1
|
Arredondo-Alonso S, Pöntinen AK, Gama JA, Gladstone RA, Harms K, Tonkin-Hill G, Thorpe HA, Simonsen GS, Samuelsen Ø, Johnsen PJ, Corander J. Plasmid-driven strategies for clone success in Escherichia coli. Nat Commun 2025; 16:2921. [PMID: 40180894 PMCID: PMC11968864 DOI: 10.1038/s41467-025-57940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Escherichia coli is the most widely studied microbe in history, but the population structure and evolutionary trends of its extrachromosomal elements known as plasmids remain poorly delineated. Here we used long-read technology to high-resolution sequence the entire plasmidome and the corresponding host chromosomes from an unbiased longitudinal survey covering two decades and over 2000 E. coli isolates. We find that some plasmids have persisted in lineages even for centuries, demonstrating strong plasmid-lineage associations. Our analysis provides a detailed map of recent vertical and horizontal evolutionary events involving plasmids with key antibiotic resistance, competition and virulence determinants. We present genomic evidence of both chromosomal and plasmid-driven success strategies adopted by distant lineages by independently inheriting the same genomic elements. Further, we use in vitro experiments to verify the importance of key bacteriocin-producing plasmids for clone success. Our study has general implications for understanding plasmid biology and bacterial evolutionary strategies.
Collapse
Affiliation(s)
| | - Anna K Pöntinen
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - João A Gama
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | | | - Klaus Harms
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gerry Tonkin-Hill
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Harry A Thorpe
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Gunnar S Simonsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Pål J Johnsen
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway.
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK.
- Helsinki Institute for Information Technology HIIT, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Runcharoon K, Garcia B, Peterson BN, Young MM, Favro ME, Barbieri NL, Waltman D, Flores B, Dinh E, Logue CM. Longitudinal study of avian pathogenic Escherichia coli (APEC) serogroups associated with disease in Georgia poultry using molecular serology and virulence gene analysis. Avian Pathol 2025; 54:185-197. [PMID: 39263997 DOI: 10.1080/03079457.2024.2403414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Avian pathogenic Escherichia coli (APEC) is a significant cause of morbidity, mortality, and production loss to the poultry industry worldwide. Here, we characterized 569 E. coli isolates from avian-diagnosed colibacillosis cases from the state of Georgia, USA. In total, 339 isolates were assigned into 32 serogroups with the majority classifying as O78, O2, O25, O8, O1, O86, O18, and O15. Serogroup O25 was found to link with broilers, while broiler breeders were more often associated with serogroup O1 and pet/ hobby birds with serogroup O8. In addition, some serogroups (O1) were more prevalent in the summer and fall. Analysis for virulence-associated genes (VAGs) found 23.20% of isolates did not harbour any genes linked with the APEC pathotype, while ColV plasmid-associated genes (iroN, ompT, hlyF, iss, and aerJ) were frequently detected among most isolates (with 80-96% prevalence) and some of these genes were linked with serogroup. Phylogenetic analysis, classified isolates into phylogenetic groups B2 (34%), F (19%), A (15%), and G (9%). The phylogenetic group B2 isolates also harboured the highest number of VAGs. This study highlights that the current APEC-causing disease in birds in the State of Georgia has identified several emerging serogroups possessing several VAGs that could potentially lead to challenges in colibacillosis control.RESEARCH HIGHLIGHTSSeveral emerging APEC serogroups were observed in Georgia poultry populations.An association between APEC serogroups and bird type was observed.The prevalence of different APEC serogroups was influenced by season.A multiplex PCR assay targeting common serogroups of APEC in Georgia poultry was developed.
Collapse
Affiliation(s)
- Klao Runcharoon
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Bellanirys Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Breck N Peterson
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Meaghan M Young
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Margaret E Favro
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Nicolle L Barbieri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Doug Waltman
- Georgia Poultry Laboratory Network, Gainesville, GA, USA
| | | | - Emily Dinh
- Georgia Poultry Laboratory Network, Gainesville, GA, USA
| | - Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
3
|
Wang M, Ma M, Yu L, He K, Zhang T, Feng Y, Hu G, He D, Pan Y, Zhai Y. Characterization of IS26-bracketed bla CTX-M-65 resistance module on IncI1 and IncX1 plasmids in Escherichia coli ST224 isolated from a chicken in China. Vet Microbiol 2025; 303:110443. [PMID: 40022824 DOI: 10.1016/j.vetmic.2025.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, particularly due to increasing bacterial resistance to β-lactam and aminoglycoside antibiotics, primarily mediated by extended-spectrum β-lactamases (ESBLs) and 16S rRNA methylases in Enterobacteriaceae. In this study, a multidrug resistant (MDR) E. coli strain HN257 isolated from chicken belonging to ST224 and serotype O88:H23 was characterized. SNP-based phylogenetic analysis revealed two distinct clades among poultry-associated E. coli ST224 in this study and others from Genbank, with strain HN257 closely related to chicken-derived E. coli YH17148 (serotype O78:H23), from China. The E. coli HN257 harbored four plasmids with 16 resistance determinants. Two blaCTX-M-65 genes were located on different plasmids with an IS26-bracketed resistance module IS26-traI-fip-∆ISEcp1-blaCTX-M-65-IS903D-iroN-IS26. The plasmid pHN257-2 belonged to the IncI1 ST71 epidemic lineage and carried blaCTX-M-65, blaTEM-1b, rmtB, fosA3, floR, aac(3)-IV and oqxAB, while plasmid pHN257-4 belonged to the non-conjugative IncX1 and carried blaCTX-M-65 and fosA3. Under experimental conditions, a rmtB-positive conjugative helper IncI1 ST136 plasmid could fuse with the non-conjugative pHN257-4 carrying blaCTX-M-65, resulting in the formation of a cointegrate pHN257-F mediated by IS26. Importantly, both single and fused plasmids in transconjugants showed minimal impact on bacterial growth. This study highlights the first identification of a non-conjugative IncX1 plasmid carrying blaCTX-M-65 and fosA3 in MDR E. coli ST224 from poultry, offering critical insights into the presence and transmission dynamics of blaCTX-M-65.
Collapse
Affiliation(s)
- Mengtao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mengjuan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lijie Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Kun He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tengli Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yiming Feng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Yajun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Feng Z, Lorenc N, O'Brien B, Sun G, Li Z, Jung D, Ronholm J. Deep culturing the fecal microbiota of healthy laying hens. Anim Microbiome 2025; 7:32. [PMID: 40148927 PMCID: PMC11951684 DOI: 10.1186/s42523-025-00395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND The microbiota is implicated in several aspects of livestock health and disease. Understanding the structure and function of the poultry microbiota would be a valuable tool for improving their health and productivity since the microbiota can likely be optimized for metrics that are important to the industry such as improved feed conversion ratio, lower greenhouse gas emissions, and higher levels of competitive exclusion against pathogens. Most research into understanding the poultry microbiota has relied on culture-independent methods; however, the pure culture of bacteria is essential to elucidating the roles of individual bacteria in the microbiota and developing novel probiotic products for poultry production. RESULTS In this study, we have used a deep culturing approach consisting of 76 culture conditions to generate a culture collection of 1,240 bacterial isolates from healthy chickens. We then compared the taxonomy of cultured isolates to the taxonomic results of metagenomic sequencing to estimate what proportion of the microbiota was cultured. Metagenomic sequencing detected DNA from 545 bacterial species while deep culturing was able to produce isolates for 128 bacterial species. Some bacterial families, such as Comamonadaceae and Neisseriaceae were only detected via culturing - indicating that metagenomic analysis may not provide a complete taxonomic census of the microbiota. To further examine sub-species diversity in the poultry bacteriome, we whole genome sequenced 114 Escherichia coli isolates from 6 fecal samples and observed a great deal of diversity. CONCLUSIONS Deep culturing and metagenomic sequencing approaches to examine the diversity of the microbiota within an individual will yield different results. In this project we generated a culture collection of enteric bacteria from healthy laying hens that can be used to further understand the role of specific commensals within the broader microbiota context and have made this collection available to the community. Isolates from this collection can be requested by contacting the corresponding author and will be provided at cost.
Collapse
Affiliation(s)
- Zhixuan Feng
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Natalia Lorenc
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Bridget O'Brien
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Guangwen Sun
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Zhiwei Li
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, Mcgill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Norambuena R, Rojas-Martínez V, Tobar-Calfucoy E, Aguilera M, Sabag A, Zamudio MS, Lara P, Martín DS, Zabner M, Tichy D, Camejo P, Rojas F, León L, Pino M, Mora P, Ulloa S, Cifuentes P, Pieringer H, Muñoz NC. Development of a bacteriophage cocktail with high specificity against high-risk avian pathogenic Escherichia coli. Poult Sci 2025; 104:105038. [PMID: 40168783 PMCID: PMC11997392 DOI: 10.1016/j.psj.2025.105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/03/2025] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a widespread pathogen that poses a significant threat to the poultry industry globally. A recent typing scheme has proposed several APEC pathotypes, including non-APEC, High Risk non-APEC (HR non-APEC), APEC, and High Risk APEC (HR APEC), based on the presence of the ompT and hlyF genes, sequence types (ST) ST131, ST23, ST428, ST355, and the O78 antigen. In Brazilian broiler farms, a higher prevalence of lesions in carcasses has been linked to the presence of HR APEC pathotypes. Due to the growing concern over antimicrobial resistance, bacteriophage-based formulations are emerging as a promising alternative for controlling APEC outbreaks. In this study, we isolated and sequenced 142 strains from Brazilian commercial broiler farms, classifying them as APEC (70), HR APEC (12), HR non-APEC (3) and non-APEC (57). Notably, 38 % of the isolates were classified as multi-drug resistant (MDR), with serotypes H10 and ST155 being the most frequently identified. Additionally, we isolated, sequenced, and classified 66 bacteriophages that exhibited lytic activity against these bacterial strains in both qualitative and quantitative assays. Eight of the bacteriophages demonstrated complementary host ranges against the bacterial collection. Bacteriophage cocktails were assembled, tested in quantitative assays, and shown to be effective against APEC. A cocktail consisting of four bacteriophages (AC-01) displayed a broad lytic spectrum in vitro, inhibiting the growth of 56.3 % (n = 80/142) of the isolates with a mean inhibition of 32.9 %. Remarkably, the in vitro lytic activity of the cocktail was significantly more effective against HR APEC isolates (12/12, 65.9 % mean inhibition) and HR non-APEC isolates (3/3, 58.0 % mean inhibition). Our results emphasize the importance of genetically characterizing target bacteria when developing an effective and specific bacteriophage cocktail against APEC.
Collapse
|
6
|
Laopiem S, Witoonsatian K, Kulprasetsri S, Panomwan P, Pathomchai-Umporn C, Kamtae R, Jirawattanapong P, Songserm T, Sinwat N. Antimicrobial resistance, virulence gene profiles, and phylogenetic groups of Escherichia coli isolated from healthy broilers and broilers with colibacillosis in Thailand. BMC Vet Res 2025; 21:160. [PMID: 40057792 PMCID: PMC11889816 DOI: 10.1186/s12917-025-04626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/24/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Multidrug resistance in Escherichia coli has a significant global impact on poultry production. This study aimed to determine the phenotypic and genotypic backgrounds of antimicrobial resistance (AMR) and virulence gene profiles of E. coli strains isolated from diseased and healthy broilers. A total of 211 E. coli isolates were recovered from diseased (n = 110) and healthy broilers (n = 101). All the isolates were subjected to antimicrobial susceptibility testing. A PCR-based technique was applied to screen AMR genes, virulence genes and analyze phylogenetic groups. RESULTS Phylogenetic groups B1 and D were the most prevalent for E. coli isolated from diseased and healthy birds. Among virulence genes, the detection rates of cva/cvi, iutA, iucD, iroN, iss and ompT were considerably greater in E.coli strains from diseased birds than in healthy birds. The virulence gene pattern of hlyF-iutA-iucD-iroN-iss-ompT (16.4%) was frequently observed in E.coli isolated from diseased birds, whereas approximately 22.8% of E.coli from healthy birds did not carry any virulence genes. Analysis of AMR profiles revealed that 58.3% of E.coli were resistant to multiple classes of antibiotics, and 96.7% carried at least one antibiotic resistance gene AMR genes. CONCLUSION The findings of this study demonstrate the variable distribution of phylogenetic groups and virulence genes. E.coli strains isolated from broilers had multidrug resistance profiles. The study emphasizes the need for continuous monitoring of AMR emergence in E. coli from broilers. This monitoring allows for early detection and implementation of strategies to control the spread of resistant strains.
Collapse
Affiliation(s)
- Sudtisa Laopiem
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Kriangkrai Witoonsatian
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Sittinee Kulprasetsri
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Pun Panomwan
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Chutima Pathomchai-Umporn
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Raktipon Kamtae
- Kamphaeng Saen Veterinary Diagnostic Center, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean campus, Nakorn Pathom, 73140, Thailand
| | - Pichai Jirawattanapong
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand
| | - Thaweesak Songserm
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean campus, Nakorn Pathom, 73140, Thailand
| | - Nuananong Sinwat
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Kamphaengsean Campus, Nakorn Pathom, 73140, Thailand.
| |
Collapse
|
7
|
Runcharoon K, Favro ME, Logue CM. Longitudinal analysis of avian pathogenic Escherichia coli (APEC) serogroups and pathotypes from avian colibacillosis in Georgia: A continued investigation - year 2 analysis. Poult Sci 2025; 104:104722. [PMID: 39721275 PMCID: PMC11732526 DOI: 10.1016/j.psj.2024.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a significant cause of worldwide morbidity, mortality, and production loss in the poultry industry. Here, we characterized 115 E. coli isolates from avian-diagnosed colibacillosis cases from Georgia, USA in 2022 as part of a year two follow on surveillance using both current and a newly developed serogrouping tool (Klao9-SeroPCR). The isolates examined were classified into 18 serogroups with the majority classifying as O78, O25, O86, O2, O8, and O1 with 32 isolates classified as untypable serogroups. In this study, the Klao9-seroPCR was able to identify serogroups of 72/115 isolates (62.6 %) using the multiplex PCR assay. This diagnostic PCR assay proved to be a potential technique for the rapid identification of the most common APEC serogroups dominating in Georgia poultry. Genotyping based on detection of selected virulence genes (VAGs) found that 22.6 % of isolates did not harbor any of the targeted genes. This analysis also confirmed that the CoIV plasmid-associated genes (iroN, ompT, hlyF, iss, and aerJ,) are still frequently found among APEC isolates (54-65 %) with a slightly lower prevalence compared to the previous year's study. Phylogenetic analysis showed that the isolates belong to phylogenetic groups G (43 %), group B2 (13 %), group F (6 %), and group A (5 %). Of interest, 30 % were identified as an unknown or cryptic phylogenetic group. This study highlights that there is a shift in the APEC causing disease in birds in the state of Georgia with virulence commonly associated with the presence of the CoIV plasmid in disease strains. Of interest, the new serogrouping panel that is designed to target more common serogroups seen in Georgia has proven to be a rapid screening/ diagnostic tool for implementation in our workflow. This study highlights a need to continue to monitor the APEC serogroups in the field to apply appropriate preventive plans against colibacillosis.
Collapse
Affiliation(s)
- Klao Runcharoon
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA 30602, USA
| | - Margaret E Favro
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA 30602, USA
| | - Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens GA 30602, USA.
| |
Collapse
|
8
|
Reid CJ, Cummins ML, Djordjevic SP. Major F plasmid clusters are linked with ColV and pUTI89-like marker genes in bloodstream isolates of Escherichia coli. BMC Genomics 2025; 26:57. [PMID: 39838323 PMCID: PMC11748317 DOI: 10.1186/s12864-025-11226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND F plasmids are abundant in E. coli, carrying a variety of genetic cargo involved in fitness, pathogenicity, and antimicrobial resistance. ColV and pUTI89-like plasmids have drawn attention for their potential roles in various forms of extra-intestinal pathogenicity. However, the rates of their carriage and the overall diversity of F plasmids in E. coli bloodstream infections (BSI E. coli) remain unknown. METHODS We performed a t-SNE-based cluster analysis of predicted F plasmids from a collection of 4711 BSI E. coli draft genomes to describe their diversity and abundance. We also screened them for markers of ColV and pUTI89-like plasmids, F plasmid replicon sequence types (RST) and E. coli sequence types (ST) to understand how genetic features were related to plasmid clusters. RESULTS Predicted F plasmids in BSI E. coli draft genomes were embedded within five major clusters based on a model of complete F plasmid sequences. Nearly half of the clustered sequences belonged to two major clusters, which were associated with ColV and pUTI89-like marker genes, respectively. Genomes from the ColV cluster featured F2:A-:B1 and F24:A-B1 RSTs in association with ST95, ST58 and ST88, whilst the pUTI89-like cluster was mostly F29:A-:B10 linked to ST73, ST69, ST95 and ST131. Plasmids associated with different lineages of ST131 formed additional major clusters, whilst F51:A-:B10 plasmids in ST73 were also common. CONCLUSIONS ColV and pUTI89-like plasmid markers are predominant in BSI E. coli that carry F plasmids. These markers are associated with distinct clusters of plasmids across diverse sequence types of E. coli. We hypothesise that their abundance in BSI E. coli is partially driven by carriage of backbone genes previously shown to contribute to virulence in models of bloodstream infection. Their carriage by pandemic E. coli STs suggests clonal expansion also plays a role in their success in BSI. Ecological pathways via which these plasmids evolve, and spread are likely to be distinct as other studies show ColV is strongly associated with poultry and food animal production, whereas pUTI89-like plasmids appear to be mostly human-restricted.
Collapse
Affiliation(s)
- Cameron J Reid
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment Research Unit, Urrbrae, SA, Australia
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
9
|
Runcharoon K, Favro ME, Logue CM. The pathogenicity traits of avian pathogenic Escherichia coli O25-ST131 associated with avian colibacillosis in Georgia poultry and their genotypic and phenotypic overlap with other extraintestinal pathogenic E. coli. J Appl Microbiol 2025; 136:lxaf015. [PMID: 39814575 DOI: 10.1093/jambio/lxaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
AIMS To characterize Escherichia coli O25 ST131 (O25-ST131) isolated from Georgia poultry-a "global high-risk" clonal strain. METHODS AND RESULTS Using multiplex PCR to detect target genes in 98 isolates of avian pathogenic E. coli (APEC) O25 recovered from avians diagnosed with colibacillosis (n = 87) and healthy chicks (n = 11) in Georgia, USA. Eighty-eight isolates were classified as sequence type ST131 clade b and 56% (n = 49) belong to the phylogenetic group B2. Overall, 17% were identified as uropathogenic E. coli (UPEC)-like and 94% of the isolates formed strong to moderate biofilms. The extended-spectrum β-lactamases encoding genes, blaCTX M-15 (24%), carbapenemases encoding genes, and blaOXA48 (16%) were also detected. The isolates harbored FIB (88%), FIC (28%), A/C (14%), and FIIA (6%) plasmid replicons. Interestingly, 78% of the isolates were found to be resistant to chicken serum and 92% showed capabilities for growth in human urine. The isolates showed phenotypic resistance to several antibiotics including chloramphenicol (63%), ciprofloxacin (57%), trimethoprim-sulfamethoxazole (28%), streptomycin (17%), and cefoxitin and meropenem (14%) using the national antimicrobial resistance monitoring system panel. CONCLUSIONS Overall, our study provides evidence of the virulence of these global "high-risk" clones in Georgia poultry with some isolates showing genotypic overlap between APEC and UPEC. Also, this clone harbored several virulence genes, antimicrobial-resistant genes, and plasmids. Interestingly, the majority of APEC O25-ST131 isolates can survive and grow in both chicken serum and human urine and warrant further investigation of their potential pathogenicity for both chickens and humans.
Collapse
Affiliation(s)
- Klao Runcharoon
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Margaret E Favro
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
10
|
Walker GK, Suyemoto MM, Jacob ME, Thakur S, Borst LB. Canine uropathogenic and avian pathogenic Escherichia coli harboring conjugative plasmids exhibit augmented growth and exopolysaccharide production in response to Enterococcus faecalis. PLoS One 2024; 19:e0312732. [PMID: 39602363 PMCID: PMC11602052 DOI: 10.1371/journal.pone.0312732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) and avian pathogenic Escherichia coli (APEC) are extraintestinal pathogenic Escherichia coli (ExPEC) that infect dogs and poultry. These agents occur both as single-species infections and, commonly, in co-infection with Enterococcus faecalis (EF); however, it is unclear how EF co-infections modulate ExPEC virulence. Genetic drivers of interspecies interactions affecting virulence were identified using macrocolony co-culture, chicken embryo co-infection experiments, and whole-genome sequence analysis of ExPEC and EF clinical isolates. Ten of 11 UPEC strains originally co-isolated with EF exhibited a growth advantage when co-cultured with EF on iron-limited, semi-solid media in contrast to growing alone (P < 0.01). Phylogenetic analyses of these UPEC and 18 previously screened APEC indicated the growth-response phenotype was conserved in ExPEC despite strain diversity. When genomes of EF-responsive ExPEC were compared to non-responsive ExPEC genomes, EF-induced growth was associated with siderophore, exopolysaccharide (EPS), and plasmid conjugative transfer genes. Two matched pairs of EF-responsive and non-responsive ExPEC were selected for further characterization by macrocolony proximity and chicken embryo lethality assays. EF-responsive ExPEC produced 5 to 16 times more EPS in proximity to EF and were more lethal to embryos alone and during co-infection with EF compared to non-responsive ExPEC (P < 0.05). A responsive APEC strain cured of its conjugative plasmid lost the enhanced growth and EPS production response to EF. These data demonstrate that ExPEC growth augmentation by EF occurs in UPEC and APEC strains and is linked to conjugative virulence plasmids and EPS production, which are widely conserved ExPEC virulence determinants.
Collapse
Affiliation(s)
- Grayson K. Walker
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - M. Mitsu Suyemoto
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Megan E. Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Luke B. Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
11
|
Shabbir MAB, Shamim M, Tahir AH, Sattar A, Qin W, Ahmad W, Ahmad W, Khan FA, Ashraf MA. Potential of ZnO nanoparticles for multi-drug resistant Escherichia coli having CRISPR-Cas from poultry market in Lahore. BMC Microbiol 2024; 24:355. [PMID: 39294579 PMCID: PMC11411796 DOI: 10.1186/s12866-024-03462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/14/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Apart from known factors such as irrational use of antibiotics and horizontal gene transfer, it is now reported that clustered regularly interspaced short palindromic repeats (CRISPR) are also associated with increased antimicrobial resistance. Hence, it is critical to explore alternatives to antibiotics to control economic losses. Therefore, the present study aimed to determine not only the association of CRISPR-Cas system with antibiotic resistance but also the potential of Zinc Oxide nanoparticles (ZnO-NPs) for avian pathogenic Escherichia coli (APEC) isolated from poultry market Lahore. MATERIALS AND METHODS Samples (n = 100) were collected from live bird markets of Lahore, and isolates were confirmed as Escherichia coli (E. coli) using the Remel One fast kit, and APEC was identified using PCR. The antibiotic resistance pattern in APEC was determined using the minimum inhibitory concentration (MIC), followed by genotypic confirmation of antibiotic-resistant genes using the PCR. The CRISPR-Cas system was also identified in multidrug-resistant (MDR) isolates, and its association with antibiotics was determined using qRT-PCR. The potential of ZnO-NPs was evaluated for multidrug-resistant (MDR) isolates by MIC. RESULTS All isolates of APEC were resistant to nalidixic acid, whereas 95% were resistant to chloramphenicol and 89% were resistant to streptomycin. Nineteen MDR APEC were found in the present study and the CRISPR-Cas system was detected in all of these MDR isolates. In addition, an increased expression of CRISPR-related genes was observed in the standard strain and MDR isolates of APEC. ZnO-NPs inhibited the growth of resistant isolates. CONCLUSIONS The findings showed the presence of the CRISPR-Cas system in MDR strains of APEC, along with the potential of ZnO-NPs for a possible solution to proceed. This highlights the importance of regulating antimicrobial resistance in poultry to reduce potential health consequences.
Collapse
Affiliation(s)
- Muhammad Abu Bakr Shabbir
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muqaddas Shamim
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Adnan Hassan Tahir
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah-Arid Agriculture University, Rawalpindi, Pakistan
| | - Adeel Sattar
- Department of Pharmacology and Toxicology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wu Qin
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 311300, Hangzhou, China
| | - Waqas Ahmad
- Department of Pathology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Waqas Ahmad
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Narowal Campus, Lahore, Pakistan
| | - Farid Ahmed Khan
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Adnan Ashraf
- Institute of Microbiology, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
12
|
Jamali H, Akrami F, Bouakkaz S, Dozois CM. Prevalence of specific serogroups, antibiotic resistance and virulence factors of avian pathogenic Escherichia coli (APEC) isolated from clinical cases: A systematic review and meta-analysis. Microb Pathog 2024; 194:106843. [PMID: 39117015 DOI: 10.1016/j.micpath.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Pathogenic strains of Escherichia coli infecting poultry, commonly called avian pathogenic E. coli (APEC) present significant risks, to the health of both poultry and the general public. This systematic review aimed to examine the prevalence of APEC serotypes, sequence types (ST), phylogenetic groups, virulence factors and antibiotic resistance patterns based on 189 research papers sourced from PubMed, Web of Science, and ProQuest. Then, data were extracted from the selected studies and analyzed to assess the global distribution and characteristics of APEC strains. The metaprop codes in the Meta and Metafor packages of R as implemented in RStudio were then used to conduct meta-analysis. Among APEC strains identified from these different research reports serogroup O78 had the highest overall prevalence (16 %), followed by serogroups O2 (10 %), and O117 (8 %). The most common ST profiles were ST117 (20 %), ST140 (15 %), ST95 (12 %), and ST131 (9 %). ST117 and ST140 are known reservoirs for pathogenic E. coli in humans. Moreover, phylogenetic assessment highlighted the prevalence of phylogroups A, A1, F, D, and B2 among APEC strains indicating diversity in phylogenetic origin within poultry populations. The presence of antimicrobial resistance was notable among APEC strains against antibiotics such as tetracyclines, penicillins, and cephalosporins. This resistance may be linked to use of antimicrobials in poultry production in certain regions presenting challenges for both animal health management and human infection control. Analysis of sequences linked to adherence or virulence indicated that genes encoding adhesins (csg, fimC), iron/metal uptake (sitB, sitC, iroD) and cytotoxicity (estB, hlyF), and serum resistance (traT, iss) were highly prevalent. These factors have been reported to contribute to APEC host colonization and virulence in poultry. In summary, this overview of the characteristics of APEC highlights the pressing importance of monitoring and implementing management approaches to reduce antimicrobial resistance considering that a phylogenetic diversity of E. coli strains causes infections in both poultry and humans and represents a risk to both animal and public health. Further, determining the major conserved aspects and predominant mechanisms of virulence of APEC is critical for improving diagnostics and developing preventative measures to reduce the burden of infection caused by pathogenic E. coli in poultry and lower risks associated with foodborne transmission of E. coli to humans through poultry and poultry products.
Collapse
Affiliation(s)
- Hossein Jamali
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Fariba Akrami
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Souhaib Bouakkaz
- École de Technologie Supérieure, 1100 R. Notre Dame Ouest, Montréal, QC H3C 1K3, Canada
| | - Charles M Dozois
- Institut National de La Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada; Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada.
| |
Collapse
|
13
|
Ovi F, Zhang L, Jia L, Elliott K, Sukumaran AT, Cosby D, Wilson D, Ramachandran R, Evans J, Poudel I, Adhikari P. Evaluating the effects of virulence genotype, swarming motility, and multi-locus sequence types of Escherichia coli on layer chicken embryos. J Appl Microbiol 2024; 135:lxae141. [PMID: 38936825 DOI: 10.1093/jambio/lxae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
AIMS To determine the effects of swarming motility (SM) and multi-locus sequence types (MLST) on the main effect of virulence genotype of Escherichia coli through an embryos lethality assay between the 12th and 18th days of incubation. METHODS AND RESULTS We collected 58 E. coli isolates from asymptomatic commercial hens (n = 42) and lesions of colibacillosis cases (n = 16), then classified their virulence genotype as avirulent, moderately virulent, virulent-healthy, and virulent-colibacillosis categories by the presence of five virulence-associated genes (iroN, ompT, hlyF, iutA, and iss). These isolates were further classified as non-motile, motile, or hyper-motile by SM assay. From the 58 isolates, we selected 29 for ELA and determined their MLST. Each isolate was inoculated into 15 embryonated eggs through the allantoic cavity. We found the avirulent isolates reduced the relative embryo weight compared to virulent-colibacillosis and moderately virulent isolates (37.49 vs. 41.51 and 40.34%, P = 0.03). Among the moderately virulent and virulent-colibacillosis categories, embryo lethality was lower when isolates were non-motile. Yolk retention was unaffected by virulence categories, motility, or MLST. CONCLUSION Interaction between virulence genotype and SM substantially influenced the embryo lethality assay of E. coli isolates.
Collapse
Affiliation(s)
- Fozol Ovi
- Department of Poultry Science, Mississippi State University, 325 Wise Center Drive, Mississippi State MS 39762, United States
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, 325 Wise Center Drive, Mississippi State MS 39762, United States
| | - Linan Jia
- Department of Poultry Science, Mississippi State University, 325 Wise Center Drive, Mississippi State MS 39762, United States
| | - Katie Elliott
- Dept. of Agriculture (USDA), Poultry Research Unit, 150 Twelve Lane Mississippi State, MS 39762, United States
| | - Anuraj Theradiyil Sukumaran
- Department of Poultry Science, Mississippi State University, 325 Wise Center Drive, Mississippi State MS 39762, United States
| | - Douglas Cosby
- Dept. of Agriculture (USDA), National Poultry Research Center, 950 College Station Road Athens, GA 3060, United States
| | - Dan Wilson
- Wilson Veterinary Co. LLC. Central Indiana. Needham, IN
| | - Reshma Ramachandran
- Department of Poultry Science, Mississippi State University, 325 Wise Center Drive, Mississippi State MS 39762, United States
| | - Jeff Evans
- Dept. of Agriculture (USDA), Poultry Research Unit, 150 Twelve Lane Mississippi State, MS 39762, United States
| | - Ishab Poudel
- Department of Poultry Science, Mississippi State University, 325 Wise Center Drive, Mississippi State MS 39762, United States
| | - Pratima Adhikari
- Department of Poultry Science, Mississippi State University, 325 Wise Center Drive, Mississippi State MS 39762, United States
| |
Collapse
|
14
|
Felix MA, Sopovski D, Commichaux S, Yoskowitz N, Aljahdali NH, Grim CJ, Abbott CN, Carlton A, Han J, Sanad YM, Zhao S, Wang X, Foley SL, Khajanchi BK. Genetic relatedness and virulence potential of Salmonella Schwarzengrund strains with or without an IncFIB-IncFIC(FII) fusion plasmid isolated from food and clinical sources. Front Microbiol 2024; 15:1397068. [PMID: 38827152 PMCID: PMC11143878 DOI: 10.3389/fmicb.2024.1397068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/22/2024] [Indexed: 06/04/2024] Open
Abstract
A total of 55 food and clinical S. Schwarzengrund isolates were assayed for plasmid content, among which an IncFIB-IncFIC(FII) fusion plasmid, conferring streptomycin resistance, was detected in 17 isolates. Among the 17 isolates, 9 were food isolates primarily collected from poultry meat, and 8 clinical isolates collected from stool, urine, and gallbladder. SNP-based phylogenetic analyses showed that the isolates carrying the fusion plasmid formed a subclade indicating the plasmid was acquired and is now maintained by the lineage. Phylogenetic analysis of the plasmid suggested it is derived from avian pathogenic plasmids and might confer an adaptive advantage to the S. Schwarzengrund isolates within birds. IncFIB-IncFIC(FII) fusion plasmids from all food and three clinical isolates were self-conjugative and successfully transferred into E. coli J53 by conjugation. Food and clinical isolates had similar virulome profiles and were able to invade human Caco-2 cells. However, the IncFIB-IncFIC(FII) plasmid did not significantly add to their invasion and persistence potential in human Caco-2 cells.
Collapse
Affiliation(s)
- Monique A. Felix
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
- University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Danielle Sopovski
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
| | - Seth Commichaux
- Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Noah Yoskowitz
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
| | - Nesreen H. Aljahdali
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Christopher J. Grim
- Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, MD, United States
| | - Carter N. Abbott
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
| | - Ashlyn Carlton
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
- University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
| | - Jing Han
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
| | - Yasser M. Sanad
- University of Arkansas at Pine Bluff, Pine Bluff, AR, United States
- Department of Epidemiology, College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Shaohua Zhao
- Center for Veterinary Medicine, U. S. Food and Drug Administration, Laurel, MD, United States
| | - Xiong Wang
- Minnesota Department of Health, St. Paul, MN, United States
| | - Steven L. Foley
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
| | - Bijay K. Khajanchi
- National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, United States
- Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, U. S. Food and Drug Administration, Laurel, MD, United States
| |
Collapse
|
15
|
Cui J, Dong Y, Chen Q, Zhang C, He K, Hu G, He D, Yuan L. Horizontal transfer characterization of ColV plasmids in bla CTX-M-bearing avian Escherichia coli. Poult Sci 2024; 103:103631. [PMID: 38537404 PMCID: PMC11067769 DOI: 10.1016/j.psj.2024.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024] Open
Abstract
Extended-spectrum-β-lactamases (ESBLs)-producing Escherichia coli conferred resistance to most β-lactams, except for carbapenems. To date, the transmission mechanism of blaCTX-M, as the most common ESBLs subtype, in E. coli has received sustained attention around the worldwide, but the research on the pathogenicity of blaCTX-M-bearing E. coli is still scarce. The aims of this study were to discern the spread characteristics of ColV (encoding colicin V) plasmids in blaCTX-M-positive E. coli. The multi-drug resistance traits, phylogroups, and ColV plasmid profilings were screened in 76 blaCTX-M-positive E. coli. Thereafter, the genetic profiles of E. coli G12 and GZM7 were determined by whole genome sequencing, conjugation and S1-pulsed-field gel electrophoresis. The median lethal dose was analyzed in E. coli G12 and TG12A, the ColV-plasmid transconjugant of G12. Of all 76 blaCTX-M-bearing E. coli, 67.11% exhibited resistance to at least 2 drugs in addition to ceftiofur, 14.47% carried ColV-positive plasmids, and 53.95% were phylogroup C. Further studies demonstrated that the blaCTX-M-bearing E. coli G12 was assigned to the predominant lineage O78:H4-ST117 of phylogroup G. In addition, its ColV-positive plasmid simultaneously carried multiple resistance genes, and could be independently transferred to confer partial pathogenicity on its host by plasmid mating. E. coli GZM7 was O53:H9-ST23 of phylogroup C, which belonged to another representative lineage of APEC (avian pathogenic E. coli). Its ColV-positive plasmid could complete conjugation with the help of the other coexisting-resistance conjugative plasmid, although it failed to transfer alone. Our findings highlight the flexibly horizontal transfer of ColV plasmids along with multidrug-resistant genes among blaCTX-M-bearing E. coli poses a threat to poultry health and food safety, which contributes to elucidate the concept of "One Health" and deserves particular concern.
Collapse
Affiliation(s)
- Junling Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Yanbin Dong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiuru Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Chaojun Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Kun He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China
| | - Li Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, PR China; Zhengzhou Key Laboratory of Research and Evaluation of Traditional Chinese Veterinary Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
16
|
Wyrsch ER, Hoye BJ, Sanderson-Smith M, Gorman J, Maute K, Cummins ML, Jarocki VM, Marenda MS, Dolejska M, Djordjevic SP. The faecal microbiome of the Australian silver gull contains phylogenetically diverse ExPEC, aEPEC and Escherichia coli carrying the transmissible locus of stress tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170815. [PMID: 38336047 DOI: 10.1016/j.scitotenv.2024.170815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Wildlife are implicated in the dissemination of antimicrobial resistance, but their roles as hosts for Escherichia coli that pose a threat to human and animal health is limited. Gulls (family Laridae) in particular, are known to carry diverse lineages of multiple-antibiotic resistant E. coli, including extra-intestinal pathogenic E. coli (ExPEC). Whole genome sequencing of 431 E. coli isolates from 69 healthy Australian silver gulls (Chroicocephalus novaehollandiae) sampled during the 2019 breeding season, and without antibiotic selection, was undertaken to assess carriage in an urban wildlife population. Phylogenetic analysis and genotyping resolved 123 sequence types (STs) representing most phylogroups, and identified diverse ExPEC, including an expansive phylogroup B2 cluster comprising 103 isolates (24 %; 31 STs). Analysis of the mobilome identified: i) widespread carriage of the Yersinia High Pathogenicity Island (HPI), a key ExPEC virulence determinant; ii) broad distribution of two novel phage elements, each carrying sitABCD and iii) carriage of the transmissible locus of stress tolerance (tLST), an element linked to sanitation resistance. Of the 169 HPI carrying isolates, 49 (48 %) represented diverse B2 isolates hosting FII-64 ColV-like plasmids that lacked iutABC and sitABC operons typical of ColV plasmids, but carried the serine protease autotransporter gene, sha. Diverse E. coli also carried archetypal ColV plasmids (52 isolates; 12 %). Clusters of closely related E. coli (<50 SNVs) from ST58, ST457 and ST746, sourced from healthy gulls, humans, and companion animals, were frequently identified. In summary, anthropogenically impacted gulls host an expansive E. coli population, including: i) putative ExPEC that carry ColV virulence gene cargo (101 isolates; 23.4 %) and HPI (169 isolates; 39 %); ii) atypical enteropathogenic E. coli (EPEC) (17 isolates; 3.9 %), and iii) E. coli that carry the tLST (20 isolates; 4.6 %). Gulls play an important role in the evolution and transmission of E. coli that impact human health.
Collapse
Affiliation(s)
- Ethan R Wyrsch
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Martina Sanderson-Smith
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jody Gorman
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Kimberly Maute
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Marc S Marenda
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic; CEITEC VETUNI, University of Veterinary Sciences Brno, Czech Republic; Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Czech Republic; Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University, Pilsen, Czech Republic
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
17
|
AL-Busaidi B, AL-Muzahmi M, AL-Shabibi Z, Rizvi M, AL-Rashdi A, AL-Jardani A, Farzand R, AL-Jabri Z. Hypervirulent Capsular Serotypes K1 and K2 Klebsiella pneumoniae Strains Demonstrate Resistance to Serum Bactericidal Activity and Galleria mellonella Lethality. Int J Mol Sci 2024; 25:1944. [PMID: 38339222 PMCID: PMC10855873 DOI: 10.3390/ijms25031944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is a variant that has been increasingly linked to severe, life-threatening infections including pyogenic liver abscess and bloodstream infections. HvKps belonging to the capsular serotypes K1 and K2 have been reported worldwide, however, very scarce studies are available on their genomics and virulence. In the current study, we report four hypermucoviscous extended-spectrum β-lactamase-producing hvKp clinical strains of capsular serotype K1 and K2 isolated from pus and urine of critically ill patients in tertiary care hospitals in Oman. These strains belong to diverse sequence types (STs), namely ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2). To study their virulence, a Galleria mellonella model and resistance to human serum killing were used. The G. mellonella model revealed that the K1/ST-23 isolate was the most virulent, as 50% of the larvae died in the first day, followed by isolate K2/ST-231 and K2/ST-14, for which 75% and 50% of the larvae died in the second day, respectively. Resistance to human serum killing showed there was complete inhibition of bacterial growth of all four isolates by the end of the first hour and up to the third hour. Whole genome sequencing (WGS) revealed that hvKp strains display a unique genetic arrangement of k-loci. Whole-genome single-nucleotide polymorphism-based phylogenetic analysis revealed that these hvKp isolates were phylogenetically distinct, belonging to diverse clades, and belonged to different STs in comparison to global isolates. For ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2), there was a gradual decrease in the number of colonies up to the second to third hour, which indicates neutralization of bacterial cells by the serum components. However, this was followed by a sudden increase of bacterial growth, indicating possible resistance of bacteria against human serum bactericidal activity. This is the first report from Oman detailing the WGS of hvKp clinical isolates and assessing their resistance and virulence genomics, which reinforce our understanding of their epidemiology and dissemination in clinical settings.
Collapse
Affiliation(s)
- Basaier AL-Busaidi
- Microbiology and Immunology Diagnostic Laboratory, Department of Microbiology and Immunology, Sultan Qaboos University Hospital, Muscat 123, Oman;
| | | | - Zahra AL-Shabibi
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat 123, Oman;
| | - Meher Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Azza AL-Rashdi
- Central Public Health Laboratory, Department of Medical Microbiology, Ministry of Health, Muscat 100, Oman; (A.A.-R.); (A.A.-J.)
| | - Amina AL-Jardani
- Central Public Health Laboratory, Department of Medical Microbiology, Ministry of Health, Muscat 100, Oman; (A.A.-R.); (A.A.-J.)
| | - Robeena Farzand
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK;
| | - Zaaima AL-Jabri
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Muscat 123, Oman;
| |
Collapse
|
18
|
Trintinaglia M, de Brito KCT, Kobayashi RKT, Otutumi LK, Nakazato G, de Souza Gazal LE, Cruz VD, de Brito BG. Phenotypic and genotypic characterizations of bacteria isolated from the respiratory microbiota of healthy turkeys with potential for probiotic composition. Vet Res Commun 2024; 48:381-390. [PMID: 37707656 DOI: 10.1007/s11259-023-10217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Desirable characteristics of Staphylococcus sp., Streptococcus sp., Bacillus sp., Klebsiella sp., Escherichia coli, and Pseudomonas pseudoalcaligenes isolated from the trachea of healthy turkeys were evaluated as probiotic candidates in the search for new alternatives to solve antimicrobial resistance issues in poultry. In current study phenotypic and genotypic capacity to produce bacteriocin-like substances, efficacy to inhibit the growth of avian pathogens, susceptibility to antimicrobials of bacteria isolated from the respiratory microbiota of healthy turkeys, and the presence of virulence-associated genes (VAGs) predictors of Avian Pathogenic Escherichia coli (APEC) were evaluated. Nine E. coli and one Klebsiella sp. strains produced bacteriocin-like substances, and all harbored the cvaA gene. Some strains also showed antagonistic activity against APEC. Multidrug-resistant profile was found in 54% of the strains. Six strains of bacteriocin-like substances producing E. coli also harbored 3-5 VAGs. The study showed that two bacterial genuses (Klebsiella sp. and E. coli) present desirable probiotic characteristics. Our results identified strains with potential for poultry's respiratory probiotic.
Collapse
Affiliation(s)
- Michele Trintinaglia
- Secretariat of Agriculture, Department of Agricultural Diagnosis and Research - Postgraduate Program in Animal Health of the Institute for Veterinary Research Desidério Finamor, Livestock and Rural Development of Rio Grande do Sul, Eldorado do Sul, (RS), Brazil
| | - Kelly Cristina Tagliari de Brito
- Secretariat of Agriculture, Department of Agricultural Diagnosis and Research - Postgraduate Program in Animal Health of the Institute for Veterinary Research Desidério Finamor, Livestock and Rural Development of Rio Grande do Sul, Eldorado do Sul, (RS), Brazil.
| | | | - Luciana Kazue Otutumi
- Postgraduate Program in Animal Science with Emphasis on Bioactive Products), Universidade Paranaense, Umuarama, Brazil
| | - Gerson Nakazato
- Department of Microbiology, State University of Londrina, Londrina, Brazil
| | | | | | - Benito Guimarães de Brito
- Secretariat of Agriculture, Department of Agricultural Diagnosis and Research - Postgraduate Program in Animal Health of the Institute for Veterinary Research Desidério Finamor, Livestock and Rural Development of Rio Grande do Sul, Eldorado do Sul, (RS), Brazil
| |
Collapse
|
19
|
Xu C, Li Y, Li Y, Huang L, Zhou M, Xu Y, Dong N. Characterization of an ST38 carbapenem-resistant and highly virulent Escherichia coli carrying conjugatively transferable ColV virulence-resistance and blaNDM-5-positive resistance plasmids. J Antimicrob Chemother 2024; 79:447-452. [PMID: 38153179 DOI: 10.1093/jac/dkad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023] Open
Abstract
OBJECTIVES To characterize an Escherichia coli strain causing bloodstream infection encoding both high-virulence and carbapenem-resistance phenotypes. METHODS Antimicrobial susceptibility testing, WGS and bioinformatics analysis were performed to characterize strain E1. The function of the ColV plasmid was investigated by the Galleria mellonella infection model, serum killing and macrophage killing assays. The fitness effect of the ColV plasmid was tested by growth curve, plasmid stability tests and the in vitro competition assay. The conjugation assay was performed to test the transferability of the ColV and blaNDM-5-carrying plasmids. RESULTS E. coli E1 from bloodstream infection was MDR and highly virulent in the G. mellonella infection model. It belonged to phylogroup D, ST38 and serotype O7:H8. E1 carried a conjugatively transferable IncI1-type blaNDM-5-positive plasmid, which conferred carbapenem resistance, a conjugative IncFIB/FII-type ColV plasmid encoding an array of virulence-associated genes and antibiotic resistance genes blaTEM-1B, strAB and sul2, and seven other plasmids. Co-transfer of the ColV plasmid and the blaNDM-5-positive plasmid was observed. The ColV virulence-resistance hybrid plasmid contributed to the virulence, resistance to serum killing, and macrophage phagocytosis in E. coli E1. The carriage of this ColV plasmid did not constitute an in vitro fitness burden to strain E1 but caused fitness costs to E. coli strain EC600. CONCLUSIONS The emergence of such a highly virulent and resistant strain with conjugative blaNDM-5-positive and ColV plasmids posed a significant threat to public health. Implementation of control measures is needed to prevent such strains from further disseminating in hospital settings and the community.
Collapse
Affiliation(s)
- Chen Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yunbing Li
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Department of Medical Microbiology, Experimental Center, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Li
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Department of Medical Microbiology, Experimental Center, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lili Huang
- Laboratory Department, Children's Hospital of Soochow University, Suzhou, China
| | - Mi Zhou
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Xu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Ning Dong
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- Department of Medical Microbiology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Halfaoui Z, Rahab H, Achek R, Menoueri MN. First report of detection of mcr-1 and virulence genes in avian pathogenic Escherichia coli in the center of Algeria. IRANIAN JOURNAL OF VETERINARY RESEARCH 2024; 25:5-15. [PMID: 39156804 PMCID: PMC11327648 DOI: 10.22099/ijvr.2024.47413.6840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/01/2024] [Accepted: 01/16/2024] [Indexed: 08/20/2024]
Abstract
Background Antimicrobial resistance in avian pathogenic Escherichia coli (APEC) represents a major concern in the avian industry worldwide and limited studies have investigated Colistin resistance among APEC in Algeria. Aims Investigate antibiotic resistance, in particular, Colistin, and mediated-Colistin resistance (mcr) genes, as well as the virulence genes in APEC. Methods One hundred E. coli were isolated from poultry suspected of colibacillosis. Antimicrobial susceptibility testing was done on 14 antibiotics by the disk diffusion method. Colistin minimum inhibitory concentration (MIC) was assessed by the broth microdilution method. Using multiplex PCR, mcr genes (mcr-1 to 5) and 7 virulence-related genes were investigated in Colistin-resistant isolates. Results Results showed high resistance to Tetracycline (99%), Nalidixic acid (92%), Doxycycline (90%), Ampicillin (89%), Ofloxacin (74%), Sulfamethoxazole-Trimethoprim (72%), and Amoxicillin-Clavulanic acid (57%); in addition, 92% of isolates were multidrug resistant. The rate of resistance to Colistin was 27% (27/100) of which 96.3% (26/27) of isolates carried the mcr-1 gene. Twenty-five of the Colistin-resistant isolates (92.59%) had at least three virulence genes. The most frequently isolated virulence genes were: fim H (96.3%) followed by hlyF, iroN, and iss (77.7%, each), iutA and ompT were found in 59.25% and 55.5% of isolates, respectively. The most prevalent combination of virulence factors was hlyF-iss-iroN-iutA-ompT-fimH. Conclusion This is the first report which highlighted Colistin resistance with the detection of mcr-1 in APEC isolates in the area of study. Colistin resistance and carriage of mcr-1 in virulent and multidrug-resistant isolates of E. coli are alarming and a surveillance program to limit the spread of these pathogens is mandatory.
Collapse
Affiliation(s)
- Z. Halfaoui
- Laboratory of Biotechnologies Related to Animal Reproduction (LBRA), Blida-1 University, Blida (09000), Algeria
- Institute of Veterinary Sciences, Blida-1 University, BP 270, Blida (09000), Algeria
- Department of Biology, Faculty of Nature and Life and Earth Sciences, Djilali Bounaama University, Khemis-Miliana 44225, Algeria
| | - H. Rahab
- Biotechnology Research Center, C.R.Bt, Ali Mendjli, BP E73, Constantine, Algeria
| | - R. Achek
- Department of Biology, Faculty of Nature and Life and Earth Sciences, Djilali Bounaama University, Khemis-Miliana 44225, Algeria
- Laboratory of Food Hygiene and Quality Assurance System HASAQ, High National Veterinary School Oued Smar, Algiers, Algeria
| | - M. N. Menoueri
- Institute of Veterinary Sciences, Blida-1 University, BP 270, Blida (09000), Algeria
| |
Collapse
|
21
|
Sanderson H, McCarthy MC, Nnajide CR, Sparrow J, Rubin JE, Dillon JAR, White AP. Identification of plasmids in avian-associated Escherichia coli using nanopore and illumina sequencing. BMC Genomics 2023; 24:698. [PMID: 37990161 PMCID: PMC10664647 DOI: 10.1186/s12864-023-09784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) are the causative agents of colibacillosis in chickens, a disease which has significant economic impact on the poultry industry. Large plasmids detected in APEC are known to contribute to strain diversity for pathogenicity and antimicrobial resistance, but there could be other plasmids that are missed in standard analysis. In this study, we determined the impact of sequencing and assembly factors for the detection of plasmids in an E. coli whole genome sequencing project. RESULTS Hybrid assembly (Illumina and Nanopore) combined with plasmid DNA extractions allowed for detection of the greatest number of plasmids in E. coli, as detected by MOB-suite software. In total, 79 plasmids were identified in 19 E. coli isolates. Hybrid assemblies were robust and consistent in quality regardless of sequencing kit used or if long reads were filtered or not. In contrast, long read only assemblies were more variable and influenced by sequencing and assembly parameters. Plasmid DNA extractions allowed for the detection of physically smaller plasmids, but when averaged over 19 isolates did not significantly change the overall number of plasmids detected. CONCLUSIONS Hybrid assembly can be reliably used to detect plasmids in E. coli, especially if researchers are focused on large plasmids containing antimicrobial resistance genes and virulence factors. If the goal is comprehensive detection of all plasmids, particularly if smaller sized vectors are desired for biotechnology applications, the addition of plasmid DNA extractions to hybrid assemblies is prudent. Long read sequencing is sufficient to detect many plasmids in E. coli, however, it is more prone to errors when expanded to analyze a large number of isolates.
Collapse
Affiliation(s)
- Haley Sanderson
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Madeline C McCarthy
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- Current address: Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Chinenye R Nnajide
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jessica Sparrow
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph E Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jo-Anne R Dillon
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P White
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
22
|
Chagneau CV, Payros D, Goman A, Goursat C, David L, Okuno M, Bordignon PJ, Séguy C, Massip C, Branchu P, Ogura Y, Nougayrède JP, Marenda M, Oswald E. HlyF, an underestimated virulence factor of uropathogenic Escherichia coli. Clin Microbiol Infect 2023; 29:1449.e1-1449.e9. [PMID: 37532127 DOI: 10.1016/j.cmi.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES Urinary tract infections (UTIs) are primarily caused by uropathogenic Escherichia coli (UPEC). This study aims to elucidate the role of the virulence factor HlyF in the epidemiology and pathophysiology of UTIs and investigate the dissemination of plasmids carrying the hlyF gene. METHODS An epidemiological analysis was conducted on a representative collection of 225 UPEC strains isolated from community-acquired infections. Selected hlyF+ strains were fully sequenced using a combination of Illumina and Nanopore technologies. To investigate the impact of HlyF, a murine model of UTI was utilized to compare clinical signs, bacterial loads in the bladder, kidney, and spleen, onset of bacteraemia, and inflammation through cytokine quantification among wild-type hlyF+ strains, isogenic mutants, and complemented mutants. RESULTS Our findings demonstrate that 20% of UPEC encode the HlyF protein. These hlyF+ UPEC strains exhibited enhanced virulence, frequently leading to pyelonephritis accompanied by bloodstream infections. Unlike typical UPEC strains, hlyF+ UPEC strains demonstrate a broader phylogroup distribution and possess a unique array of virulence factors and antimicrobial resistance genes, primarily carried by ColV-like plasmids. In the murine UTI model, expression of HlyF was linked to the UPECs' capacity to induce urosepsis and elicit an exacerbated inflammatory response, setting them apart from typical UPEC strains. DISCUSSION Overall, our results strongly support the notion that HlyF serves as a significant virulence factor for UPECs, and the dissemination of ColV-like plasmids encoding HlyF warrants further investigation.
Collapse
Affiliation(s)
- Camille V Chagneau
- Digestive Health Research Institute (IRSD), National Institute of Health and Medical Research (INSERM), Université de Toulouse Paul Sabatier, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France; Service de Bactériologie-Hygiène, Univerity Hospital of Toulouse, Hôpital Purpan, Toulouse, France
| | - Delphine Payros
- Digestive Health Research Institute (IRSD), National Institute of Health and Medical Research (INSERM), Université de Toulouse Paul Sabatier, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Audrey Goman
- Digestive Health Research Institute (IRSD), National Institute of Health and Medical Research (INSERM), Université de Toulouse Paul Sabatier, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Cécile Goursat
- Digestive Health Research Institute (IRSD), National Institute of Health and Medical Research (INSERM), Université de Toulouse Paul Sabatier, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Laure David
- Digestive Health Research Institute (IRSD), National Institute of Health and Medical Research (INSERM), Université de Toulouse Paul Sabatier, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Miki Okuno
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Pierre-Jean Bordignon
- Digestive Health Research Institute (IRSD), National Institute of Health and Medical Research (INSERM), Université de Toulouse Paul Sabatier, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Carine Séguy
- Digestive Health Research Institute (IRSD), National Institute of Health and Medical Research (INSERM), Université de Toulouse Paul Sabatier, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Clémence Massip
- Digestive Health Research Institute (IRSD), National Institute of Health and Medical Research (INSERM), Université de Toulouse Paul Sabatier, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France; Service de Bactériologie-Hygiène, Univerity Hospital of Toulouse, Hôpital Purpan, Toulouse, France
| | - Priscilla Branchu
- Digestive Health Research Institute (IRSD), National Institute of Health and Medical Research (INSERM), Université de Toulouse Paul Sabatier, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Jean-Philippe Nougayrède
- Digestive Health Research Institute (IRSD), National Institute of Health and Medical Research (INSERM), Université de Toulouse Paul Sabatier, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France
| | - Marc Marenda
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - Eric Oswald
- Digestive Health Research Institute (IRSD), National Institute of Health and Medical Research (INSERM), Université de Toulouse Paul Sabatier, National Research Institute for Agriculture, Food and the Environment (INRAE), National Veterinary School of Toulouse (ENVT), Toulouse, France; Service de Bactériologie-Hygiène, Univerity Hospital of Toulouse, Hôpital Purpan, Toulouse, France.
| |
Collapse
|
23
|
Munir E, Khalifa K, Rahman AA, Bakri E, Rudwan K, Hussien M. A survey of frequency of virulence and aminoglycoside antibiotic-resistant genotypes and phenotypes in Escherichia coli in broilers in Khartoum State, Sudan. Mol Biol Rep 2023; 50:7421-7425. [PMID: 37458872 DOI: 10.1007/s11033-023-08643-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/27/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Although Escherichia coli (E. coli) is considered a normal microflora in the poultry intestine, certain strains namely, Avian Pathogenic E. coli (APEC), cause colisepticaemia (fatal disease) in poultry. The aim of this study was to determine the prevalence of the virulence genes, i.e. (iroN, ompT, iss, iutA, and hlyF) and aminoglycoside-modifying enzyme (AME) genes, i.e. (strA and strB) in Escherichia coli strains in broilers in Khartoum State. METHODS AND RESULTS A total of 25 E. coli isolates were collected from broilers farms. All isolates were screened for antimicrobial susceptibility tests using Kirby-Bauer disc diffusion method. In addition, all isolates were tested for the presence of virulence genes and modifying enzyme genes using the polymerase chain reaction (PCR). The results showed that the prevalence of positive strains to virulence genes were 14 (56%), 21 (84%), 14 (56%), 0 (0%) and 0 (0%) to iroN, iutA, hlyF, ompT and iss, respectively. Combined virulence genes include iroN, hlyF and iutA were detected in 14 (56%). The rates of resistance were as follows: Gentamycin: (32%), Kanamycin: (20%) and Streptomycin (16%). Of the genes tested, strA (72%) was the most commonly recognized gene followed by strB (56%). CONCLUSIONS It could be concluded that this is the first report of molecular survey of virulence and aminoglycoside-modifying enzyme (AME) resistant genes in APEC isolates from broiler in Sudan. Therefore, prohibition of non-curative application of antibiotic, dishearten their abuse and to be frequently observant by suppling suitable research-based policy for the poultry industry is warranted.
Collapse
Affiliation(s)
- Egbal Munir
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation (ARRC), El Amarat, P.O. Box 8067, Khartoum, Sudan
| | - Khalda Khalifa
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation (ARRC), El Amarat, P.O. Box 8067, Khartoum, Sudan
| | - Amgad Abdel Rahman
- Central Veterinary Research Laboratory (CVRL), Animal Resources Research Corporation (ARRC), El Amarat, P.O. Box 8067, Khartoum, Sudan
| | - Eman Bakri
- Central laboratory, Ministry of Higher Education and Scientific Research, P.O. Box 7099, Khartoum, Sudan
| | - Khalid Rudwan
- Sudan University of Science and Technology, Ministry of Higher Education and Scientific Research, P.O. Box 2081, Khartoum, Sudan
| | - Mohammed Hussien
- Central laboratory, Ministry of Higher Education and Scientific Research, P.O. Box 7099, Khartoum, Sudan.
| |
Collapse
|
24
|
Montes-Robledo A, Buelvas-Montes Y, Baldiris-Avila R. Description of extraintestinal pathogenic Escherichia coli based on phylogenetic grouping, virulence factors, and antimicrobial susceptibility. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:503-512. [PMID: 38045705 PMCID: PMC10692971 DOI: 10.18502/ijm.v15i4.13504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background and Objectives Extraintestinal pathogenic Escherichia coli (ExPEC) is a recently recognized and highly diverse pathotype of E. coli. Its significance as a pathogen has increased due to the emergence of hypervirulent and multidrug-resistant (MDR) strains. The aim of this study was to characterize ExPEC isolates from humans based on their phylogenetic group, virulence factor profile, and antimicrobial susceptibility. Materials and Methods The isolates were collected from patients with extraintestinal infections caused by E. coli, including urinary tract infections, bacteremia, and surgical site infections. The E. coli phylogenetic groups were determined using multiplex PCR. Additionally, the isolates were evaluated for their biofilm-forming abilities, susceptibility to antimicrobial agents, and presence of virulence genes. Results In this study, the isolates were classified into four phylogenetic groups: A (48.3%), B2 (25.8%), D (19.35%), and B1 (6.45%). All isolates exhibited at least one of the ten analyzed virulence factors. However, there was no direct evidence linking a specific phylogenetic group to a particular virulence factor. Nevertheless, the presence of the fimH, fyuA, ompT, traT, and kpsMTII virulence genes was correlated with the production of strong biofilms, multidrug resistance (MDR), and the production of alpha hemolysin. Conclusion This study provides a description of the phylogenetic groups in ExPEC and their potential association with virulence factor profiles and antimicrobial susceptibility.
Collapse
Affiliation(s)
- Alfredo Montes-Robledo
- Department of Exact and Natural Sciences, School of Biology, Universidad de Cartagena, Cartagena, Colombia
- Department of Basic Health, School of Medicine, Universidad del Sinú Cartagena, Cartagena, Colombia
| | - Yaleyvis Buelvas-Montes
- Department of Exact and Natural Sciences, School of Biology, Universidad de Cartagena, Cartagena, Colombia
- Department of Basic Health, School of Medicine, Universidad del Sinú Cartagena, Cartagena, Colombia
| | - Rosa Baldiris-Avila
- Department of Exact and Natural Sciences, School of Biology, Universidad de Cartagena, Cartagena, Colombia
| |
Collapse
|
25
|
Palmieri N, Apostolakos I, Paudel S, Hess M. The genetic network underlying the evolution of pathogenicity in avian Escherichia coli. Front Vet Sci 2023; 10:1195585. [PMID: 37415967 PMCID: PMC10321414 DOI: 10.3389/fvets.2023.1195585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Colibacillosis is a worldwide prevalent disease in poultry production linked to Escherichia coli strains that belong to the avian pathogenic E. coli (APEC) pathotype. While many virulence factors have been linked to APEC isolates, no single gene or set of genes has been found to be exclusively associated with the pathotype. Moreover, a comprehensive description of the biological processes linked to APEC pathogenicity is currently lacking. Methods In this study, we compiled a dataset of 2015 high-quality avian E. coli genomes from pathogenic and commensal isolates, based on publications from 2000 to 2021. We then conducted a genome-wide association study (GWAS) and integrated candidate gene identification with available protein-protein interaction data to decipher the genetic network underlying the biological processes connected to APEC pathogenicity. Results Our GWAS identified variations in gene content for 13 genes and SNPs in 3 different genes associated with APEC isolates, suggesting both gene-level and SNP-level variations contribute to APEC pathogenicity. Integrating protein-protein interaction data, we found that 15 of these genes clustered in the same genetic network, suggesting the pathogenicity of APEC might be due to the interplay of different regulated pathways. We also found novel candidate genes including an uncharacterized multi-pass membrane protein (yciC) and the outer membrane porin (ompD) as linked to APEC isolates. Discussion Our findings suggest that convergent pathways related to nutrient uptake from host cells and defense from host immune system play a major role in APEC pathogenicity. In addition, the dataset curated in this study represents a comprehensive historical genomic collection of avian E. coli isolates and constitutes a valuable resource for their comparative genomics investigations.
Collapse
Affiliation(s)
- Nicola Palmieri
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | | | - Surya Paudel
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
26
|
Fonseca-Martínez SA, Martínez-Vega RA, Farfán-García AE, González Rugeles CI, Criado-Guerrero LY. Association Between Uropathogenic Escherichia coli Virulence Genes and Severity of Infection and Resistance to Antibiotics. Infect Drug Resist 2023; 16:3707-3718. [PMID: 37333681 PMCID: PMC10275372 DOI: 10.2147/idr.s391378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/26/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose Urinary tract infection (UTI) is the most frequent bacterial infection. Some uropathogenic Escherichia coli (UPEC) genes have been associated with disease severity and antibiotic resistance. The aim was to determine the association of nine UPEC virulence genes with UTI severity and antibiotic resistance of strains collected from adults with community-acquired UTI. Patients and Methods A case-control study (1:3) (38 urosepsis/pyelonephritis and 114 cystitis/urethritis) was conducted. The fimH, sfa/foc, cvaC, hlyA, iroN, fyuA, ireA, iutA, and aer (the last five are siderophore genes) virulence genes were determined by PCR. The information of antibiotic susceptibility pattern of the strains was collected from medical records. This pattern was determined using an automated system for antimicrobial susceptibility testing. Multidrug-resistant (MDR) was defined as resistance to three or more antibiotic families. Results fimH was the most frequently detected virulence gene (94.7%), and sfa/foc was the least frequently detected (9.2%); 55.3% (83/150) of the strains were MDR. The evaluated genes were not associated with UTI severity. Associations were found between the presence of hlyA and carbapenem resistance (Odds ratio [OR] = 7.58, 95% confidence interval [CI], 1.50-35.42), iutA and fluoroquinolone resistance (OR = 2.35, 95% CI, 1.15-4.84, and aer (OR = 2.8, 95% CI, 1.20-6.48) and iutA (OR = 2.95, 95% CI, 1.33-6.69) with penicillin resistance. In addition, iutA was the only gene associated with MDR (OR = 2.09, 95% CI,1.03-4.26). Conclusion There was no association among virulence genes and UTI severity. Three of the five iron uptake genes were associated with resistance to at least one antibiotic family. Regarding the other four non-siderophore genes, only hlyA was associated with antibiotic resistance to carbapenems. It is essential to continue studying bacterial genetic characteristics that cause the generation of pathogenic and multidrug-resistant phenotypes of UPEC strains.
Collapse
Affiliation(s)
| | | | - Ana Elvira Farfán-García
- Programa de Bacteriología y Laboratorio Clínico, Universidad de Santander, Bucaramanga, Santander, Colombia
| | | | | |
Collapse
|
27
|
Cummins ML, Li D, Ahmad A, Bushell R, Noormohammadi AH, Wijesurendra DS, Stent A, Marenda MS, Djordjevic SP. Whole Genome Sequencing of Avian Pathogenic Escherichia coli Causing Bacterial Chondronecrosis and Osteomyelitis in Australian Poultry. Microorganisms 2023; 11:1513. [PMID: 37375015 DOI: 10.3390/microorganisms11061513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) impacts animal welfare and productivity in the poultry industry worldwide, yet it has an understudied pathogenesis. While Avian Pathogenic Escherichia coli (APEC) are known to be one of the main causes, there is a lack of whole genome sequence data, with only a few BCO-associated APEC (APECBCO) genomes available in public databases. In this study, we conducted an analysis of 205 APECBCO genome sequences to generate new baseline phylogenomic knowledge regarding the diversity of E. coli sequence types and the presence of virulence associated genes (VAGs). Our findings revealed the following: (i) APECBCO are phylogenetically and genotypically similar to APEC that cause colibacillosis (APECcolibac), with globally disseminated APEC sequence types ST117, ST57, ST69, and ST95 being predominate; (ii) APECBCO are frequent carriers of ColV-like plasmids that carry a similar set of VAGs as those found in APECcolibac. Additionally, we performed genomic comparisons, including a genome-wide association study, with a complementary collection of geotemporally-matched genomes of APEC from multiple cases of colibacillosis (APECcolibac). Our genome-wide association study found no evidence of novel virulence loci unique to APECBCO. Overall, our data indicate that APECBCO and APECcolibac are not distinct subpopulations of APEC. Our publication of these genomes substantially increases the available collection of APECBCO genomes and provides insights for the management and treatment strategies of lameness in poultry.
Collapse
Affiliation(s)
- Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dmitriy Li
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Aeman Ahmad
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rhys Bushell
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | - Andrew Stent
- Gribbles Veterinary Pathology, Clayton, VIC 3168, Australia
| | - Marc S Marenda
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW 2007, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
28
|
Delago J, Miller EA, Flores-Figueroa C, Munoz-Aguayo J, Cardona C, Smith AH, Johnson TJ. Survey of clinical and commensal Escherichia coli from commercial broilers and turkeys, with emphasis on high-risk clones using APECTyper. Poult Sci 2023; 102:102712. [PMID: 37156077 DOI: 10.1016/j.psj.2023.102712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/09/2023] [Indexed: 05/10/2023] Open
Abstract
Molecular characterization of avian pathogenic Escherichia coli (APEC) is challenging due to the complex nature of its associated disease, colibacillosis, in poultry. Numerous efforts have been made toward defining APEC, and it is becoming clear that certain clonal backgrounds are predictive of an avian E. coli isolate's virulence potential. Thus, APEC can be further differentiated as high-risk APEC based upon their clonal background's virulence potential. However, less clear is the degree of overlap between clinical isolates of differing bird type, and between clinical and gastrointestinal isolates. This study aimed to determine genomic similarities and differences between such populations, comparing commercial broiler vs. turkey isolates, and clinical vs. gastrointestinal isolates. Differences were observed in Clermont phylogenetic groups between isolate populations, with B2 as the dominant group in turkey clinical isolates and G as the dominant group in broiler clinical isolates. Nearly all clinical isolates were classified as APEC using a traditional gene-based typing scheme, whereas 53.4% and 44.1% of broiler and turkey gastrointestinal isolates were classified as APEC, respectively. High-risk APEC were identified among 31.0% and 46.9% of broiler and turkey clinical isolates, compared with 5.7% and 2.9% of broiler and turkey gastrointestinal isolates. As found in previous studies, no specific known virulence or fitness gene sets were identified which universally differentiate between clinical and gastrointestinal isolates. This study further demonstrates the utility of a hybrid APEC typing approach, considering both plasmid content and clonal background, for the identification of dominant and highly virulent APEC clones in poultry production.
Collapse
Affiliation(s)
- Jodi Delago
- Arm and Hammer Animal and Food Production, Waukesha, WI, 53186, USA
| | - Elizabeth A Miller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | | | | | - Carol Cardona
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | | | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA; Mid-Central Research and Outreach Center, University of Minnesota, Willmar, MN, USA.
| |
Collapse
|
29
|
Chicken Production and Human Clinical Escherichia coli Isolates Differ in Their Carriage of Antimicrobial Resistance and Virulence Factors. Appl Environ Microbiol 2023; 89:e0116722. [PMID: 36651726 PMCID: PMC9973021 DOI: 10.1128/aem.01167-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Contamination of food animal products by Escherichia coli is a leading cause of foodborne disease outbreaks, hospitalizations, and deaths in humans. Chicken is the most consumed meat both in the United States and across the globe according to the U.S. Department of Agriculture. Although E. coli is a ubiquitous commensal bacterium of the guts of humans and animals, its ability to acquire antimicrobial resistance (AMR) genes and virulence factors (VFs) can lead to the emergence of pathogenic strains that are resistant to critically important antibiotics. Thus, it is important to identify the genetic factors that contribute to the virulence and AMR of E. coli. In this study, we performed in-depth genomic evaluation of AMR genes and VFs of E. coli genomes available through the National Antimicrobial Resistance Monitoring System GenomeTrackr database. Our objective was to determine the genetic relatedness of chicken production isolates and human clinical isolates. To achieve this aim, we first developed a massively parallel analytical pipeline (Reads2Resistome) to accurately characterize the resistome of each E. coli genome, including the AMR genes and VFs harbored. We used random forests and hierarchical clustering to show that AMR genes and VFs are sufficient to classify isolates into different pathogenic phylogroups and host origin. We found that the presence of key type III secretion system and AMR genes differentiated human clinical isolates from chicken production isolates. These results further improve our understanding of the interconnected role AMR genes and VFs play in shaping the evolution of pathogenic E. coli strains. IMPORTANCE Pathogenic Escherichia coli causes disease in both humans and food-producing animals. E. coli pathogenesis is dependent on a repertoire of virulence factors and antimicrobial resistance genes. Food-borne outbreaks are highly associated with the consumption of undercooked and contaminated food products. This association highlights the need to understand the genetic factors that make E. coli virulent and pathogenic in humans and poultry. This research shows that E. coli isolates originating from human clinical settings and chicken production harbor different antimicrobial resistance genes and virulence factors that can be used to classify them into phylogroups and host origins. In addition, to aid in the repeatability and reproducibility of the results presented in this study, we have made a public repository of the Reads2Resistome pipeline and have provided the accession numbers associated with the E. coli genomes analyzed.
Collapse
|
30
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
31
|
Xia F, Cheng J, Jiang M, Wang Z, Wen Z, Wang M, Ren J, Zhuge X. Genomics Analysis to Identify Multiple Genetic Determinants That Drive the Global Transmission of the Pandemic ST95 Lineage of Extraintestinal Pathogenic Escherichia coli (ExPEC). Pathogens 2022; 11:pathogens11121489. [PMID: 36558824 PMCID: PMC9781279 DOI: 10.3390/pathogens11121489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a pathogen that causes host extraintestinal diseases. The ST95 E. coli lineage is one of the dominant ExPEC lineages in humans and poultry. In this study, we took advantage of extensive E. coli genomes available through public open-access databases to construct a detailed understanding of the phylogeny and evolution of ST95. We used a high variability of accessory genomes to highlight the diversity and dynamic traits of ST95. Isolates from diverse hosts and geographic sources were randomly located on the phylogenetic tree, which suggested that there is no host specificity for ST95. The time-scaled phylogeny showed that ST95 is an ancient and long-lasting lineage. The virulence genes, resistance genes, and pathogenicity islands (PAIs) were characterized in ST95 pan-genomes to provide novel insights into the pathogenicity and multidrug resistance (MDR) genotypes. We found that a pool of large plasmids drives virulence and MDR. Based on the unique genes in the ST95 pan-genome, we designed a novel multiplex PCR reaction to rapidly detect ST95. Overall, our study addressed a gap in the current understanding of ST95 ExPEC genomes, with significant implications for recognizing the success and spread of ST95.
Collapse
Affiliation(s)
- Fufang Xia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Jinlong Cheng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhongxing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Zhe Wen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (J.R.); (X.Z.)
| | - Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
- Correspondence: (J.R.); (X.Z.)
| |
Collapse
|
32
|
Hammad AM, Gonzalez-Escalona N, El Tahan A, Abbas NH, Koenig SSK, Allué-Guardia A, Eppinger M, Hoffmann M. Pathogenome comparison and global phylogeny of Escherichia coli ST1485 strains. Sci Rep 2022; 12:18495. [PMID: 36323726 PMCID: PMC9630279 DOI: 10.1038/s41598-022-20342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/12/2022] [Indexed: 01/06/2023] Open
Abstract
Escherichia coli ST1485 strains belong to the clinically important phylogroup F and have disseminated worldwide in humans, animals, and the environment. Here, we elucidated the pathogenome of a global collection of E. coli ST1485 isolates from diverse sources retrieved from public databases and a high-quality sequenced complete genome of colistin-resistant E. coli strain CFSAN061771 isolated from raw milk cheese which designated as a reference strain. CFSAN061771 belongs to O83:H42-ST1485 pathotype and carries a conjugative ColV plasmid, pCFSAN061771_01, combining extraintestinal virulence genes (ompt, sitA, iroN, etsC, traT, cvaC, hylF, iss, tsh, mchf, iucC, iutA) with a multidrug resistance island (blaTEM-1, aph(6)-Id, aph(3″)-Ib, sul2, dfrA14). Comparative genomic analysis revealed a high frequency of pCFSAN061771_01-like plasmids in E. coli ST1485. A notable evolutionary genetic event in E. coli ST1485 strains is the acquisition of a pCFSAN061771_02-like plasmid, which confers resistance to several antimicrobials, tellurium, and quaternary ammonium compounds. The identical virulence and antibiotic resistance profiles identified in some human and animal strains are worrisome. This is the first study to emphasize the significance of E. coli ST1485 as a global high-risk virulent and multidrug-resistant clone with zoonotic potential.
Collapse
Affiliation(s)
- Ahmed M Hammad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt.
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Amira El Tahan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Nasser H Abbas
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, Egypt
| | - Sara S K Koenig
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
33
|
Zhang TL, He DD, Liu YY, Yu LJ, Hu GZ, Pan YS. Characterization of IncI1/ST71 and IncF18:A-:B1 multidrug-resistance plasmids from an avian Escherichia coli isolate. Plasmid 2022; 123-124:102651. [PMID: 36191658 DOI: 10.1016/j.plasmid.2022.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022]
Abstract
To characterize IncI1 and IncF18:A-:B1 multidrug-resistance plasmids from an avian Escherichia coli isolate, antibiotic susceptibility testing, conjugation assays, transformation assays, S1-PFGE, and WGS analysis were performed. The 119,457-bp plasmid pEC014-1 with a multidrug-resistance region (MRR) containing four different segments interspersed with six IS26 elements, belonged to incompatibility group I1 and sequence type 71. The 154,516-bp plasmid pEC014-2 with two replicons, typed as FII-18 and FIB-1, carried 14 resistance determinants including blaTEM-1b, blaOXA-1, oqxAB, dfrA17, aac(6')-Ib-cr, sul1, sul2, tet(A), floR, catB3, hph(aph(4)-Ia), aacC4(aac(3)-IV), aadA5, arr-3, and a merEDACPTR loci in MRR, and additionally encoded three virulence loci: iroNEDCB, sitABCD, and iucABCD-iutA. Plasmid stability assays showed that pEC014-1 and pEC014-2 were stable in recipient E. coli C600 for at least 15 days of passage. Competition assays were carried out to evaluate the fitness impact of pEC014-2 carriage in vitro, revealing a decrease in host fitness. Growth kinetics showed that the growth rate for pEC014-1 or/and pEC014-2 bearing cells was significantly slower than that of the E. coli C600 host strain in the exponential stage (p < 0.01), with only cells carrying pEC014-1 sustaining rapid growth after 6 h of exponential growth. Our findings highlight the mosaic structures of epidemic plasmid IncI1/ST71 and F18:A-:B1 lineages and contribute to a better understanding of the evolution and dissemination of these multidrug resistance and virulence plasmids.
Collapse
Affiliation(s)
- Teng-Li Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dan-Dan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Ying-Ying Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Li-Jie Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-Zheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
34
|
Sun H, Schnürer A, Müller B, Mößnang B, Lebuhn M, Makarewicz O. Uncovering antimicrobial resistance in three agricultural biogas plants using plant-based substrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154556. [PMID: 35306061 DOI: 10.1016/j.scitotenv.2022.154556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance (AMR) is becoming an increasing global concern and the anaerobic digestion (AD) process represents a potential transmission route when digestates are used as fertilizing agents. AMR contaminants, e.g. antibiotic-resistant bacteria (ARB) and plasmid-mediated antibiotic resistance genes (ARGs) have been found in different substrates and AD systems, but not yet been investigated in plant-based substrates. AMR transfer from soils to vegetable microbiomes has been observed, and thus crop material potentially represents a so far neglected AMR load in agricultural AD processes, contributing to AMR spread. In order to test this hypothesis, this study examined the AMR situation throughout the process of three biogas plants using plant-based substrates only, or a mixture of plant-based and manure substrates. The evaluation included a combination of culture-independent and -dependent methods, i.e., identification of ARGs, plasmids, and pathogenic bacteria by DNA arrays, and phylogenetic classification of bacterial isolates and their phenotypic resistance pattern. To our knowledge, this is the first study on AMR in plant-based substrates and the corresponding biogas plant. The results showed that the bacterial community isolated from the investigated substrates and the AD processing facilities were mainly Gram-positive Bacillus spp. Apart from Pantoea agglomerans, no other Gram-negative species were found, either by bacteria culturing or by DNA typing array. In contrast, the presence of ARGs and plasmids clearly indicated the existence of Gram-negative pathogenic bacteria, in both substrate and AD process. Compared with substrates, digestates had lower levels of ARGs, plasmids, and culturable ARB. Thus, digestate could pose a lower risk of spreading AMR than substrates per se. In conclusion, plant-based substrates are associated with AMR, including culturable Gram-positive ARB and Gram-negative pathogenic bacteria-associated ARGs and plasmids. Thus, the AMR load from plant-based substrates should be taken into consideration in agricultural biogas processing.
Collapse
Affiliation(s)
- He Sun
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden.
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Bettina Mößnang
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany
| | - Michael Lebuhn
- Bavarian State Research Center for Agriculture, Central Department for Quality Assurance and Analytics, Lange Point 6, 85354 Freising, Germany
| | - Oliwia Makarewicz
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
35
|
Sivaranjani M, McCarthy MC, Sniatynski MK, Wu L, Dillon JAR, Rubin JE, White AP. Biofilm Formation and Antimicrobial Susceptibility of E. coli Associated With Colibacillosis Outbreaks in Broiler Chickens From Saskatchewan. Front Microbiol 2022; 13:841516. [PMID: 35783405 PMCID: PMC9247541 DOI: 10.3389/fmicb.2022.841516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
The global poultry industry has grown to the extent that the number of chickens now well exceeds the number of humans on Earth. Escherichia coli infections in poultry cause significant morbidity and economic losses for producers each year. We obtained 94 E. coli isolates from 12 colibacillosis outbreaks on Saskatchewan farms and screened them for antimicrobial resistance and biofilm formation. Fifty-six isolates were from broilers with confirmed colibacillosis, and 38 isolates were from healthy broilers in the same flocks (cecal E. coli). Resistance to penicillins, tetracyclines, and aminoglycosides was common in isolates from all 12 outbreaks, while cephalosporin resistance varied by outbreak. Most E. coli were able to form biofilms in at least one of three growth media (1/2 TSB, M63, and BHI broth). There was an overall trend that disease-causing E. coli had more antibiotic resistance and were more likely to form biofilms in nutrient-rich media (BHI) as compared to cecal strains. However, on an individual strain basis, there was no correlation between antimicrobial resistance and biofilm formation. The 21 strongest biofilm forming strains consisted of both disease-causing and cecal isolates that were either drug resistant or susceptible. Draft whole genome sequencing indicated that many known antimicrobial resistance genes were present on plasmids, with disease-causing E. coli having more plasmids on average than their cecal counterparts. We tested four common disinfectants for their ability to kill 12 of the best biofilm forming strains. All disinfectants killed single cells effectively, but biofilm cells were more resistant, although the difference was less pronounced for the disinfectants that have multiple modes of action. Our results indicate that there is significant diversity and complexity in E. coli poultry isolates, with different lifestyle pressures affecting disease-causing and cecal isolates.
Collapse
Affiliation(s)
- Murugesan Sivaranjani
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Madeline C. McCarthy
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michelle K. Sniatynski
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Linzhi Wu
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jo-Anne R. Dillon
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph E. Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Aaron P. White,
| |
Collapse
|
36
|
Hennequin C, Forestier C, Traore O, Debroas D, Bricheux G. Plasmidome analysis of a hospital effluent biofilm: Status of antibiotic resistance. Plasmid 2022; 122:102638. [PMID: 35691511 DOI: 10.1016/j.plasmid.2022.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Plasmids are widely involved in the dissemination of characteristics within bacterial communities. Their genomic content can be assessed by high-throughput sequencing of the whole plasmid fraction of an environment, the plasmidome. In this study, we analyzed the plasmidome of a biofilm formed in the effluents of the teaching hospital of Clermont-Ferrand (France). Our analysis discovered >350 new complete plasmids, with a length ranging from 1219 to 40,193 bp. Forty-two plasmid incompatibility (Inc) groups were found among all the plasmid contigs. Ten large plasmids, described here in detail, were reconstructed from plasmid contigs, seven of which carried antibiotic resistance genes. Four plasmids potentially confer resistance to numerous families of antibiotics, including carbapenems, aminoglycosides, colistin, and chloramphenicol. Most of these plasmids were affiliated to Proteobacteria, a phylum of Gram-negative bacteria. This study therefore illustrates the composition of an environmental mixed biofilm in terms of plasmids and antibiotic resistance genes.
Collapse
Affiliation(s)
- Claire Hennequin
- CHU Clermont-Ferrand, Service de Bactériologie Clinique, 58 rue Montalembert, 63000 Clermont-Ferrand, France; Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France; Laboratoire Microorganismes: Génome et Environnement, Campus Universitaire des Cézeaux, TSA 60026 - CS 60026, 1, impasse Amélie Murat, 63178 Aubière, France
| | - Christiane Forestier
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Ousmane Traore
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement, F-63000 Clermont-Ferrand, France
| | - Didier Debroas
- Laboratoire Microorganismes: Génome et Environnement, Campus Universitaire des Cézeaux, TSA 60026 - CS 60026, 1, impasse Amélie Murat, 63178 Aubière, France
| | - Geneviève Bricheux
- Laboratoire Microorganismes: Génome et Environnement, Campus Universitaire des Cézeaux, TSA 60026 - CS 60026, 1, impasse Amélie Murat, 63178 Aubière, France.
| |
Collapse
|
37
|
Johnson TJ, Miller EA, Flores-Figueroa C, Munoz-Aguayo J, Cardona C, Fransen K, Lighty M, Gonder E, Nezworski J, Haag A, Behl M, Kromm M, Wileman B, Studniski M, Singer RS. Refining the definition of the avian pathogenic Escherichia coli (APEC) pathotype through inclusion of high-risk clonal groups. Poult Sci 2022; 101:102009. [PMID: 35952599 PMCID: PMC9385700 DOI: 10.1016/j.psj.2022.102009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Timothy J Johnson
- University of Minnesota, Mid-Central Research and Outreach Center, Willmar, MN, USA; University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, USA.
| | - Elizabeth A Miller
- University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, USA
| | | | | | - Carol Cardona
- University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, USA
| | | | | | | | | | - Adam Haag
- Pilgrims Pride, Sauk Rapids, MN, USA
| | | | | | | | | | - Randall S Singer
- University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, USA
| |
Collapse
|
38
|
Urban Wildlife Crisis: Australian Silver Gull Is a Bystander Host to Widespread Clinical Antibiotic Resistance. mSystems 2022; 7:e0015822. [PMID: 35469421 PMCID: PMC9238384 DOI: 10.1128/msystems.00158-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Australian silver gull is an urban-adapted species that frequents anthropogenic waste sites. The enterobacterial flora of synanthropic birds often carries antibiotic resistance genes. Whole-genome sequence analyses of 425 Escherichia coli isolates from cloacal swabs of chicks inhabiting three coastal sites in New South Wales, Australia, cultured on media supplemented with meropenem, cefotaxime, or ciprofloxacin are reported. Phylogenetically, over 170 antibiotic-resistant lineages from 96 sequence types (STs) representing all major phylogroups were identified. Remarkably, 25 STs hosted the carbapenemase gene blaIMP-4, sourced only from Five Islands. Class 1 integrons carrying blaIMP and blaOXA alongside blaCTX-M and qnrS were notable. Multiple plasmid types mobilized blaIMP-4 and blaOXA-1, and 121 isolates (28%) carried either a ColV-like (18%) or a pUTI89-like (10%) F virulence plasmid. Phylogenetic comparisons to human isolates provided evidence of interspecies transmission. Our study underscores the importance of bystander species in the transmission of antibiotic-resistant and pathogenic E. coli. IMPORTANCE By compiling various genomic and phenotypic data sets, we have provided one of the most comprehensive genomic studies of Escherichia coli isolates from the Australian silver gull, on media containing clinically relevant antibiotics. The analysis of genetic structures capturing antimicrobial resistance genes across three gull breeding colonies in New South Wales, Australia, and comparisons to clinical data have revealed a range of trackable genetic signatures that highlight the broad distribution of clinical antimicrobial resistance in more than 170 different lineages of E. coli. Conserved truncation sizes of the class 1 integrase gene, a key component of multiple-drug resistance structures in the Enterobacteriaceae, represent unique deletion events that are helping to link seemingly disparate isolates and highlight epidemiologically relevant data between wildlife and clinical sources. Notably, only the most anthropogenically affected of the three sites (Five Islands) was observed to host carbapenem resistance, indicating a potential reservoir among the sites sampled.
Collapse
|
39
|
Lozica L, Villumsen KR, Li G, Hu X, Maljković MM, Gottstein Ž. Genomic Analysis of Escherichia coli Longitudinally Isolated from Broiler Breeder Flocks after the Application of an Autogenous Vaccine. Microorganisms 2022; 10:microorganisms10020377. [PMID: 35208834 PMCID: PMC8879504 DOI: 10.3390/microorganisms10020377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Escherichia coli is the main bacterial cause of major economic losses and animal welfare issues in poultry production. In this study, we investigate the effect of an autogenous vaccine on E. coli strains longitudinally isolated from broiler breeder flocks on two farms. In total, 115 E. coli isolates were sequenced using Illumina technologies, and compared based on a single-nucleotide polymorphism (SNP) analysis of the core-genome and antimicrobial resistance (AMR) genes they carried. The results showed that SNP-based phylogeny corresponds to a previous multilocus-sequence typing (MLST)-based phylogeny. Highly virulent sequence types (STs), including ST117-F, ST95-B2, ST131-B2 and ST390-B2, showed a higher level of homogeneity. On the other hand, less frequent STs, such as ST1485, ST3232, ST7013 and ST8573, were phylogenetically more distant and carried a higher number of antimicrobial resistance genes in most cases. In total, 25 antimicrobial genes were detected, of which the most prevalent were mdf(A) (100%), sitABCD (71.3%) and tet(A) (13.91%). The frequency of AMR genes showed a decreasing trend over time in both farms. The highest prevalence was detected in strains belonging to the B1 phylogenetic group, confirming the previous notion that commensal strains act as reservoirs and carry more resistance genes than pathogenic strains that are mostly associated with virulence genes.
Collapse
Affiliation(s)
- Liča Lozica
- Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Kasper Rømer Villumsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlægevej 88, 1870 Copenhagen, Denmark;
| | - Ganwu Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China;
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Xiao Hu
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Maja Maurić Maljković
- Department of Animal Breeding and Livestock Production, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Željko Gottstein
- Department of Poultry Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia;
- Correspondence: ; Tel.: +385-1239-0280
| |
Collapse
|
40
|
F Plasmid Lineages in Escherichia coli ST95: Implications for Host Range, Antibiotic Resistance, and Zoonoses. mSystems 2022; 7:e0121221. [PMID: 35076267 PMCID: PMC8788324 DOI: 10.1128/msystems.01212-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli sequence type 95 (ST95) is an extraintestinal pathogenic E. coli (ExPEC) renowned for its ability to cause significant morbidity and mortality in humans and poultry. A core genome analysis of 668 ST95 isolates generated 10 clades (A to J), 5 of which are reported here for the first time. F plasmid replicon sequence typing showed that almost a third (178/668 [27%]) of the collection carry pUTI89 (F29:B10) and were restricted to clade A and a sublineage of clade B. In contrast, almost half (328/668 [49%]) of the collection across multiple clades harbor ColV plasmids (multiple F types). Strikingly, ST95 lineages with pUTI89 were almost exclusively from humans, while ColV+ ST95 lineages were sourced from poultry and humans. Clade I was notable because it comprises temporally and geographically matched ColV+ isolates sourced from human and retail poultry meat, suggesting interspecies transmission via food. Clade F contained ST95 isolates of bovine origin, none of which carried ColV or pUTI89 plasmids. Remarkably, an analysis of a cohort of 34,176 E. coli isolates comprising 2,570 sequence types mirrored what was observed in ST95: (i) pUTI89 was overwhelmingly linked to E. coli sourced from humans but almost entirely absent from 13,027 E. coli isolates recovered from poultry, pigs, and cattle, and (ii) E. coli isolates harboring ColV plasmids were from multiple sources, including humans, poultry, and swine. Overall, our data suggest that F plasmids influence E. coli host range, clade structure, and zoonotic potential in ST95 and ExPEC more broadly. IMPORTANCEE. coli ST95 is one of five dominant ExPEC lineages globally and noted for causing urinary tract and bloodstream infections and neonatal meningitis in humans and colibacillosis in poultry. Using high-resolution phylogenomics, we show that F replicon sequence type is linked to ST95 clade structure and zoonotic potential. Specifically, human centric ST95 clades overwhelmingly harbor F29:B10 (pUTI89) plasmids, while clades carrying both human- and poultry-sourced isolates are typically ColV+ with multiple replicon types. Importantly, several clades identified clonal ColV+ ST95 isolates from human and poultry sources, but clade I, which housed temporally and spatially matched isolates, provided the most robust evidence. Notably, patterns of association of F replicon types with E. coli host were mirrored within a diverse collection of 34,176 E. coli genomes. Our studies indicate that the role of food animals as a source of human ExPEC disease is complex and warrants further investigation.
Collapse
|
41
|
Starčič Erjavec M, Jeseničnik K, Elam LP, Kastrin A, Predojević L, Sysoeva TA. Complete sequence of classic F-type plasmid pRK100 shows unique conservation over time and geographic location. Plasmid 2022; 119-120:102618. [PMID: 35077724 PMCID: PMC8978152 DOI: 10.1016/j.plasmid.2022.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/05/2022]
Abstract
Plasmids exhibit great diversity of gene content and host ranges and are famous for quick adaptation to the genetic background of the bacterial host cell. In addition to observing ever evolving plasmids, some plasmids have conserved backbones: a stable core composition and arrangement of genes in addition to variable regions. There are a few reports of extremely conserved plasmids. Here we report the complete sequence of pRK100 plasmid - a large, well-characterized conjugative F-like plasmid found in an Escherichia coli strain isolated from a urinary tract infection patient in 1990. The sequence shows that the 142 kb-long pRK100 plasmid is nearly identical to plasmids circulating in distant geographical locations and found in different host E. coli strains between 2007 and 2017. We also performed additional functional characterization of pRK100. Our results showed that pRK100 does not have a strong pathogenicity phenotype in porcine primary bladder epithelial cell culture. Moreover, the conjugation of pRK100 seems to strongly depend on recipient characteristics. These observations and identification of the pRK100 plasmid in different strain genotypes leave the extreme sequence conservation and broad distribution of this plasmid unexplained.
Collapse
Affiliation(s)
- Marjanca Starčič Erjavec
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Karmen Jeseničnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Lauren P Elam
- Department of Biological Sciences, The University of Alabama in Huntsville, 301 Sparkman Dr, Huntsville, AL 35899, USA
| | - Andrej Kastrin
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Luka Predojević
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Tatyana A Sysoeva
- Department of Biological Sciences, The University of Alabama in Huntsville, 301 Sparkman Dr, Huntsville, AL 35899, USA.
| |
Collapse
|
42
|
Prevalence and Molecular Characteristics of Avian Pathogenic Escherichia coli in "No Antibiotics Ever" Broiler Farms. Microbiol Spectr 2021; 9:e0083421. [PMID: 34878309 PMCID: PMC8653813 DOI: 10.1128/spectrum.00834-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes significant economic and welfare concerns to the broiler industry. For several decades, prophylactic supplementation of antimicrobial growth promoters was the primary method to control APEC; however, the recent shift to no antibiotics ever (NAE) production has increased colibacillosis incidence. The objectives of this study were to determine the influence of season, flock age, and sample type on the prevalence and virulence of E. coli and to identify the serogroups and antimicrobial susceptibility of virulent and nonvirulent E. coli in NAE broiler farms. Litter, feces, cloacal swabs, and tracheal swabs were collected from 4 NAE farms during spring and summer seasons, and E. coli was isolated and confirmed by PCR. Confirmed E. coli isolates were tested for 5 APEC-virulence-associated genes (VAGs) using quantitative PCR (qPCR). Further, E. coli isolates with all five VAGs (100 isolates) and E. coli isolates without any VAGs (87 isolates) were screened against 11 antimicrobials through Kirby-Bauer disk diffusion assay, and their serogroups were tested using PCR. Data were analyzed using the GLIMMIX procedure of SAS 9.4, and statistical significance was determined at a P value of ≤0.05. Overall, the prevalence of E. coli was not affected by season, flock age, or sample type. However, the prevalence of all tested VAGs decreased from spring to summer (P ≤ 0.002). The frequency of resistance was highest for tetracycline, and serogroups O8 (31%) and O78 (11%) were most frequent in virulent E. coli. In conclusion, there is a high prevalence of virulent E. coli in NAE farms, especially in the spring season. IMPORTANCE Avian pathogenic Escherichia coli causes one of the most detrimental bacterial diseases to the United States poultry industry, colibacillosis. Colibacillosis leads to decreased performance, early mortality, and subsequent production loss. Previously, colibacillosis was largely mitigated by the use of antimicrobial growth promoters. Due to concerns about antimicrobial resistance, the use of these promoters has been largely removed from the broiler industry. With recent shifts in the poultry industry to NAE broiler production, there is an increase in bacterial disease and mortality. We do not know how this shift to NAE affects APEC prevalence within broiler farms. Therefore, in the current study, we attempted to assess the prevalence and virulence of E. coli within an antibiotic-free broiler environment, assessed antimicrobial susceptibility, and identified the serogroups of virulent and nonvirulent E. coli.
Collapse
|
43
|
Li D, Wyrsch ER, Elankumaran P, Dolejska M, Marenda MS, Browning GF, Bushell RN, McKinnon J, Chowdhury PR, Hitchick N, Miller N, Donner E, Drigo B, Baker D, Charles IG, Kudinha T, Jarocki VM, Djordjevic SP. Genomic comparisons of Escherichia coli ST131 from Australia. Microb Genom 2021; 7:000721. [PMID: 34910614 PMCID: PMC8767332 DOI: 10.1099/mgen.0.000721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Escherichia coli ST131 is a globally dispersed extraintestinal pathogenic E. coli lineage contributing significantly to hospital and community acquired urinary tract and bloodstream infections. Here we describe a detailed phylogenetic analysis of the whole genome sequences of 284 Australian ST131 E. coli isolates from diverse sources, including clinical, food and companion animals, wildlife and the environment. Our phylogeny and the results of single nucleotide polymorphism (SNP) analysis show the typical ST131 clade distribution with clades A, B and C clearly displayed, but no niche associations were observed. Indeed, interspecies relatedness was a feature of this study. Thirty-five isolates (29 of human and six of wild bird origin) from clade A (32 fimH41, 2 fimH89, 1 fimH141) were observed to differ by an average of 76 SNPs. Forty-five isolates from clade C1 from four sources formed a cluster with an average of 46 SNPs. Within this cluster, human sourced isolates differed by approximately 37 SNPs from isolates sourced from canines, approximately 50 SNPs from isolates from wild birds, and approximately 52 SNPs from isolates from wastewater. Many ST131 carried resistance genes to multiple antibiotic classes and while 41 (14 %) contained the complete class one integron-integrase intI1, 128 (45 %) isolates harboured a truncated intI1 (462-1014 bp), highlighting the ongoing evolution of this element. The module intI1-dfrA17-aadA5-qacEΔ1-sul1-ORF-chrA-padR-IS1600-mphR-mrx-mphA, conferring resistance to trimethoprim, aminoglycosides, quaternary ammonium compounds, sulphonamides, chromate and macrolides, was the most common structure. Most (73 %) Australian ST131 isolates carry at least one extended spectrum β-lactamase gene, typically blaCTX-M-15 and blaCTX-M-27. Notably, dual parC-1aAB and gyrA-1AB fluoroquinolone resistant mutations, a unique feature of clade C ST131 isolates, were identified in some clade A isolates. The results of this study indicate that the the ST131 population in Australia carries diverse antimicrobial resistance genes and plasmid replicons and indicate cross-species movement of ST131 strains across diverse reservoirs.
Collapse
Affiliation(s)
- Dmitriy Li
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ethan R. Wyrsch
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Monika Dolejska
- CEITEC VETUNI, University of Veterinary Sciences Brno, Brno, Czech Republic,Department of Biology and Wildlife Disease, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic,Biomedical Center, Charles University, Czech Republic,Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czech Republic
| | - Marc S. Marenda
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Glenn F. Browning
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Rhys N. Bushell
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
| | - Jessica McKinnon
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Nola Hitchick
- San Pathology, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia
| | - Natalie Miller
- San Pathology, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia
| | - Erica Donner
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Barbara Drigo
- Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | | | | | - Timothy Kudinha
- Central West Pathology Laboratory, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Veronica M. Jarocki
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia,*Correspondence: Veronica M. Jarocki,
| | - Steven Philip Djordjevic
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia,*Correspondence: Steven Philip Djordjevic,
| |
Collapse
|
44
|
Rezatofighi SE, Najafifar A, Askari Badouei M, Peighambari SM, Soltani M. An Integrated Perspective on Virulence-Associated Genes (VAGs), Antimicrobial Resistance (AMR), and Phylogenetic Clusters of Pathogenic and Non-pathogenic Avian Escherichia coli. Front Vet Sci 2021; 8:758124. [PMID: 34901248 PMCID: PMC8651559 DOI: 10.3389/fvets.2021.758124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/15/2021] [Indexed: 12/05/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is an important bacterial pathogen that causes avian colibacillosis and leads to huge economic losses in the poultry industry. Different virulence traits contribute to pathogenesis of APEC infections, and antimicrobial resistance (AMR) has also been an overwhelming issue in poultry worldwide. In the present study, we aimed to investigate and compare the presence of virulence-associated genes (VAGs), AMR, and phylogenetic group's distribution among APEC and avian fecal E. coli (AFEC) strains. E. coli from birds with colisepticemia and yolk sac infection (YSI) (APEC) plus E. coli strains from the feces of healthy birds (AFEC) were compared by the aforementioned traits. In addition, the clonal relatedness was compared using Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). Although all strains were susceptible to fosfomycin, ceftriaxone, and cefixime, almost all strains (98%) were multi-drug resistant (MDR). All strains (except two) harbored at least three or more VAGs, and the virulence scores tended to be higher in pathogenic strains especially in the colisepticemic group. All phylogenetic groups were found in isolates from YSI, colisepticemia, and the feces of healthy birds; however, the frequency of phylogroups varied according to the source of the isolate. B1 and C phylogroups were statistically more likely to be found among APEC from YSI and colisepticemic E. coli groups, respectively, while phylogroup A was the most frequently occurring phylogroup among AFEC strains. Our findings also revealed that AMR and VAGs are not essentially co-evolved traits as in some instances AMR strains were more prevalent among AFEC. This reflects the divergent evolutionary pathways of resistance acquisition in pathogenic or non-pathogenic avian E. coli strains. Importantly, strains related to phylogenetic group C showed higher virulence score and AMR that requires further attention. To some extent, ERIC-PCR was able to group strains by isolation source, phylogroup, or virulence genes. Further integrated studies along with assessment of more detailed genotypic and phenotypic features could potentially lead to better understanding of virulence, resistance, and evolution of ExPEC.
Collapse
Affiliation(s)
| | - Arash Najafifar
- Private Veterinary Practitioner, Independent Researcher, Tehran, Iran
| | - Mahdi Askari Badouei
- Faculty of Veterinary Medicine, Department of Pathobiology, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammad Soltani
- Faculty of Veterinary Medicine, Department of Avian Diseases, University of Tehran, Tehran, Iran
| |
Collapse
|
45
|
Tartor YH, Gharieb RMA, Abd El-Aziz NK, El Damaty HM, Enany S, Khalifa E, Attia ASA, Abdellatif SS, Ramadan H. Virulence Determinants and Plasmid-Mediated Colistin Resistance mcr Genes in Gram-Negative Bacteria Isolated From Bovine Milk. Front Cell Infect Microbiol 2021; 11:761417. [PMID: 34888259 PMCID: PMC8650641 DOI: 10.3389/fcimb.2021.761417] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
A major increase of bacterial resistance to colistin, a last-resort treatment for severe infections, was observed globally. Using colistin in livestock rearing is believed to be the ground of mobilized colistin resistance (mcr) gene circulation and is of crucial concern to public health. This study aimed to determine the frequency and virulence characteristics of colistin-resistant Gram-negative bacteria from the milk of mastitic cows and raw unpasteurized milk in Egypt. One hundred and seventeen strains belonging to Enterobacteriaceae (n = 90), Pseudomonas aeruginosa (n = 10), and Aeromonas hydrophila (n = 17) were screened for colistin resistance by antimicrobial susceptibility testing. The genetic characteristics of colistin-resistant strains were investigated for mcr-1-9 genes, phylogenetic groups, and virulence genes. Moreover, we evaluated four commonly used biocides in dairy farms for teat disinfection toward colistin-resistant strains. Multidrug-resistant (MDR) and extensive drug-resistant (XDR) phenotypes were detected in 82.91% (97/117) and 3.42% (4/117) of the isolates, respectively. Of the 117 tested isolates, 61 (52.14%) were colistin resistant (MIC >2 mg/L), distributed as 24/70 (34.29%) from clinical mastitis, 10/11 (90.91%) from subclinical mastitis, and 27/36 (75%) from raw milk. Of these 61 colistin-resistant isolates, 47 (19 from clinical mastitis, 8 from subclinical mastitis, and 20 from raw milk) harbored plasmid-borne mcr genes. The mcr-1 gene was identified in 31.91%, mcr-2 in 29.79%, mcr-3 in 34.04%, and each of mcr-4 and mcr-7 in 2.13% of the colistin-resistant isolates. Among these isolates, 42.55% (20/47) were E. coli, 21.28% (10/47) A. hydrophila, 19.12% (9/47) K. pneumoniae, and 17.02% (8/47) P. aeruginosa. This is the first report of mcr-3 and mcr-7 in P. aeruginosa. Conjugation experiments using the broth-mating technique showed successful transfer of colistin resistance to E. coli J53-recipient strain. Different combinations of virulence genes were observed among colistin-resistant isolates with almost all isolates harboring genes. Hydrogen peroxide has the best efficiency against all bacterial isolates even at a low concentration (10%). In conclusion, the dissemination of mobile colistin resistance mcr gene and its variants between MDR- and XDR-virulent Gram-negative isolates from dairy cattle confirms the spread of mcr genes at all levels; animals, humans, and environmental, and heralds the penetration of the last-resort antimicrobial against MDR bacteria. Consequently, a decision to ban colistin in food animals is urgently required to fight XDR and MDR bacteria.
Collapse
Affiliation(s)
- Yasmine H Tartor
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha M A Gharieb
- Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Norhan K Abd El-Aziz
- Microbiology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hend M El Damaty
- Animal Medicine Department (Infectious Diseases), Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shymaa Enany
- Microbiology and Immunology Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, Egypt
| | - Amira S A Attia
- Veterinary Public Health Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samah S Abdellatif
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
46
|
Narasinakuppe Krishnegowda D, Singh BR, Mariappan AK, Munuswamy P, Singh KP, Monalisa Sahoo, Saminathan M, Ramalingam R, Chellappa MM, Singh V, Dhama K, Reddy MR. Molecular epidemiological studies on avian pathogenic Escherichia coli associated with septicemia in chickens in India. Microb Pathog 2021; 162:105313. [PMID: 34902538 DOI: 10.1016/j.micpath.2021.105313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022]
Abstract
Bacterial septicemia causes huge economic losses in the poultry industry and there is no systematic research available in India on the connection of various pathogens associated with septicemia. The present molecular epidemiological study was conducted to investigate the association of different bacterial and immunosuppressive viral pathogens in septicemia suspected chickens. A total of 443 chicken carcasses with septicemic conditions from 71 different flocks were included in this study. Heart blood swabs were subjected to bacterial culture for Salmonella spp., Pasteurella multocida, Escherichia coli, and Gallibacterium anatis. Of these 51 flocks tested for E. coli, 49 (96.1%) flocks were found positive. Among flocks tested for Salmonella spp., 2 flocks were found positive. All tested flocks were found negative for G. anatis and P. multocida as well as air sac swabs tested negative for Mycoplasma spp. Bacterial cultural examination revealed that majority of septicemic chickens were found to be infected with E. coli and these E. coli isolates showed the highest resistance to vancomycin (60%), followed by erythromycin (50%) and cefotaxime (38%) and maximum sensitivity to cefotaxime and clavulanic acid combinations (81.5%), followed by chloramphenicol (69.6%) and ertapenem (67.2%). Among the 5 avian pathogenic E. coli (APEC) virulence genes were detected in 36 flocks and highest frequency of iss (100%), followed by ompT or iutA (97.2%), hly (61.1%) and iroN (47.2%) genes. On polymerase chain reaction (PCR) screening, 10.5, 4.5, 52.2, 19.4, 9.0, 4.5, 20.1 and 19.4% of the flocks were positive for G. anatis, Ornithobacterium rhinotracheale, APEC, Salmonella spp., Mycoplasma gallisepticum, Mycoplasma synoviae, chicken infectious anemia virus and Marek's disease virus, respectively. To our knowledge, the present study is first on the etiology of septicemia in chicken flocks in India. The present study infers that the majority of septicemic deaths in broiler chickens less than 8 weeks have been connected with APEC and majority of E. coli isolates are multidrug resistance, suggesting the need for surveillance and intervention to curb the inadvertent use of antibiotics. Although, incidence of G. anatis association with septicemia was reported, still requires a rigorous epidemiological study to determine the actual prevalence. However, more detailed studies encompassing vast geographical area with large sample size and long duration of the studies are necessary to provide a clear picture of the interaction of different pathogens causing septicemia in chicken.
Collapse
Affiliation(s)
| | - Bhoj Raj Singh
- Division of Epidemiology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Asok Kumar Mariappan
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Palanivelu Munuswamy
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Monalisa Sahoo
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Rajasekar Ramalingam
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Madhan Mohan Chellappa
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Vidya Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute Izatnagar, Bareilly, 243 122, Uttar Pradesh, India.
| | - Maddula Ramakoti Reddy
- Avian Health Laboratory, ICAR-Directorate of Poultry Research, Rajendranagar, Hyderabad, 500030, Telengana, India.
| |
Collapse
|
47
|
Abbott CN, Felix M, Foley SL, Khajanchi BK. Expression of Genes Located on the Incompatibility Group FIB Plasmids at Transcription and Protein Levels in Iron-Modified Growth Conditions. Front Microbiol 2021; 12:729275. [PMID: 34803945 PMCID: PMC8602916 DOI: 10.3389/fmicb.2021.729275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Salmonella enterica strains often harbor plasmids representing several incompatibility groups (Inc) including IncFIB, which have been previously associated with carrying antimicrobial resistance and virulence associated genes. To better understand the distribution of virulence genes on IncFIB plasmids, we analyzed 37 complete whole genome and plasmid sequences of different S. enterica isolates from multiple serovars. Many of the sequences analyzed carried multiple virulence-associated genes, including those associated with iron acquisition systems; thus we aimed to determine how iron-rich (IR) and various iron-depleted (ID) conditions affected the transcription of iron acquisition and virulence genes including sitA, iutA, iucA, and enolase at different time intervals. sitA, iutA, and enolase from S. enterica that were grown in Luria-Bertani broth (LB) ID (LBID) conditions were substantially upregulated when compared to LBIR conditions. For both S. enterica strains that were grown at various LBID conditions, addition of 200 μM bipyridyl in the growth medium yielded the highest transcription for all four genes, followed by the 100 μM concentration. An antibody using a peptide targeting aerobactin receptor gene iutA encoded by IncFIB was generated and used to examine the protein expression in the wild-type, recipient, and transconjugant strain in LB, LBID, and LBIR growth conditions using Western blot analyses. A 70 KDa protein band was detected in the wild-type and transconjugant that carried the IncFIB plasmid, while this band was not detected in the recipient strain that lacked this plasmid.
Collapse
Affiliation(s)
- Carter N Abbott
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | - Monique Felix
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | - Steven L Foley
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | - Bijay K Khajanchi
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| |
Collapse
|
48
|
Sora VM, Meroni G, Martino PA, Soggiu A, Bonizzi L, Zecconi A. Extraintestinal Pathogenic Escherichia coli: Virulence Factors and Antibiotic Resistance. Pathogens 2021; 10:pathogens10111355. [PMID: 34832511 PMCID: PMC8618662 DOI: 10.3390/pathogens10111355] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
The One Health approach emphasizes the importance of antimicrobial resistance (AMR) as a major concern both in public health and in food animal production systems. As a general classification, E. coli can be distinguished based on the ability to cause infection of the gastrointestinal system (IPEC) or outside of it (ExPEC). Among the different pathogens, E. coli are becoming of great importance, and it has been suggested that ExPEC may harbor resistance genes that may be transferred to pathogenic or opportunistic bacteria. ExPEC strains are versatile bacteria that can cause urinary tract, bloodstream, prostate, and other infections at non-intestinal sites. In this context of rapidly increasing multidrug-resistance worldwide and a diminishingly effective antimicrobial arsenal to tackle resistant strains. ExPEC infections are now a serious public health threat worldwide. However, the clinical and economic impact of these infections and their optimal management are challenging, and consequently, there is an increasing awareness of the importance of ExPECs amongst healthcare professionals and the general public alike. This review aims to describe pathotype characteristics of ExPEC to increase our knowledge of these bacteria and, consequently, to increase our chances to control them and reduce the risk for AMR, following a One Health approach.
Collapse
|
49
|
Aziz A, Abbas MA, Siddique N, Shah A, Rahim A, Rafique S, Khan A, Midrarullah, Khan S, Rashid F, Hui Y, Suleman M. Development of multiplex PCR for rapid and simultaneous detection of E. coli (APEC), Salmonella, Mycoplasma gallisepticum and Mycoplasma Synoviae. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
50
|
Mehat JW, van Vliet AHM, La Ragione RM. The Avian Pathogenic Escherichia coli (APEC) pathotype is comprised of multiple distinct, independent genotypes. Avian Pathol 2021; 50:402-416. [PMID: 34047644 DOI: 10.1080/03079457.2021.1915960] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Avian Pathogenic E. coli (APEC) is the causative agent of avian colibacillosis, resulting in economic losses to the poultry industry through morbidity, mortality and carcass condemnation, and impacts the welfare of poultry. Colibacillosis remains a complex disease to manage, hampered by diagnostic and classification strategies for E. coli that are inadequate for defining APEC. However, increased accessibility of whole genome sequencing (WGS) technology has enabled phylogenetic approaches to be applied to the classification of E. coli and genomic characterization of the most common APEC serotypes associated with colibacillosis O1, O2 and O78. These approaches have demonstrated that the O78 serotype is representative of two distinct APEC lineages, ST-23 in phylogroup C and ST-117 in phylogroup G. The O1 and O2 serotypes belong to a third lineage comprised of three sub-populations in phylogroup B2; ST-95, ST-140 and ST-428/ST-429. The frequency with which these genotypes are associated with colibacillosis implicates them as the predominant APEC populations and distinct from those causing incidental or opportunistic infections. The fact that these are disparate clusters from multiple phylogroups suggests that these lineages may have become adapted to the poultry niche independently. WGS studies have highlighted the limitations of traditional APEC classification and can now provide a path towards a robust and more meaningful definition of the APEC pathotype. Future studies should focus on characterizing individual APEC populations in detail and using this information to develop improved diagnostics and interventions.
Collapse
Affiliation(s)
- Jai W Mehat
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|