1
|
Bubnov DM, Khozov AA, Vybornaya TV, Stepanova AA, Molev SV, Melkina OE, Badun GA, Chernysheva MG, Skob IA, Netrusov AI, Sineoky SP. Multiple routes for non-physiological l-threonine uptake in Escherichia coli K-12. Front Microbiol 2025; 16:1579813. [PMID: 40248429 PMCID: PMC12003319 DOI: 10.3389/fmicb.2025.1579813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/18/2025] [Indexed: 04/19/2025] Open
Abstract
In this study, we identified eight multicopy suppressors (yhjE, sdaC, ydgI, alaE, ychE, yqeG, proP, and yjeM) and three distinct classes of chromosomal mutations (lrp, marC, and cycA) capable of complementing the growth defect caused by threonine uptake deficiency in the sstT tdcC livKHMGF brnQ thrP strain. YhjE, SdaC, YdgI, AlaE, mutant MarC, and CycA exhibited measurable threonine-specific uptake activity in the in vitro assay. Phenotypic assays revealed that YhjE and SdaC were the main entry points for threonine in a strain lacking major threonine-specific permeases. A derivative of the threonine-auxotrophic sstT tdcC livKHMGF brnQ thrP mutant, harboring deletions of eight multicopy suppressors, exhibited significantly reduced fitness at subsaturating threonine concentrations and improved fitness at toxic threonine concentrations, indicating a defect in membrane permeability. These results may help guide the effective construction of threonine-producing strains, extend knowledge on the substrate preferences of SdaC, AlaE, and ProP, and provide clues for further studies on the exact substrate range of YhjE, YdgI, YjeM, YchE, MarC, and YqeG whose physiologically relevant functions have not yet been established.
Collapse
Affiliation(s)
| | - Andrey A. Khozov
- National Research Centre “Kurchatov Institute”, Moscow, Russia
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Agnessa A. Stepanova
- National Research Centre “Kurchatov Institute”, Moscow, Russia
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V. Molev
- National Research Centre “Kurchatov Institute”, Moscow, Russia
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga E. Melkina
- National Research Centre “Kurchatov Institute”, Moscow, Russia
| | - Gennadii A. Badun
- Department of Radiochemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Maria G. Chernysheva
- Department of Radiochemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Ilia A. Skob
- Department of Genetics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander I. Netrusov
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | |
Collapse
|
2
|
Hsu JE, Matsen FA, Whitson AJ, Waalkes A, Almazan J, Bourassa LA, Salipante SJ, Long DR. 2023 Neer Award for Basic Science: Genetics of Cutibacterium acnes in revision shoulder arthroplasty: a large-scale bacterial whole-genome sequencing study. J Shoulder Elbow Surg 2024; 33:2400-2410. [PMID: 38604398 PMCID: PMC11663454 DOI: 10.1016/j.jse.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/24/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Cutibacterium acnes is the bacterium most commonly responsible for shoulder periprosthetic joint infection (PJI) and is often cultured from samples obtained at the time of revision for failed shoulder arthroplasty. We sought to determine whether these bacteria originate from the patient or from exogenous sources. We also sought to identify which C. acnes genetic traits were associated with the development of shoulder PJI. METHODS We performed bacterial whole-genome sequencing of C. acnes from a single-institution repository of cultures obtained before or during primary and revision shoulder arthroplasty and correlated the molecular epidemiology and genetic content of strains with clinical features of infection. RESULTS A total of 341 isolates collected over a 4-year period from 88 patients were sequenced. C. acnes cultured from surgical specimens demonstrated significant similarity to the strains colonizing the skin of the same patient (P < .001). Infrequently, there was evidence of strains shared across unrelated patients, suggesting that exogenous sources of C. acnes culture-positivity were uncommon. Phylotypes IB and II were modestly associated with clinical features of PJI, but all phylotypes appeared inherently capable of causing disease. Chronic shoulder PJI was associated with the absence of common C. acnes genes involved in bacterial quorum-sensing (luxS, tqsA). CONCLUSION C. acnes strains cultured from deep intraoperative sources during revision shoulder arthroplasty demonstrate strong genetic similarity to the strains colonizing a patient's skin. Some phylotypes of C. acnes commonly colonizing human skin are modestly more virulent than others, but all phylotypes have a capacity for PJI. C. acnes cultured from cases of PJI commonly demonstrated genetic hallmarks associated with adaptation from acute to chronic phases of infection. This is the strongest evidence to date supporting the role of the patient's own, cutaneous C. acnes strains in the pathogenesis of shoulder arthroplasty infection. Our findings support the importance of further research focused on perioperative decolonization and management of endogenous bacteria that are likely to be introduced into the arthroplasty wound at the time of skin incision.
Collapse
Affiliation(s)
- Jason E Hsu
- Department of Orthopaedics and Sports Medicine, University of Washington Medical Center, Seattle, WA, USA.
| | - Frederick A Matsen
- Department of Orthopaedics and Sports Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Anastasia J Whitson
- Department of Orthopaedics and Sports Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Adam Waalkes
- Department of Laboratory Medicine & Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Jared Almazan
- Department of Laboratory Medicine & Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Lori A Bourassa
- Department of Laboratory Medicine & Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine & Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Dustin R Long
- Department of Anesthesiology & Pain Medicine, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
3
|
Hanson BS, Hailemariam A, Yang Y, Mohamed F, Donati GL, Baker D, Sacchettini J, Cai JJ, Subashchandrabose S. Identification of a copper-responsive small molecule inhibitor of uropathogenic Escherichia coli. J Bacteriol 2024; 206:e0011224. [PMID: 38856220 PMCID: PMC11270900 DOI: 10.1128/jb.00112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024] Open
Abstract
Urinary tract infections (UTIs) are a major global health problem and are caused predominantly by uropathogenic Escherichia coli (UPEC). UTIs are a leading cause of prescription antimicrobial use. Incessant increase in antimicrobial resistance in UPEC and other uropathogens poses a serious threat to the current treatment practices. Copper is an effector of nutritional immunity that impedes the growth of pathogens during infection. We hypothesized that copper would augment the toxicity of select small molecules against bacterial pathogens. We conducted a small molecule screening campaign with a library of 51,098 molecules to detect hits that inhibit a UPEC ΔtolC mutant in a copper-dependent manner. A molecule, denoted as E. coli inhibitor or ECIN, was identified as a copper-responsive inhibitor of wild-type UPEC strains. Our gene expression and metal content analysis results demonstrate that ECIN works in concert with copper to exacerbate Cu toxicity in UPEC. ECIN has a broad spectrum of activity against pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. Subinhibitory levels of ECIN eliminate UPEC biofilm formation. Transcriptome analysis of UPEC treated with ECIN reveals induction of multiple stress response systems. Furthermore, we demonstrate that L-cysteine rescues the growth of UPEC exposed to ECIN. In summary, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC.IMPORTANCEUrinary tract infection (UTI) is a ubiquitous infectious condition affecting millions of people annually. Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of UTI. However, UTIs are becoming increasingly difficult to resolve with antimicrobials due to increased antimicrobial resistance in UPEC and other uropathogens. Here, we report the identification and characterization of a novel copper-responsive small molecule inhibitor of UPEC. In addition to E. coli, this small molecule also inhibits pathogens of medical and veterinary significance including Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Braden S Hanson
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Amanuel Hailemariam
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - Yongjian Yang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Faras Mohamed
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - George L Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Dwight Baker
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - James Sacchettini
- Department of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Silva-Bea S, Romero M, Parga A, Fernández J, Mora A, Otero A. Comparative analysis of multidrug-resistant Klebsiella pneumoniae strains of food and human origin reveals overlapping populations. Int J Food Microbiol 2024; 413:110605. [PMID: 38308879 DOI: 10.1016/j.ijfoodmicro.2024.110605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/08/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Given the increasing incidence of multidrug-resistant (MDR) Klebsiella pneumoniae infections, it is of great interest to investigate the risk of transmission associated with the prevalence of this pathogen. Some studies have described fresh raw poultry meat as a reservoir of MDR K. pneumoniae, including clinically relevant sequence types (ST) and extended-spectrum β-lactamase (ESBL) strains, indicating possible consumer exposure. This study compared 47 MDR strains of K. pneumoniae from poultry meat and human clinical isolates to assess similarities, including analysis of antimicrobial resistance profiles and virulence factors involved in infection. In addition, several biofilm culture methods were evaluated for reproducible assessment of biofilm formation in K. pneumoniae strains. Globally, no association between strain origin and STs, hypermucoviscosity, biofilm formation or serum resistance could be found between isolates of food and clinical origin, nor an associated AMR pattern, suggesting overlapping populations. We found that LB supplemented with glucose in microaerobiosis was the best discrimination condition for biofilm formation in the active attachment biofilm cultivation model. The biofilm formation capacity was strongly dependent on culture conditions, with a strain-specific response, but only a minor increase in biofilm levels was recorded in clinical K. pneumoniae populations. Our results suggest that a similar risk of zoonosis transmission from potentially virulent foodborne strains previously observed in E. coli is also present in this high-priority pathogen. This study further confirms that foodborne isolates of K. pneumoniae pose a risk to consumers and therefore this pathogen should be included in the surveillance of foodborne pathogens with high risk of MDR infections and therapeutic failure.
Collapse
Affiliation(s)
- Sergio Silva-Bea
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Parga
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Fernández
- Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; Grupo de Microbiología Traslacional, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain; Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, Lugo, Spain; Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Juszczuk-Kubiak E. Molecular Aspects of the Functioning of Pathogenic Bacteria Biofilm Based on Quorum Sensing (QS) Signal-Response System and Innovative Non-Antibiotic Strategies for Their Elimination. Int J Mol Sci 2024; 25:2655. [PMID: 38473900 DOI: 10.3390/ijms25052655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
One of the key mechanisms enabling bacterial cells to create biofilms and regulate crucial life functions in a global and highly synchronized way is a bacterial communication system called quorum sensing (QS). QS is a bacterial cell-to-cell communication process that depends on the bacterial population density and is mediated by small signalling molecules called autoinducers (AIs). In bacteria, QS controls the biofilm formation through the global regulation of gene expression involved in the extracellular polymeric matrix (EPS) synthesis, virulence factor production, stress tolerance and metabolic adaptation. Forming biofilm is one of the crucial mechanisms of bacterial antimicrobial resistance (AMR). A common feature of human pathogens is the ability to form biofilm, which poses a serious medical issue due to their high susceptibility to traditional antibiotics. Because QS is associated with virulence and biofilm formation, there is a belief that inhibition of QS activity called quorum quenching (QQ) may provide alternative therapeutic methods for treating microbial infections. This review summarises recent progress in biofilm research, focusing on the mechanisms by which biofilms, especially those formed by pathogenic bacteria, become resistant to antibiotic treatment. Subsequently, a potential alternative approach to QS inhibition highlighting innovative non-antibiotic strategies to control AMR and biofilm formation of pathogenic bacteria has been discussed.
Collapse
Affiliation(s)
- Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
6
|
Vazulka S, Schiavinato M, Tauer C, Wagenknecht M, Cserjan-Puschmann M, Striedner G. RNA-seq reveals multifaceted gene expression response to Fab production in Escherichia coli fed-batch processes with particular focus on ribosome stalling. Microb Cell Fact 2024; 23:14. [PMID: 38183013 PMCID: PMC10768439 DOI: 10.1186/s12934-023-02278-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Escherichia coli is a cost-effective expression system for production of antibody fragments like Fabs. Various yield improvement strategies have been applied, however, Fabs remain challenging to produce. This study aimed to characterize the gene expression response of commonly used E. coli strains BL21(DE3) and HMS174(DE3) to periplasmic Fab expression using RNA sequencing (RNA-seq). Two Fabs, Fabx and FTN2, fused to a post-translational translocation signal sequence, were produced in carbon-limited fed-batch cultivations. RESULTS Production of Fabx impeded cell growth substantially stronger than FTN2 and yields of both Fabs differed considerably. The most noticeable, common changes in Fab-producing cells suggested by our RNA-seq data concern the cell envelope. The Cpx and Psp stress responses, both connected to inner membrane integrity, were activated, presumably by recombinant protein aggregation and impairment of the Sec translocon. The data additionally suggest changes in lipopolysaccharide synthesis, adjustment of membrane permeability, and peptidoglycan maturation and remodeling. Moreover, all Fab-producing strains showed depletion of Mg2+, indicated by activation of the PhoQP two-component signal transduction system during the early stage and sulfur and phosphate starvation during the later stage of the process. Furthermore, our data revealed ribosome stalling, caused by the Fabx amino acid sequence, as a contributor to low Fabx yields. Increased Fabx yields were obtained by a site-specific amino acid exchange replacing the stalling sequence. Contrary to expectations, cell growth was not impacted by presence or removal of the stalling sequence. Considering ribosome rescue is a conserved mechanism, the substantial differences observed in gene expression between BL21(DE3) and HMS174(DE3) in response to ribosome stalling on the recombinant mRNA were surprising. CONCLUSIONS Through characterization of the gene expression response to Fab production under industrially relevant cultivation conditions, we identified potential cell engineering targets. Thereby, we hope to enable rational approaches to improve cell fitness and Fab yields. Furthermore, we highlight ribosome stalling caused by the amino acid sequence of the recombinant protein as a possible challenge during recombinant protein production.
Collapse
Affiliation(s)
- Sophie Vazulka
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Matteo Schiavinato
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Martin Wagenknecht
- Boehringer Ingelheim RCV, GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1120, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. Coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
7
|
Godoy MS, de Miguel SR, Prieto MA. A singular PpaA/AerR-like protein in Rhodospirillum rubrum rules beyond the boundaries of photosynthesis in response to the intracellular redox state. mSystems 2023; 8:e0070223. [PMID: 38054698 PMCID: PMC10734443 DOI: 10.1128/msystems.00702-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Rhodospirillum rubrum vast metabolic versatility places it as a remarkable model bacterium and an excellent biotechnological chassis. The key component of photosynthesis (PS) studied in this work (HP1) stands out among the other members of PpaA/AerR anti-repressor family since it lacks the motif they all share: the cobalamin B-12 binding motif. Despite being reduced and poorly conserved, HP1 stills controls PS as the other members of the family, allowing a fast response to changes in the redox state of the cell. This work also shows that HP1 absence affects genes from relevant biological processes other than PS, including nitrogen fixation and stress response. From a biotechnological perspective, HP1 could be manipulated in approaches where PS is not necessary, such as hydrogen or polyhydroxyalkanoates production, to save energy.
Collapse
Affiliation(s)
- Manuel S. Godoy
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| | - Santiago R. de Miguel
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| |
Collapse
|
8
|
Gladysheva-Azgari M, Sharko F, Evteeva M, Kuvyrchenkova A, Boulygina E, Tsygankova S, Slobodova N, Pustovoit K, Melkina O, Nedoluzhko A, Korzhenkov A, Kudryavtseva A, Utkina A, Manukhov I, Rastorguev S, Zavilgelsky G. ArdA genes from pKM101 and from B. bifidum chromosome have a different range of regulated genes. Heliyon 2023; 9:e22986. [PMID: 38144267 PMCID: PMC10746416 DOI: 10.1016/j.heliyon.2023.e22986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/18/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
The ardA genes are present in a wide variety of conjugative plasmids and play an important role in overcoming the restriction barrier. To date, there is no information on the chromosomal ardA genes. It is still unclear whether they keep their antirestriction activity and why bacterial chromosomes contain these genes. In the present study, we confirmed the antirestriction function of the ardA gene from the Bifidobacterium bifidum chromosome. Transcriptome analysis in Escherichia coli showed that the range of regulated genes varies significantly for ardA from conjugative plasmid pKM101 and from the B. bifidum chromosome. Moreover, if the targets for both ardA genes match, they often show an opposite effect on regulated gene expression. The results obtained indicate two seemingly mutually exclusive conclusions. On the one hand, the pleiotropic effect of ardA genes was shown not only on restriction-modification system, but also on expression of a number of other genes. On the other hand, the range of affected genes varies significally for ardA genes from different sources, which indicates the specificity of ardA to inhibited targets. Author Summary. Conjugative plasmids, bacteriophages, as well as transposons, are capable to transfer various genes, including antibiotic resistance genes, among bacterial cells. However, many of those genes pose a threat to the bacterial cells, therefore bacterial cells have special restriction systems that limit such transfer. Antirestriction genes have previously been described as a part of conjugative plasmids, and bacteriophages and transposons. Those plasmids are able to overcome bacterial cell protection in the presence of antirestriction genes, which inhibit bacterial restriction systems. This work unveils the antirestriction mechanisms, which play an important role in the bacterial life cycle. Here, we clearly show that antirestriction genes, which are able to inhibit cell protection, exist not only in plasmids but also in the bacterial chromosomes themselves. Moreover, antirestrictases have not only an inhibitory function but also participate in the regulation of other bacterial genes. The regulatory function of plasmid antirestriction genes also helps them to overcome the bacterial cell protection against gene transfer, whereas the regulatory function of genomic antirestrictases has no such effect.
Collapse
Affiliation(s)
| | - F.S. Sharko
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - M.A. Evteeva
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | | | - E.S. Boulygina
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - S.V. Tsygankova
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - N.V. Slobodova
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - K.S. Pustovoit
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”, Moscow, Russia, 115454
| | - O.E. Melkina
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”, Moscow, Russia, 115454
| | - A.V. Nedoluzhko
- European University at Saint Petersburg, 191187, Saint-Petersburg, Russia
| | - A.A. Korzhenkov
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
| | - A.A. Kudryavtseva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - A.A. Utkina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - I.V. Manukhov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
- Faculty of Physics, HSE University, 109028, Moscow, Russia
- Laboratory for Microbiology, BIOTECH University, 125080, Moscow, Russia
| | - S.M. Rastorguev
- National Research Center "Kurchatov Institute", 123182, Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovityanova Str. 1, Moscow, 117997, Russia
| | - G.B. Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms of the National Research Center “Kurchatov Institute”, Moscow, Russia, 115454
| |
Collapse
|
9
|
Buchmann D, Schwabe M, Weiss R, Kuss AW, Schaufler K, Schlüter R, Rödiger S, Guenther S, Schultze N. Natural phenolic compounds as biofilm inhibitors of multidrug-resistant Escherichia coli - the role of similar biological processes despite structural diversity. Front Microbiol 2023; 14:1232039. [PMID: 37731930 PMCID: PMC10507321 DOI: 10.3389/fmicb.2023.1232039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 09/22/2023] Open
Abstract
Multidrug-resistant gram-negative pathogens such as Escherichia coli have become increasingly difficult to treat and therefore alternative treatment options are needed. Targeting virulence factors like biofilm formation could be one such option. Inhibition of biofilm-related structures like curli and cellulose formation in E. coli has been shown for different phenolic natural compounds like epigallocatechin gallate. This study demonstrates this effect for other structurally unrelated phenolics, namely octyl gallate, scutellarein and wedelolactone. To verify whether these structurally different compounds influence identical pathways of biofilm formation in E. coli a broad comparative RNA-sequencing approach was chosen with additional RT-qPCR to gain initial insights into the pathways affected at the transcriptomic level. Bioinformatical analysis of the RNA-Seq data was performed using DESeq2, BioCyc and KEGG Mapper. The comparative bioinformatics analysis on the pathways revealed that, irrespective of their structure, all compounds mainly influenced similar biological processes. These pathways included bacterial motility, chemotaxis, biofilm formation as well as metabolic processes like arginine biosynthesis and tricarboxylic acid cycle. Overall, this work provides the first insights into the potential mechanisms of action of novel phenolic biofilm inhibitors and highlights the complex regulatory processes of biofilm formation in E. coli.
Collapse
Affiliation(s)
- David Buchmann
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Michael Schwabe
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Romano Weiss
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Andreas W. Kuss
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Sebastian Guenther
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Nadin Schultze
- Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Gonçalves ASC, Leitão MM, Simões M, Borges A. The action of phytochemicals in biofilm control. Nat Prod Rep 2023; 40:595-627. [PMID: 36537821 DOI: 10.1039/d2np00053a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2009 to 2021Antimicrobial resistance is now rising to dangerously high levels in all parts of the world, threatening the treatment of an ever-increasing range of infectious diseases. This has becoming a serious public health problem, especially due to the emergence of multidrug-resistance among clinically important bacterial species and their ability to form biofilms. In addition, current anti-infective therapies have low efficacy in the treatment of biofilm-related infections, leading to recurrence, chronicity, and increased morbidity and mortality. Therefore, it is necessary to search for innovative strategies/antibacterial agents capable of overcoming the limitations of conventional antibiotics. Natural compounds, in particular those obtained from plants, have been exhibiting promising properties in this field. Plant secondary metabolites (phytochemicals) can act as antibiofilm agents through different mechanisms of action from the available antibiotics (inhibition of quorum-sensing, motility, adhesion, and reactive oxygen species production, among others). The combination of different phytochemicals and antibiotics have revealed synergistic or additive effects in biofilm control. This review aims to bring together the most relevant reports on the antibiofilm properties of phytochemicals, as well as insights into their structure and mechanistic action against bacterial pathogens, spanning December 2008 to December 2021.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel M Leitão
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
11
|
Kim H, Kim ES, Cho JH, Song M, Cho JH, Kim S, Keum GB, Kwak J, Doo H, Pandey S, Park SH, Lee JH, Jung H, Hur TY, Kim JK, Oh KK, Kim HB, Lee JH. Exploring the Microbial Community and Functional Characteristics of the Livestock Feces Using the Whole Metagenome Shotgun Sequencing. J Microbiol Biotechnol 2023; 33:51-60. [PMID: 36517072 PMCID: PMC9896000 DOI: 10.4014/jmb.2209.09013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The foodborne illness is the important public health concerns, and the livestock feces are known to be one of the major reservoirs of foodborne pathogens. Also, it was reported that 45.5% of foodborne illness outbreaks have been associated with the animal products contaminated with the livestock feces. In addition, it has been known that the persistence of a pathogens depends on many potential virulent factors including the various virulent genes. Therefore, the first step to understanding the public health risk of livestock feces is to identify and describe microbial communities and potential virulent genes that contribute to bacterial pathogenicity. We used the whole metagenome shotgun sequencing to evaluate the prevalence of foodborne pathogens and to characterize the virulence associated genes in pig and chicken feces. Our data showed that the relative abundance of potential foodborne pathogens, such as Bacillus cereus was higher in chickens than pigs at the species level while the relative abundance of foodborne pathogens including Campylobacter coli was only detected in pigs. Also, the microbial functional characteristics of livestock feces revealed that the gene families related to "Biofilm formation and quorum sensing" were highly enriched in pigs than chicken. Moreover, the variety of gene families associated with "Resistance to antibiotics and toxic compounds" were detected in both animals. These results will help us to prepare the scientific action plans to improve awareness and understanding of the public health risks of livestock feces.
Collapse
Affiliation(s)
- Hyeri Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Eun Sol Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Republic of Korea
| | - Jae Hyoung Cho
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Sheena Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Gi Beom Keum
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Jinok Kwak
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Hyunok Doo
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Sriniwas Pandey
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Seung-Hwan Park
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Republic of Korea
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Tai Young Hur
- Animal Diseases & Health Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Kwang Kyo Oh
- Microbial Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea,Corresponding authors H.B. Kim Phone: +82-41-550-3653 E-mail:
| | - Ju-Hoon Lee
- Department of Food Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea,J.H. Lee Phone: +82-2-880-4854 E-mail:
| |
Collapse
|
12
|
Stephens K, Bentley WE. Quorum Sensing from Two Engineers’ Perspectives. Isr J Chem 2023. [DOI: 10.1002/ijch.202200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kristina Stephens
- Thayer School of Engineering Dartmouth College Hanover NH USA
- Center for Bioenergy Innovation Oak Ridge National Laboratory Oak Ridge TN USA
| | - William E. Bentley
- Fischell Department of Bioengineering University of Maryland College Park MD USA
- Institute for Bioscience and Biotechnology Research University of Maryland College Park MD USA [e]Robert E. Fischell Institute for Biomedical Devices University of Maryland College Park MD USA
| |
Collapse
|
13
|
Meng L, Xie L, Hirose Y, Nishiuchi T, Yoshida N. Reduced graphene oxide increases cells with enlarged outer membrane of Citrifermentans bremense and exopolysaccharides secretion. Biosens Bioelectron 2022; 218:114754. [DOI: 10.1016/j.bios.2022.114754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
|
14
|
Bian Z, Liu W, Jin J, Hao Y, Jiang L, Xie Y, Zhang H. Rcs phosphorelay affects the sensitivity of Escherichia coli to plantaricin BM-1 by regulating biofilm formation. Front Microbiol 2022; 13:1071351. [PMID: 36504793 PMCID: PMC9729257 DOI: 10.3389/fmicb.2022.1071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction: Plantaricin BM-1 is a class IIa bacteriocin produced by Lactobacillus plantarum BM-1 that exerts significant antibacterial activity against many foodborne bacteria. Studies have shown that class IIa bacteriocins inhibit Gram-positive bacteria via the mannose phosphotransferase system; however, their mechanism of action against Gram-negative bacteria remains unknown. In this study, we explored the mechanism through which the Rcs phosphorelay affects the sensitivity of Escherichia coli K12 cells to plantaricin BM-1. Methods and Results: The minimum inhibitory concentrations of plantaricin BM-1 against E. coli K12, E. coli JW5917 (rcsC mutant), E. coli JW2204 (rcsD mutant), and E. coli JW2205 (rcsB mutant) were 1.25, 0.59, 1.31, and 1.22 mg/ml, respectively. Growth curves showed that E. coli JW5917 sensitivity to plantaricin BM-1 increased to the same level as that of E. coli K12 after complementation. Meanwhile, scanning electron microscopy and transmission electron microscopy revealed that, under the action of plantaricin BM-1, the appearance of E. coli JW5917 cells did not significantly differ from that of E. coli K12 cells; however, cell contents were significantly reduced and plasmolysis and shrinkage were observed at both ends. Crystal violet staining and laser scanning confocal microscopy showed that biofilm formation was significantly reduced after rcsC mutation, while proteomic analysis identified 382 upregulated and 260 downregulated proteins in E. coli JW5917. In particular, rcsC mutation was found to affect the expression of proteins related to biofilm formation, with growth curve assays showing that the deletion of these proteins increased E. coli sensitivity to plantaricin BM-1. Discussion: Consequently, we speculated that the Rcs phosphorelay may regulate the sensitivity of E. coli to plantaricin BM-1 by affecting biofilm formation. This finding of class IIa bacteriocin against Gram-negative bacteria mechanism provides new insights.
Collapse
Affiliation(s)
- Zheng Bian
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Wenbo Liu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Junhua Jin
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Yanling Hao
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing, China
| | - Linshu Jiang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yuanhong Xie
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China,*Correspondence: Yuanhong Xie, ; Hongxing Zhang,
| | - Hongxing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, Beijing Engineering Technology Research Center of Food Safety Immune Rapid Detection, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China,*Correspondence: Yuanhong Xie, ; Hongxing Zhang,
| |
Collapse
|
15
|
Ali K, Zaidi S, Khan AA, Khan AU. Orally fed EGCG coronate food released TiO 2 and enhanced penetrability into body organs via gut. BIOMATERIALS ADVANCES 2022; 144:213205. [PMID: 36442452 DOI: 10.1016/j.bioadv.2022.213205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Owing to unique nano-scale properties, TiO2-NPs (T-NPs) are employed as food-quality enhancers in >900 processed food products. Whereas, epigallocatechin-3-gallate (EGCG), a green tea polyphenol is consumed in traditional brewed tea, globally. Taken together, we aimed to investigate whether human gastric-acid digested T-NPs and complex tea catechins yield ionic species (Ti4+, Ti3+ etc.) and active EGCG forms to meet favourable conditions for in vivo bio-genesis of EGCG-coronated TiO2-NPs (ET-NPs) in human gut. Secondly, compared to bare-surface micro and nano-scale TiO2, i.e., T-MPs and T-NPs, respectively, how EGCG coronation on ET-NPs in the gut facilitates the modulation of intrinsic propensity of internalization of TiO2 species into bacteria, body-organs, and gut-microbiota (GM), and immune system. ET-NPs were synthesized in non-toxic aqueous solution at varied pH (3-10) and characterised by state-of-the-arts for crystallinity, surface-charge, EGCG-encapsulation, stability, size, composition and morphology. Besides, flow-cytometry (FCM), TEM, EDS, histopathology, RT-PCR, 16S-rRNA metagenomics and ELISA were also performed to assess the size and surface dependent activities of ET-NPs, T-NPs and T-MPs vis-a-vis planktonic bacteria, biofilm, GM bacterial communities and animal's organs. Electron-microscopic, NMR, FTIR, DLS, XRD and EDS confirmed the EGCG coronation, dispersity, size-stability of ET-NPs, crystallinity and elemental composition of ET-NPs-8 and T-NPs. Besides, FCM, RT-PCR, 16S-rRNA metagenomics, histopathology, SEM and EDS analyses exhibited that EGCG coronation in ET-NPs-8 enhanced the penetration into body organs (i.e., liver and kidney etc.) and metabolically active bacterial communities of GM.
Collapse
Affiliation(s)
- Khursheed Ali
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Sahar Zaidi
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Aijaz A Khan
- Department of Anatomy, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology, Laboratory Interdisciplinary, Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
16
|
Sinclair P, Brackley CA, Carballo-Pacheco M, Allen RJ. Model for Quorum-Sensing Mediated Stochastic Biofilm Nucleation. PHYSICAL REVIEW LETTERS 2022; 129:198102. [PMID: 36399746 DOI: 10.1103/physrevlett.129.198102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Surface-attached bacterial biofilms cause disease and industrial biofouling, as well as being widespread in the natural environment. Density-dependent quorum sensing is one of the mechanisms implicated in biofilm initiation. Here we present and analyze a model for quorum-sensing triggered biofilm initiation. In our model, individual, planktonic bacteria adhere to a surface, proliferate, and undergo a collective transition to a biofilm phenotype. This model predicts a stochastic transition between a loosely attached, finite layer of bacteria near the surface and a growing biofilm. The transition is governed by two key parameters: the collective transition density relative to the carrying capacity and the immigration rate relative to the detachment rate. Biofilm initiation is complex, but our model suggests that stochastic nucleation phenomena may be relevant.
Collapse
Affiliation(s)
- Patrick Sinclair
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Chris A Brackley
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Martín Carballo-Pacheco
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Rosalind J Allen
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
- Theoretical Microbial Ecology, Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Buchaer Strasse 6, 07745 Jena, Germany
| |
Collapse
|
17
|
Santajit S, Sookrung N, Indrawattana N. Quorum Sensing in ESKAPE Bugs: A Target for Combating Antimicrobial Resistance and Bacterial Virulence. BIOLOGY 2022; 11:biology11101466. [PMID: 36290370 PMCID: PMC9598666 DOI: 10.3390/biology11101466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
A clique of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) bugs is the utmost causative agent responsible for multidrug resistance in hospital settings. These microorganisms employ a type of cell-cell communication termed 'quorum sensing (QS) system' to mediate population density and synchronously control the genes that modulate drug resistance and pathogenic behaviors. In this article, we focused on the present understanding of the prevailing QS system in ESKAPE pathogens. Basically, the QS component consisted of an autoinducer synthase, a ligand (e.g., acyl homoserine lactones/peptide hormones), and a transcriptional regulator. QS mediated expression of the bacterial capsule, iron acquisition, adherence factors, synthesis of lipopolysaccharide, poly-N-acetylglucosamine (PNAG) biosynthesis, motility, as well as biofilm development allow bacteria to promote an antimicrobial-resistant population that can escape the action of traditional drugs and endorse a divergent virulence production. The increasing prevalence of these harmful threats to infection control, as well as the urgent need for effective antimicrobial strategies to combat them, serve to highlight the important anti-QS strategies developed to address the difficulty of treating microorganisms.
Collapse
Affiliation(s)
- Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Nitat Sookrung
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: ; Tel.: +66-2-354-9100 (ext. 1598)
| |
Collapse
|
18
|
Wang S, Payne GF, Bentley WE. Quorum sensing componentry opens new lines of communication. EMBO J 2022; 41:e112162. [PMID: 35971916 PMCID: PMC9475535 DOI: 10.15252/embj.2022112162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Autoinducer-2 is a key molecule for bacterial quorum sensing. New exporter structures may now help narrow the gap between biology and engineering.
Collapse
Affiliation(s)
- Sally Wang
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMDUSA
- Robert E. Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMDUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege ParkMDUSA
| | - Gregory F Payne
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMDUSA
- Robert E. Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMDUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege ParkMDUSA
| | - William E Bentley
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMDUSA
- Robert E. Fischell Institute for Biomedical DevicesUniversity of MarylandCollege ParkMDUSA
- Institute for Bioscience and Biotechnology ResearchUniversity of MarylandCollege ParkMDUSA
| |
Collapse
|
19
|
Gyimesi G, Hediger MA. Systematic in silico discovery of novel solute carrier-like proteins from proteomes. PLoS One 2022; 17:e0271062. [PMID: 35901096 PMCID: PMC9333335 DOI: 10.1371/journal.pone.0271062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Solute carrier (SLC) proteins represent the largest superfamily of transmembrane transporters. While many of them play key biological roles, their systematic analysis has been hampered by their functional and structural heterogeneity. Based on available nomenclature systems, we hypothesized that many as yet unidentified SLC transporters exist in the human genome, which await further systematic analysis. Here, we present criteria for defining "SLC-likeness" to curate a set of "SLC-like" protein families from the Transporter Classification Database (TCDB) and Protein families (Pfam) databases. Computational sequence similarity searches surprisingly identified ~120 more proteins in human with potential SLC-like properties compared to previous annotations. Interestingly, several of these have documented transport activity in the scientific literature. To complete the overview of the "SLC-ome", we present an algorithm to classify SLC-like proteins into protein families, investigating their known functions and evolutionary relationships to similar proteins from 6 other clinically relevant experimental organisms, and pinpoint structural orphans. We envision that our work will serve as a stepping stone for future studies of the biological function and the identification of the natural substrates of the many under-explored SLC transporters, as well as for the development of new therapeutic applications, including strategies for personalized medicine and drug delivery.
Collapse
Affiliation(s)
- Gergely Gyimesi
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department for BioMedical Research, Inselspital, University of Bern, Bern, Switzerland
- * E-mail: (GG); (MAH)
| | - Matthias A. Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department for BioMedical Research, Inselspital, University of Bern, Bern, Switzerland
- * E-mail: (GG); (MAH)
| |
Collapse
|
20
|
Duarte-Velázquez I, de la Mora J, Ramírez-Prado JH, Aguillón-Bárcenas A, Tornero-Gutiérrez F, Cordero-Loreto E, Anaya-Velázquez F, Páramo-Pérez I, Rangel-Serrano Á, Muñoz-Carranza SR, Romero-González OE, Cardoso-Reyes LR, Rodríguez-Ojeda RA, Mora-Montes HM, Vargas-Maya NI, Padilla-Vaca F, Franco B. Escherichia coli transcription factors of unknown function: sequence features and possible evolutionary relationships. PeerJ 2022; 10:e13772. [PMID: 35880217 PMCID: PMC9308461 DOI: 10.7717/peerj.13772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/01/2022] [Indexed: 01/17/2023] Open
Abstract
Organisms need mechanisms to perceive the environment and respond accordingly to environmental changes or the presence of hazards. Transcription factors (TFs) are required for cells to respond to the environment by controlling the expression of genes needed. Escherichia coli has been the model bacterium for many decades, and still, there are features embedded in its genome that remain unstudied. To date, 58 TFs remain poorly characterized, although their binding sites have been experimentally determined. This study showed that these TFs have sequence variation at the third codon position G+C content but maintain the same Codon Adaptation Index (CAI) trend as annotated functional transcription factors. Most of these transcription factors are in areas of the genome where abundant repetitive and mobile elements are present. Sequence divergence points to groups with distinctive sequence signatures but maintaining the same type of DNA binding domain. Finally, the analysis of the promoter sequences of the 58 TFs showed A+T rich regions that agree with the features of horizontally transferred genes. The findings reported here pave the way for future research of these TFs that may uncover their role as spare factors in case of lose-of-function mutations in core TFs and trace back their evolutionary history.
Collapse
Affiliation(s)
- Isabel Duarte-Velázquez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Javier de la Mora
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autonoma de Mexico, Mexico City, México
| | | | - Alondra Aguillón-Bárcenas
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Fátima Tornero-Gutiérrez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Eugenia Cordero-Loreto
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Fernando Anaya-Velázquez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Itzel Páramo-Pérez
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Ángeles Rangel-Serrano
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | | | | | - Luis Rafael Cardoso-Reyes
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | | | - Héctor Manuel Mora-Montes
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Naurú Idalia Vargas-Maya
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Felipe Padilla-Vaca
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Bernardo Franco
- Biology, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| |
Collapse
|
21
|
Khera R, Mehdipour AR, Bolla JR, Kahnt J, Welsch S, Ermler U, Muenke C, Robinson CV, Hummer G, Xie H, Michel H. Cryo-EM structures of pentameric autoinducer-2 exporter from Escherichia coli reveal its transport mechanism. EMBO J 2022; 41:e109990. [PMID: 35698912 PMCID: PMC9475539 DOI: 10.15252/embj.2021109990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Bacteria utilize small extracellular molecules to communicate in order to collectively coordinate their behaviors in response to the population density. Autoinducer-2 (AI-2), a universal molecule for both intra- and inter-species communication, is involved in the regulation of biofilm formation, virulence, motility, chemotaxis, and antibiotic resistance. While many studies have been devoted to understanding the biosynthesis and sensing of AI-2, very little information is available on its export. The protein TqsA from Escherichia coli, which belongs to the AI-2 exporter superfamily, has been shown to export AI-2. Here, we report the cryogenic electron microscopic structures of two AI-2 exporters (TqsA and YdiK) from E. coli at 3.35 Å and 2.80 Å resolutions, respectively. Our structures suggest that the AI-2 exporter exists as a homo-pentameric complex. In silico molecular docking and native mass spectrometry experiments were employed to demonstrate the interaction between AI-2 and TqsA, and the results highlight the functional importance of two helical hairpins in substrate binding. We propose that each monomer works as an independent functional unit utilizing an elevator-type transport mechanism.
Collapse
Affiliation(s)
- Radhika Khera
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ahmad R Mehdipour
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Centre for molecular modelling, Ghent University, Zwijnaarde, Belgium
| | - Jani R Bolla
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK.,Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Joerg Kahnt
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sonja Welsch
- Central Electron Microscopy Facility, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Ulrich Ermler
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Cornelia Muenke
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.,The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Moore-Ott JA, Chiu S, Amchin DB, Bhattacharjee T, Datta SS. A biophysical threshold for biofilm formation. eLife 2022; 11:e76380. [PMID: 35642782 PMCID: PMC9302973 DOI: 10.7554/elife.76380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria are ubiquitous in our daily lives, either as motile planktonic cells or as immobilized surface-attached biofilms. These different phenotypic states play key roles in agriculture, environment, industry, and medicine; hence, it is critically important to be able to predict the conditions under which bacteria transition from one state to the other. Unfortunately, these transitions depend on a dizzyingly complex array of factors that are determined by the intrinsic properties of the individual cells as well as those of their surrounding environments, and are thus challenging to describe. To address this issue, here, we develop a generally-applicable biophysical model of the interplay between motility-mediated dispersal and biofilm formation under positive quorum sensing control. Using this model, we establish a universal rule predicting how the onset and extent of biofilm formation depend collectively on cell concentration and motility, nutrient diffusion and consumption, chemotactic sensing, and autoinducer production. Our work thus provides a key step toward quantitatively predicting and controlling biofilm formation in diverse and complex settings.
Collapse
Affiliation(s)
- Jenna A Moore-Ott
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Selena Chiu
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Daniel B Amchin
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Tapomoy Bhattacharjee
- Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonUnited States
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| |
Collapse
|
23
|
Li X, Fan X, Shi Z, Xu J, Cao Y, Zhang T, Pan D. AI-2E Family Transporter Protein in Lactobacillus acidophilus Exhibits AI-2 Exporter Activity and Relate With Intestinal Juice Resistance of the Strain. Front Microbiol 2022; 13:908145. [PMID: 35633722 PMCID: PMC9134010 DOI: 10.3389/fmicb.2022.908145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
The function of the autoinducer-2 exporters (AI-2E) family transporter protein of Lactobacillus acidophilus is still unclear. The phylogenetic analysis was used to analyze the relationship between the AI-2E protein of the L. acidophilus CICC 6074 strain and other AI-2E family members. Escherichia coli KNabc strain was used to verify whether the protein has Na+ (Li+)/H+ antiporter activity. The AI-2E protein overexpression strain was constructed by using the pMG36e expression vector, and the overexpression efficiency was determined by real-time quantitative PCR. The vitality and AI-2 activity of L. acidophilus CICC 6074 strains were determined. The results showed that the AI-2E protein of Lactobacillus formed a single branch on the phylogenetic tree and was closer to the AI-2E family members whose function was AI-2 exporter group I. The expression of AI-2E protein in the E. coli KNabc strain did not recover the resistance of the bacteria to the saline environment. Overexpression of AI-2E protein in L. acidophilus CICC 6074 could promote the AI-2 secretion of L. acidophilus CICC 6074 strain and enhance their survival ability in intestinal juice.
Collapse
Affiliation(s)
- Xiefei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, China
| | - Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, China
| | - Zihang Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, China
| | - Jue Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, China
| | - Yingying Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, China
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Ningbo University, Ningbo, China
- *Correspondence: Daodong Pan
| |
Collapse
|
24
|
Holden ER, Yasir M, Turner AK, Wain J, Charles IG, Webber MA. Massively parallel transposon mutagenesis identifies temporally essential genes for biofilm formation in Escherichia coli. Microb Genom 2021; 7. [PMID: 34783647 PMCID: PMC8743551 DOI: 10.1099/mgen.0.000673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Biofilms complete a life cycle where cells aggregate, grow and produce a structured community before dispersing to colonize new environments. Progression through this life cycle requires temporally controlled gene expression to maximize fitness at each stage. Previous studies have largely focused on identifying genes essential for the formation of a mature biofilm; here, we present an insight into the genes involved at different stages of biofilm formation. We used TraDIS-Xpress, a massively parallel transposon mutagenesis approach using transposon-located promoters to assay the impact of disruption or altered expression of all genes in the genome on biofilm formation. We identified 48 genes that affected the fitness of cells growing in a biofilm, including genes with known roles and those not previously implicated in biofilm formation. Regulation of type 1 fimbriae and motility were important at all time points, adhesion and motility were important for the early biofilm, whereas matrix production and purine biosynthesis were only important as the biofilm matured. We found strong temporal contributions to biofilm fitness for some genes, including some where expression changed between being beneficial or detrimental depending on the stage at which they are expressed, including dksA and dsbA. Novel genes implicated in biofilm formation included zapE and truA involved in cell division, maoP in chromosome organization, and yigZ and ykgJ of unknown function. This work provides new insights into the requirements for successful biofilm formation through the biofilm life cycle and demonstrates the importance of understanding expression and fitness through time.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - A Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
25
|
Song S, Kim JS, Yamasaki R, Oh S, Benedik MJ, Wood TK. Escherichia coli cryptic prophages sense nutrients to influence persister cell resuscitation. Environ Microbiol 2021; 23:7245-7254. [PMID: 34668292 DOI: 10.1111/1462-2920.15816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Cryptic prophages are not genomic junk but instead enable cells to combat myriad stresses as an active stress response. How these phage fossils affect persister cell resuscitation has, however, not been explored. Persister cells form as a result of stresses such as starvation, antibiotics and oxidative conditions, and resuscitation of these persister cells likely causes recurring infections such as those associated with tuberculosis, cystic fibrosis and Lyme disease. Deletion of each of the nine Escherichia coli cryptic prophages has no effect on persister cell formation. Strikingly, elimination of each cryptic prophage results in an increase in persister cell resuscitation with a dramatic increase in resuscitation upon deleting all nine prophages. This increased resuscitation includes eliminating the need for a carbon source and is due to activation of the phosphate import system resulting from inactivating the transcriptional regulator AlpA of the CP4-57 cryptic prophage. Deletion of alpA increases persister resuscitation, and AlpA represses phosphate regulator PhoR. Both phosphate regulators PhoP and PhoB stimulate resuscitation. This suggests a novel cellular stress mechanism controlled by cryptic prophages: regulation of phosphate uptake which controls the exit of the cell from dormancy and prevents premature resuscitation in the absence of nutrients.
Collapse
Affiliation(s)
- Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802-4400, USA.,Department of Animal Science, Jeonbuk National University, 587 Baekje-Daero, Deokjin-Gu, Jeonju-Si, Jeollabuk-Do, 54896, South Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, 587 Baekje-Daero, Deokjin-Gu, Jeonju-Si, Jeollabuk-Do, 54896, South Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, 119 Academy-ro, Incheon, 22012, South Korea
| | - Ryota Yamasaki
- Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, 803-8580, Japan
| | - Sejong Oh
- Division of Animal Science, Chonnam National University, 77 Yongbong-Ro, Buk-Gu, Gwangju, 61186, South Korea
| | - Michael J Benedik
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, 16802-4400, USA
| |
Collapse
|
26
|
Gao Y, Lim HG, Verkler H, Szubin R, Quach D, Rodionova I, Chen K, Yurkovich JT, Cho BK, Palsson BO. Unraveling the functions of uncharacterized transcription factors in Escherichia coli using ChIP-exo. Nucleic Acids Res 2021; 49:9696-9710. [PMID: 34428301 PMCID: PMC8464067 DOI: 10.1093/nar/gkab735] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteria regulate gene expression to adapt to changing environments through transcriptional regulatory networks (TRNs). Although extensively studied, no TRN is fully characterized since the identity and activity of all the transcriptional regulators comprising a TRN are not known. Here, we experimentally evaluate 40 uncharacterized proteins in Escherichia coli K-12 MG1655, which were computationally predicted to be transcription factors (TFs). First, we used a multiplexed chromatin immunoprecipitation method combined with lambda exonuclease digestion (multiplexed ChIP-exo) assay to characterize binding sites for these candidate TFs; 34 of them were found to be DNA-binding proteins. We then compared the relative location between binding sites and RNA polymerase (RNAP). We found 48% (283/588) overlap between the TFs and RNAP. Finally, we used these data to infer potential functions for 10 of the 34 TFs with validated DNA binding sites and consensus binding motifs. Taken together, this study: (i) significantly expands the number of confirmed TFs to 276, close to the estimated total of about 280 TFs; (ii) provides putative functions for the newly discovered TFs and (iii) confirms the functions of four representative TFs through mutant phenotypes.
Collapse
Affiliation(s)
- Ye Gao
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Hans Verkler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Quach
- Department of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Irina Rodionova
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ke Chen
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - James T Yurkovich
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Byung-Kwan Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
27
|
Xie L, Yoshida N, Ishii S, Meng L. Isolation and Polyphasic Characterization of Desulfuromonas versatilis sp. Nov., an Electrogenic Bacteria Capable of Versatile Metabolism Isolated from a Graphene Oxide-Reducing Enrichment Culture. Microorganisms 2021; 9:1953. [PMID: 34576847 PMCID: PMC8465243 DOI: 10.3390/microorganisms9091953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
In this study, a novel electrogenic bacterium denoted as strain NIT-T3 of the genus Desulfuromonas was isolated from a graphene-oxide-reducing enrichment culture that was originally obtained from a mixture of seawater and coastal sand. Strain NIT-T3 utilized hydrogen and various organic acids as electron donors and exhibited respiration using electrodes, ferric iron, nitrate, and elemental sulfur. The strain contained C16:1ω7c, C16:0, and C15:0 as major fatty acids and MK-8, 9, and 7 as the major respiratory quinones. Strain NIT-T3 contained four 16S rRNA genes and showed 95.7% similarity to Desulfuromonasmichiganensis BB1T, the closest relative. The genome was 4.7 Mbp in size and encoded 76 putative c-type cytochromes, which included 6 unique c-type cytochromes (<40% identity) compared to those in the database. Based on the physiological and genetic uniqueness, and wide metabolic capability, strain NIT-T3 is proposed as a type strain of 'Desulfuromonas versatilis' sp. nov.
Collapse
Affiliation(s)
- Li Xie
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| | - Naoko Yoshida
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| | - Shun’ichi Ishii
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Kanagawa, Japan;
| | - Lingyu Meng
- Department of Civil Engineering, Nagoya Institute of Technology (Nitech), Nagoya 466-8555, Aichi, Japan; (L.X.); (L.M.)
| |
Collapse
|
28
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance in Listeria and Production of Antimicrobial and Virulence Factors. Int J Mol Sci 2021; 22:8141. [PMID: 34360905 PMCID: PMC8348566 DOI: 10.3390/ijms22158141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Some Listeria species are important human and animal pathogens that can be found in contaminated food and produce a variety of virulence factors involved in their pathogenicity. Listeria strains exhibiting multidrug resistance are known to be progressively increasing and that is why continuous monitoring is needed. Effective therapy against pathogenic Listeria requires identification of the bacterial strain involved, as well as determining its virulence factors, such as antibiotic resistance and sensitivity. The present study describes the use of liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to do a global shotgun proteomics characterization for pathogenic Listeria species. This method allowed the identification of a total of 2990 non-redundant peptides, representing 2727 proteins. Furthermore, 395 of the peptides correspond to proteins that play a direct role in Listeria pathogenicity; they were identified as virulence factors, toxins and anti-toxins, or associated with either antibiotics (involved in antibiotic-related compounds production or resistance) or resistance to toxic substances. The proteomic repository obtained here can be the base for further research into pathogenic Listeria species and facilitate the development of novel therapeutics for these pathogens.
Collapse
Affiliation(s)
- Ana G. Abril
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Mónica Carrera
- Marine Research Institute (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Montirón 154, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Pilar Calo-Mata
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
29
|
Sholpan A, Lamas A, Cepeda A, Franco CM. Salmonella spp. quorum sensing: an overview from environmental persistence to host cell invasion. AIMS Microbiol 2021; 7:238-256. [PMID: 34250377 PMCID: PMC8255907 DOI: 10.3934/microbiol.2021015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Salmonella spp. is one of the main foodborne pathogens around the world. It has a cyclic lifestyle that combines host colonization with survival outside the host, implying that Salmonella has to adapt to different conditions rapidly in order to survive. One of these environments outside the host is the food production chain. In this environment, this foodborne pathogen has to adapt to different stress conditions such as acidic environments, nutrient limitation, desiccation, or biocides. One of the mechanisms used by Salmonella to survive under such conditions is biofilm formation. Quorum sensing plays an important role in the production of biofilms composed of cells from the same microorganism or from different species. It is also important in terms of food spoilage and regulates the pathogenicity and invasiveness of Salmonella by regulating Salmonella pathogenicity islands and flagella. Therefore, in this review, we will discuss the genetic mechanism involved in Salmonella quorum sensing, paying special attention to small RNAs and their post-regulatory activity in quorum sensing. We will further discuss the importance of this cell-to-cell communication mechanism in the persistence and spoilage of Salmonella in the food chain environment and the importance in the communication with microorganisms from different species. Subsequently, we will focus on the role of quorum sensing to regulate the virulence and invasion of host cells by Salmonella and on the interaction between Salmonella and other microbial species. This review offers an overview of the importance of quorum sensing in the Salmonella lifestyle.
Collapse
Affiliation(s)
- Amanova Sholpan
- Almaty Technological University, Almaty, Republic of Kazakhstan
| | | | | | | |
Collapse
|
30
|
Jiang Y, Liu Y, Zhang X, Gao H, Mou L, Wu M, Zhang W, Xin F, Jiang M. Biofilm application in the microbial biochemicals production process. Biotechnol Adv 2021; 48:107724. [PMID: 33640404 DOI: 10.1016/j.biotechadv.2021.107724] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Biofilms can be naturally formed through the attachment of microorganisms on the supporting materials. However, natural biofilms formed in the environment may cause some detrimental effects, such as the equipment contamination and food safety issues et al. On the contrary, biofilms mediated microbial fermentation provides a promising approach for the efficient biochemicals production owing to the properties of self-immobilization, high resistance to toxic reactants and maintenance of long-term cells activity. While few reviews have specifically addressed the biological application of biofilms in the microbial fermentation process. Accordingly, this review will comprehensively summarize the biofilms formation mechanism and potential functions in the microbial fermentation process. Furthermore, the construction strategies for the formation of stable biofilms through synthetic biology technology or the modification of suitable supporting materials will be also discussed. The application of biofilms mediated fermentation will provide an outlook for the biorefinery platform in the future.
Collapse
Affiliation(s)
- Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yansong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Xiaoyu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Lu Mou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Mengdi Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| |
Collapse
|
31
|
Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing. Curr Top Microbiol Immunol 2021. [PMID: 33620656 DOI: 10.1007/978-3-030-65481-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Even though Campylobacter spp. are known to be fastidious organisms, they can survive within the natural environment. One mechanism to withstand unfavourable conditions is the formation of biofilms, a multicellular structure composed of different bacterial and other microbial species which are embedded in an extracellular matrix. High oxygen levels, low substrate concentrations and the presence of external DNA stimulate the biofilm formation by C. jejuni. These external factors trigger internal adaptation processes, e.g. via regulating the expression of genes encoding proteins required for surface structure formation, as well as motility, stress response and antimicrobial resistance. Known genes impacting biofilm formation will be summarized in this review. The formation of biofilms as well as the expression of virulence genes is often regulated in a cell density depending manner by quorum sensing, which is mediated via small signalling molecules termed autoinducers. Even though quorum sensing mechanisms of other bacteria are well understood, knowledge on the role of these mechanisms in C. jejuni biofilm formation is still scarce. The LuxS enzyme involved in generation of autoinducer-2 is present in C. jejuni, but autoinducer receptors have not been identified so far. Phenotypes of C. jejuni strains lacking a functional luxS like reduced growth, motility, oxygen stress tolerance, biofilm formation, adhesion, invasion and colonization are also summarized within this chapter. However, these phenotypes are highly variable in distinct C. jejuni strains and depend on the culture conditions applied.
Collapse
|
32
|
Song S, Wood TK. The Primary Physiological Roles of Autoinducer 2 in Escherichia coli Are Chemotaxis and Biofilm Formation. Microorganisms 2021; 9:microorganisms9020386. [PMID: 33672862 PMCID: PMC7918475 DOI: 10.3390/microorganisms9020386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Autoinducer 2 (AI-2) is a ubiquitous metabolite but, instead of acting as a "universal signal," relatively few phenotypes have been associated with it, and many scientists believe AI-2 is often a metabolic byproduct rather than a signal. Here, the aim is to present evidence that AI-2 influences both biofilm formation and motility (swarming and chemotaxis), using Escherichia coli as the model system, to establish AI-2 as a true signal with an important physiological role in this bacterium. In addition, AI-2 signaling is compared to the other primary signal of E. coli, indole, and it is shown that they have opposite effects on biofilm formation and virulence.
Collapse
Affiliation(s)
- Sooyeon Song
- Department of Animal Science, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Korea;
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-7000, USA
- Correspondence:
| |
Collapse
|
33
|
Ranjith K, Sharma S, Shivaji S. Microbes of the human eye: Microbiome, antimicrobial resistance and biofilm formation. Exp Eye Res 2021; 205:108476. [PMID: 33549582 DOI: 10.1016/j.exer.2021.108476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND The review focuses on the bacteria associated with the human eye using the dual approach of detecting cultivable bacteria and the total microbiome using next generation sequencing. The purpose of this review was to highlight the connection between antimicrobial resistance and biofilm formation in ocular bacteria. METHODS Pubmed was used as the source to catalogue culturable bacteria and ocular microbiomes associated with the normal eyes and those with ocular diseases, to ascertain the emergence of anti-microbial resistance with special reference to biofilm formation. RESULTS This review highlights the genetic strategies used by microorganisms to evade the lethal effects of anti-microbial agents by tracing the connections between candidate genes and biofilm formation. CONCLUSION The eye has its own microbiome which needs to be extensively studied under different physiological conditions; data on eye microbiomes of people from different ethnicities, geographical regions etc. are also needed to understand how these microbiomes affect ocular health.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| | - Savitri Sharma
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre, Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Kallam Anji Reddy Campus, Hyderabad, Telangana, India.
| |
Collapse
|
34
|
Salcedo-Sora JE, Jindal S, O'Hagan S, Kell DB. A palette of fluorophores that are differentially accumulated by wild-type and mutant strains of Escherichia coli: surrogate ligands for profiling bacterial membrane transporters. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001016. [PMID: 33406033 PMCID: PMC8131027 DOI: 10.1099/mic.0.001016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Our previous work demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type Escherichia coli MG1655 were differentially transported in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarize the desirable properties of such stains, and here survey 143 candidate dyes. We eventually triage them (on the basis of signal, accumulation levels and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the 'Keio' strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation of the dyes. Even the 'wild-type' MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (yhjV, yihN and tolC). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and informative approach to the assessment of microbial physiology and phenotyping of membrane transporter function.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Srijan Jindal
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Steve O'Hagan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
35
|
Wolter LA, Wietz M, Ziesche L, Breider S, Leinberger J, Poehlein A, Daniel R, Schulz S, Brinkhoff T. Pseudooceanicola algae sp. nov., isolated from the marine macroalga Fucus spiralis, shows genomic and physiological adaptations for an algae-associated lifestyle. Syst Appl Microbiol 2021; 44:126166. [PMID: 33310406 DOI: 10.1016/j.syapm.2020.126166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022]
Abstract
The genus Pseudooceanicola from the alphaproteobacterial Roseobacter group currently includes ten validated species. We herein describe strain Lw-13eT, the first Pseudooceanicola species from marine macroalgae, isolated from the brown alga Fucus spiralis abundant at European and North American coasts. Physiological and pangenome analyses of Lw-13eT showed corresponding adaptive features. Adaptations to the tidal environment include a broad salinity tolerance, degradation of macroalgae-derived substrates (mannitol, mannose, proline), and resistance to several antibiotics and heavy metals. Notably, Lw-13eT can degrade oligomeric alginate via PL15 alginate lyase encoded in a polysaccharide utilization locus (PUL), rarely described for roseobacters to date. Plasmid localization of the PUL strengthens the importance of mobile genetic elements for evolutionary adaptations within the Roseobacter group. PL15 homologs were primarily detected in marine plant-associated metagenomes from coastal environments but not in the open ocean, corroborating its adaptive role in algae-rich habitats. Exceptional is the tolerance of Lw-13eT against the broad-spectrum antibiotic tropodithietic acid, produced by Phaeobacter spp. co-occurring in coastal habitats. Furthermore, Lw-13eT exhibits features resembling terrestrial plant-bacteria associations, i.e. biosynthesis of siderophores, terpenes and volatiles, which may contribute to mutual bacteria-algae interactions. Closest described relative of Lw-13eT is Pseudopuniceibacterium sediminis CY03T with 98.4% 16S rRNA gene sequence similarity. However, protein sequence-based core genome phylogeny and average nucleotide identity indicate affiliation of Lw-13eT with the genus Pseudooceanicola. Based on phylogenetic, physiological and (chemo)taxonomic distinctions, we propose strain Lw-13eT (=DSM 29013T=LMG 30557T) as a novel species with the name Pseudooceanicola algae.
Collapse
Affiliation(s)
- Laura A Wolter
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany; JST ERATO Nomura Project, Faculty of Life and Environmental Sciences, Tsukuba, Japan.
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Lisa Ziesche
- Institute of Organic Chemistry, Technische Universität Braunschweig, Germany
| | - Sven Breider
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
| | - Janina Leinberger
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany
| | - Anja Poehlein
- Institute of Microbiology and Genetics, Genomic and Applied Microbiology, and Göttingen Genomics Laboratory, Germany
| | - Rolf Daniel
- Institute of Microbiology and Genetics, Genomic and Applied Microbiology, and Göttingen Genomics Laboratory, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, Oldenburg, Germany.
| |
Collapse
|
36
|
Linciano P, Cavalloro V, Martino E, Kirchmair J, Listro R, Rossi D, Collina S. Tackling Antimicrobial Resistance with Small Molecules Targeting LsrK: Challenges and Opportunities. J Med Chem 2020; 63:15243-15257. [PMID: 33152241 PMCID: PMC8016206 DOI: 10.1021/acs.jmedchem.0c01282] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) is a growing threat with severe health and economic consequences. The available antibiotics are losing efficacy, and the hunt for alternative strategies is a priority. Quorum sensing (QS) controls biofilm and virulence factors production. Thus, the quenching of QS to prevent pathogenicity and to increase bacterial susceptibility to antibiotics is an appealing therapeutic strategy. The phosphorylation of autoinducer-2 (a mediator in QS) by LsrK is a crucial step in triggering the QS cascade. Thus, LsrK represents a valuable target in fighting AMR. Few LsrK inhibitors have been reported so far, allowing ample room for further exploration. This perspective aims to provide a comprehensive analysis of the current knowledge about the structural and biological properties of LsrK and the state-of-the-art technology for LsrK inhibitor design. We elaborate on the challenges in developing novel LsrK inhibitors and point out promising avenues for further research.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Valeria Cavalloro
- Department
of Earth and Environmental Science, University
of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy
| | - Emanuela Martino
- Department
of Earth and Environmental Science, University
of Pavia, Via Sant’Epifanio 14, 27100 Pavia, Italy
| | - Johannes Kirchmair
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Roberta Listro
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Daniela Rossi
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simona Collina
- Department
of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
37
|
Li J, Zhao X. Effects of quorum sensing on the biofilm formation and viable but non-culturable state. Food Res Int 2020; 137:109742. [DOI: 10.1016/j.foodres.2020.109742] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
|
38
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
39
|
Cabrer-Panes JD, Fernández-Coll L, Fernández-Vázquez J, Gaviria-Cantin TC, El Mouali Y, Åberg A, Balsalobre C. ppGpp mediates the growth phase-dependent regulation of agn43, a phase variable gene, by stimulating its promoter activity. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:444-453. [PMID: 32548953 DOI: 10.1111/1758-2229.12860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Antigen 43 (Ag43) is a self-recognizing outer membrane protein of Escherichia coli expressed during intracellular growth and biofilm formation, suggesting a role in infection. The expression of agn43 is under phase variation control, meaning that there are regulatory mechanisms adjusting the percentage of agn43-expressing cells in the population, in addition to mechanisms modulating the transcriptional expression level in each expressing cell. Phenotypic and transcriptional studies indicate that Ag43 expression is induced upon entry into the stationary phase in a ppGpp-dependent and RpoS-independent manner. The use of single-cell approaches and phase variation deficient strains let to conclude that ppGpp stimulates agn43 promoter activity, rather than affecting the percentage of agn43-expressing cells. The data highlight the relevance that promoter activity regulation may have, without any involvement of the phase variation state, in the final Ag43 expression output. The agn43 promoter of the MG1655 strain carries an AT-rich discriminator between positions -10 and +1, which is highly conserved among the agn43 genes present in the different pathotypes of E. coli. Remarkably, the AT-rich discriminator is required for the positive transcriptional control mediated by ppGpp.
Collapse
Affiliation(s)
- Juan David Cabrer-Panes
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Llorenç Fernández-Coll
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
- Section on Molecular Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, USA
| | - Jorge Fernández-Vázquez
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | | | - Youssef El Mouali
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| | - Anna Åberg
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Small Noncoding RNA CjNC110 Influences Motility, Autoagglutination, AI-2 Localization, Hydrogen Peroxide Sensitivity, and Chicken Colonization in Campylobacter jejuni. Infect Immun 2020; 88:IAI.00245-20. [PMID: 32366573 DOI: 10.1128/iai.00245-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022] Open
Abstract
Small noncoding RNAs (ncRNAs) are involved in many important physiological functions in pathogenic microorganisms. Previous studies have identified the presence of noncoding RNAs in the major zoonotic pathogen Campylobacter jejuni; however, few have been functionally characterized to date. CjNC110 is a conserved ncRNA in C. jejuni, located downstream of the luxS gene, which is responsible for the production of the quorum sensing molecule autoinducer-2 (AI-2). In this study, we utilized strand specific high-throughput RNAseq to identify potential targets or interactive partners of CjNC110 in a sheep abortion clone of C. jejuni These data were then utilized to focus further phenotypic evaluation of the role of CjNC110 in motility, autoagglutination, quorum sensing, hydrogen peroxide sensitivity, and chicken colonization in C. jejuni Inactivation of the CjNC110 ncRNA led to a statistically significant decrease in autoagglutination ability as well as increased motility and hydrogen peroxide sensitivity compared to the wild-type. Extracellular AI-2 detection was decreased in ΔCjNC110; however, intracellular AI-2 accumulation was significantly increased, suggesting a key role of CjNC110 in modulating the transport of AI-2. Notably, ΔCjNC110 also showed a decreased ability to colonize chickens. Complementation of CjNC110 restored all phenotypic changes back to wild-type levels. The collective results of the phenotypic and transcriptomic changes observed in our data provide valuable insights into the pathobiology of C. jejuni sheep abortion clone and strongly suggest that CjNC110 plays an important role in the regulation of energy taxis, flagellar glycosylation, cellular communication via quorum sensing, oxidative stress tolerance, and chicken colonization in this important zoonotic pathogen.
Collapse
|
41
|
Wang L, Zou Q, Yan M, Wang Y, Guo S, Zhang R, Song Y, Li X, Chen H, Shao L, Meng L, Jiang J. Polar or Charged Residues Located in Four Highly Conserved Motifs Play a Vital Role in the Function or pH Response of a UPF0118 Family Na +(Li +)/H + Antiporter. Front Microbiol 2020; 11:841. [PMID: 32457721 PMCID: PMC7221264 DOI: 10.3389/fmicb.2020.00841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/08/2020] [Indexed: 01/15/2023] Open
Abstract
Functionally uncharacterized UPF0118 family has been re-designated as autoinducer-2 exporter (AI-2E) family since one of its members, Escherichia coli YdgG, was identified to function as an AI-2E. However, it's very likely that AI-2E family members may exhibit significantly distinct functions due to low identities between them. Recently, we identified one member of this family designated as UPF0118 to represent a novel class of Na+(Li+)/H+ antiporters. In this study, we presented that UPF0118, together with its homologs, should represent an independent group of AI-2E family, designated as Na+/H+ Antiporter Group. Notably, this group shows five highly conserved motifs designated as Motifs A to E, which are not detected in the majority of AI-2E family members. Functional analysis established that polar or charged residues located in Motif A to D play a vital role in Na+(Li+)/H+ antiport activity or pH response of UPF0118. However, three basic residues located in Motif E are not involved in the function of UPF0118, although the truncation of C terminus resulted in the non-expression of this transporter. Therefore, we propose that E179-R182-K215-Q217-D251-R292-R293-E296-K298-S30 7 located in Motifs A to D can be used for signature functional motifs to recognize whether AI-2E family members function as Na+(Li+)/H+ antiporters. Current findings positively contribute to the knowledge of molecular mechanism of Na+, Li+ transporting and pH response of UPF0118, and the functional prediction of uncharacterized AI-2E family members.
Collapse
Affiliation(s)
- Lidan Wang
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Qiao Zou
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Mingxue Yan
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Yuting Wang
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Sijia Guo
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Rui Zhang
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Yang Song
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Xiaofang Li
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Huiwen Chen
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Li Shao
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Lin Meng
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
42
|
Fang K, Park OJ, Hong SH. Controlling biofilms using synthetic biology approaches. Biotechnol Adv 2020; 40:107518. [PMID: 31953206 PMCID: PMC7125041 DOI: 10.1016/j.biotechadv.2020.107518] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/22/2022]
Abstract
Bacterial biofilms are formed by the complex but ordered regulation of intra- or inter-cellular communication, environmentally responsive gene expression, and secretion of extracellular polymeric substances. Given the robust nature of biofilms due to the non-growing nature of biofilm bacteria and the physical barrier provided by the extracellular matrix, eradicating biofilms is a very difficult task to accomplish with conventional antibiotic or disinfectant treatments. Synthetic biology holds substantial promise for controlling biofilms by improving and expanding existing biological tools, introducing novel functions to the system, and re-conceptualizing gene regulation. This review summarizes synthetic biology approaches used to eradicate biofilms via protein engineering of biofilm-related enzymes, utilization of synthetic genetic circuits, and the development of functional living agents. Synthetic biology also enables beneficial applications of biofilms through the production of biomaterials and patterning biofilms with specific temporal and spatial structures. Advances in synthetic biology will add novel biofilm functionalities for future therapeutic, biomanufacturing, and environmental applications.
Collapse
Affiliation(s)
- Kuili Fang
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Oh-Jin Park
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA; Department of Biological and Chemical Engineering, Yanbian University of Science and Technology, Yanji, Jilin, People's Republic of China
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA.
| |
Collapse
|
43
|
Chen L, Wilksch JJ, Liu H, Zhang X, Torres VVL, Bi W, Mandela E, Cao J, Li J, Lithgow T, Zhou T. Investigation of LuxS-mediated quorum sensing in Klebsiella pneumoniae. J Med Microbiol 2020; 69:402-413. [PMID: 32223838 PMCID: PMC7377169 DOI: 10.1099/jmm.0.001148] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction Autoinducer-2 (AI-2) quorum sensing is a bacterial communication system that responds to cell density. The system requires luxS activity to produce AI-2, which can regulate gene expression and processes such as biofilm formation. Aim To investigate the role of luxS in biofilm formation and gene expression in the nosocomial pathogen Klebsiella pneumoniae. Methodology A ΔluxS gene deletion was made in K. pneumoniae KP563, an extensively drug-resistant isolate. AI-2 production was assessed in wild-type and ΔluxS strains grown in media supplemented with different carbohydrates. Potential roles of luxS in biofilm formation were investigated using a microtiter plate biofilm assay and scanning electron microscopy. Quantitative RT-PCR evaluated the expression of lipopolysaccharide (wzm and wbbM), polysaccharide (pgaA), and type 3 fimbriae (mrkA) synthesis genes in wild-type and ΔluxS mutant biofilm extracts. Results AI-2 production was dependent on the presence of luxS. AI-2 accumulation was highest during early stationary phase in media supplemented with glucose, sucrose or glycerol. Changes in biofilm architecture were observed in the ΔluxS mutant, with less surface coverage and reduced macrocolony formation; however, no differences in biofilm formation between the wild-type and ΔluxS mutant using a microtiter plate assay were observed. In ΔluxS mutant biofilm extracts, the expression of wzm was down-regulated, and the expression of pgaA, which encodes a porin for poly-β−1,6-N-acetyl-d-glucosamine (PNAG) polysaccharide secretion, was upregulated. Conclusion Relationships among AI-2-mediated quorum sensing, biofilm formation and gene expression of outer-membrane components were identified in K. pneumoniae. These inter-connected processes could be important for bacterial group behaviour and persistence.
Collapse
Affiliation(s)
- Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Jonathan J Wilksch
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Haiyang Liu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University Hangzhou, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, PR China
| | - Xiaoxiao Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Von V L Torres
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Wenzi Bi
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Eric Mandela
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Jiahui Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, PR China
| |
Collapse
|
44
|
Suppression of antibiotic resistance evolution by single-gene deletion. Sci Rep 2020; 10:4178. [PMID: 32144279 PMCID: PMC7060189 DOI: 10.1038/s41598-020-60663-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 02/12/2020] [Indexed: 11/08/2022] Open
Abstract
Antibiotic treatment generally results in the selection of resistant bacterial strains, and the dynamics of resistance evolution is dependent on complex interactions between cellular components. To better characterize the mechanisms of antibiotic resistance and evaluate its dependence on gene regulatory networks, we performed systematic laboratory evolution of Escherichia coli strains with single-gene deletions of 173 transcription factors under three different antibiotics. This resulted in the identification of several genes whose deletion significantly suppressed resistance evolution, including arcA and gutM. Analysis of double-gene deletion strains suggested that the suppression of resistance evolution caused by arcA and gutM deletion was not caused by epistatic interactions with mutations known to confer drug resistance. These results provide a methodological basis for combinatorial drug treatments that may help to suppress the emergence of resistant pathogens by inhibiting resistance evolution.
Collapse
|
45
|
Ghatak S, King ZA, Sastry A, Palsson BO. The y-ome defines the 35% of Escherichia coli genes that lack experimental evidence of function. Nucleic Acids Res 2019; 47:2446-2454. [PMID: 30698741 PMCID: PMC6412132 DOI: 10.1093/nar/gkz030] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/07/2018] [Accepted: 01/26/2019] [Indexed: 01/22/2023] Open
Abstract
Experimental studies of Escherichia coli K-12 MG1655 often implicate poorly annotated genes in cellular phenotypes. However, we lack a systematic understanding of these genes. How many are there? What information is available for them? And what features do they share that could explain the gap in our understanding? Efforts to build predictive, whole-cell models of E. coli inevitably face this knowledge gap. We approached these questions systematically by assembling annotations from the knowledge bases EcoCyc, EcoGene, UniProt and RegulonDB. We identified the genes that lack experimental evidence of function (the ‘y-ome’) which include 1600 of 4623 unique genes (34.6%), of which 111 have absolutely no evidence of function. An additional 220 genes (4.7%) are pseudogenes or phantom genes. y-ome genes tend to have lower expression levels and are enriched in the termination region of the E. coli chromosome. Where evidence is available for y-ome genes, it most often points to them being membrane proteins and transporters. We resolve the misconception that a gene in E. coli whose primary name starts with ‘y’ is unannotated, and we discuss the value of the y-ome for systematic improvement of E. coli knowledge bases and its extension to other organisms.
Collapse
Affiliation(s)
- Sankha Ghatak
- Bioengineering Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zachary A King
- Bioengineering Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anand Sastry
- Bioengineering Department, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Bioengineering Department, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
46
|
Said-Salman IH, Jebaii FA, Yusef HH, Moustafa ME. Global gene expression analysis of Escherichia coli K-12 DH5α after exposure to 2.4 GHz wireless fidelity radiation. Sci Rep 2019; 9:14425. [PMID: 31595026 PMCID: PMC6783421 DOI: 10.1038/s41598-019-51046-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/23/2019] [Indexed: 11/09/2022] Open
Abstract
This study investigated the non-thermal effects of Wi-Fi radiofrequency radiation of 2.4 GHz on global gene expression in Escherichia coli K-12 DH5α. High-throughput RNA-sequencing of 2.4 GHz exposed and non-exposed bacteria revealed that 101 genes were differentially expressed (DEGs) at P ≤ 0.05. The up-regulated genes were 52 while the down-regulated ones were 49. QRT-PCR analysis of pgaD, fliC, cheY, malP, malZ, motB, alsC, alsK, appB and appX confirmed the RNA-seq results. About 7% of DEGs are involved in cellular component organization, 6% in response to stress stimulus, 6% in biological regulation, 6% in localization, 5% in locomotion and 3% in cell adhesion. Database for annotation, visualization and integrated discovery (DAVID) functional clustering revealed that DEGs with high enrichment score included genes for localization of cell, locomotion, chemotaxis, response to external stimulus and cell adhesion. Kyoto encyclopedia of genes and genomes (KEGG) pathways analysis showed that the pathways for flagellar assembly, chemotaxis and two-component system were affected. Go enrichment analysis indicated that the up-regulated DEGs are involved in metabolic pathways, transposition, response to stimuli, motility, chemotaxis and cell adhesion. The down-regulated DEGs are associated with metabolic pathways and localization of ions and organic molecules. Therefore, the exposure of E. coli DH5α to Wi-Fi radiofrequency radiation for 5 hours influenced several bacterial cellular and metabolic processes.
Collapse
Affiliation(s)
- Ilham H Said-Salman
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon.
- Department of Biochemistry, Faculty of Science, Lebanese University, Beirut, Lebanon.
| | - Fatima A Jebaii
- Department of Biochemistry, Faculty of Science, Lebanese University, Beirut, Lebanon
| | - Hoda H Yusef
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mohamed E Moustafa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
47
|
Ranjith K, Ramchiary J, Prakash JSS, Arunasri K, Sharma S, Shivaji S. Gene Targets in Ocular Pathogenic Escherichia coli for Mitigation of Biofilm Formation to Overcome Antibiotic Resistance. Front Microbiol 2019; 10:1308. [PMID: 31293528 PMCID: PMC6598151 DOI: 10.3389/fmicb.2019.01308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/27/2019] [Indexed: 11/13/2022] Open
Abstract
The present work is an attempt to establish the functionality of genes involved in biofilm formation and antibiotic resistance in an ocular strain of Escherichia coli (L-1216/2010) which was isolated and characterized from the Vitreous fluid of a patient with Endophthalmitis. For this purpose, seven separate gene-specific knockout mutants were generated by homologous recombination in ocular E. coli. The genes that were mutated included three transmembrane genes ytfR (ABC transporter ATP-binding protein), mdtO (multidrug efflux system) and tolA (inner membrane protein), ryfA coding for non-coding RNA and three metabolic genes mhpA (3-3-hydroxyphenylpropionate 1,2-dioxygenase), mhpB (2,3-di hydroxyphenylpropionate 1,2-dioxygenase), and bdcR (regulatory gene of bdcA). Mutants were validated by sequencing and Reverse transcription-PCR and monitored for biofilm formation by XTT method and confocal microscopy. The antibiotic susceptibility of the mutants was also ascertained. The results indicated that biofilm formation was inhibited in five mutants (ΔbdcR, ΔmhpA, ΔmhpB, ΔryfA, and ΔtolA) and the thickness of biofilm reduced from 17.2 μm in the wildtype to 1.5 to 4.8 μm in the mutants. Mutants ΔytfR and ΔmdtO retained the potential to form biofilm. Complementation of the mutants with the wild type gene restored biofilm formation potential in all mutants except in ΔmhpB. The 5 mutants which lost their ability to form biofilm (ΔbdcR, ΔmhpA, ΔmhpB, ΔtolA, and ΔryfA) did not exhibit any change in their susceptibility to Ceftazidime, Cefuroxime, Ciprofloxacin, Gentamicin, Cefotaxime, Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin in the planktonic phase compared to wild type ocular E. coli. But ΔmdtO was the only mutant with altered MIC to Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin both in the planktonic and biofilm phase. This is the first report demonstrating the involvement of the metabolic genes mhpA and mhpB and bdcR (regulatory gene of bdcA) in biofilm formation in ocular E. coli. In addition we provide evidence that tolA and ryfA are required for biofilm formation while ytfR and mdtO are not required. Mitigation of biofilm formation to overcome antibiotic resistance could be achieved by targeting the genes bdcR, mhpA, mhpB, ryfA, and tolA.
Collapse
Affiliation(s)
- Konduri Ranjith
- Jhaveri Microbiology Centre - Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India.,Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Jahnabi Ramchiary
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Jogadhenu S S Prakash
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kotakonda Arunasri
- Jhaveri Microbiology Centre - Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Savitri Sharma
- Jhaveri Microbiology Centre - Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Sisinthy Shivaji
- Jhaveri Microbiology Centre - Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
48
|
He X, Xue T, Ma Y, Zhang J, Wang Z, Hong J, Hui L, Qiao J, Song H, Zhang M. Identification of functional butanol-tolerant genes from Escherichia coli mutants derived from error-prone PCR-based whole-genome shuffling. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:73. [PMID: 30976323 PMCID: PMC6442406 DOI: 10.1186/s13068-019-1405-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Butanol is an important biofuel and chemical. The development of butanol-tolerant strains and the identification of functional butanol-tolerant genes is essential for high-yield bio-butanol production due to the toxicity of butanol. RESULTS Escherichia coli BW25113 was subjected for the first time to error-prone PCR-based whole-genome shuffling. The resulting mutants BW1847 and BW1857 were found to tolerate 2% (v/v) butanol and short-chain alcohols, including ethanol, isobutanol, and 1-pentanol. The mutants exhibited good stability under butanol stress, indicating that they are potential host strains for the construction of butanol pathways. BW1847 had better butanol tolerance than BW1857 under 0-0.75% (v/v) butanol stress, but showed a lower tolerance than BW1857 under 1.25-2% (v/v) butanol stress. Genome resequencing and PCR confirmation revealed that BW1847 and BW1857 had nine and seven single nucleotide polymorphisms, respectively, and a common 14-kb deletion. Functional complementation experiments of the SNPs and deleted genes demonstrated that the mutations of acrB and rob gene and the deletion of TqsA increased the tolerance of the two mutants to butanol. Genome-wide site-specific mutated strains DT385 (acrB C1198T) and DT900 (rob AT686-7) also showed significant tolerance to butanol and had higher butanol efflux ability than the control, further demonstrating that their mutations yield an inactive protein that enhances butanol resistance characteristics. CONCLUSIONS Stable E. coli mutants with enhanced short alcohols and high concentrations of butanol tolerance were obtained through a rapid and effective method. The key genes of butanol tolerance in the two mutants were identified by comparative functional genomic analysis.
Collapse
Affiliation(s)
- Xueting He
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Tingli Xue
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Yuanyuan Ma
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Technology Research Institute, Tianjin University, Tianjin, 30072 People’s Republic of China
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Tianjin University, Tianjin, 300072 China
| | - Junyan Zhang
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhiquan Wang
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Jiefang Hong
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Lanfeng Hui
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Jianjun Qiao
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Tianjin University, Tianjin, 300072 China
| | - Hao Song
- Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin, 300072 China
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Tianjin University, Tianjin, 300072 China
| | - Minhua Zhang
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Frontier Technology Research Institute, Tianjin University, Tianjin, 30072 People’s Republic of China
| |
Collapse
|
49
|
Gorelik O, Levy N, Shaulov L, Yegodayev K, Meijler MM, Sal-Man N. Vibrio cholerae autoinducer-1 enhances the virulence of enteropathogenic Escherichia coli. Sci Rep 2019; 9:4122. [PMID: 30858454 PMCID: PMC6411865 DOI: 10.1038/s41598-019-40859-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Diarrhoea is the second leading cause of death in children under the age of five. The bacterial species, Vibrio cholerae and enteropathogenic Escherichia coli (EPEC), are among the main pathogens that cause diarrhoeal diseases, which are associated with high mortality rates. These two pathogens have a common infection site-the small intestine. While it is known that both pathogens utilize quorum sensing (QS) to determine their population size, it is not yet clear whether potential bacterial competitors can also use this information. In this study, we examined the ability of EPEC to determine V. cholerae population sizes and to modulate its own virulence mechanisms accordingly. We found that EPEC virulence is enhanced in response to elevated concentrations of cholera autoinducer-1 (CAI-1), even though neither a CAI-1 synthase nor CAI-1 receptors have been reported in E. coli. This CAI-1 sensing and virulence upregulation response may facilitate the ability of EPEC to coordinate successful colonization of a host co-infected with V. cholerae. To the best of our knowledge, this is the first observed example of 'eavesdropping' between two bacterial pathogens that is based on interspecies sensing of a QS molecule.
Collapse
Affiliation(s)
- Orna Gorelik
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niva Levy
- The Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lihi Shaulov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ksenia Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael M Meijler
- The Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
50
|
Stotani S, Gatta V, Medarametla P, Padmanaban M, Karawajczyk A, Giordanetto F, Tammela P, Laitinen T, Poso A, Tzalis D, Collina S. DPD-Inspired Discovery of Novel LsrK Kinase Inhibitors: An Opportunity To Fight Antimicrobial Resistance. J Med Chem 2019; 62:2720-2737. [PMID: 30786203 DOI: 10.1021/acs.jmedchem.9b00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antibiotic resistance is posing a continuous threat to global public health and represents a huge burden for society as a whole. In the past decade, the interference with bacterial quorum sensing (QS) (i.e., cell-cell communication) mechanisms has extensively been investigated as a valid therapeutic approach in the pursuit of a next generation of antimicrobials. ( S)-4,5-Dihydroxy-2,3-pentanedione, commonly known as ( S)-DPD, a small signaling molecule that modulates QS in both Gram-negative and Gram-positive bacteria, is phosphorylated by LsrK, and the resulting phospho-DPD activates QS. We designed and prepared a small library of DPD derivatives, characterized by five different scaffolds, and evaluated their LsrK inhibition in the context of QS interference. SAR studies highlighted the pyrazole moiety as an essential structural element for LsrK inhibition. Particularly, four compounds were found to be micromolar LsrK inhibitors (IC50 ranging between 100 μM and 500 μM) encouraging further exploration of novel analogues as potential new antimicrobials.
Collapse
Affiliation(s)
- Silvia Stotani
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section , University of Pavia , Viale Taramelli 12 , 27100 Pavia , Italy.,Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 Dortmund , Germany
| | - Viviana Gatta
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , FI-00014 Helsinki , Finland
| | - Prasanthi Medarametla
- School of Pharmacy, Faculty of Health Sciences , University of Eastern Finland , P.O. Box 1627, FI-70211 Kuopio , Finland
| | - Mohan Padmanaban
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 Dortmund , Germany
| | - Anna Karawajczyk
- Selvita S.A. , Park Life Science, Bobrzyňskiego 14 , 30-348 Krakow , Poland
| | - Fabrizio Giordanetto
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 Dortmund , Germany
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , FI-00014 Helsinki , Finland
| | - Tuomo Laitinen
- School of Pharmacy, Faculty of Health Sciences , University of Eastern Finland , P.O. Box 1627, FI-70211 Kuopio , Finland
| | - Antti Poso
- School of Pharmacy, Faculty of Health Sciences , University of Eastern Finland , P.O. Box 1627, FI-70211 Kuopio , Finland
| | - Dimitros Tzalis
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 Dortmund , Germany
| | - Simona Collina
- Medicinal Chemistry , Taros Chemicals GmbH & Co. KG , Emil-Figge-Straße 76a , 44227 Dortmund , Germany
| |
Collapse
|