1
|
Mondry Cohen N, Krishna Kumar C, Iitoyo H, Rookyard AW, Cain JA, Man L, White MY, Dale AL, Cordwell SJ. Exploring the Targets of Reactive Oxygen Species and Defense against Oxidative Stress in Campylobacter jejuni Using a Multiomics Approach. J Proteome Res 2025. [PMID: 40426317 DOI: 10.1021/acs.jproteome.5c00182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Campylobacter jejuni is a major cause of human gastroenteritis. Pathogenesis depends on survival in reactive oxygen species (ROS) that are produced endogenously and by host phagocytes and microbiota. Label-based proteomics by LC-MS/MS quantified 1347 proteins (83.0% of the predicted proteome) in response to hydrogen peroxide (10 μM/0.5 mM) and superoxide-inducing paraquat (PQ; 2 μM/10 μM). Antioxidants including catalase (KatA) and alkylhydroperoxide reductase (AhpC), were induced, consistent with the oxidative stress response. Changes to nutrient transporters (SdaC/PutP/LctP) correlated with the intracellular abundance of substrates (serine/proline/lactate). ROS significantly elevated the abundance of the outer membrane protein Cj1170c, and Δcj1170c bacteria were compromised for survival in H2O2 and under osmotic stress. PQ induced intracellular accumulation of threonine and homoserine, while Δcj1170c bacteria were depleted of these metabolites. ROS targets cysteine thiols that can be irreversibly modified to sulfinic and sulfonic (SO2H/SO3H) acids. We identified 1334 Cys-SO2H/SO3H-modified peptides (867 sites in 495 proteins) using SCX negative and HILIC positive selection coupled to LC-MS/MS. Many sites were modified without exogenous H2O2, suggesting that C. jejuni maintains an oxidative intracellular environment potentially related to microaerophilicity. Fe-S clusters were the primary targets of ROS. ROS trigger molecular remodeling associated with in-host growth, while overoxidizable Cys sites provide targets for redox-based antimicrobials.
Collapse
Affiliation(s)
- Nova Mondry Cohen
- School of Life and Environmental Sciences, The University of Sydney , Sydney2006, Australia
- Charles Perkins Centre, The University of Sydney , Sydney2006, Australia
| | - Chiranth Krishna Kumar
- School of Life and Environmental Sciences, The University of Sydney , Sydney2006, Australia
- Charles Perkins Centre, The University of Sydney , Sydney2006, Australia
| | - Haruta Iitoyo
- School of Life and Environmental Sciences, The University of Sydney , Sydney2006, Australia
- Charles Perkins Centre, The University of Sydney , Sydney2006, Australia
| | - Alexander W Rookyard
- School of Life and Environmental Sciences, The University of Sydney , Sydney2006, Australia
- Charles Perkins Centre, The University of Sydney , Sydney2006, Australia
- Sydney Mass Spectrometry, The University of Sydney , Sydney2006, Australia
| | - Joel A Cain
- School of Life and Environmental Sciences, The University of Sydney , Sydney2006, Australia
- Charles Perkins Centre, The University of Sydney , Sydney2006, Australia
| | - Lok Man
- School of Life and Environmental Sciences, The University of Sydney , Sydney2006, Australia
- Charles Perkins Centre, The University of Sydney , Sydney2006, Australia
| | - Melanie Y White
- Charles Perkins Centre, The University of Sydney , Sydney2006, Australia
- School of Medical Sciences, The University of Sydney , Sydney2006, Australia
| | - Ashleigh L Dale
- School of Life and Environmental Sciences, The University of Sydney , Sydney2006, Australia
- Charles Perkins Centre, The University of Sydney , Sydney2006, Australia
- Sydney Mass Spectrometry, The University of Sydney , Sydney2006, Australia
| | - Stuart J Cordwell
- School of Life and Environmental Sciences, The University of Sydney , Sydney2006, Australia
- Charles Perkins Centre, The University of Sydney , Sydney2006, Australia
- Sydney Mass Spectrometry, The University of Sydney , Sydney2006, Australia
- School of Medical Sciences, The University of Sydney , Sydney2006, Australia
| |
Collapse
|
2
|
Cao S, Zhang Y, Bao R, Wang T, Zhu L, Zhang Q. Helicobacter hepaticus promotes liver fibrosis through oxidative stress induced by hydrogenase in BALB/c mice. Helicobacter 2023; 28:e13001. [PMID: 37334992 DOI: 10.1111/hel.13001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND It has been documented that Helicobacter hepaticus produces a nickel-containing hydrogen-oxidizing hydrogenase enzyme, which is necessary for hydrogen-supported amino acid uptake. Although H. hepaticus infection has been shown to promote liver inflammation and fibrosis in BALB/c mice, the impact of hydrogenase on the progression of liver fibrosis induced by H. hepaticus has not been explored. MATERIALS AND METHODS BALB/c mice were inoculated with hydrogenase mutant (ΔHyaB) or wild type (WT) H. hepaticus 3B1 for 12 and 24 weeks. H. hepaticus colonization, hepatic histopathology, serum biochemistry, expression of inflammatory cytokines, and oxidative stress signaling pathways were detected. RESULTS We found that ΔHyaB had no influence on the colonization of H. hepaticus in the liver of mice at 12 and 24 weeks post infection (WPI). However, mice infected by ΔHyaB strains developed significantly alleviated liver inflammation and fibrosis compared with WT infection. Moreover, ΔHyaB infection remarkably increased the expression of hepatic GSH, SOD, and GSH-Px, and decreased the liver levels of MDA, ALT, and AST compared to WT H. hepaticus infected group from 12 to 24 WPI. Furthermore, mRNA levels of Il-6, Tnf-α, iNos, Hmox-1, and α-SMA were significantly decreased with an increase of Nfe2l2 in the liver of mice infected by ΔHyaB strains. In addition, ΔHyaB H. hepaticus restored the activation of the Nrf2/HO-1 signaling pathway, which is inhibited by H. hepaticus infection. CONCLUSIONS These data demonstrated that H. hepaticus hydrogenase promoted liver inflammation and fibrosis development mediated by oxidative stress in male BALB/c mice.
Collapse
Affiliation(s)
- Shuyang Cao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuanyuan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ruoyu Bao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tao Wang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Liqi Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Quan Zhang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Campbell AC, Prater AR, Bogner AN, Quinn TP, Gates KS, Becker DF, Tanner JJ. Photoinduced Covalent Irreversible Inactivation of Proline Dehydrogenase by S-Heterocycles. ACS Chem Biol 2021; 16:2268-2279. [PMID: 34542291 DOI: 10.1021/acschembio.1c00427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Proline dehydrogenase (PRODH) is a flavoenzyme that catalyzes the first step of proline catabolism, the oxidation of l-proline to Δ1-pyrroline-5-carboxylate. PRODH has emerged as a cancer therapy target because of its involvement in the metabolic reprogramming of cancer cells. Here, we report the discovery of a new class of PRODH inactivator, which covalently and irreversibly modifies the FAD in a light-dependent manner. Two examples, 1,3-dithiolane-2-carboxylate and tetrahydrothiophene-2-carboxylate, have been characterized using X-ray crystallography (1.52-1.85 Å resolution), absorbance spectroscopy, and enzyme kinetics. The structures reveal that in the dark, these compounds function as classical reversible, proline analogue inhibitors. However, exposure of enzyme-inhibitor cocrystals to bright white light induces decarboxylation of the inhibitor and covalent attachment of the residual S-heterocycle to the FAD N5 atom, locking the cofactor into a reduced, inactive state. Spectroscopic measurements of the inactivation process in solution confirm the requirement for light and show that blue light is preferred. Enzyme activity assays show that the rate of inactivation is enhanced by light and that the inactivation is irreversible. We also demonstrate the photosensitivity of cancer cells to one of these compounds. A possible mechanism is proposed involving photoexcitation of the FAD, while the inhibitor is noncovalently bound in the active site, followed by electron transfer, decarboxylation, and radical combination steps. Our results could lead to the development of photopharmacological drugs targeting PRODH.
Collapse
Affiliation(s)
- Ashley C. Campbell
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Austin R. Prater
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Alexandra N. Bogner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Thomas P. Quinn
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kent S. Gates
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
4
|
Prokaryotic Solute/Sodium Symporters: Versatile Functions and Mechanisms of a Transporter Family. Int J Mol Sci 2021; 22:ijms22041880. [PMID: 33668649 PMCID: PMC7918813 DOI: 10.3390/ijms22041880] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The solute/sodium symporter family (SSS family; TC 2.A.21; SLC5) consists of integral membrane proteins that use an existing sodium gradient to drive the uphill transport of various solutes, such as sugars, amino acids, vitamins, or ions across the membrane. This large family has representatives in all three kingdoms of life. The human sodium/iodide symporter (NIS) and the sodium/glucose transporter (SGLT1) are involved in diseases such as iodide transport defect or glucose-galactose malabsorption. Moreover, the bacterial sodium/proline symporter PutP and the sodium/sialic acid symporter SiaT play important roles in bacteria–host interactions. This review focuses on the physiological significance and structural and functional features of prokaryotic members of the SSS family. Special emphasis will be given to the roles and properties of proteins containing an SSS family domain fused to domains typically found in bacterial sensor kinases.
Collapse
|
5
|
Christgen SL, Becker DF. Role of Proline in Pathogen and Host Interactions. Antioxid Redox Signal 2019; 30:683-709. [PMID: 29241353 PMCID: PMC6338583 DOI: 10.1089/ars.2017.7335] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/26/2017] [Accepted: 11/14/2017] [Indexed: 01/20/2023]
Abstract
SIGNIFICANCE Proline metabolism has complex roles in a variety of biological processes, including cell signaling, stress protection, and energy production. Proline also contributes to the pathogenesis of various disease-causing organisms. Understanding the mechanisms of how pathogens utilize proline is important for developing new strategies against infectious diseases. Recent Advances: The ability of pathogens to acquire amino acids is critical during infection. Besides protein biosynthesis, some amino acids, such as proline, serve as a carbon, nitrogen, or energy source in bacterial and protozoa pathogens. The role of proline during infection depends on the physiology of the host/pathogen interactions. Some pathogens rely on proline as a critical respiratory substrate, whereas others exploit proline for stress protection. CRITICAL ISSUES Disruption of proline metabolism and uptake has been shown to significantly attenuate virulence of certain pathogens, whereas in other pathogens the importance of proline during infection is not known. Inhibiting proline metabolism and transport may be a useful therapeutic strategy against some pathogens. Developing specific inhibitors to avoid off-target effects in the host, however, will be challenging. Also, potential treatments that target proline metabolism should consider the impact on intracellular levels of Δ1-pyrroline-5-carboxylate, a metabolite intermediate that can have opposing effects on pathogenesis. FUTURE DIRECTIONS Further characterization of how proline metabolism is regulated during infection would provide new insights into the role of proline in pathogenesis. Biochemical and structural characterization of proline metabolic enzymes from different pathogens could lead to new tools for exploring proline metabolism during infection and possibly new therapeutic compounds.
Collapse
Affiliation(s)
- Shelbi L. Christgen
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska−Lincoln, Lincoln, Nebraska
| |
Collapse
|
6
|
Abstract
SIGNIFICANCE Proline catabolism refers to the 4-electron oxidation of proline to glutamate catalyzed by the enzymes proline dehydrogenase (PRODH) and l-glutamate γ-semialdehyde dehydrogenase (GSALDH, or ALDH4A1). These enzymes and the intermediate metabolites of the pathway have been implicated in tumor growth and suppression, metastasis, hyperprolinemia metabolic disorders, schizophrenia susceptibility, life span extension, and pathogen virulence and survival. In some bacteria, PRODH and GSALDH are combined into a bifunctional enzyme known as proline utilization A (PutA). PutAs are not only virulence factors in some pathogenic bacteria but also fascinating systems for studying the coordination of metabolic enzymes via substrate channeling. Recent Advances: The past decade has seen an explosion of structural data for proline catabolic enzymes. This review surveys these structures, emphasizing protein folds, substrate recognition, oligomerization, kinetic mechanisms, and substrate channeling in PutA. CRITICAL ISSUES Major unsolved structural targets include eukaryotic PRODH, the complex between monofunctional PRODH and monofunctional GSALDH, and the largest of all PutAs, trifunctional PutA. The structural basis of PutA-membrane association is poorly understood. Fundamental aspects of substrate channeling in PutA remain unknown, such as the identity of the channeled intermediate, how the tunnel system is activated, and the roles of ancillary tunnels. FUTURE DIRECTIONS New approaches are needed to study the molecular and in vivo mechanisms of substrate channeling. With the discovery of the proline cycle driving tumor growth and metastasis, the development of inhibitors of proline metabolic enzymes has emerged as an exciting new direction. Structural biology will be important in these endeavors.
Collapse
Affiliation(s)
- John J Tanner
- 1 Department of Biochemistry and University of Missouri-Columbia , Columbia, Missouri.,2 Department of Chemistry, University of Missouri-Columbia , Columbia, Missouri
| |
Collapse
|
7
|
Mouammine A, Eich K, Frandi A, Collier J. Control of proline utilization by the Lrp-like regulator PutR in Caulobacter crescentus. Sci Rep 2018; 8:14677. [PMID: 30279528 PMCID: PMC6168545 DOI: 10.1038/s41598-018-32660-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/11/2018] [Indexed: 11/09/2022] Open
Abstract
Cellular metabolism recently emerged as a central player modulating the bacterial cell cycle. The Alphaproteobacterium Caulobacter crescentus appears as one of the best models to study these connections, but its metabolism is still poorly characterized. Considering that it lives in oligotrophic environments, its capacity to use amino-acids is often critical for its growth. Here, we characterized the C. crescentus PutA bi-functional enzyme and showed that it is required for the utilization of proline as a carbon source. We also found that putA transcription and proline utilization by PutA are strictly dependent on the Lrp-like PutR activator. The activation of putA by PutR needs proline, which most likely acts as an effector molecule for PutR. Surprisingly, we also observed that an over-production of PutR leads to cell elongation in liquid medium containing proline, while it inhibits colony formation even in the absence of proline on solid medium. These cell division and growth defects were equally pronounced in a ΔputA mutant background, indicating that PutR can play other roles beyond the control of proline catabolism. Altogether, these findings suggest that PutR might connect central metabolism with cell cycle processes.
Collapse
Affiliation(s)
- Annabelle Mouammine
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Katharina Eich
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Antonio Frandi
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland
| | - Justine Collier
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL/Sorge, Lausanne, CH, 1015, Switzerland.
| |
Collapse
|
8
|
Fu ZD, Selwyn FP, Cui JY, Klaassen CD. RNA-Seq Profiling of Intestinal Expression of Xenobiotic Processing Genes in Germ-Free Mice. Drug Metab Dispos 2017; 45:1225-1238. [PMID: 28939687 PMCID: PMC5676297 DOI: 10.1124/dmd.117.077313] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022] Open
Abstract
Intestinal bacteria can affect xenobiotic metabolism through both direct bacterial enzyme-catalyzed modification of the xenobiotics and indirect alterations of the expression of host genes. To determine how intestinal bacteria affect the expression of host xenobiotic-processing genes (XPGs), the mRNA profiles of 303 XPGs were characterized by RNA sequencing in four intestinal sections and compared with that in the liver from adult male conventional (CV) and germ-free (GF) mice. Fifty-four XPGs were not expressed in the intestine of either CV or GF mice. The GF condition altered the expression of 116 XPGs in at least one intestinal section but had no effect on 133 XPGs. Many cytochrome P450 family members such as Cyp1a, Cyp2b10, Cyp2c, and most Cyp3a members, as well as carboxylesterase (Ces) 2a were expressed lower in the intestine of GF than CV mice. In contrast, GF mice had higher intestinal expression of some phase I oxidases (alcohol dehydrogenase 1, aldehyde dehydrogenase a1l1 and 4a1, as well as flavin monooxygenase 5) and phase II conjugation enzymes (UDP-glucuronosyltransferase 1a1, and sulfotransferase 1c2, 1d1, and 2b1). Several transporters in the intestine, such as bile acid transporters (apical sodium-dependent bile acid transporter, organic solute transporter α and β), peptide transporter 1, and multidrug and toxin extrusion protein 1, exhibited higher expression in GF mice. In conclusion, lack of intestinal bacteria alters the expression of a large number of XPGs in the host intestine, some of which are section specific. Cyp3a is downregulated in both the liver and intestine of GF mice, which probably contributes to altered xenobiotic metabolism.
Collapse
Affiliation(s)
- Zidong Donna Fu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Felcy P Selwyn
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Caudill MT, Budnick JA, Sheehan LM, Lehman CR, Purwantini E, Mukhopadhyay B, Caswell CC. Proline utilization system is required for infection by the pathogenic α-proteobacterium Brucella abortus. MICROBIOLOGY-SGM 2017; 163:970-979. [PMID: 28691659 DOI: 10.1099/mic.0.000490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proline utilization (Put) systems have been described in a number of bacteria; however, the importance and functionality of the Put system in the intracellular pathogen Brucellaabortus has not been explored. Generally, bacterial Put systems are composed of the bifunctional enzyme proline dehydrogenase PutA and its transcriptional activator PutR. Here, we demonstrate that the genes putA (bab2_0518) and putR (bab2_0517) are critical for the chronic infection of mice by B. abortus, but putA and putR are not required for the survival and replication of the bacteria in naive macrophages. Additionally, in vitro experiments revealed that putR is necessary for the ability of the bacteria to withstand oxidative stress, as a ΔputR deletion strain is hypersensitive to hydrogen peroxide exposure. Quantitative reverse transcription-PCR and putA-lacZ transcriptional reporter studies revealed that PutR acts as a transcriptional activator of putA in Brucella, and electrophoretic mobility shift assays confirmed that PutR binds directly to the putA promoter region. Biochemical analyses demonstrated that a purified recombinant B. abortus PutA protein possesses quintessential proline dehydrogenase activity, as PutA is capable of catalysing the conversion of proline to glutamate. Altogether, these data are the first to reveal that the Put system plays a significant role in the ability of B. abortus to replicate and survive within its host, as well as to describe the genetic regulation and biochemical activity of the Put system in Brucella.
Collapse
Affiliation(s)
- Mitchell T Caudill
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - James A Budnick
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Lauren M Sheehan
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Christian R Lehman
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| | - Endang Purwantini
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|
10
|
Korasick DA, Gamage TT, Christgen S, Stiers KM, Beamer LJ, Henzl MT, Becker DF, Tanner JJ. Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis. J Biol Chem 2017; 292:9652-9665. [PMID: 28420730 PMCID: PMC5465489 DOI: 10.1074/jbc.m117.786855] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
The bifunctional flavoenzyme proline utilization A (PutA) catalyzes the two-step oxidation of proline to glutamate using separate proline dehydrogenase (PRODH) and l-glutamate-γ-semialdehyde dehydrogenase active sites. Because PutAs catalyze sequential reactions, they are good systems for studying how metabolic enzymes communicate via substrate channeling. Although mechanistically similar, PutAs vary widely in domain architecture, oligomeric state, and quaternary structure, and these variations represent different structural solutions to the problem of sequestering a reactive metabolite. Here, we studied PutA from Corynebacterium freiburgense (CfPutA), which belongs to the uncharacterized 3B class of PutAs. A 2.7 Å resolution crystal structure showed the canonical arrangement of PRODH, l-glutamate-γ-semialdehyde dehydrogenase, and C-terminal domains, including an extended interdomain tunnel associated with substrate channeling. The structure unexpectedly revealed a novel open conformation of the PRODH active site, which is interpreted to represent the non-activated conformation, an elusive form of PutA that exhibits suboptimal channeling. Nevertheless, CfPutA exhibited normal substrate-channeling activity, indicating that it isomerizes into the active state under assay conditions. Sedimentation-velocity experiments provided insight into the isomerization process, showing that CfPutA dimerizes in the presence of a proline analog and NAD+ These results are consistent with the morpheein model of enzyme hysteresis, in which substrate binding induces conformational changes that promote assembly of a high-activity oligomer. Finally, we used domain deletion analysis to investigate the function of the C-terminal domain. Although this domain contains neither catalytic residues nor substrate sites, its removal impaired both catalytic activities, suggesting that it may be essential for active-site integrity.
Collapse
Affiliation(s)
| | | | - Shelbi Christgen
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | | | | | | | - Donald F Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - John J Tanner
- From the Departments of Biochemistry and
- Chemistry, University of Missouri, Columbia, Missouri 65211, and
| |
Collapse
|
11
|
Lee WC, Goh KL, Loke MF, Vadivelu J. Elucidation of the Metabolic Network of Helicobacter pylori J99 and Malaysian Clinical Strains by Phenotype Microarray. Helicobacter 2017; 22:e12321. [PMID: 27258354 PMCID: PMC5248604 DOI: 10.1111/hel.12321] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Helicobacter pylori colonizes almost half of the human population worldwide. H. pylori strains are genetically diverse, and the specific genotypes are associated with various clinical manifestations including gastric adenocarcinoma, peptic ulcer disease (PUD), and nonulcer dyspepsia (NUD). However, our current knowledge of the H. pylori metabolism is limited. To understand the metabolic differences among H. pylori strains, we investigated four Malaysian H. pylori clinical strains, which had been previously sequenced, and a standard strain, H. pylori J99, at the phenotypic level. MATERIALS AND METHODS The phenotypes of the H. pylori strains were profiled using the Biolog Phenotype Microarray system to corroborate genomic data. We initiated the analyses by predicting carbon and nitrogen metabolic pathways from the H. pylori genomic data from the KEGG database. Biolog PM aided the validation of the prediction and provided a more intensive analysis of the H. pylori phenomes. RESULTS We have identified a core set of metabolic nutrient sources that was utilized by all strains tested and another set that was differentially utilized by only the local strains. Pentose sugars are the preferred carbon nutrients utilized by H. pylori. The amino acids l-aspartic acid, d-alanine, and l-asparagine serve as both carbon and nitrogen sources in the metabolism of the bacterium. CONCLUSION The phenotypic profile based on this study provides a better understanding on the survival of H. pylori in its natural host. Our data serve as a foundation for future challenges in correlating interstrain metabolic differences in H. pylori.
Collapse
Affiliation(s)
- Woon Ching Lee
- Faculty of MedicineDepartment of Medical MicrobiologyUniversity of MalayaKuala LumpurMalaysia
| | - Khean Lee Goh
- Faculty of MedicineDepartment of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Mun Fai Loke
- Faculty of MedicineDepartment of Medical MicrobiologyUniversity of MalayaKuala LumpurMalaysia
| | - Jamuna Vadivelu
- Faculty of MedicineDepartment of Medical MicrobiologyUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
12
|
De Bruyne E, Ducatelle R, Foss D, Sanchez M, Joosten M, Zhang G, Smet A, Pasmans F, Haesebrouck F, Flahou B. Oral glutathione supplementation drastically reduces Helicobacter-induced gastric pathologies. Sci Rep 2016; 6:20169. [PMID: 26833404 PMCID: PMC4735851 DOI: 10.1038/srep20169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/23/2015] [Indexed: 12/13/2022] Open
Abstract
Helicobacter (H.) suis causes gastric pathologies in both pigs and humans. Very little is known on the metabolism of this bacterium and its impact on the host. In this study, we have revealed the importance of the glutamate-generating metabolism, as shown by a complete depletion of glutamine (Gln) in the medium during H. suis culture. Besides Gln, H. suis can also convert glutathione (GSH) to glutamate, and both reactions are catalyzed by the H. suis γ-glutamyltranspeptidase (GGT). Both for H. pylori and H. suis, it has been hypothesized that the degradation of Gln and GSH may lead to a deficiency for the host, possibly initiating or promoting several pathologies. Therefore the in vivo effect of oral supplementation with Gln and GSH was assessed. Oral supplementation with Gln was shown to temper H. suis induced gastritis and epithelial (hyper)proliferation in Mongolian gerbils. Astonishingly, supplementation of the feed with GSH, another GGT substrate, resulted in inflammation and epithelial proliferation levels returning to baseline levels of uninfected controls. This indicates that Gln and GSH supplementation may help reducing tissue damage caused by Helicobacter infection in both humans and pigs, highlighting their potential as a supportive therapy during and after Helicobacter eradication therapy.
Collapse
Affiliation(s)
- Ellen De Bruyne
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | | | | | - Myrthe Joosten
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Guangzhi Zhang
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
13
|
Proline dehydrogenase 2 (PRODH2) is a hydroxyproline dehydrogenase (HYPDH) and molecular target for treating primary hyperoxaluria. Biochem J 2015; 466:273-81. [PMID: 25697095 DOI: 10.1042/bj20141159] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The primary hyperoxalurias (PH), types 1-3, are disorders of glyoxylate metabolism that result in increased oxalate production and calcium oxalate stone formation. The breakdown of trans-4-hydroxy-L-proline (Hyp) from endogenous and dietary sources of collagen makes a significant contribution to the cellular glyoxylate pool. Proline dehydrogenase 2 (PRODH2), historically known as hydroxyproline oxidase, is the first step in the hydroxyproline catabolic pathway and represents a drug target to reduce the glyoxylate and oxalate burden of PH patients. This study is the first report of the expression, purification, and biochemical characterization of human PRODH2. Evaluation of a panel of N-terminal and C-terminal truncation variants indicated that residues 157-515 contain the catalytic core with one FAD molecule. The 12-fold higher k(cat)/K(m) value of 0.93 M⁻¹·s⁻¹ for Hyp over Pro demonstrates the preference for Hyp as substrate. Moreover, an anaerobic titration determined a K(d) value of 125 μM for Hyp, a value ~1600-fold lower than the K(m) value. A survey of ubiquinone analogues revealed that menadione, duroquinone, and CoQ₁ reacted more efficiently than oxygen as the terminal electron acceptor during catalysis. Taken together, these data and the slow reactivity with sodium sulfite support that PRODH2 functions as a dehydrogenase and most likely utilizes CoQ₁₀ as the terminal electron acceptor in vivo. Thus, we propose that the name of PRODH2 be changed to hydroxyproline dehydrogenase (HYPDH). Three Hyp analogues were also identified to inhibit the activity of HYPDH, representing the first steps toward the development of a novel approach to treat all forms of PH.
Collapse
|
14
|
Proline metabolism increases katG expression and oxidative stress resistance in Escherichia coli. J Bacteriol 2014; 197:431-40. [PMID: 25384482 DOI: 10.1128/jb.02282-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The oxidation of l-proline to glutamate in Gram-negative bacteria is catalyzed by the proline utilization A (PutA) flavoenzyme, which contains proline dehydrogenase (PRODH) and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase domains in a single polypeptide. Previous studies have suggested that aside from providing energy, proline metabolism influences oxidative stress resistance in different organisms. To explore this potential role and the mechanism, we characterized the oxidative stress resistance of wild-type and putA mutant strains of Escherichia coli. Initial stress assays revealed that the putA mutant strain was significantly more sensitive to oxidative stress than the parental wild-type strain. Expression of PutA in the putA mutant strain restored oxidative stress resistance, confirming that depletion of PutA was responsible for the oxidative stress phenotype. Treatment of wild-type cells with proline significantly increased hydroperoxidase I (encoded by katG) expression and activity. Furthermore, the ΔkatG strain failed to respond to proline, indicating a critical role for hydroperoxidase I in the mechanism of proline protection. The global regulator OxyR activates the expression of katG along with several other genes involved in oxidative stress defense. In addition to katG, proline increased the expression of grxA (glutaredoxin 1) and trxC (thioredoxin 2) of the OxyR regulon, implicating OxyR in proline protection. Proline oxidative metabolism was shown to generate hydrogen peroxide, indicating that proline increases oxidative stress tolerance in E. coli via a preadaptive effect involving endogenous hydrogen peroxide production and enhanced catalase-peroxidase activity.
Collapse
|
15
|
Goncalves RLS, Rothschild DE, Quinlan CL, Scott GK, Benz CC, Brand MD. Sources of superoxide/H2O2 during mitochondrial proline oxidation. Redox Biol 2014; 2:901-9. [PMID: 25184115 PMCID: PMC4143814 DOI: 10.1016/j.redox.2014.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 12/28/2022] Open
Abstract
p53 Inducible gene 6 (PIG6) encodes mitochondrial proline dehydrogenase (PRODH) and is up-regulated several fold upon p53 activation. Proline dehydrogenase is proposed to generate radicals that contribute to cancer cell apoptosis. However, there are at least 10 mitochondrial sites that can produce superoxide and/or H2O2, and it is unclear whether proline dehydrogenase generates these species directly, or instead drives production by other sites. Amongst six cancer cell lines, ZR75-30 human breast cancer cells had the highest basal proline dehydrogenase levels, and mitochondria isolated from ZR75-30 cells consumed oxygen and produced H2O2 with proline as sole substrate. Insects use proline oxidation to fuel flight, and mitochondria isolated from Drosophila melanogaster were even more active with proline as sole substrate than ZR75-30 mitochondria. Using mitochondria from these two models we identified the sites involved in formation of superoxide/H2O2 during proline oxidation. In mitochondria from Drosophila the main sites were respiratory complexes I and II. In mitochondria from ZR75-30 breast cancer cells the main sites were complex I and the oxoglutarate dehydrogenase complex. Even with combinations of substrates and respiratory chain inhibitors designed to minimize the contributions of other sites and maximize any superoxide/H2O2 production from proline dehydrogenase itself, there was no significant direct contribution of proline dehydrogenase to the observed H2O2 production. Thus proline oxidation by proline dehydrogenase drives superoxide/H2O2 production, but it does so mainly or exclusively by providing anaplerotic carbon for other mitochondrial dehydrogenases and not by producing superoxide/H2O2 directly. Proline dehydrogenase is thought to produce reactive oxygen species (ROS) in cancer cells and to promote apoptosis. Isolated mitochondria from Drosophila melanogaster and from a human breast cancer cell line oxidize proline producing superoxide/H2O2 at measurable rates. Proline oxidation drives superoxide/H2O2 production indirectly at other sites and it is unlikely that proline dehydrogenase produces superoxide/H2O2 itself. In Drosophila, superoxide/H2O2 arises from sites IF and IIF (the flavin sites from complexes I and II, respectively). In the breast cancer cell line the main sites are IF and OF (from the oxoglutarate dehydrogenase complex).
Collapse
Key Words
- A5, atpenin A5
- AT, aminotransferase
- Asp, asparate
- Cancer cell mitochondria
- Drosophila
- Electron transport chain
- GDH, glutamate dehydrogenase
- GSA, glutamic semi-aldehyde
- Hydrogen peroxide
- IF, flavin of complex I
- IIF, flavin of complex II
- IIIQo, quinone binding site on the outer/cytosolic face of complex III
- OF, Flavin of the oxoglutarate dehydrogenase complex
- OGDH, 2-oxoglutarate dehydrogenase complex
- Oxa, oxaloacetate
- P5C, Δ1-pyrroline-5-carboxylate
- PIG6, proline dehydrogenase inducible gene 6
- PRODH, proline dehydrogenase
- Proline dehydrogenase (PRODH)
- ROS, reactive oxygen species
- Reactive oxygen species
- SCS, succinyl-CoA synthase
- Superoxide
- TCA, tricarboxylic acid
- oAB, o-aminobenzaldehyde
Collapse
Affiliation(s)
| | | | | | - Gary K Scott
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Martin D Brand
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|
16
|
Wadhawan S, Gautam S, Sharma A. Involvement of proline oxidase (PutA) in programmed cell death of Xanthomonas. PLoS One 2014; 9:e96423. [PMID: 24788936 PMCID: PMC4006831 DOI: 10.1371/journal.pone.0096423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/06/2014] [Indexed: 12/19/2022] Open
Abstract
Xanthomonas campestris strains have been reported to undergo programmed cell death (PCD) in a protein rich medium. Protein hydrolysates used in media such as nutrient broth comprise of casein digest with abundance of proline and glutamate. In the current study, X. campestris pv. campestris (Xcc) cells displayed PCD when grown in PCD inducing medium (PIM) containing casein tryptic digest. This PCD was also observed in PCD non-inducing carbohydrate rich medium (PNIM) fortified with either proline or proline along with glutamate. Surprisingly, no PCD was noticed in PNIM fortified with glutamate alone. Differential role of proline or glutamate in inducing PCD in Xcc cells growing in PNIM was studied. It was found that an intermediate product of this oxidation was involved in initiation of PCD. Proline oxidase also called as proline utilization A (PutA), catalyzes the two step oxidation of proline to glutamate. Interestingly, higher PutA activity was noticed in cells growing in PIM, and PCD was found to be inhibited by tetrahydro-2-furoic acid, a competitive inhibitor of this enzyme. Further, PCD was abolished in Xcc ΔputA strain generated using a pKNOCK suicide plasmid, and restored in Xcc ΔputA strain carrying functional PutA in a plasmid vector. Xanthomonas cells growing in PIM also displayed increased generation of ROS, as well as cell filamentation (a probable indication of SOS response). These filamented cells also displayed enhanced caspase-3-like activity during in situ labeling using a fluorescent tagged caspase-3 inhibitor (FITC-DEVD-FMK). The extent of PCD associated markers such as DNA damage, phosphatidylserine externalization and membrane depolarization were found to be significantly enhanced in wild type cells, but drastically reduced in Xcc ΔputA cells. These findings thus establish the role of PutA mediated proline oxidation in regulating death in stressed Xanthomonas cells.
Collapse
Affiliation(s)
- Surbhi Wadhawan
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Satyendra Gautam
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Arun Sharma
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
17
|
Proline modulates the Trypanosoma cruzi resistance to reactive oxygen species and drugs through a novel D, L-proline transporter. PLoS One 2014; 9:e92028. [PMID: 24637744 PMCID: PMC3956872 DOI: 10.1371/journal.pone.0092028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/19/2014] [Indexed: 12/20/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas' disease, has a metabolism largely based on the consumption of glucose and proline. This amino acid is essential for host cells infection and intracellular differentiation. In this work we identified a proline transporter (TcAAAP069) by yeasts complementation assays and overexpression in Trypanosoma cruzi epimastigotes. TcAAAP069 is mono-specific for proline but presents an unusual feature; the lack of stereospecificity, because it is competitively inhibited by the D- enantiomer. Parasites overexpressing TcAAAP069 have an increased intracellular proline concentration, 2.6-fold higher than controls, as a consequence of a higher proline transport rate. Furthermore, augmented proline concentration correlates with an improved resistance to trypanocidal drugs and also to reactive oxygen species including hydrogen peroxide and nitric oxide, emulating natural physiological situations. The IC50s for nifurtimox, benznidazole, H2O2 and NO. were 125%, 68%, 44% and 112% higher than controls, respectively. Finally, proline metabolism generates a higher concentration (48%) of ATP in TcAAAP069 parasites. Since proline participates on essential energy pathways, stress and drug resistance responses, these results provide a novel target for the development of new drugs for the treatments for Chagas' disease.
Collapse
|
18
|
Rivera-Ordaz A, Bracher S, Sarrach S, Li Z, Shi L, Quick M, Hilger D, Haas R, Jung H. The sodium/proline transporter PutP of Helicobacter pylori. PLoS One 2013; 8:e83576. [PMID: 24358297 PMCID: PMC3866251 DOI: 10.1371/journal.pone.0083576] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/14/2013] [Indexed: 01/29/2023] Open
Abstract
Helicobacter pylori is cause of chronic gastritis, duodenal ulcer and gastric carcinoma in humans. L-proline is a preferred energy source of the microaerophilic bacterium. Previous analyses revealed that HpputP and HpputA, the genes that are predicted to play a central role in proline metabolism as they encode for the proline transporter and proline dehydrogenase, respectively, are essential for stomach colonization. Here, the molecular basis of proline transport in H. pylori by HpPutP was investigated experimentally for the first time. Measuring radiolabeled substrate transport in H. pylori and E. coli heterologously expressing HpputP as well as in proteoliposomes reconstituted with HpPutP, we demonstrate that the observed proline transport in H. pylori is mediated by HpPutP. HpPutP is specific and exhibits a high affinity for L-proline. Notably, L-proline transport is exclusively dependent on Na+ as coupling ion, i.e., Na+/L-proline symport, reminiscent to the properties of PutP of E. coli even though H. pylori lives in a more acidic environment. Homology model-based structural comparisons and substitution analyses identified amino acids crucial for function. HpPutP-catalyzed proline uptake was efficiently inhibited by the known proline analogs 3,4-dehydro-D,L-proline and L-azetidine-2-carboxylic acid.
Collapse
Affiliation(s)
- Araceli Rivera-Ordaz
- Microbiology, Department of Biology I, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Susanne Bracher
- Microbiology, Department of Biology I, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Sannia Sarrach
- Microbiology, Department of Biology I, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Zheng Li
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
| | - Lei Shi
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, United States of America
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, United States of America
| | - Matthias Quick
- Center for Molecular Recognition and Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York, United States of America
| | - Daniel Hilger
- Microbiology, Department of Biology I, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute for Hygiene and Medical Microbiology, Ludwig Maximilians University Munich, Munich, Germany
| | - Heinrich Jung
- Microbiology, Department of Biology I, Ludwig Maximilians University Munich, Martinsried, Germany
- * E-mail:
| |
Collapse
|
19
|
Pich OQ, Merrell DS. The ferric uptake regulator of Helicobacter pylori: a critical player in the battle for iron and colonization of the stomach. Future Microbiol 2013; 8:725-38. [PMID: 23701330 DOI: 10.2217/fmb.13.43] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori is arguably one of the most successful pathogens; it colonizes the stomachs of more than half of the human population. Colonization and persistence in such an inhospitable niche requires the presence of exquisite adaptive mechanisms. One of the proteins that contributes significantly to the remarkable adaptability of H. pylori is the ferric uptake regulator (Fur), which functions as a master regulator of gene expression. In addition to genes directly related to iron homeostasis, Fur controls expression of several enzymes that play a central role in metabolism and energy production. The absence of Fur leads to severe H. pylori colonization defects and, accordingly, several Fur-regulated genes have been shown to be essential for colonization. Moreover, proteins encoded by Fur-regulated genes have a strong impact on redox homeostasis in the stomach and are major determinants of inflammation. In this review, we discuss the main roles of Fur in the biology of H. pylori and highlight the importance of this regulatory protein in the infectious process.
Collapse
Affiliation(s)
- Oscar Q Pich
- Department of Microbiology & Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | |
Collapse
|
20
|
Proline dehydrogenase regulates redox state and respiratory metabolism in Trypanosoma cruzi. PLoS One 2013; 8:e69419. [PMID: 23894476 PMCID: PMC3718742 DOI: 10.1371/journal.pone.0069419] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
Over the past three decades, L-proline has become recognized as an important metabolite for trypanosomatids. It is involved in a number of key processes, including energy metabolism, resistance to oxidative and nutritional stress and osmoregulation. In addition, this amino acid supports critical parasite life cycle processes by acting as an energy source, thus enabling host-cell invasion by the parasite and subsequent parasite differentiation. In this paper, we demonstrate that L-proline is oxidized to Δ(1)-pyrroline-5-carboxylate (P5C) by the enzyme proline dehydrogenase (TcPRODH, E.C. 1.5.99.8) localized in Trypanosoma cruzi mitochondria. When expressed in its active form in Escherichia coli, TcPRODH exhibits a Km of 16.58±1.69 µM and a Vmax of 66±2 nmol/min mg. Furthermore, we demonstrate that TcPRODH is a FAD-dependent dimeric state protein. TcPRODH mRNA and protein expression are strongly upregulated in the intracellular epimastigote, a stage which requires an external supply of proline. In addition, when Saccharomyces cerevisiae null mutants for this gene (PUT1) were complemented with the TcPRODH gene, diminished free intracellular proline levels and an enhanced sensitivity to oxidative stress in comparison to the null mutant were observed, supporting the hypothesis that free proline accumulation constitutes a defense against oxidative imbalance. Finally, we show that proline oxidation increases cytochrome c oxidase activity in mitochondrial vesicles. Overall, these results demonstrate that TcPRODH is involved in proline-dependant cytoprotection during periods of oxidative imbalance and also shed light on the participation of proline in energy metabolism, which drives critical processes of the T. cruzi life cycle.
Collapse
|
21
|
Reactive oxygen species homeostasis and virulence of the fungal pathogen Cryptococcus neoformans requires an intact proline catabolism pathway. Genetics 2013; 194:421-33. [PMID: 23564202 DOI: 10.1534/genetics.113.150326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Degradation of the multifunctional amino acid proline is associated with mitochondrial oxidative respiration. The two-step oxidation of proline is catalyzed by proline oxidase and Δ(1)-pyrroline-5-carboxylate (P5C) dehydrogenase, which produce P5C and glutamate, respectively. In animal and plant cells, impairment of P5C dehydrogenase activity results in P5C-proline cycling when exogenous proline is supplied via the actions of proline oxidase and P5C reductase (the enzyme that converts P5C to proline). This proline is oxidized by the proline oxidase-FAD complex that delivers electrons to the electron transport chain and to O2, leading to mitochondrial reactive oxygen species (ROS) overproduction. Coupled activity of proline oxidase and P5C dehydrogenase is therefore important for maintaining ROS homeostasis. In the genome of the fungal pathogen Cryptococcus neoformans, there are two paralogs (PUT1 and PUT5) that encode proline oxidases and a single ortholog (PUT2) that encodes P5C dehydrogenase. Transcription of all three catabolic genes is inducible by the presence of proline. However, through the creation of deletion mutants, only Put5 and Put2 were found to be required for proline utilization. The put2Δ mutant also generates excessive mitochondrial superoxide when exposed to proline. Intracellular accumulation of ROS is a critical feature of cell death; consistent with this fact, the put2Δ mutant exhibits a slight, general growth defect. Furthermore, Put2 is required for optimal production of the major cryptococcal virulence factors. During murine infection, the put2Δ mutant was discovered to be avirulent; this is the first report highlighting the importance of P5C dehydrogenase in enabling pathogenesis of a microorganism.
Collapse
|
22
|
Expression in Escherichia coli of the catalytic domain of human proline oxidase. Protein Expr Purif 2012; 82:345-51. [PMID: 22333530 DOI: 10.1016/j.pep.2012.01.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 12/22/2022]
Abstract
The human PRODH gene has been shown to have unique roles in regulating cell survival and apoptotic pathways and it has been related to velocardiofacial syndrome/DiGeorge syndrome and increased susceptibility to schizophrenia. It encodes for the flavoprotein proline oxidase (PO), which catalyzes the conversion of l-proline to Δ(1)-pyrroline-5-carboxylate. Despite the important physiological and medical interest in human PO, up to now only microbial homologues of PO have been expressed as recombinant protein and fully characterized. By using a bioinformatics analysis aimed at identifying the catalytic domain and the regions with a high intrinsic propensity to structural disorder, we designed deletion variants of human PO that were successfully expressed in Escherichia coli as soluble proteins in fairly high amounts (up to 10mg/L of fermentation broth). The His-tagged PO-barrelN protein was isolated as an active (the specific activity is 0.032U/mg protein), dimeric holoenzyme showing the typical spectral properties of FAD-containing flavoprotein oxidases. These results pave the way for elucidating structure-function relationships of this human flavoenzyme and clarifying the effect of the reported polymorphisms associated with disease states.
Collapse
|
23
|
Singh RK, Tanner JJ. Unique structural features and sequence motifs of proline utilization A (PutA). Front Biosci (Landmark Ed) 2012; 17:556-68. [PMID: 22201760 DOI: 10.2741/3943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Proline utilization A proteins (PutAs) are bifunctional enzymes that catalyze the oxidation of proline to glutamate using spatially separated proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase active sites. Here we use the crystal structure of the minimalist PutA from Bradyrhizobium japonicum (BjPutA) along with sequence analysis to identify unique structural features of PutAs. This analysis shows that PutAs have secondary structural elements and domains not found in the related monofunctional enzymes. Some of these extra features are predicted to be important for substrate channeling in BjPutA. Multiple sequence alignment analysis shows that some PutAs have a 17-residue conserved motif in the C-terminal 20-30 residues of the polypeptide chain. The BjPutA structure shows that this motif helps seal the internal substrate-channeling cavity from the bulk medium. Finally, it is shown that some PutAs have a 100-200 residue domain of unknown function in the C-terminus that is not found in minimalist PutAs. Remote homology detection suggests that this domain is homologous to the oligomerization beta-hairpin and Rossmann fold domain of BjPutA.
Collapse
Affiliation(s)
- Ranjan K Singh
- Departments of Chemistry and Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | |
Collapse
|
24
|
RANILLA LENAGALVEZ, APOSTOLIDIS EMMANOUIL, SHETTY KALIDAS. ULTRAVIOLET PROTECTIVE PROPERTIES OF LATIN AMERICAN HERBS ON SACCHAROMYCES CEREVISIAE AND LIKELY MODE OF ACTION THROUGH THE PROLINE-LINKED PENTOSE PHOSPHATE PATHWAY: FOCUS ON THE YERBA MATE TEA (ILEX PARAGUARIENSIS). J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2011.00557.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Cecchini NM, Monteoliva MI, Alvarez ME. Proline dehydrogenase is a positive regulator of cell death in different kingdoms. PLANT SIGNALING & BEHAVIOR 2011; 6:1195-7. [PMID: 21757996 PMCID: PMC3260720 DOI: 10.4161/psb.6.8.15791] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proline dehydrogenase (ProDH) catalyzes the flavin-dependent oxidation of Pro into Δ1-pyrroline-5-carboxylate (P5C). This is the first of the two enzymatic reactions that convert proline (Pro) into glutamic acid (Glu). The P5C thus produced is non-enzymatically transformed into glutamate semialdehyde (GSA), which acts as a substrate of P5C dehydrogenase (P5CDH) to generate Glu. Activation of ProDH can generate different effects depending on the behaviour of other enzymes of this metabolism. Under different conditions it can generate toxic levels of P5C, alter the cellular redox homeostasis and even produce reactive oxygen species (ROS). Recent studies indicate that in Arabidopsis, the enzyme potentiates the oxidative burst and cell death associated to the Hypersensitive Responses (HR). Interestingly, activation of ProDH can also produce harmful effects in other organisms, suggesting that the enzyme may play a conserved role in the control of cell death.
Collapse
Affiliation(s)
- Nicolás M Cecchini
- CIQUIBIC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | |
Collapse
|
26
|
Yang HJ, Choi MJ, Wen H, Kwon HN, Jung KH, Hong SW, Kim JM, Hong SS, Park S. An effective assessment of simvastatin-induced toxicity with NMR-based metabonomics approach. PLoS One 2011; 6:e16641. [PMID: 21364936 PMCID: PMC3043067 DOI: 10.1371/journal.pone.0016641] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/06/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Simvastatin, which is used to control elevated cholesterol levels, is one of the most widely prescribed drugs. However, a daily excessive dose can induce drug-toxicity, especially in muscle and liver. Current markers for toxicity reflect mostly the late stages of tissue damage; thus, more efficient methods of toxicity evaluation are desired. METHODOLOGY/PRINCIPAL FINDINGS As a new way to evaluate toxicity, we performed NMR-based metabonomics analysis of urine samples. Compared to conventional markers, such as AST, ALT, and CK, the urine metabolic profile provided clearer distinction between the pre- and post-treatment groups treated with toxic levels of simvastatin. Through multivariate statistical analysis, we identified marker metabolites associated with the toxicity. Importantly, we observed that the treatment group could be further categorized into two subgroups based on the NMR profiles: weak toxicity (WT) and high toxicity (HT). The distinction between these two groups was confirmed by the enzyme values and histopathological exams. Time-dependent studies showed that the toxicity at 10 days could be reliably predicted from the metabolic profiles at 6 days. CONCLUSIONS/SIGNIFICANCE This metabonomics approach may provide a non-invasive and effective way to evaluate the simvastatin-induced toxicity in a manner that can complement current measures. The approach is expected to find broader application in other drug-induced toxicity assessments.
Collapse
Affiliation(s)
- Hye-ji Yang
- Department of Biochemistry, Inha University Hospital and Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Incheon, Korea
| | - Myung-Joo Choi
- Department of Biomedical Sciences, Inha University Hospital and Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Incheon, Korea
| | - He Wen
- Department of Biochemistry, Inha University Hospital and Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Incheon, Korea
| | - Hyuk Nam Kwon
- Department of Biochemistry, Inha University Hospital and Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Incheon, Korea
| | - Kyung Hee Jung
- Department of Biomedical Sciences, Inha University Hospital and Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Incheon, Korea
| | - Sang-Won Hong
- Department of Biomedical Sciences, Inha University Hospital and Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Incheon, Korea
| | - Joon Mee Kim
- Department of Pathology, Inha University Hospital and Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Incheon, Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, Inha University Hospital and Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Incheon, Korea
- * E-mail: (SP); (S-SH)
| | - Sunghyouk Park
- Department of Biochemistry, Inha University Hospital and Center for Advanced Medical Education by BK21 project, College of Medicine, Inha University, Incheon, Korea
- * E-mail: (SP); (S-SH)
| |
Collapse
|
27
|
Tu QV, Okoli AS, Kovach Z, Mendz GL. Hepatocellular carcinoma: prevalence and molecular pathogenesis of Helicobacter spp. Future Microbiol 2009; 4:1283-301. [PMID: 19995189 DOI: 10.2217/fmb.09.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection is one of the most common chronic bacterial infections in humans. The association of other Helicobacter spp. with extragastric diseases in animals is well established, and a role of these bacteria in human liver disease is becoming clearer. Several case-control studies have reported possible associations of Helicobacter spp. with various liver diseases, including hepatocellular carcinoma, which is the fifth most common type of carcinoma among men worldwide, and the eighth most common among women. Thus, it is important to understand molecular mechanisms that may lead to hepatotoxicity or hepatocellular dysfunction in which Helicobacter spp. may play a role in inducing malignant transformation of liver cells.
Collapse
Affiliation(s)
- Quoc V Tu
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
28
|
KWON YOUNGIN, APOSTOLIDIS EMMANOUIL, KIM YOUNGCHEUL, SHETTY KALIDAS. OVER-EXPRESSION OF PROLINE-LINKED ANTIOXIDANT PATHWAY AND MODULATION OF PHENOLIC METABOLITES IN LONG LIFE SPAN CLONAL LINE OFORIGANUM VULGAREIN RESPONSE TO ULTRAVIOLET RADIATION. J Food Biochem 2009. [DOI: 10.1111/j.1745-4514.2009.00243.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
ADYANTHAYA ISHAN, KWON YOUNGIN, APOSTOLIDIS EMMANOUIL, SHETTY KALIDAS. APPLE POSTHARVEST PRESERVATION IS LINKED TO PHENOLIC CONTENT AND SUPEROXIDE DISMUTASE ACTIVITY. J Food Biochem 2009. [DOI: 10.1111/j.1745-4514.2009.00236.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Halouska S, Zhou Y, Becker DF, Powers R. Solution structure of the Pseudomonas putida protein PpPutA45 and its DNA complex. Proteins 2009; 75:12-27. [PMID: 18767154 PMCID: PMC2650008 DOI: 10.1002/prot.22217] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proline utilization A (PutA) is a membrane-associated multifunctional enzyme that catalyzes the oxidation of proline to glutamate in a two-step process. In certain, gram-negative bacteria such as Pseudomonas putida, PutA also acts as an auto repressor in the cytoplasm, when an insufficient concentration of proline is available. Here, the N-terminal residues 1-45 of PutA from P. putida (PpPutA45) are shown to be responsible for DNA binding and dimerization. The solution structure of PpPutA45 was determined using NMR methods, where the protein is shown to be a symmetrical homodimer (12 kDa) consisting of two ribbon-helix-helix (RHH) structures. DNA sequence recognition by PpPutA45 was determined using DNA gel mobility shift assays and NMR chemical shift perturbations (CSPs). PpPutA45 was shown to bind a 14 base-pair DNA oligomer (5'-GCGGTTGCACCTTT-3'). A model of the PpPutA45-DNA oligomer complex was generated using Haddock 2.1. The antiparallel beta-sheet that results from PpPutA45 dimerization serves as the DNA recognition binding site by inserting into the DNA major groove. The dimeric core of four alpha-helices provides a structural scaffold for the beta-sheet from which residues Thr5, Gly7, and Lys9 make sequence-specific contacts with the DNA. The structural model implies flexibility of Lys9 which can make hydrogen bond contacts with either guanine or thymine. The high sequence and structure conservation of the PutA RHH domain suggest interdomain interactions play an important role in the evolution of the protein.
Collapse
Affiliation(s)
- Steven Halouska
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Yuzhen Zhou
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Donald F. Becker
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, U.S.A
| |
Collapse
|
31
|
D-Amino acid dehydrogenase from Helicobacter pylori NCTC 11637. Amino Acids 2009; 38:247-55. [PMID: 19212808 DOI: 10.1007/s00726-009-0240-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
Helicobacter pylori is a microaerophilic bacterium, associated with gastric inflammation and peptic ulcers. D-Amino acid dehydrogenase is a flavoenzyme that digests free neutral D-amino acids yielding corresponding 2-oxo acids and hydrogen. We sequenced the H. pylori NCTC 11637 D-amino acid dehydrogenase gene, dadA. The primary structure deduced from the gene showed low similarity with other bacterial D-amino acid dehydrogenases. We purified the enzyme to homogeneity from recombinant Escherichia coli cells by cloning dadA. The recombinant protein, DadA, with 44 kDa molecular mass, possessed FAD as cofactor, and showed the highest activity to D-proline. The enzyme mediated electron transport from D-proline to coenzyme Q(1), thus distinguishing it from D-amino acid oxidase. The apparent K(m) and V(max) values were 40.2 mM and 25.0 micromol min(-1) mg(-1), respectively, for dehydrogenation of D-proline, and were 8.2 microM and 12.3 micromol min(-1) mg(-1), respectively, for reduction of Q(1). The respective pH and temperature optima were 8.0 and 37 degrees C. Enzyme activity was inhibited markedly by benzoate, and moderately by SH reagents. DadA showed more similarity with mammalian D-amino acid oxidase than other bacterial D-amino acid dehydrogenases in some enzymatic characteristics. Electron transport from D-proline to a c-type cytochrome was suggested spectrophotometrically.
Collapse
|
32
|
A two-component regulatory system integrates redox state and population density sensing in Pseudomonas putida. J Bacteriol 2008; 190:7666-74. [PMID: 18820016 DOI: 10.1128/jb.00868-08] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A two-component system formed by a sensor histidine kinase and a response regulator has been identified as an element participating in cell density signal transduction in Pseudomonas putida KT2440. It is a homolog of the Pseudomonas aeruginosa RoxS/RoxR system, which in turn belongs to the RegA/RegB family, described in photosynthetic bacteria as a key regulatory element. In KT2440, the two components are encoded by PP_0887 (roxS) and PP_0888 (roxR), which are transcribed in a single unit. Characterization of this two-component system has revealed its implication in redox signaling and cytochrome oxidase activity, as well as in expression of the cell density-dependent gene ddcA, involved in bacterial colonization of plant surfaces. Whole-genome transcriptional analysis has been performed to define the P. putida RoxS/RoxR regulon. It includes genes involved in sugar and amino acid metabolism and the sulfur starvation response and elements of the respiratory chain (a cbb3 cytochrome oxidase, Fe-S clusters, and cytochrome c-related proteins) or genes participating in the maintenance of the redox balance. A putative RoxR recognition element containing a conserved hexamer (TGCCAG) has also been identified in promoters of genes regulated by this two-component system.
Collapse
|
33
|
Zhou Y, Larson JD, Bottoms CA, Arturo EC, Henzl MT, Jenkins JL, Nix JC, Becker DF, Tanner JJ. Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA. J Mol Biol 2008; 381:174-88. [PMID: 18586269 PMCID: PMC2665032 DOI: 10.1016/j.jmb.2008.05.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/22/2008] [Accepted: 05/31/2008] [Indexed: 10/22/2022]
Abstract
The multifunctional Escherichia coli proline utilization A (PutA) flavoprotein functions both as a membrane-associated proline catabolic enzyme and as a transcriptional repressor of the proline utilization genes putA and putP. To better understand the mechanism of transcriptional regulation by PutA, we have mapped the put-regulatory region, determined a crystal structure of the PutA ribbon-helix-helix domain (PutA52, a polypeptide corresponding to residues 1-52 of E. coli PutA) complexed with DNA, and examined the thermodynamics of DNA binding to PutA52. Five operator sites, each containing the sequence motif 5'-GTTGCA-3', were identified using gel-shift analysis. Three of the sites are shown to be critical for repression of putA, whereas the two other sites are important for repression of putP. The 2.25-A-resolution crystal structure of PutA52 bound to one of the operators (operator 2; 21 bp) shows that the protein contacts a 9-bp fragment corresponding to the GTTGCA consensus motif plus three flanking base pairs. Since the operator sequences differ in flanking bases, the structure implies that PutA may have different affinities for the five operators. This hypothesis was explored using isothermal titration calorimetry. The binding of PutA52 to operator 2 is exothermic, with an enthalpy of -1.8 kcal/mol and a dissociation constant of 210 nM. Substitution of the flanking bases of operator 4 into operator 2 results in an unfavorable enthalpy of 0.2 kcal/mol and a 15-fold-lower affinity, showing that base pairs outside of the consensus motif impact binding. Structural and thermodynamic data suggest that hydrogen bonds between Lys9 and bases adjacent to the GTTGCA motif contribute to transcriptional regulation by fine-tuning the affinity of PutA for put control operators.
Collapse
Affiliation(s)
- Yuzhen Zhou
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - John D. Larson
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Christopher A. Bottoms
- Department of Computer Science, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Emilia C. Arturo
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Michael T. Henzl
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Jermaine L. Jenkins
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Jay C. Nix
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Donald F. Becker
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - John J. Tanner
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
34
|
Krishnan N, Doster AR, Duhamel GE, Becker DF. Characterization of a Helicobacter hepaticus putA mutant strain in host colonization and oxidative stress. Infect Immun 2008; 76:3037-44. [PMID: 18458068 PMCID: PMC2446744 DOI: 10.1128/iai.01737-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 01/28/2008] [Accepted: 04/28/2008] [Indexed: 01/25/2023] Open
Abstract
Helicobacter hepaticus is a gram-negative, spiral-shaped microaerophilic bacterium associated with chronic intestinal infection leading to hepatitis and colonic and hepatic carcinomas in susceptible strains of mice. In the closely related human pathogen Helicobacter pylori, L-proline is a preferred respiratory substrate and is found at significantly high levels in the gastric juice of infected patients. A previous study of the proline catabolic PutA flavoenzymes from H. pylori and H. hepaticus revealed that Helicobacter PutA generates reactive oxygen species during proline oxidation by transferring electrons from reduced flavin to molecular oxygen. We further explored the preference for proline as a respiratory substrate and the potential impact of proline metabolism on the redox environment in Helicobacter species during host infection by disrupting the putA gene in H. hepaticus. The resulting putA knockout mutant strain was characterized by oxidative stress analysis and mouse infection studies. The putA mutant strain of H. hepaticus exhibited increased proline levels and resistance to oxidative stress relative to that of the wild-type strain, consistent with proline's role as an antioxidant. The significant increase in stress resistance was attributed to higher proline content, as no upregulation of antioxidant genes was observed for the putA mutant strain. The wild-type and putA mutant H. hepaticus strains displayed similar levels of infection in mice, but in mice challenged with the putA mutant strain, significantly reduced inflammation was observed, suggesting a role for proline metabolism in H. hepaticus pathogenicity in vivo.
Collapse
Affiliation(s)
- Navasona Krishnan
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | |
Collapse
|
35
|
Krishnan N, Dickman MB, Becker DF. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 2008; 44:671-81. [PMID: 18036351 PMCID: PMC2268104 DOI: 10.1016/j.freeradbiomed.2007.10.054] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 10/25/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
The potential of proline to suppress reactive oxygen species (ROS) and apoptosis in mammalian cells was tested by manipulating intracellular proline levels exogenously and endogenously by overexpression of proline metabolic enzymes. Proline was observed to protect cells against H(2)O(2), tert-butyl hydroperoxide, and a carcinogenic oxidative stress inducer but was not effective against superoxide generators such as menadione. Oxidative stress protection by proline requires the secondary amine of the pyrrolidine ring and involves preservation of the glutathione redox environment. Overexpression of proline dehydrogenase (PRODH), a mitochondrial flavoenzyme that oxidizes proline, resulted in 6-fold lower intracellular proline content and decreased cell survival relative to control cells. Cells overexpressing PRODH were rescued by pipecolate, an analog that mimics the antioxidant properties of proline, and by tetrahydro-2-furoic acid, a specific inhibitor of PRODH. In contrast, overexpression of the proline biosynthetic enzymes Delta(1)-pyrroline-5-carboxylate (P5C) synthetase (P5CS) and P5C reductase (P5CR) resulted in 2-fold higher proline content, significantly lower ROS levels, and increased cell survival relative to control cells. In different mammalian cell lines exposed to physiological H(2)O(2) levels, increased endogenous P5CS and P5CR expression was observed, indicating that upregulation of proline biosynthesis is an oxidative stress response.
Collapse
Affiliation(s)
- Navasona Krishnan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588
| | - Martin B. Dickman
- Institute for Plant Genomics and Biotechnology, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843
| | - Donald F. Becker
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588
| |
Collapse
|
36
|
White TA, Krishnan N, Becker DF, Tanner JJ. Structure and kinetics of monofunctional proline dehydrogenase from Thermus thermophilus. J Biol Chem 2007; 282:14316-27. [PMID: 17344208 PMCID: PMC2708979 DOI: 10.1074/jbc.m700912200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proline dehydrogenase (PRODH) and Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDH) catalyze the two-step oxidation of proline to glutamate. They are distinct monofunctional enzymes in all eukaryotes and some bacteria but are fused into bifunctional enzymes known as proline utilization A (PutA) in other bacteria. Here we report the first structure and biochemical data for a monofunctional PRODH. The 2.0-A resolution structure of Thermus thermophilus PRODH reveals a distorted (betaalpha)(8) barrel catalytic core domain and a hydrophobic alpha-helical domain located above the carboxyl-terminal ends of the strands of the barrel. Although the catalytic core is similar to that of the PutA PRODH domain, the FAD conformation of T. thermophilus PRODH is remarkably different and likely reflects unique requirements for membrane association and communication with P5CDH. Also, the FAD of T. thermophilus PRODH is highly solvent-exposed compared with PutA due to a 4-A shift of helix 8. Structure-based sequence analysis of the PutA/PRODH family led us to identify nine conserved motifs involved in cofactor and substrate recognition. Biochemical studies show that the midpoint potential of the FAD is -75 mV and the kinetic parameters for proline are K(m) = 27 mm and k(cat) = 13 s(-1). 3,4-Dehydro-l-proline was found to be an efficient substrate, and l-tetrahydro-2-furoic acid is a competitive inhibitor (K(I) = 1.0 mm). Finally, we demonstrate that T. thermophilus PRODH reacts with O(2) producing superoxide. This is significant because superoxide production underlies the role of human PRODH in p53-mediated apoptosis, implying commonalities between eukaryotic and bacterial monofunctional PRODHs.
Collapse
Affiliation(s)
- Tommi A. White
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211
| | - Navasona Krishnan
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE 68588
| | - Donald F. Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, NE 68588
| | - John J. Tanner
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211
| |
Collapse
|