (ArsR-P) forms an active protein complex that binds DNA with high specificity in order to affect transcription. Our data showed that DNA topology is key for DNA binding. We found that AT-rich DNA sequences direct ArsR-P to specific sites and that DNA-bending proteins are important for the effect of ArsR-P on transcription regulation. The repression of sabA transcription is mediated by ArsR-P with the support of Hup and is affected by simple sequence repeats located upstream of the sabA promoter. Here stochastic events clearly contribute to the fine-tuning of pH-dependent gene regulation. Our results reveal important molecular aspects for how ArsR-P acts to repress transcription in response to acidic conditions. Such transcriptional control likely mediates shifts in bacterial positioning in the gastric mucus layer.
Collapse
Affiliation(s)
- Anna Åberg
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Pär Gideonsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Abhayprasad Bhat
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Prachetash Ghosh
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
4
|
Xue J, Li W, Zhao Y, Wang L, Cheng P, Zhang L, Zheng Y, Zhang W, Bi Y, Chen Z, Jiang T, Sun Y. Antibiotic-induced ROS-mediated Fur allosterism contributes to Helicobacter pylori resistance by inhibiting arsR activation of mutS and mutY. Antimicrob Agents Chemother 2024; 68:e0167923. [PMID: 38386782 PMCID: PMC10989006 DOI: 10.1128/aac.01679-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
The increasing antibiotic resistance of Helicobacter pylori primarily driven by genetic mutations poses a significant clinical challenge. Although previous research has suggested that antibiotics could induce genetic mutations in H. pylori, the molecular mechanisms regulating the antibiotic induction remain unclear. In this study, we applied various techniques (e.g., fluorescence microscopy, flow cytometry, and multifunctional microplate reader) to discover that three different types of antibiotics could induce the intracellular generation of reactive oxygen species (ROS) in H. pylori. It is well known that ROS, a critical factor contributing to bacterial drug resistance, not only induces damage to bacterial genomic DNA but also inhibits the expression of genes associated with DNA damage repair, thereby increasing the mutation rate of bacterial genes and leading to drug resistance. However, further research is needed to explore the molecular mechanisms underlying the ROS inhibition of the expression of DNA damage repair-related genes in H. pylori. In this work, we validated that ROS could trigger an allosteric change in the iron uptake regulatory protein Fur, causing its transition from apo-Fur to holo-Fur, repressing the expression of the regulatory protein ArsR, ultimately causing the down-regulation of key DNA damage repair genes (e.g., mutS and mutY); this cascade increased the genomic DNA mutation rate in H. pylori. This study unveils a novel mechanism of antibiotic-induced resistance in H. pylori, providing crucial insights for the prevention and control of antibiotic resistance in H. pylori.
Collapse
Affiliation(s)
- Junyuan Xue
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wen Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yican Zhao
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Liyuan Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Peiyuan Cheng
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Jilin, China
| | - Lu Zhang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yantong Zheng
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wenxin Zhang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yakun Bi
- Science and Technology Management Center, The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
| | - Ting Jiang
- Jiangsu Luye Diagnostic Technology, Wuxi, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Zimmerman EH, Ramsey EL, Hunter KE, Villadelgado SM, Phillips CM, Shipman RT, Forsyth MH. The Helicobacter pylori methylome is acid-responsive due to regulation by the two-component system ArsRS and the type I DNA methyltransferase HsdM1 (HP0463). J Bacteriol 2024; 206:e0030923. [PMID: 38179929 PMCID: PMC10810217 DOI: 10.1128/jb.00309-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
In addition to its role in genome protection, DNA methylation can regulate gene expression. In this study, we characterized the impact of acidity, phase variation, and the ArsRS TCS on the expression of the Type I m6A DNA methyltransferase HsdM1 (HP0463) of Helicobacter pylori 26695 and their subsequent effects on the methylome. Transcription of hsdM1 increases at least fourfold in the absence of the sensory histidine kinase ArsS, the major acid-sensing protein of H. pylori. hsdM1 exists in the phase-variable operon hsdR1-hsdM1. Phase-locking hsdR1 (HP0464), the restriction endonuclease gene, has significant impacts on the transcription of hsdM1. To determine the impacts of methyltransferase transcription patterns on the methylome, we conducted methylome sequencing on samples cultured at pH 7 or pH 5. We found differentially methylated motifs between these growth conditions and that deletions of arsS and/or hsdM1 interfere with the epigenetic acid response. Deletion of arsS leads to altered activity of HsdM1 and multiple other methyltransferases under both pH conditions indicating that the ArsRS TCS, in addition to direct effects on regulon transcription during acid acclimation, may also indirectly impact gene expression via regulation of the methylome. We determined the target motif of HsdM1 (HP0463) to be the complementary bipartite sequence pair 5'-TCAm6AVN6TGY-3' and 3'-AGTN6GAm6ACA-5'. This complex regulation of DNA methyltransferases, and thus differential methylation patterns, may have implications for the decades-long persistent infection by H. pylori. IMPORTANCE This study expands the possibilities for complex, epigenomic regulation in Helicobacter pylori. We demonstrate that the H. pylori methylome is plastic and acid sensitive via the two-component system ArsRS and the DNA methyltransferase HsdM1. The control of a methyltransferase by ArsRS may allow for a layered response to changing acidity. Likely, an early response whereby ArsR~P affects regulon expression, including the methyltransferase hsdM1. Then, a somewhat later effect as the altered methylome, due to altered HsdM1 expression, subsequently alters the expression of other genes involved in acclimation. The intermediate methylation of certain motifs supports the hypothesis that methyltransferases play a regulatory role. Untangling this additional web of regulation could play a key role in understanding H. pylori colonization and persistence.
Collapse
Affiliation(s)
| | - Erin L. Ramsey
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | | | | | | | - Ryan T. Shipman
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | - Mark H. Forsyth
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| |
Collapse
|
6
|
Zhao Y, Chen Z, Cai Y, Xue J, Zhang L, Wang L, Zhao M, Zheng Y, Xia T, Yu H, Jiang T, Sun Y. Aloe-emodin destroys the biofilm of Helicobacter pylori by targeting the outer membrane protein 6. Microbiol Res 2024; 278:127539. [PMID: 37956613 DOI: 10.1016/j.micres.2023.127539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Biofilm formation is one of the most important factors causing drug resistance of Helicobacter pylori. Therefore, it is necessary to explore the mechanism underlying the biofilm formation and its eradication methods. The outer membrane proteins (OMPs) play important roles in the formation of bacterial biofilms and are considered the essential targets for new drug discovery. Natural products play significant roles in anti-bacterial and anti-biofilm functions. This study explored the key OMPs involved in the biofilm formation of H. pylori and the natural products that target these OMPs. Transcriptome sequencing, gene knockout, and electrophoretic mobility shift assay (EMSA) were performed to reveal that OMP6 was involved in the biofilm formation of H. pylori, which was regulated by non-phosphorylated ArsR. Molecular docking suggested that aloe-emodin (AE) could target OMP6 and destroy the biofilms of H. pylori. Further exploration of its mechanism found that AE could also inhibit the expression of omp6 mRNA by binding to its regulator ArsR. In summary, we have discovered a novel molecular mechanism regulating the biofilm formation of H. pylori and identified a natural product against H. pylori biofilms, providing potential clues for clinical treatment of H. pylori.
Collapse
Affiliation(s)
- Yican Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhenghong Chen
- Department of Microbiology, Key Laboratory of Medical Microbiology and Parasitology, Guizhou Medical University, Guiyang, China
| | - Yuying Cai
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Junyuan Xue
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Zhang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Liyuan Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingzhong Zhao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yantong Zheng
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tian Xia
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Han Yu
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ting Jiang
- Jiangsu Luye Diagnostic Technology, Wuxi, China
| | - Yundong Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Department of Microbiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Augustine J, Baksh KA, Prosser RS, Zamble DB. Insights into the Allosteric Response to Acidity by the Helicobacter pylori NikR Transcription Factor. Biochemistry 2023; 62:3265-3275. [PMID: 37917856 DOI: 10.1021/acs.biochem.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Helicobacter pylori NikR (HpNikR) is a nickel-responsive transcription factor that regulates genes involved in nickel homeostasis, which is essential for the survival of this pathogen within the acidic human stomach. HpNikR also responds to drops in pH and regulates genes controlling acid acclimation of the bacteria, independently of nickel. We previously showed that nickel binding biases the conformational ensemble of HpNikR to the more DNA-binding competent states via an allosteric network of residues encompassing the nickel binding sites and the interface between the metal- and DNA-binding domains. Here, we examine how acidity promotes this response using 19F-NMR, mutagenesis, and DNA-binding studies. 19F-NMR revealed that a drop in pH from 7.6 to 6.0 does little to shift the conformational ensemble of HpNikR to the DNA binding-compatible cis conformer. Nevertheless, DNA-binding affinities of apo-HpNikR at pH 6.0 and Ni(II)-HpNikR at pH 7.6 are comparable for the ureA promoter. Histidine residues of the nickel binding sites were shown to be important for pH-dependent DNA binding and thus likely impart positive charge to the protein, initiating long-range electrostatic interactions with DNA that induce DNA complexation. The results point to a different DNA-binding mechanism in response to acidity compared to the conformational selection mechanism in response to nickel and overall provide new insights into the influence of pH on HpNikR activity, which contributes to H. pylori viability.
Collapse
Affiliation(s)
- Jerry Augustine
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Karina A Baksh
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Robert Scott Prosser
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
8
|
Regulation of Helicobacter pylori Urease and Acetone Carboxylase Genes by Nitric Oxide and the CrdRS Two-Component System. Microbiol Spectr 2023; 11:e0463322. [PMID: 36625670 PMCID: PMC9927306 DOI: 10.1128/spectrum.04633-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Helicobacter pylori colonizes the human gastric mucosa and causes various gastroduodenal diseases, including peptic ulceration and gastric cancer. Colonization requires the actions of two-component systems (TCSs) to sense and respond to changes in the host environment. In this study, we evaluated gene regulation mediated by the CrdRS TCS. Few studies have evaluated this TCS, leaving the signal(s) yet to be exhaustively determined and a need for a more complete regulon to be delineated. We performed RNA sequencing (RNA-Seq) on three isogenic H. pylori 26695 mutants: a control, a mutant with deletion of the sensory histidine kinase, ΔcrdS, and a mutant with deletion of the response regulator, ΔcrdR. Comparison of the RNA-Seq results from these mutants established a 40-gene regulon putatively controlled by the CrdRS TCS. Quantitative reverse transcriptase PCR (RT-qPCR) was used to validate 7 of 11 putative regulon members selected for analysis. We further investigated 6 confirmed CrdRS regulon genes by using phospho-incompetent H. pylori 26695 CrdR D53A and CrdS H173A mutants. These experiments further confirmed the role of CrdRS in regulation of urease, acetone carboxylase, hofD, and HP1440. Expression of these CrdRS regulon genes was also evaluated under 10 μM nitric oxide (NO) conditions. This revealed that ureA, acxA, hofD, and HP1440 expression is affected by NO in a CrdRS-dependent manner. Importantly, three of these genes (ureA, acxA, and hofD) are known to play important roles in H. pylori colonization of the stomach. IMPORTANCE The molecular strategies used by Helicobacter pylori to colonize and persist in the harsh environment of the human stomach are a critical area of study. Our study identified several genes in this gastric pathogen, including ureA, a gene encoding a protein essential to the survival of H. pylori, that are regulated via the CrdRS two-component system (TCS) in response to nitric oxide (NO). NO is a product of the innate immune system of the human host. The identification of these genes whose expression is regulated by this molecule may give insights to novel therapeutics. Two genes (ureA and acxA) determined in this study to be regulated by NO via CrdRS have been previously determined to be regulated by other TCSs, indicating that the expression of these genes may be of critical importance to H. pylori.
Collapse
|
9
|
McDonald JB, Scott NE, Underwood GJ, Andrews DM, Van TTH, Moore RJ. Characterisation of N-linked protein glycosylation in the bacterial pathogen Campylobacter hepaticus. Sci Rep 2023; 13:227. [PMID: 36604449 PMCID: PMC9816155 DOI: 10.1038/s41598-022-26532-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Campylobacter hepaticus is an important pathogen which causes Spotty Liver Disease (SLD) in layer chickens. SLD results in an increase in mortality and a significant decrease in egg production and therefore is an important economic concern of the global poultry industry. The human pathogen Campylobacter jejuni encodes an N-linked glycosylation system that plays fundamental roles in host colonization and pathogenicity. While N-linked glycosylation has been extensively studied in C. jejuni and is now known to occur in a range of Campylobacter species, little is known about C. hepaticus glycosylation. In this study glycoproteomic analysis was used to confirm the functionality of the C. hepaticus N-glycosylation system. It was shown that C. hepaticus HV10T modifies > 35 proteins with an N-linked heptasaccharide glycan. C. hepaticus shares highly conserved glycoproteins with C. jejuni that are involved in host colonisation and also possesses unique glycoproteins which may contribute to its ability to survive in challenging host environments. C. hepaticus N-glycosylation may function as an important virulence factor, providing an opportunity to investigate and develop a better understanding the system's role in poultry infection.
Collapse
Affiliation(s)
- Jamieson B McDonald
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Greg J Underwood
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Daniel M Andrews
- Bioproperties Pty Ltd, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, VIC, Australia.
| |
Collapse
|
10
|
Castagnini LA, Gilger MA. Helicobacter pylori. PRINCIPLES AND PRACTICE OF PEDIATRIC INFECTIOUS DISEASES 2023:954-959.e5. [DOI: 10.1016/b978-0-323-75608-2.00174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Somiah T, Gebremariam HG, Zuo F, Smirnova K, Jonsson AB. Lactate causes downregulation of Helicobacter pylori adhesin genes sabA and labA while dampening the production of proinflammatory cytokines. Sci Rep 2022; 12:20064. [PMID: 36414643 PMCID: PMC9681763 DOI: 10.1038/s41598-022-24311-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic inflammation induced by Helicobacter pylori is strongly associated with gastric cancer development, which is influenced by both bacterial virulence and host genetics. The sialic acid-binding adhesin SabA and the MUC5AC-binding adhesin LabA are important H. pylori virulence factors that facilitate adhesion of the bacterium, which is a crucial step in colonization. Lactate utilization has been reported to play a key role in the pathogenicity of different bacterial species. However, this is poorly understood in H. pylori. In this study, we investigated the effect of lactate on H. pylori adhesin gene expression and the regulation of host inflammatory cytokines. We show that the bacterial adhesins SabA and LabA were downregulated at the transcriptional level during incubation of H. pylori with lactate. Downregulation of sabA required the involvement of the two-component system ArsRS, while labA was regulated via the CheA/CheY system, indicating differences in the regulation of these genes in response to lactate. The levels of the proinflammatory cytokines TNF and IL-6 in H. pylori-stimulated macrophages were reduced when lactate was present. Interestingly, glucose did not prevent the secretion of these cytokines. Taken together, our data suggest that lactate affects H. pylori adhesin gene expression and the host response upon infection.
Collapse
Affiliation(s)
- Tanvi Somiah
- grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| | - Hanna G. Gebremariam
- grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| | - Fanglei Zuo
- grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| | - Ksenija Smirnova
- grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| | - Ann-Beth Jonsson
- grid.10548.380000 0004 1936 9377Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrheniusväg 20C, 10691 Stockholm, Sweden
| |
Collapse
|
12
|
Insights into the Orchestration of Gene Transcription Regulators in Helicobacter pylori. Int J Mol Sci 2022; 23:ijms232213688. [PMID: 36430169 PMCID: PMC9696931 DOI: 10.3390/ijms232213688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Bacterial pathogens employ a general strategy to overcome host defenses by coordinating the virulence gene expression using dedicated regulatory systems that could raise intricate networks. During the last twenty years, many studies of Helicobacter pylori, a human pathogen responsible for various stomach diseases, have mainly focused on elucidating the mechanisms and functions of virulence factors. In parallel, numerous studies have focused on the molecular mechanisms that regulate gene transcription to attempt to understand the physiological changes of the bacterium during infection and adaptation to the environmental conditions it encounters. The number of regulatory proteins deduced from the genome sequence analyses responsible for the correct orchestration of gene transcription appears limited to 14 regulators and three sigma factors. Furthermore, evidence is accumulating for new and complex circuits regulating gene transcription and H. pylori virulence. Here, we focus on the molecular mechanisms used by H. pylori to control gene transcription as a function of the principal environmental changes.
Collapse
|
13
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
14
|
Casado J, Lanas Á, González A. Two-component regulatory systems in Helicobacter pylori and Campylobacter jejuni: Attractive targets for novel antibacterial drugs. Front Cell Infect Microbiol 2022; 12:977944. [PMID: 36093179 PMCID: PMC9449129 DOI: 10.3389/fcimb.2022.977944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Two-component regulatory systems (TCRS) are ubiquitous signal transduction mechanisms evolved by bacteria for sensing and adapting to the constant changes that occur in their environment. Typically consisting of two types of proteins, a membrane sensor kinase and an effector cytosolic response regulator, the TCRS modulate via transcriptional regulation a plethora of key physiological processes, thereby becoming essential for bacterial viability and/or pathogenicity and making them attractive targets for novel antibacterial drugs. Some members of the phylum Campylobacterota (formerly Epsilonproteobacteria), including Helicobacter pylori and Campylobacter jejuni, have been classified by WHO as “high priority pathogens” for research and development of new antimicrobials due to the rapid emergence and dissemination of resistance mechanisms against first-line antibiotics and the alarming increase of multidrug-resistant strains worldwide. Notably, these clinically relevant pathogens express a variety of TCRS and orphan response regulators, sometimes unique among its phylum, that control transcription, translation, energy metabolism and redox homeostasis, as well as the expression of relevant enzymes and virulence factors. In the present mini-review, we describe the signalling mechanisms and functional diversity of TCRS in H. pylori and C. jejuni, and provide an overview of the most recent findings in the use of these microbial molecules as potential novel therapeutic targets for the development of new antibiotics.
Collapse
Affiliation(s)
- Javier Casado
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Ángel Lanas
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, Zaragoza, Spain
| | - Andrés González
- Group of Translational Research in Digestive Diseases, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
- *Correspondence: Andrés González,
| |
Collapse
|
15
|
Xia X. Multiple regulatory mechanisms for pH homeostasis in the gastric pathogen, Helicobacter pylori. ADVANCES IN GENETICS 2022; 109:39-69. [PMID: 36334916 DOI: 10.1016/bs.adgen.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acid-resistance in gastric pathogen Helicobacter pylori requires the coordination of four essential processes to regulate urease activity. Firstly, urease expression above a base level needs to be finely tuned at different ambient pH. Secondly, as nickel is needed to activate urease, nickel homeostasis needs to be maintained by proteins that import and export nickel ions, and sequester, store and release nickel when needed. Thirdly, urease accessary proteins that activate urease activity by nickel insertion need to be expressed. Finally, a reliable source of urea needs to be maintained by both intrinsic and extrinsic sources of urea. Two-component systems (arsRS and flgRS), as well as a nickel response regulator (NikR), sense the change in pH and act on a variety of genes to accomplish the function of acid resistance without causing cellular overalkalization and nickel toxicity. Nickel storage proteins also feature built-in switches to store nickel at neutral pH and release nickel at low pH. This review summarizes the current status of H. pylori research and highlights a number of hypotheses that need to be tested.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, Ottawa, Canada.
| |
Collapse
|
16
|
Ramaswamy R, Zhao S, Bae S, He J. Debromination of TetraBromoBisphenol-A (TBBPA) depicting the metabolic versatility of Dehalococcoides. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126408. [PMID: 34174623 DOI: 10.1016/j.jhazmat.2021.126408] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
TetraBromoBisphenol-A (TBBPA) is a widely used brominated flame retardant and an emerging contaminant that has amassed significant environmental impacts. Though there are a few studies that report the bioremediation of TBBPA, there is no direct evidence to suggest a metabolic use of TBBPA as the sole electron acceptor, which offers an advantage in the complete and energy-efficient process of debromination under anaerobic conditions. In this study, Dehalococcoides mccartyi strain CG1 was identified to be capable of utilizing TBBPA as the sole electron acceptor at its maximum soluble concentrations (7.3 μM) coupled with cell growth. A previously characterized reductive dehalogenase (RDase), PcbA1, and six other RDases of strain CG1 were detected during TBBPA debromination via transcriptional and proteomic analyses. Furthermore, as a commonly co-contaminated brominated flame retardant of TBBPA, penta-BDEs were debrominated synchronously with TBBPA by strain CG1. This study provides deeper insights into the versatile dehalogenation capabilities of D. mccartyi strain CG1 and its role in in situ remediations of persistent organic pollutants in the environment.
Collapse
Affiliation(s)
- Rajaganesan Ramaswamy
- Department of Civil and Environmental Engineering, National University of Singapore, 117576 Singapore, Singapore; Singapore Centre for Environmental Life Sciences and Engineering, National University of Singapore, 117576 Singapore, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, 117576 Singapore, Singapore
| | - Sungwoo Bae
- Department of Civil and Environmental Engineering, National University of Singapore, 117576 Singapore, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 117576 Singapore, Singapore.
| |
Collapse
|
17
|
Zannoni A, Pelliciari S, Musiani F, Chiappori F, Roncarati D, Scarlato V. Definition of the Binding Architecture to a Target Promoter of HP1043, the Essential Master Regulator of Helicobacter pylori. Int J Mol Sci 2021; 22:ijms22157848. [PMID: 34360614 PMCID: PMC8345958 DOI: 10.3390/ijms22157848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
HP1043 is an essential orphan response regulator of Helicobacter pylori orchestrating multiple crucial cellular processes. Classified as a member of the OmpR/PhoB family of two-component systems, HP1043 exhibits a highly degenerate receiver domain and evolved to function independently of phosphorylation. Here, we investigated the HP1043 binding mode to a target sequence in the hp1227 promoter (Php1227). Scanning mutagenesis of HP1043 DNA-binding domain and consensus sequence led to the identification of residues relevant for the interaction of the protein with a target DNA. These determinants were used as restraints to guide a data-driven protein-DNA docking. Results suggested that, differently from most other response regulators of the same family, HP1043 binds in a head-to-head conformation to the Php1227 target promoter. HP1043 interacts with DNA largely through charged residues and contacts with both major and minor grooves of the DNA are required for a stable binding. Computational alanine scanning on molecular dynamics trajectory was performed to corroborate our findings. Additionally, in vitro transcription assays confirmed that HP1043 positively stimulates the activity of RNA polymerase.
Collapse
Affiliation(s)
- Annamaria Zannoni
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
| | - Simone Pelliciari
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
| | - Federica Chiappori
- Istituto di Tecnologie Biomediche-Consiglio Nazionale delle Ricerche (ITB-CNR), 20054 Segrate, Italy;
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
- Correspondence: (D.R.); (V.S.)
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy; (A.Z.); (S.P.); (F.M.)
- Correspondence: (D.R.); (V.S.)
| |
Collapse
|
18
|
Tejada-Arranz A, De Reuse H. Riboregulation in the Major Gastric Pathogen Helicobacter pylori. Front Microbiol 2021; 12:712804. [PMID: 34335549 PMCID: PMC8322730 DOI: 10.3389/fmicb.2021.712804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
Helicobacter pylori is a Gram-negative bacterial pathogen that colonizes the stomach of about half of the human population worldwide. Infection by H. pylori is generally acquired during childhood and this bacterium rapidly establishes a persistent colonization. H. pylori causes chronic gastritis that, in some cases, progresses into peptic ulcer disease or adenocarcinoma that is responsible for about 800,000 deaths in the world every year. H. pylori has evolved efficient adaptive strategies to colonize the stomach, a particularly hostile acidic environment. Few transcriptional regulators are encoded by the small H. pylori genome and post-transcriptional regulation has been proposed as a major level of control of gene expression in this pathogen. The transcriptome and transcription start sites (TSSs) of H. pylori strain 26695 have been defined at the genome level. This revealed the existence of a total of 1,907 TSSs among which more than 900 TSSs for non-coding RNAs (ncRNAs) including 60 validated small RNAs (sRNAs) and abundant anti-sense RNAs, few of which have been experimentally validated. An RNA degradosome was shown to play a central role in the control of mRNA and antisense RNA decay in H. pylori. Riboregulation, genetic regulation by RNA, has also been revealed and depends both on antisense RNAs and small RNAs. Known examples will be presented in this review. Antisense RNA regulation was reported for some virulence factors and for several type I toxin antitoxin systems, one of which controls the morphological transition of H. pylori spiral shape to round coccoids. Interestingly, the few documented cases of small RNA-based regulation suggest that their mechanisms do not follow the same rules that were well established in the model organism Escherichia coli. First, the genome of H. pylori encodes none of the two well-described RNA chaperones, Hfq and ProQ that are important for riboregulation in several organisms. Second, some of the reported small RNAs target, through "rheostat"-like mechanisms, repeat-rich stretches in the 5'-untranslated region of genes encoding important virulence factors. In conclusion, there are still many unanswered questions about the extent and underlying mechanisms of riboregulation in H. pylori but recent publications highlighted original mechanisms making this important pathogen an interesting study model.
Collapse
Affiliation(s)
- Alejandro Tejada-Arranz
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Hilde De Reuse
- Unité Pathogenèse de Helicobacter, CNRS UMR 2001, Département de Microbiologie, Institut Pasteur, Paris, France
| |
Collapse
|
19
|
Delineation of the pH-Responsive Regulon Controlled by the Helicobacter pylori ArsRS Two-Component System. Infect Immun 2021; 89:IAI.00597-20. [PMID: 33526561 DOI: 10.1128/iai.00597-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/09/2021] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori encounters a wide range of pH within the human stomach. In a comparison of H. pylori cultured in vitro under neutral or acidic conditions, about 15% of genes are differentially expressed, and corresponding changes are detectable for many of the encoded proteins. The ArsRS two-component system (TCS), comprised of the sensor kinase ArsS and its cognate response regulator ArsR, has an important role in mediating pH-responsive changes in H. pylori gene expression. In this study, we sought to delineate the pH-responsive ArsRS regulon and further define the role of ArsR in pH-responsive gene expression. We compared H. pylori strains containing an intact ArsRS system with an arsS null mutant or strains containing site-specific mutations of a conserved aspartate residue (D52) in ArsR, which is phosphorylated in response to signals relayed by the cognate sensor kinase ArsS. We identified 178 genes that were pH-responsive in strains containing an intact ArsRS system but not in ΔarsS or arsR mutants. These constituents of the pH-responsive ArsRS regulon include genes involved in acid acclimatization (ureAB, amidases), oxidative stress responses (katA, sodB), transcriptional regulation related to iron or nickel homeostasis (fur, nikR), and genes encoding outer membrane proteins (including sabA, alpA, alpB, hopD [labA], and horA). When comparing H. pylori strains containing an intact ArsRS TCS with arsRS mutants, each cultured at neutral pH, relatively few genes are differentially expressed. Collectively, these data suggest that ArsRS-mediated gene regulation has an important role in H. pylori adaptation to changing pH conditions.
Collapse
|
20
|
Transcriptional Profile of Helicobacter pylori Virulence Genes in Patients with Gastritis and Gastric Cancer. ACTA ACUST UNITED AC 2021; 2021:1309519. [PMID: 33628350 PMCID: PMC7889378 DOI: 10.1155/2021/1309519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 01/01/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Introduction Numerous molecular epidemiology studies have been performed about the frequency of Helicobacter pylori virulence genes in patients with H. pylori infection so far. This study was conducted to detect transcriptional profile by cDNA of H. pylori virulence genes in gastric biopsy samples of gastritis and gastric carcinoma patients. Materials and Methods In a case-control study, based on the prevalence of gastritis and gastric cancer in Sanandaj city during 2018 and 2019, 23 and 11 gastric antral biopsy samples with H. pylori infection were collected from gastritis and gastric carcinoma patients by the consecutive and available sampling method. Pathological characters, including tumor grades and tumor areas for gastric carcinoma biopsy samples prepared from gastric cancer areas, were determined by the pathologist. Total RNA of gastric antral biopsy samples was extracted, and their cDNA was synthesized by TaKaRa kit. H. pylori virulence genes' cDNA using specific primers and PCR was detected. This study's results were analyzed by SPSS version 25 and statics chi-square tests for determination of relationship and correlation between cDNAs of H. pylori transcriptional profile and clinical outcomes of H. pylori infection, including gastritis, gastric carcinoma, tumor grades, and tumor area. Results The positive statistical correlations were observed between transcripts of cagA, cagA-EPIYAC, cagE, and cagY genes and H. pylori infection clinical outcomes (P < 0.05). Conclusion Detection of the H. pylori virulence genes' cDNA in gastric biopsy samples can help provide the prognosis of clinical outcomes.
Collapse
|
21
|
Crowley E, Hussey S. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:275-292.e12. [DOI: 10.1016/b978-0-323-67293-1.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Progress Overview of Bacterial Two-Component Regulatory Systems as Potential Targets for Antimicrobial Chemotherapy. Antibiotics (Basel) 2020; 9:antibiotics9100635. [PMID: 32977461 PMCID: PMC7598275 DOI: 10.3390/antibiotics9100635] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022] Open
Abstract
Bacteria adapt to changes in their environment using a mechanism known as the two-component regulatory system (TCS) (also called “two-component signal transduction system” or “two-component system”). It comprises a pair of at least two proteins, namely the sensor kinase and the response regulator. The former senses external stimuli while the latter alters the expression profile of bacterial genes for survival and adaptation. Although the first TCS was discovered and characterized in a non-pathogenic laboratory strain of Escherichia coli, it has been recognized that all bacteria, including pathogens, use this mechanism. Some TCSs are essential for cell growth and fitness, while others are associated with the induction of virulence and drug resistance/tolerance. Therefore, the TCS is proposed as a potential target for antimicrobial chemotherapy. This concept is based on the inhibition of bacterial growth with the substances acting like conventional antibiotics in some cases. Alternatively, TCS targeting may reduce the burden of bacterial virulence and drug resistance/tolerance, without causing cell death. Therefore, this approach may aid in the development of antimicrobial therapeutic strategies for refractory infections caused by multi-drug resistant (MDR) pathogens. Herein, we review the progress of TCS inhibitors based on natural and synthetic compounds.
Collapse
|
23
|
González A, Casado J, Chueca E, Salillas S, Velázquez-Campoy A, Sancho J, Lanas Á. Small Molecule Inhibitors of the Response Regulator ArsR Exhibit Bactericidal Activity against Helicobacter pylori. Microorganisms 2020; 8:E503. [PMID: 32244717 PMCID: PMC7232201 DOI: 10.3390/microorganisms8040503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is considered the most prevalent bacterial pathogen in humans. The increasing antibiotic resistance evolved by this microorganism has raised alarm bells worldwide due to the significant reduction in the eradication rates of traditional standard therapies. A major challenge in this antibiotic resistance crisis is the identification of novel microbial targets whose inhibitors can overcome the currently circulating resistome. In the present study, we have validated the use of the essential response regulator ArsR as a novel and promising therapeutic target against H. pylori infections. A high-throughput screening of a repurposing chemical library using a fluorescence-based thermal shift assay identified several ArsR binders. At least four of these low-molecular weight compounds noticeably inhibited the DNA binding activity of ArsR and showed bactericidal effects against antibiotic-resistant strains of H. pylori. Among the ArsR inhibitors, a human secondary bile acid, lithocholic acid, quickly destroyed H. pylori cells and exhibited partial synergistic action in combination with clarithromycin or levofloxacin, while the antimicrobial effect of this compound against representative members of the normal human microbiota such as Escherichia coli and Staphylococcus epidermidis appeared irrelevant. Our results enhance the battery of novel therapeutic tools against refractory infections caused by multidrug-resistant H. pylori strains.
Collapse
Affiliation(s)
- Andrés González
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
| | - Javier Casado
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Eduardo Chueca
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Sandra Salillas
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Government of Aragon, Ranillas 1-D, 50018 Zaragoza, Spain
| | - Javier Sancho
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), Mariano Esquilor (Edif. I+D), 50018 Zaragoza, Spain
- Department of Biochemistry and Molecular & Cellular Biology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ángel Lanas
- Aragon Institute for Health Research (IIS Aragón), San Juan Bosco 13, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Monforte de Lemos 3-5, 28029 Madrid, Spain
- Digestive Diseases Service, University Clinic Hospital Lozano Blesa, San Juan Bosco 15, 50009 Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
24
|
Alvarado A, Behrens W, Josenhans C. Protein Activity Sensing in Bacteria in Regulating Metabolism and Motility. Front Microbiol 2020; 10:3055. [PMID: 32010106 PMCID: PMC6978683 DOI: 10.3389/fmicb.2019.03055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Bacteria have evolved complex sensing and signaling systems to react to their changing environments, most of which are present in all domains of life. Canonical bacterial sensing and signaling modules, such as membrane-bound ligand-binding receptors and kinases, are very well described. However, there are distinct sensing mechanisms in bacteria that are less studied. For instance, the sensing of internal or external cues can also be mediated by changes in protein conformation, which can either be implicated in enzymatic reactions, transport channel formation or other important cellular functions. These activities can then feed into pathways of characterized kinases, which translocate the information to the DNA or other response units. This type of bacterial sensory activity has previously been termed protein activity sensing. In this review, we highlight the recent findings about this non-canonical sensory mechanism, as well as its involvement in metabolic functions and bacterial motility. Additionally, we explore some of the specific proteins and protein-protein interactions that mediate protein activity sensing and their downstream effects. The complex sensory activities covered in this review are important for bacterial navigation and gene regulation in their dynamic environment, be it host-associated, in microbial communities or free-living.
Collapse
Affiliation(s)
- Alejandra Alvarado
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany
| | - Wiebke Behrens
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| | - Christine Josenhans
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Infection Research (DZIF) Partner Site Munich, Munich, Germany.,Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
25
|
Ullrich SR, Poehlein A, Levicán G, Mühling M, Schlömann M. Iron targeted transcriptome study draws attention to novel redox protein candidates involved in ferrous iron oxidation in “Ferrovum” sp. JA12. Res Microbiol 2018; 169:618-627. [DOI: 10.1016/j.resmic.2018.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/17/2018] [Accepted: 05/25/2018] [Indexed: 11/28/2022]
|
26
|
Maarsingh JD, Haydel SE. Mycobacterium smegmatis PrrAB two-component system influences triacylglycerol accumulation during ammonium stress. Microbiology (Reading) 2018; 164:1276-1288. [DOI: 10.1099/mic.0.000705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Jason D. Maarsingh
- 1School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Shelley E. Haydel
- 2Biodesign Institute Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ 85287, USA
- 1School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
27
|
Jones MD, Li Y, Zamble DB. Acid-responsive activity of the Helicobacter pylori metalloregulator NikR. Proc Natl Acad Sci U S A 2018; 115:8966-8971. [PMID: 30126985 PMCID: PMC6130374 DOI: 10.1073/pnas.1808393115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori is a human pathogen that infects the stomach, where it experiences variable pH. To survive the acidic gastric conditions, H. pylori produces large quantities of urease, a nickel enzyme that hydrolyzes urea to ammonia, which neutralizes the local environment. One of the regulators of urease expression in H. pylori is HpNikR, a nickel-responsive transcription factor. Here we show that HpNikR also regulates urease expression in response to changes in pH, linking acid adaptation and nickel homeostasis. Upon measuring the cytosolic pH of H. pylori exposed to an external pH of 2, similar to the acidic shock conditions that occur in the human stomach, a significant drop in internal pH was observed. This decrease in internal pH resulted in HpNikR-dependent activation of ureA transcription. Furthermore, analysis of a slate of H. pylori genes encoding other acid adaptation or nickel homeostasis components revealed HpNikR-dependent regulation in response to acid shock. This regulation was consistent with pH-dependent DNA binding to the corresponding promoter sequences observed in vitro with purified HpNikR. These results demonstrate that HpNikR can directly respond to changes in cytosolic pH during acid acclimation and illustrate the exquisitely coordinated regulatory networks that support H. pylori infections in the harsh environment of the human stomach.
Collapse
Affiliation(s)
- Michael D Jones
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Yanjie Li
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Deborah B Zamble
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada;
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
28
|
Helicobacter pylori Biofilm Formation Is Differentially Affected by Common Culture Conditions, and Proteins Play a Central Role in the Biofilm Matrix. Appl Environ Microbiol 2018; 84:AEM.00391-18. [PMID: 29752266 DOI: 10.1128/aem.00391-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
The concept of Helicobacter pylori biofilm formation is relatively new. To help provide a foundation for future biofilm studies, we characterized the biofilm formation ability of a common H. pylori lab strain, G27. The goal of this study was to evaluate biofilm formation by G27 in response to common culture conditions and to explore the biofilm matrix. Our results indicate that while various types of growth media did not dramatically affect biofilm formation, surface selection had a significant effect on the final biofilm mass. Furthermore, enzymatic assays and confocal microscopy revealed that proteins appear to be the primary structural component of the H. pylori extracellular matrix; extracellular DNA (eDNA) and polysaccharides were also present but appear to play a secondary role. Finally, we found that two well-characterized antibiofilm cationic peptides differentially affected early and late-stage biofilms. Together these results provide interesting avenues for future investigations that will seek to understand H. pylori biofilm formation.IMPORTANCE The study of H. pylori biofilm formation is still in its infancy. As such, there is great variability in how biofilm assays are performed across labs. While several groups have begun to investigate factors that influence H. pylori biofilm formation, it is not yet understood how H. pylori biofilm formation may vary based on commonly used conditions. These inconsistencies lead to difficulties in interpretation and comparison between studies. Here, we set out to characterize biofilm formation by a commonly available lab strain, G27. Our findings provide novel insight into optimal biofilm conditions, the biofilm matrix, and possible mechanisms to block or disrupt biofilm formation.
Collapse
|
29
|
Measurement of Internal pH in Helicobacter pylori by Using Green Fluorescent Protein Fluorimetry. J Bacteriol 2018; 200:JB.00178-18. [PMID: 29735759 DOI: 10.1128/jb.00178-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Helicobacter pylori is an organism known to colonize the normal human stomach. Previous studies have shown that the bacterium does this by elevating its periplasmic pH via the hydrolysis of urea. However, the value of the periplasmic pH was calculated indirectly from the proton motive force equation. To measure the periplasmic pH directly in H. pylori, we fused enhanced green fluorescent protein (EGFP) to the predicted twin-arginine signal peptides of HydA and KapA from H. pylori and TorA from Escherichia coli The fusion proteins were expressed in the H. pylori genome under the control of the cagA promoter. Confocal microscopic and cell fractionation/immunoblotting analyses detected TorA-EGFP in the periplasm and KapA-EGFP in both the periplasm and cytoplasm, while the mature form of HydA-EGFP was seen at low levels in the periplasm, with major cytoplasmic retention of the precursor form. With H. pylori expressing TorA-EGFP, we established a system to directly measure periplasmic pH based on the pH-sensitive fluorimetry of EGFP. These measurements demonstrated that the addition of 5 mM urea has little effect on the periplasmic pH at a medium pH higher than pH 6.5 but rapidly increases the periplasmic pH to pH 6.1 at an acidic medium pH (pH 5.0), corresponding to the opening of the proton-gated channel, UreI, and confirming the basis of gastric colonization. Measurements of the periplasmic pH in an HP0244 (FlgS)-deficient mutant of H. pylori expressing TorA-EGFP revealed a significant loss of the urea-dependent increase in the periplasmic pH at an acidic medium pH, providing additional evidence that FlgS is responsible for recruitment of urease to the inner membrane in association with UreI.IMPORTANCEHelicobacter pylori has been identified as the major cause of chronic superficial gastritis and peptic ulcer disease. In addition, persistent infection with H. pylori, which, if untreated, lasts for the lifetime of an infected individual, predisposes one to gastric malignancies, such as adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. A unique feature of the neutralophilic bacterium H. pylori is its ability to survive in the extremely acidic environment of the stomach through its acid acclimation mechanism. The presented results on measurements of periplasmic pH in H. pylori based on fluorimetry of fully active green fluorescent protein fusion proteins exported with the twin-arginine translocase system provide a reliable and rapid tool for the investigation of acid acclimation in H. pylori.
Collapse
|
30
|
Marcus EA, Sachs G, Scott DR. Acid-regulated gene expression of Helicobacter pylori: Insight into acid protection and gastric colonization. Helicobacter 2018; 23:e12490. [PMID: 29696729 PMCID: PMC5980792 DOI: 10.1111/hel.12490] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The pathogen Helicobacter pylori encounters many stressors as it transits to and infects the gastric epithelium. Gastric acidity is the predominate stressor encountered by the bacterium during initial infection and establishment of persistent infection. H. pylori initiates a rapid response to acid to maintain intracellular pH and proton motive force appropriate for a neutralophile. However, acid sensing by H. pylori may also serve as a transcriptional trigger to increase the levels of other pathogenic factors needed to subvert host defenses such as acid acclimation, antioxidants, flagellar synthesis and assembly, and CagA secretion. MATERIALS AND METHODS Helicobacter pylori were acid challenged at pH 3.0, 4.5, 6.0 vs nonacidic pH for 4 hours in the presence of urea, followed by RNA-seq analysis and qPCR. Cytoplasmic pH was monitored under the same conditions. RESULTS About 250 genes were induced, and an equal number were repressed at acidic pHs. Genes encoding for antioxidant proteins, flagellar structural proteins, particularly class 2 genes, T4SS/Cag-PAI, Fo F1 -ATPase, and proteins involved in acid acclimation were highly expressed at acidic pH. Cytoplasmic pH decreased from 7.8 at pHout of 8.0 to 6.0 at pHout of 3.0. CONCLUSIONS These results suggest that increasing extracellular or intracellular acidity or both are detected by the bacterium and serve as a signal to initiate increased production of protective and pathogenic factors needed to counter host defenses for persistent infection. These changes are dependent on degree of acidity and time of acid exposure, triggering a coordinated response to the environment required for colonization.
Collapse
Affiliation(s)
- Elizabeth A. Marcus
- Department of Pediatrics, David Geffen School of Medicine at UCLA,VA GLAHS, Los Angeles, CA
| | - George Sachs
- Department Medicine, David Geffen School of Medicine at UCLA,Department Physiology, David Geffen School of Medicine at UCLA,VA GLAHS, Los Angeles, CA
| | - David R. Scott
- Department Physiology, David Geffen School of Medicine at UCLA,VA GLAHS, Los Angeles, CA,Corresponding author: David R. Scott, Department of Physiology, DGSOM at UCLA, VA GLAHS, Bldg 113, Rm 324, 11301 Wilshire Blvd, Los Angeles, CA 90073, , phone: 310-478-3711 x42046; Fax: 310-312-9478
| |
Collapse
|
31
|
Guerrero-Castro J, Lozano L, Sohlenkamp C. Dissecting the Acid Stress Response of Rhizobium tropici CIAT 899. Front Microbiol 2018; 9:846. [PMID: 29760688 PMCID: PMC5936775 DOI: 10.3389/fmicb.2018.00846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/12/2018] [Indexed: 11/27/2022] Open
Abstract
Rhizobium tropici CIAT899 is a nodule-forming α-proteobacterium displaying intrinsic resistance to several abiotic stress conditions such as low pH and high temperatures, which are common in tropical environments. It is a good competitor for Phaseolus vulgaris (common bean) nodule occupancy at low pH values, however little is known about the genetic and physiological basis of the tolerance to acidic conditions. To identify genes in R. tropici involved in pH stress response we combined two different approaches: (1) A Tn5 mutant library of R. tropici CIAT899 was screened and 26 acid-sensitive mutants were identified. For 17 of these mutants, the transposon insertion sites could be identified. (2) We also studied the transcriptomes of cells grown under different pH conditions using RNA-Seq. RNA was extracted from cells grown for several generations in minimal medium at 6.8 or 4.5 (adapted cells). In addition, we acid-shocked cells pre-grown at pH 6.8 for 45 min at pH 4.5. Of the 6,289 protein-coding genes annotated in the genome of R. tropici CIAT 899, 383 were differentially expressed under acidic conditions (pH 4.5) vs. control condition (pH 6.8). Three hundred and fifty one genes were induced and 32 genes were repressed; only 11 genes were induced upon acid shock. The acid stress response of R. tropici CIAT899 is versatile: we found genes encoding response regulators and membrane transporters, enzymes involved in amino acid and carbohydrate metabolism and proton extrusion, in addition to several hypothetical genes. Our findings enhance our understanding of the core genes that are important during the acid stress response in R. tropici.
Collapse
Affiliation(s)
- Julio Guerrero-Castro
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Christian Sohlenkamp
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
32
|
High-Salt Conditions Alter Transcription of Helicobacter pylori Genes Encoding Outer Membrane Proteins. Infect Immun 2018; 86:IAI.00626-17. [PMID: 29229727 DOI: 10.1128/iai.00626-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection and high dietary salt intake are risk factors for the development of gastric adenocarcinoma. One possible mechanism by which a high-salt diet could influence gastric cancer risk is by modulating H. pylori gene expression. In this study, we utilized transcriptome sequencing (RNA-seq) methodology to compare the transcriptional profiles of H. pylori grown in media containing different concentrations of sodium chloride. We identified 118 differentially expressed genes (65 upregulated and 53 downregulated in response to high-salt conditions), including multiple members of 14 operons. Twenty-nine of the differentially expressed genes encode proteins previously shown to undergo salt-responsive changes in abundance, based on proteomic analyses. Real-time reverse transcription (RT)-PCR analyses validated differential expression of multiple genes encoding outer membrane proteins, including adhesins (SabA and HopQ) and proteins involved in iron acquisition (FecA2 and FecA3). Transcript levels of sabA, hopA, and hopQ are increased under high-salt conditions, whereas transcript levels of fecA2 and fecA3 are decreased under high-salt conditions. Transcription of sabA, hopA, hopQ, and fecA3 is derepressed in an arsS mutant strain, but salt-responsive transcription of these genes is not mediated by the ArsRS two-component system, and the CrdRS and FlgRS two-component systems do not have any detectable effects on transcription of these genes. In summary, these data provide a comprehensive view of H. pylori transcriptional alterations that occur in response to high-salt environmental conditions.
Collapse
|
33
|
Abstract
Antibiotics have saved millions of lives over the past decades. However, the accumulation of so many antibiotic resistance genes by some clinically relevant pathogens has begun to lead to untreatable infections worldwide. The current antibiotic resistance crisis will require greater efforts by governments and the scientific community to increase the research and development of new antibacterial drugs with new mechanisms of action. A major challenge is the identification of novel microbial targets, essential for in vivo growth or pathogenicity, whose inhibitors can overcome the currently circulating resistome of human pathogens. In this article, we focus on the potential high value of bacterial transcriptional regulators as targets for the development of new antibiotics, discussing in depth the molecular role of these regulatory proteins in bacterial physiology and pathogenesis. Recent advances in the search for novel compounds that inhibit the biological activity of relevant transcriptional regulators in pathogenic bacteria are reviewed.
Collapse
|
34
|
In Vivo Analysis of the Viable Microbiota and Helicobacter pylori Transcriptome in Gastric Infection and Early Stages of Carcinogenesis. Infect Immun 2017; 85:IAI.00031-17. [PMID: 28694295 DOI: 10.1128/iai.00031-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Emerging evidence shows that the human microbiota plays a larger role in disease progression and health than previously anticipated. Helicobacter pylori, the causative agent of gastric cancer and duodenal and gastric ulcers, was early associated with gastric disease, but it has also been proposed that the accompanying microbiota in Helicobacter pylori-infected individuals might affect disease progression and gastric cancer development. In this study, the composition of the transcriptionally active microbial community and H. pylori gene expression were determined using metatranscriptomic RNA sequencing of stomach biopsy specimens from individuals with different H. pylori infection statuses and premalignant tissue changes. The results show that H. pylori completely dominates the microbiota not only in infected individuals but also in most individuals classified as H. pylori uninfected using conventional methods. Furthermore, H. pylori abundance is positively correlated with the presence of Campylobacter, Deinococcus, and Sulfurospirillum Finally, we quantified the expression of a large number of Helicobacter pylori genes and found high expression of genes involved in pH regulation and nickel transport. Our study is the first to dissect the viable microbiota of the human stomach by metatranscriptomic analysis, and it shows that metatranscriptomic analysis of the gastric microbiota is feasible and can provide new insights into how bacteria respond in vivo to variations in the stomach microenvironment and at different stages of disease progression.
Collapse
|
35
|
The Human Stomach in Health and Disease: Infection Strategies by Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:1-26. [PMID: 28124147 DOI: 10.1007/978-3-319-50520-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a bacterial pathogen which commonly colonizes the human gastric mucosa from early childhood and persists throughout life. In the vast majority of cases, the infection is asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer, however, and these outcomes occur in 10-15% of those infected. Gastric adenocarcinoma is the third most common cause of cancer-associated death, and peptic ulcer disease is a significant cause of morbidity. Disease risk is related to the interplay of numerous bacterial host and environmental factors, many of which influence chronic inflammation and damage to the gastric mucosa. This chapter summarizes what is known about health and disease in H. pylori infection, and highlights the need for additional research in this area.
Collapse
|
36
|
Acio-Pizzarello CR, Acio AA, Choi EJ, Bond K, Kim J, Kenan AC, Chen J, Forsyth MH. Determinants of the regulation of Helicobacter pylori adhesins include repeat sequences in both promoter and coding regions as well as the two-component system ArsRS. J Med Microbiol 2017; 66:798-807. [PMID: 28598306 DOI: 10.1099/jmm.0.000491] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We investigated the transcription of adhesin-encoding genes sabA, hopZ and labA in Helicobacter pylori strain J99. Each possesses a repeating homopolymeric nucleotide tract within their promoter regions, and sabA and hopZ possess repeats within their 5' coding regions. METHODOLOGY We altered the repeat lengths associated with the adhesin genes and quantified mRNA levels by real-time quantitative PCR. Using adherence to AGS cells and IL-8 assays, we examined the effects of altered transcript levels. We assessed the role of ArsRS in transcription using an arsS null mutant and by examining ArsR binding to promoter regions via electrophoretic mobility shift assays. RESULTS Extensions or truncations of promoter region repeats in hopZ and labA increased transcript levels, mirroring results shown by our lab and others for mutations in the sabA promoter. Altered lengths of the poly-cytosine thymine tract within the 5' coding region of sabA demonstrated that switching from phase-off to phase-on significantly increased mRNA levels. However, mutations in the poly-thymine tract of sabA, which increased mRNA levels, do not behave synergistically with phase-on mutations. Phase-on mutations of sabA resulted in increased H. pylori adherence to AGS cells, but only a modest effect on IL-8. hopZ and labA, and sabA paralogue sabB, transcript levels were increased in an arsS mutant and ArsR bound the promoter regions for each of these genes in vitro. CONCLUSION This work highlights the complex nature of adhesin regulation, its impact on H. pylori attachment and the pervasive role of ArsRS in adhesin expression. Such regulation may help facilitate the decades-long persistence of infection.
Collapse
Affiliation(s)
- Catherine R Acio-Pizzarello
- Department of Biology, College of William and Mary, Williamsburg, VA, USA.,Present address: University of Rochester School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Abigail A Acio
- Department of Biology, College of William and Mary, Williamsburg, VA, USA.,Present address: Department of Forensic Science, Pennsylvania State University, State College, PA, USA
| | - Edward J Choi
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Kimberly Bond
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - June Kim
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Anna C Kenan
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Jiajia Chen
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| | - Mark H Forsyth
- Department of Biology, College of William and Mary, Williamsburg, VA, USA
| |
Collapse
|
37
|
De la Cruz MA, Ares MA, von Bargen K, Panunzi LG, Martínez-Cruz J, Valdez-Salazar HA, Jiménez-Galicia C, Torres J. Gene Expression Profiling of Transcription Factors of Helicobacter pylori under Different Environmental Conditions. Front Microbiol 2017; 8:615. [PMID: 28443084 PMCID: PMC5385360 DOI: 10.3389/fmicb.2017.00615] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and causes peptic ulcers and gastric carcinoma. H. pylori strain 26695 has a small genome (1.67 Mb), which codes for few known transcriptional regulators that control bacterial metabolism and virulence. We analyzed by qRT-PCR the expression of 16 transcriptional regulators in H. pylori 26695, including the three sigma factors under different environmental conditions. When bacteria were exposed to acidic pH, urea, nickel, or iron, the sigma factors were differentially expressed with a particularly strong induction of fliA. The regulatory genes hrcA, hup, and crdR were highly induced in the presence of urea, nickel, and iron. In terms of biofilm formation fliA, flgR, hp1021, fur, nikR, and crdR were induced in sessile bacteria. Transcriptional expression levels of rpoD, flgR, hspR, hp1043, and cheY were increased in contact with AGS epithelial cells. Kanamycin, chloramphenicol, and tetracycline increased or decreased expression of regulatory genes, showing that these antibiotics affect the transcription of H. pylori. Our data indicate that environmental cues which may be present in the human stomach modulate H. pylori transcription.
Collapse
Affiliation(s)
- Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | | | - Leonardo G Panunzi
- CNRS UMR7280, Inserm, U1104, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2Marseille, France
| | - Jessica Martínez-Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Hilda A Valdez-Salazar
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - César Jiménez-Galicia
- Laboratorio Clínico, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| |
Collapse
|
38
|
Diversification of the AlpB Outer Membrane Protein of Helicobacter pylori Affects Biofilm Formation and Cellular Adhesion. J Bacteriol 2017; 199:JB.00729-16. [PMID: 28031283 PMCID: PMC5331671 DOI: 10.1128/jb.00729-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is one of the most common causes of bacterial infection in humans, and it forms biofilms on human gastric mucosal epithelium as well as on in vitro abiotic surfaces. Bacterial biofilm is critical not only for environmental survival but also for successful infection. We previously demonstrated that strain TK1402, which was isolated from a Japanese patient with duodenal and gastric ulcers, has high biofilm-forming ability in vitro relative to other strains. In addition, we showed that outer membrane vesicles (OMV) play an important role in biofilm formation. The aim of this study was to analyze which protein(s) in the OMV contributes to biofilm formation in TK1402. We obtained a spontaneous mutant strain derived from TK1402 lacking biofilm-forming ability. The protein profiles of the OMV were compared between this mutant strain and the wild type, and it was found that AlpB, an outer membrane protein in the OMV of the mutant strain, was markedly decreased compared to that of the wild type. Restoration of TK1402 alpB to the mutant strain fully recovered the ability to form biofilm. However, restoration with alpB from other strains demonstrated incomplete recovery of biofilm-forming ability. We therefore inferred that the variable region of AlpB (amino acid positions 121 to 146) was involved in TK1402 biofilm formation. In addition, diversification of the AlpB sequence was shown to affect the ability to adhere to AGS cells. These results demonstrate a new insight into the molecular mechanisms of host colonization by H. pylori. IMPORTANCE Bacterial biofilm is critical not only for environmental survival but also for successful infection. The mechanism of Helicobacter pylori adherence to host cells mediated by cell surface adhesins has been the focus of many studies, but little is known regarding factors involved in H. pylori biofilm formation. Our study demonstrated that AlpB plays an important role in biofilm formation and that this property depends upon the specific sequence of alpB. This in turn was shown to be important in the ability to adhere to gastric cells. We anticipate that these results will provide new insight into the molecular mechanisms of H. pylori colonization.
Collapse
|
39
|
Insight into the essential role of the Helicobacter pylori HP1043 orphan response regulator: genome-wide identification and characterization of the DNA-binding sites. Sci Rep 2017; 7:41063. [PMID: 28112213 PMCID: PMC5253667 DOI: 10.1038/srep41063] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022] Open
Abstract
Many bacterial regulatory genes appear to be dispensable, as they can be deleted from the genome without loss of bacterial functionalities. In Helicobacter pylori, the hp1043 gene, also known as hsrA, is one of the transcriptional regulator that is essential for cell viability. This gene could not be deleted, nor the amount of protein modulated, supporting the hypothesis that HP1043 could be involved in the regulation of crucial cellular processes. Even though detailed structural data are available for the HP1043 protein, its targets are still ill-defined. Using Chromatin Immunoprecipitation-sequencing (ChIP-seq), one of the most powerful approaches to characterize protein-DNA interactions in vivo, we were able to identify genome-wide several new HP1043 binding sites. Moreover, in vitro DNA binding assays enabled precise mapping of the HP1043 binding sites on the new targets, revealing the presence of a conserved nucleotide sequence motif. Intriguingly, a significant fraction of the newly identified binding sites overlaps promoter regions controlling the expression of genes involved in translation. Accordingly, when protein translation was blocked, a significant induction of almost all HP1043 target genes was detected. These observations prompted us to propose HP1043 as a key regulator in H. pylori, likely involved in sensing and in coordinating the response to environmental conditions that provoke an arrest of protein synthesis. The essential role of HP1043 in coordinating central cellular processes is discussed.
Collapse
|
40
|
Servetas SL, Carpenter BM, Haley KP, Gilbreath JJ, Gaddy JA, Merrell DS. Characterization of Key Helicobacter pylori Regulators Identifies a Role for ArsRS in Biofilm Formation. J Bacteriol 2016; 198:2536-48. [PMID: 27432830 PMCID: PMC4999924 DOI: 10.1128/jb.00324-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Helicobacter pylori must be able to rapidly respond to fluctuating conditions within the stomach. Despite this need for constant adaptation, H. pylori encodes few regulatory proteins. Of the identified regulators, the ferric uptake regulator (Fur), the nickel response regulator (NikR), and the two-component acid response system (ArsRS) are each paramount to the success of this pathogen. While numerous studies have individually examined these regulatory proteins, little is known about their combined effect. Therefore, we constructed a series of isogenic mutant strains that contained all possible single, double, and triple regulatory mutations in Fur, NikR, and ArsS. A growth curve analysis revealed minor variation in growth kinetics across the strains; these were most pronounced in the triple mutant and in strains lacking ArsS. Visual analysis showed that strains lacking ArsS formed large aggregates and a biofilm-like matrix at the air-liquid interface. Biofilm quantification using crystal violet assays and visualization via scanning electron microscopy (SEM) showed that all strains lacking ArsS or containing a nonphosphorylatable form of ArsR (ArsR-D52N mutant) formed significantly more biofilm than the wild-type strain. Molecular characterization of biofilm formation showed that strains containing mutations in the ArsRS pathway displayed increased levels of cell aggregation and adherence, both of which are key to biofilm development. Furthermore, SEM analysis revealed prevalent coccoid cells and extracellular matrix formation in the ArsR-D52N, ΔnikR ΔarsS, and Δfur ΔnikR ΔarsS mutant strains, suggesting that these strains may have an exacerbated stress response that further contributes to biofilm formation. Thus, H. pylori ArsRS has a previously unrecognized role in biofilm formation. IMPORTANCE Despite a paucity of regulatory proteins, adaptation is key to the survival of H. pylori within the stomach. While prior studies have focused on individual regulatory proteins, such as Fur, NikR, and ArsRS, few studies have examined the combined effect of these factors. Analysis of isogenic mutant strains that contained all possible single, double, and triple regulatory mutations in Fur, NikR, and ArsS revealed a previously unrecognized role for the acid-responsive two-component system ArsRS in biofilm formation.
Collapse
Affiliation(s)
- Stephanie L Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Beth M Carpenter
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kathryn P Haley
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy J Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jennifer A Gaddy
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA Tennessee Valley Health Care Systems, U.S. Department of Veterans Affairs, Nashville, Tennessee, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Kao CY, Sheu BS, Wu JJ. Helicobacter pylori infection: An overview of bacterial virulence factors and pathogenesis. Biomed J 2016; 39:14-23. [PMID: 27105595 PMCID: PMC6138426 DOI: 10.1016/j.bj.2015.06.002] [Citation(s) in RCA: 289] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/08/2015] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori pathogenesis and disease outcomes are mediated by a complex interplay between bacterial virulence factors, host, and environmental factors. After H. pylori enters the host stomach, four steps are critical for bacteria to establish successful colonization, persistent infection, and disease pathogenesis: (1) Survival in the acidic stomach; (2) movement toward epithelium cells by flagella-mediated motility; (3) attachment to host cells by adhesins/receptors interaction; (4) causing tissue damage by toxin release. Over the past 20 years, the understanding of H. pylori pathogenesis has been improved by studies focusing on the host and bacterial factors through epidemiology researches and molecular mechanism investigations. These include studies identifying the roles of novel virulence factors and their association with different disease outcomes, especially the bacterial adhesins, cag pathogenicity island, and vacuolating cytotoxin. Recently, the development of large-scale screening methods, including proteomic, and transcriptomic tools, has been used to determine the complex gene regulatory networks in H. pylori. In addition, a more available complete genomic database of H. pylori strains isolated from patients with different gastrointestinal diseases worldwide is helpful to characterize this bacterium. This review highlights the key findings of H. pylori virulence factors reported over the past 20 years.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bor-Shyang Sheu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan; Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
42
|
|
43
|
Marcus EA, Sachs G, Wen Y, Scott DR. Phosphorylation-dependent and Phosphorylation-independent Regulation of Helicobacter pylori Acid Acclimation by the ArsRS Two-component System. Helicobacter 2016; 21:69-81. [PMID: 25997502 PMCID: PMC4655181 DOI: 10.1111/hel.12235] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The pH-sensitive Helicobacter pylori ArsRS two-component system (TCS) aids survival of this neutralophile in the gastric environment by directly sensing and responding to environmental acidity. ArsS is required for acid-induced trafficking of urease and its accessory proteins to the inner membrane, allowing rapid, urea-dependent cytoplasmic and periplasmic buffering. Expression of ArsR, but not its phosphorylation, is essential for bacterial viability. The aim of this study was to characterize the roles of ArsS and ArsR in the response of H. pylori to acid. MATERIALS AND METHODS Wild-type H. pylori and an arsR(D52N) phosphorylation-deficient strain were incubated at acidic or neutral pH. Gene and protein expression, survival, membrane trafficking of urease proteins, urease activity, and internal pH were studied. RESULTS Phosphorylation of ArsR is not required for acid survival. ArsS-driven trafficking of urease proteins to the membrane in acid, required for recovery of internal pH, is independent of ArsR phosphorylation. ArsR phosphorylation increases expression of the urease gene cluster, and the loss of negative feedback in a phosphorylation-deficient mutant leads to an increase in total urease activity. CONCLUSIONS ArsRS has a dual function in acid acclimation: regulation of urease trafficking to UreI at the cytoplasmic membrane, driven by ArsS, and regulation of urease gene cluster expression, driven by phosphorylation of ArsR. ArsS and ArsR work through phosphorylation-dependent and phosphorylation-independent regulatory mechanisms to impact acid acclimation and allow gastric colonization. Furthering understanding of the intricacies of acid acclimation will impact the future development of targeted, nonantibiotic treatment regimens.
Collapse
Affiliation(s)
- Elizabeth A. Marcus
- Department of Pediatrics, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| | - George Sachs
- Department of Physiology, DGSOM at UCLA, Los Angeles, CA
- Department of Medicine, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| | - Yi Wen
- Department of Physiology, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| | - David R. Scott
- Department of Physiology, DGSOM at UCLA, Los Angeles, CA
- VA GLAHS, Los Angeles, CA
| |
Collapse
|
44
|
Aconitase Functions as a Pleiotropic Posttranscriptional Regulator in Helicobacter pylori. J Bacteriol 2015; 197:3076-86. [PMID: 26170414 DOI: 10.1128/jb.00529-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/08/2015] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Posttranscriptional regulation in bacteria has increasingly become recognized as playing a major role in response to environmental stimuli. Aconitase is a bifunctional protein that not only acts enzymatically but also can be a posttranscriptional regulator. To investigate protein expression regulated by Helicobacter pylori AcnB in response to oxidative stress, a global proteomics study was conducted wherein the ΔacnB strain was compared to the parent strain when both strains were O2 stressed. Many proteins, including some involved in urease activity, in combating oxidative stress, and in motility, were expressed at a significantly lower level in the ΔacnB strain. A bioinformatics prediction tool was used to identify putative targets for aconitase-mediated regulation, and electrophoretic mobility shift assays demonstrated that apo-AcnB is able to bind to RNA transcripts of hpn (encoding a nickel-sequestering protein), ahpC (encoding alkyl hydroperoxide reductase), and flgR (encoding flagellum response regulator). Compared to the wild type (WT), the ΔacnB strain had decreased activities of the nickel-containing enzymes urease and hydrogenase, and this could be correlated with lower total nickel levels within ΔacnB cells. Binding of apo-AcnB to the hpn 5' untranslated region (UTR) may inhibit the expression of Hpn. In agreement with the finding that AcnB regulates the expression of antioxidant proteins such as AhpC, ΔacnB cells displayed oxidative-stress-sensitive phenotypes. The ΔacnB strain has a lesser motility ability than the WT strain, which can likely be explained by the functions of AcnB on the FlgRS-RpoN-FlgE regulatory cascade. Collectively, our results suggest a global role for aconitase as a posttranscriptional regulator in this gastric pathogen. IMPORTANCE Bacterial survival depends on the ability of the cell to sense and respond to a variety of environmental changes. For Helicobacter pylori, responding to environmental stimuli within the gastric niche is essential for persistence and host colonization. However, there is much to be learned about the regulatory mechanisms that H. pylori employs to orchestrate its response to different stimuli. In this study, we explore the role of aconitase, a bifunctional protein that has been found to act as a posttranscriptional regulator in several other bacteria. Our results shed light on the magnitude of aconitase-mediated regulation in H. pylori, and we propose that aconitase acts as a global regulator of key genes involved in virulence.
Collapse
|
45
|
Carpenter BM, West AL, Gancz H, Servetas SL, Pich OQ, Gilbreath JJ, Hallinger DR, Forsyth MH, Merrell DS, Michel SLJ. Crosstalk between the HpArsRS two-component system and HpNikR is necessary for maximal activation of urease transcription. Front Microbiol 2015; 6:558. [PMID: 26124751 PMCID: PMC4464171 DOI: 10.3389/fmicb.2015.00558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/20/2015] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori NikR (HpNikR) is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA) previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, ΔnikR and ΔarsS single mutants as well as a ΔarsS/nikR double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct “cross-talk” between HpArsRS and HpNikR at neutral pH has been demonstrated.
Collapse
Affiliation(s)
- Beth M Carpenter
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Abby L West
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, USA
| | - Hanan Gancz
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Stephanie L Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Oscar Q Pich
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Jeremy J Gilbreath
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Daniel R Hallinger
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - Mark H Forsyth
- Department of Biology, The College of William and Mary Williamsburg, VA, USA
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Maryland, USA
| |
Collapse
|
46
|
Repetitive sequence variations in the promoter region of the adhesin-encoding gene sabA of Helicobacter pylori affect transcription. J Bacteriol 2014; 196:3421-9. [PMID: 25022855 DOI: 10.1128/jb.01956-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The pathogenesis of diseases elicited by the gastric pathogen Helicobacter pylori is partially determined by the effectiveness of adaptation to the variably acidic environment of the host stomach. Adaptation includes appropriate adherence to the gastric epithelium via outer membrane protein adhesins such as SabA. The expression of sabA is subject to regulation via phase variation in the promoter and coding regions as well as repression by the two-component system ArsRS. In this study, we investigated the role of a homopolymeric thymine [poly(T)] tract -50 to -33 relative to the sabA transcriptional start site in H. pylori strain J99. We quantified sabA expression in H. pylori J99 by quantitative reverse transcription-PCR (RT-PCR), demonstrating significant changes in sabA expression associated with experimental manipulations of poly(T) tract length. Mimicking the length increase of this tract by adding adenines instead of thymines had similar effects, while the addition of other nucleotides failed to affect sabA expression in the same manner. We hypothesize that modification of the poly(T) tract changes DNA topology, affecting regulatory protein interaction(s) or RNA polymerase binding efficiency. Additionally, we characterized the interaction between the sabA promoter region and ArsR, a response regulator affecting sabA expression. Using recombinant ArsR in electrophoretic mobility shift assays (EMSA), we localized binding to a sequence with partial dyad symmetry -20 and +38 relative to the sabA +1 site. The control of sabA expression by both ArsRS and phase variation at two distinct repeat regions suggests the control of sabA expression is both complex and vital to H. pylori infection.
Collapse
|
47
|
Lund P, Tramonti A, De Biase D. Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 2014; 38:1091-125. [PMID: 24898062 DOI: 10.1111/1574-6976.12076] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 12/31/2022] Open
Abstract
As part of their life cycle, neutralophilic bacteria are often exposed to varying environmental stresses, among which fluctuations in pH are the most frequent. In particular, acid environments can be encountered in many situations from fermented food to the gastric compartment of the animal host. Herein, we review the current knowledge of the molecular mechanisms adopted by a range of Gram-positive and Gram-negative bacteria, mostly those affecting human health, for coping with acid stress. Because organic and inorganic acids have deleterious effects on the activity of the biological macromolecules to the point of significantly reducing growth and even threatening their viability, it is not unexpected that neutralophilic bacteria have evolved a number of different protective mechanisms, which provide them with an advantage in otherwise life-threatening conditions. The overall logic of these is to protect the cell from the deleterious effects of a harmful level of protons. Among the most favoured mechanisms are the pumping out of protons, production of ammonia and proton-consuming decarboxylation reactions, as well as modifications of the lipid content in the membrane. Several examples are provided to describe mechanisms adopted to sense the external acidic pH. Particular attention is paid to Escherichia coli extreme acid resistance mechanisms, the activity of which ensure survival and may be directly linked to virulence.
Collapse
Affiliation(s)
- Peter Lund
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
48
|
Abstract
The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4 (+). This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) the exit of protonated ammonium outward via the UreI permease, which was shown to facilitate diffusion of both urea and ammonium, and/or (ii) the assimilation of this ammonium, which is supported by evidence that H. pylori assimilates urea nitrogen into its amino acid pools. We investigated the second hypothesis by constructing strains with altered expression of the ammonium-assimilating enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) and the ammonium-evolving periplasmic enzymes glutaminase (Ggt) and asparaginase (AsnB). H. pylori strains expressing elevated levels of either GS or GDH are more acid tolerant than the wild type, exhibit enhanced ammonium production, and are able to alkalize the medium faster than the wild type. Strains lacking the genes for either Ggt or AsnB are acid sensitive, have 8-fold-lower urea-dependent ammonium production, and are more acid sensitive than the parent. Additionally, we found that purified H. pylori GS produces glutamine in the presence of Mg(2+) at a rate similar to that of unadenylated Escherichia coli GS. These data reveal that all four enzymes contribute to whole-cell acid resistance in H. pylori and are likely important for assimilation and/or efflux of urea-derived ammonium.
Collapse
|
49
|
Vannini A, Roncarati D, Spinsanti M, Scarlato V, Danielli A. In depth analysis of the Helicobacter pylori cag pathogenicity island transcriptional responses. PLoS One 2014; 9:e98416. [PMID: 24892739 PMCID: PMC4043881 DOI: 10.1371/journal.pone.0098416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/01/2014] [Indexed: 01/15/2023] Open
Abstract
The severity of symptoms elicited by the widespread human pathogen Helicobacter pylori is strongly influenced by the genetic diversity of the infecting strain. Among the most important pathogen factors that carry an increased risk for gastric cancer are specific genotypes of the cag pathogenicity island (cag-PAI), encoding a type IV secretion system (T4SS) responsible for the translocation of the CagA effector oncoprotein. To date, little is known about the regulatory events important for the expression of a functional cag-T4SS. Here we demonstrate that the cag-PAI cistrons are subjected to a complex network of direct and indirect transcriptional regulations. We show that promoters of cag operons encoding structural T4SS components display homogeneous transcript levels, while promoters of cag operons encoding accessory factors vary considerably in their basal transcription levels and responses. Most cag promoters are transcriptionally responsive to growth-phase, pH and other stress-factors, although in many cases in a pleiotropic fashion. Interestingly, transcription from the Pcagζ promoter controlling the expression of transglycolase and T4SS stabilizing factors, is triggered by co-culture with a gastric cell line, providing an explanation for the increased formation of the secretion system observed upon bacterial contact with host cells. Finally, we demonstrate that the highly transcribed cagA oncogene is repressed by iron limitation through a direct apo-Fur regulation mechanism. Together the results shed light on regulatory aspects of the cag-PAI, which may be involved in relevant molecular and etiological aspects of H. pylori pathogenesis.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Marco Spinsanti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- * E-mail: (VS); (AD)
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- * E-mail: (VS); (AD)
| |
Collapse
|
50
|
Häuser R, Ceol A, Rajagopala SV, Mosca R, Siszler G, Wermke N, Sikorski P, Schwarz F, Schick M, Wuchty S, Aloy P, Uetz P. A second-generation protein-protein interaction network of Helicobacter pylori. Mol Cell Proteomics 2014; 13:1318-29. [PMID: 24627523 DOI: 10.1074/mcp.o113.033571] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Helicobacter pylori infections cause gastric ulcers and play a major role in the development of gastric cancer. In 2001, the first protein interactome was published for this species, revealing over 1500 binary protein interactions resulting from 261 yeast two-hybrid screens. Here we roughly double the number of previously published interactions using an ORFeome-based, proteome-wide yeast two-hybrid screening strategy. We identified a total of 1515 protein-protein interactions, of which 1461 are new. The integration of all the interactions reported in H. pylori results in 3004 unique interactions that connect about 70% of its proteome. Excluding interactions of promiscuous proteins we derived from our new data a core network consisting of 908 interactions. We compared our data set to several other bacterial interactomes and experimentally benchmarked the conservation of interactions using 365 protein pairs (interologs) of E. coli of which one third turned out to be conserved in both species.
Collapse
Affiliation(s)
- Roman Häuser
- German Cancer Research Center (Deutsches Krebsforschungszentrum), Technologiepark 3, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|