1
|
Li W, Zhang S, Dang S, Gao L, Li G, Cheng D, Jiang L, Huang T, Zhai J. Establishment of an A/T-Rich Specifically MGB Probe digital droplet PCR Assays Based on SNP for Brucella wild strains and vaccine strains. Diagn Microbiol Infect Dis 2024; 110:116432. [PMID: 39024932 DOI: 10.1016/j.diagmicrobio.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
In recent years, immunization with the S2 live-attenuated vaccine has been recognized as the most economical and effective strategy for preventing brucellosis in Inner Mongolia, China. However, there are still challenges related to vaccine toxicity and the inability to distinguish between vaccine immunization and natural infection. Therefore, in this study, we developed a digital droplet polymerase chain reaction (ddPCR) assay based on single-nucleotide polymorphism (SNP) loci to identify wild Brucella strains and S2 vaccine strains. The assay demonstrated excellent linearity (R2> 0.99) with a lower detection limit of 10 copies/µL for both wild and vaccine strains. Additionally, the ddPCR assay outperformed the real-time fluorescent quantitative PCR (qPCR) assay in screening 50 clinical samples. We have established an effective and highly sensitive ddPCR assay for Brucella, providing an efficient method for detecting and differentiating wild strains of Brucella from the S2 vaccine strain.
Collapse
Affiliation(s)
- Wanyang Li
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Shuai Zhang
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Sheng Dang
- Keerqin District First People's Hospital, Tongliao 028000, China
| | - Lanzhu Gao
- Tongliao Infectious Disease Hospital, Tongliao 028000, China
| | - Guangchen Li
- Tongliao Infectious Disease Hospital, Tongliao 028000, China
| | - Dawei Cheng
- Beidahuang Industry Group General Hospital, Harbin 150000, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350000, China
| | - Tianpeng Huang
- College of Public Health, Inner Mongolia Minzu University, Tongliao 028000, China; Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao 028000, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao 028000, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao 028000, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao 028000, China.
| |
Collapse
|
2
|
Hossain MB, Uchiyama Y, Rajib SA, Rahman A, Takatori M, Tan BJY, Sugata K, Nagashima M, Kawakami M, Ito H, Kumagai R, Sadamasu K, Ogi Y, Kawaguchi T, Tamura T, Fukuhara T, Ono M, Yoshimura K, Satou Y. A micro-disc-based multiplex method for monitoring emerging SARS-CoV-2 variants using the molecular diagnostic tool Intelli-OVI. COMMUNICATIONS MEDICINE 2024; 4:161. [PMID: 39122992 PMCID: PMC11316138 DOI: 10.1038/s43856-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Highly transmissible viruses including SARS-CoV-2 frequently accumulate novel mutations that are detected via high-throughput sequencing. However, there is a need to develop an alternative rapid and non-expensive approach. Here we developed a novel multiplex DNA detection method Intelli-OVI for analysing existing and novel mutations of SARS-CoV-2. METHODS We have developed Intelli-OVI that includes the micro-disc-based method IntelliPlex and computational algorithms of objective variant identification (OVI). More than 250 SARS-CoV-2 positive samples including wastewater ones were analysed to verify the efficiency of the method. RESULTS IntelliPlex uses micro-discs printed with a unique pictorial pattern as a labelling conjugate for DNA probes, and OVI allows simultaneous identification of several variants using multidimensional data obtained by the IntelliPlex method. Importantly, de novo mutations can be identified by decreased signals, which indicates that there is an emergence of de novo variant virus as well as prompts the need to design additional primers and probes. We have upgraded probe panel according to the emergence of new variants and demonstrated that Intelli-OVI efficiently identified more than 20 different SARS-CoV-2 variants by using 35 different probes simultaneously. CONCLUSIONS Intelli-OVI can be upgraded to keep up with rapidly evolving viruses as we showed in this study using SARS-CoV-2 as an example and may be suitable for other viruses but would need to be validated.
Collapse
Affiliation(s)
- Md Belal Hossain
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Food Microbiology, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Yoshikazu Uchiyama
- Department of Information and Communication Technology, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Akhinur Rahman
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Takatori
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Benjy Jek Yang Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mami Nagashima
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Mamiyo Kawakami
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Hitoshi Ito
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Ryota Kumagai
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yasuhiro Ogi
- Clinical Laboratory Center of Kumamoto City Medical Association, Kumamoto, Japan
| | - Tatsuya Kawaguchi
- Clinical Laboratory Center of Kumamoto City Medical Association, Kumamoto, Japan
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kazuhisa Yoshimura
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
3
|
Aguayo-Acosta A, Oyervides-Muñoz MA, Rodriguez-Aguillón KO, Ovalle-Carcaño A, Romero-Castillo KD, Robles-Zamora A, Johnson M, Parra-Saldívar R, Sosa-Hernández JE. Omicron and Delta variant prevalence detection and identification during the fourth COVID-19 wave in Mexico using wastewater-based epidemiology. IJID REGIONS 2024; 10:44-51. [PMID: 38149263 PMCID: PMC10750064 DOI: 10.1016/j.ijregi.2023.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023]
Abstract
Objectives To identify the SARS-CoV-2 variants Delta and Omicron during the fourth wave of the COVID-19 pandemic in Mexico using samples taken from 19 locations in 18 out of the 32 states. Methods The genetic material concentration was done with PEG/NaCl precipitation, SARS-CoV-2 presence was confirmed by reverse transcriptase-quantitative polymerase chain reaction assay, the variant detection was carried out using a commercial mutation detection panel kit, and variant/mutation confirmation was done by amplicon sequencing of receptor-binding domain target region. The study used 41 samples. Results The Delta variant was confirmed in two samples during August 2021 (Querétaro and CDMX) and in three samples during November 2021 (Aguascalientes, Ciudad Juárez campuses, and Nuevo Leon). In December 2021, another sample with the Delta variant was confirmed in Nuevo Leon. Between January to March 2022 only the presence of Omicron was confirmed, (variant BA.1). Additionally, in this period six samples were identified with the status "Variant Not Determined". Conclusion To our knowledge, this study is one of the first to identify Omicron and Delta variants with polymerase chain reaction in Mexico and Latin America and its distribution across the country with 56% Mexican states making it a viable alternative for variant detection without conducting a large quantity of sequencing of clinical tests.
Collapse
Affiliation(s)
- Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Kassandra O. Rodriguez-Aguillón
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Antonio Ovalle-Carcaño
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | | | | | - Marc Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, USA
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
4
|
Bray N, Sopwith W, Edmunds M, Vansteenhouse H, Feenstra JDM, Jacobs P, Rajput K, O'Connell AM, Smith ML, Blomquist P, Hatziioanou D, Elson R, Vivancos R, Gallagher E, Wigglesworth MJ, Dominiczak A, Hopkins S, Lake IR. RT-PCR genotyping assays to identify SARS-CoV-2 variants in England in 2021: a design and retrospective evaluation study. THE LANCET. MICROBE 2024; 5:e173-e180. [PMID: 38244555 DOI: 10.1016/s2666-5247(23)00320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Whole-genome sequencing (WGS) is the gold standard diagnostic tool to identify and genetically characterise emerging pathogen mutations (variants), but cost, capacity, and timeliness limit its use when large populations need rapidly assessing. We assessed the potential of genotyping assays to provide accurate and timely variant information at scale by retrospectively examining surveillance for SARS-CoV-2 variants in England between March and September, 2021, when genotyping assays were used widely for variant detection. METHODS We chose a panel of four RT-PCR genotyping assays to detect circulating variants of SARS-COV-2 in England and developed a decision algorithm to assign a probable SARS-CoV-2 variant to samples using the assay results. We extracted surveillance data from the UK Health Security Agency databases for 115 934 SARS-CoV-2-positive samples (March 1-Sept 6, 2021) when variant information was available from both genotyping and WGS. By comparing the genotyping and WGS variant result, we calculated accuracy metrics (ie, sensitivity, specificity, and positive predictive value [PPV]) and the time difference between the sample collection date and the availability of variant information. We assessed the number of samples with a variant assigned from genotyping or WGS, or both, over time. FINDINGS Genotyping and an initial decision algorithm (April 10-May 11, 2021 data) were accurate for key variant assignment: sensitivities and PPVs were 0·99 (95% CI 0·99-0·99) for the alpha, 1·00 (1·00-1·00) for the beta, and 0·91 (0·80-1·00) for the gamma variants; specificities were 0·97 (0·96-0·98), 1·00 (1·00-1·00), and 1·00 (1·00-1·00), respectively. A subsequent decision algorithm over a longer time period (May 27-Sept 6, 2021 data) remained accurate for key variant assignment: sensitivities were 0·91 (95% CI 0·74-1·00) for the beta, 0·98 (0·98-0·99) for the delta, and 0·93 (0·81-1·00) for the gamma variants; specificities were 1·00 (1·00-1·00), 0·96 (0·96-0·97), and 1·00 (1·00-1·00), respectively; and PPVs were 0·83 (0·62-1·00), 1·00 (1·00-1·00), and 0·78 (0·59-0·97), respectively. Genotyping produced variant information a median of 3 days (IQR 2-4) after the sample collection date, which was faster than with WGS (9 days [8-11]). The flexibility of genotyping enabled a nine-times increase in the quantity of samples tested for variants by this method (from 5000 to 45 000). INTERPRETATION RT-PCR genotyping assays are suitable for high-throughput variant surveillance and could complement WGS, enabling larger scale testing for known variants and timelier results, with important implications for effective public health responses and disease control globally, especially in settings with low WGS capacity. However, the choice of panels of RT-PCR assays is highly dependent on database information on circulating variants generated by WGS, which could limit the use of genotyping assays when new variants are emerging and spreading rapidly. FUNDING UK Health Security Agency and National Institute for Health Research Health Protection Research Unit in Emergency Preparedness and Response.
Collapse
Affiliation(s)
- Neil Bray
- UK Health Security Agency, London, UK
| | | | | | - Harper Vansteenhouse
- UK Health Security Agency, London, UK; BioClavis, Glasgow, UK; NHS Test and Trace, Department of Health & Social Care, London, UK; Alderley Lighthouse Labs, Macclesfield, UK
| | | | - Peter Jacobs
- Thermo Fisher Scientific, South San Francisco, CA, USA
| | - Kamal Rajput
- NHS Test and Trace, Department of Health & Social Care, London, UK
| | | | | | | | | | - Richard Elson
- UK Health Security Agency, London, UK; School of Environmental Sciences, University of East Anglia, Norwich, UK; NIHR Health Protection Research Unit in Emergency Preparedness and Response, London, UK
| | - Roberto Vivancos
- UK Health Security Agency, London, UK; NIHR Health Protection Research Unit in Gastrointestinal Infections and NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | | | | | - Anna Dominiczak
- UK Health Security Agency, London, UK; NHS Test and Trace, Department of Health & Social Care, London, UK; School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Susan Hopkins
- UK Health Security Agency, London, UK; NIHR Health Protection Research Unit in in Health Care Acquired Infections and Antimicrobial Resistance, London, UK
| | - Iain R Lake
- UK Health Security Agency, London, UK; School of Environmental Sciences, University of East Anglia, Norwich, UK; NIHR Health Protection Research Unit in Emergency Preparedness and Response, London, UK.
| |
Collapse
|
5
|
Pacini A, Paredes F, Heckel S, Ibarra G, Petreli MV, Perez M, Agnella Y, Piskulic L, Allasia MB, Caprile L, Colaneri A, Sesma J. Ready for new waves: optimizing SARS-CoV-2 variants monitoring in pooled samples with droplet digital PCR. Front Public Health 2024; 11:1340420. [PMID: 38298257 PMCID: PMC10829044 DOI: 10.3389/fpubh.2023.1340420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction The declaration of the end of the Public Health Emergency for COVID-19 on May 11th, 2023, has shifted the global focus led by WHO and CDC towards monitoring the evolution of SARS-CoV-2. Augmenting these international endeavors with local initiatives becomes crucial to not only track the emergence of new variants but also to understand their spread. We present a cost-effective digital PCR-based pooled sample testing methodology tailored for early variant surveillance. Methods Using 1200 retrospective SARS-CoV-2 positive samples, either negative or positive for Delta or Omicron, we assessed the sensitivity and specificity of our detection strategy employing commercial TaqMan variant probes in a 1:9 ratio of variant-positive to variant-negative samples. Results The study achieved 100% sensitivity and 99% specificity in 10-sample pools, with an Area Under the Curve (AUC) exceeding 0.998 in ROC curves, using distinct commercial TaqMan variant probes. Discussion The employment of two separate TaqMan probes for both Delta and Omicron establishes dual validation routes, emphasizing the method's robustness. Although we used known samples to model realistic emergence scenarios of the Delta and Omicron variants, our main objective is to demonstrate the versatility of this strategy to identify future variant appearances. The utilization of two divergent variants and distinct probes for each confirms the method's independence from specific variants and probes. This flexibility ensures it can be tailored to recognize any subsequent variant emergence, given the availability of its sequence and a specific probe. Consequently, our approach stands as a robust tool for tracking and managing any new variant outbreak, reinforcing our global readiness against possible future SARS-CoV-2 waves.
Collapse
Affiliation(s)
- Antonella Pacini
- Molecular Biology Department, Hospital Provincial de Rosario, Rosario, Argentina
- Instituto de Inmunología Clínica y Experimental de Rosario, CONICET, Rosario, Argentina
| | - Franco Paredes
- Molecular Biology Department, Hospital Provincial de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas de Rosario, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sofia Heckel
- Molecular Biology Department, Hospital Provincial de Rosario, Rosario, Argentina
- Instituto de Inmunología Clínica y Experimental de Rosario, CONICET, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas de Rosario, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guadalupe Ibarra
- Molecular Biology Department, Hospital Provincial de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas de Rosario, Universidad Nacional de Rosario, Rosario, Argentina
| | - Maria Victoria Petreli
- Molecular Biology Department, Hospital Provincial de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas de Rosario, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marilina Perez
- Molecular Biology Department, Hospital Provincial de Rosario, Rosario, Argentina
| | - Yanina Agnella
- Molecular Biology Department, Hospital Provincial de Rosario, Rosario, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional de Rosario, Casilda, Argentina
| | - Laura Piskulic
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Maria Belen Allasia
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Luis Caprile
- Molecular Biology Department, Hospital Provincial de Rosario, Rosario, Argentina
| | - Alejandro Colaneri
- Consejo Nacional de Investigaciones Científicas y Técnicas, Rosario, Argentina
| | - Juliana Sesma
- Molecular Biology Department, Hospital Provincial de Rosario, Rosario, Argentina
- Instituto de Inmunología Clínica y Experimental de Rosario, CONICET, Rosario, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
6
|
Barbian HJ, Kittner A, Teran R, Bobrovska S, Qiu X, English K, Green SJ, Ghinai I, Pacilli M, Hayden MK. A response playbook for early detection and population surveillance of new SARS-CoV-2 variants in a regional public health laboratory. BMC Public Health 2024; 24:59. [PMID: 38166805 PMCID: PMC10763119 DOI: 10.1186/s12889-023-17536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Timely genomic surveillance is required to inform public health responses to new SARS-CoV-2 variants. However, the processes involved in local genomic surveillance introduce inherent time constraints. The Regional Innovative Public Health Laboratory in Chicago developed and employed a genomic surveillance response playbook for the early detection and surveillance of emerging SARS-CoV-2 variants. METHODS The playbook outlines modifications to sampling strategies, laboratory workflows, and communication processes based on the emerging variant's predicted viral characteristics, observed public health impact in other jurisdictions and local community risk level. The playbook outlines procedures for implementing and reporting enhanced and accelerated genomic surveillance, including supplementing whole genome sequencing (WGS) with variant screening by quantitative PCR (qPCR). RESULTS The ability of the playbook to improve the response to an emerging variant was tested for SARS-CoV-2 Omicron BA.1. Increased submission of clinical remnant samples from local hospital laboratories enabled detection of a new variant at an average of 1.4% prevalence with 95% confidence rather than 3.5% at baseline. Genotyping qPCR concurred with WGS lineage assignments in 99.9% of 1541 samples with results by both methods, and was more sensitive, providing lineage results in 90.4% of 1833 samples rather than 85.1% for WGS, while significantly reducing the time to lineage result. CONCLUSIONS The genomic surveillance response playbook provides a structured, stepwise, and data-driven approach to responding to emerging SARS-CoV-2 variants. These pre-defined processes can serve as a template for other genomic surveillance programs to streamline workflows and expedite the detection and public health response to emerging variants. Based on the processes piloted during the Omicron BA.1 response, this method has been applied to subsequent Omicron subvariants and can be readily applied to future SARS-CoV-2 emerging variants and other public health surveillance activities.
Collapse
Affiliation(s)
- Hannah J Barbian
- Department of Internal Medicine, Regional Innovative Public Health Laboratory, Rush University Medical Center, Jelke 1259, 1750 W Harrison St, Chicago, IL, 60612, USA.
| | - Alyse Kittner
- Department of Internal Medicine, Regional Innovative Public Health Laboratory, Rush University Medical Center, Jelke 1259, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Richard Teran
- Chicago Department of Public Health, Chicago, IL, USA
| | - Sofiya Bobrovska
- Department of Internal Medicine, Regional Innovative Public Health Laboratory, Rush University Medical Center, Jelke 1259, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Xueting Qiu
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Kayla English
- Chicago Department of Public Health, Chicago, IL, USA
| | - Stefan J Green
- Department of Internal Medicine, Regional Innovative Public Health Laboratory, Rush University Medical Center, Jelke 1259, 1750 W Harrison St, Chicago, IL, 60612, USA
| | - Isaac Ghinai
- Chicago Department of Public Health, Chicago, IL, USA
| | | | - Mary K Hayden
- Department of Internal Medicine, Regional Innovative Public Health Laboratory, Rush University Medical Center, Jelke 1259, 1750 W Harrison St, Chicago, IL, 60612, USA
| |
Collapse
|
7
|
Sarkar A, Omar S, Alshareef A, Fanous K, Sarker S, Alroobi H, Zamir F, Yousef M, Zakaria D. The relative prevalence of the Omicron variant within SARS-CoV-2 infected cohorts in different countries: A systematic review. Hum Vaccin Immunother 2023; 19:2212568. [PMID: 37254497 PMCID: PMC10234134 DOI: 10.1080/21645515.2023.2212568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
The Omicron variant of SARS-CoV-2 was detected in October 2021 and exhibited high transmissibility, immune evasion, and reduced severity when compared to the earlier variants. The lesser vaccine effectiveness against Omicron and its reduced severity created vaccination hesitancy among the public. This review compiled data reporting the relative prevalence of Omicron as compared to the early variants to give an insight into the existing variants, which may shape the decisions regarding the targets of the newly developed vaccines. Complied data revealed more than 90% prevalence within the infected cohorts in some countries. The BA.1 subvariant predominated over the BA.2 during the early stages of the Omicron wave. Moreover, BA.4/BA.5 subvariants were detected in South Africa, USA and Italy between October 2021 and April 2022. It is therefore important to develop vaccines that protect against Omicron as well as the early variants, which are known to cause more severe complications.
Collapse
Affiliation(s)
| | - Sara Omar
- Medical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Aya Alshareef
- Medical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Kareem Fanous
- Medical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Shaunak Sarker
- Medical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Hasan Alroobi
- Medical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Fahad Zamir
- Premedical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Mahmoud Yousef
- Premedical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Dalia Zakaria
- Premedical Division, Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
8
|
Niedre-Otomere B, Kampenusa I, Trofimova J, Bodrenko J, Vangravs R, Skenders G, Nikisins S, Savicka O. Multiplexed RT-qPCR Coupled with Whole-Genome Sequencing to Monitor a SARS-CoV-2 Omicron Variant of Concern in a Hospital Laboratory Setting in Latvia. Diagnostics (Basel) 2023; 13:3467. [PMID: 37998603 PMCID: PMC10670528 DOI: 10.3390/diagnostics13223467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
At the end of 2021, the SARS-CoV-2 Omicron variant of concern (VOC) displaced the previously dominant Delta VOC and enhanced diagnostic and therapeutic challenges worldwide. Respiratory specimens submitted to the Riga East University Hospital Laboratory Service by the central and regional hospitals of Latvia from January to March 2022 that were positive for SARS-CoV-2 RNA were tested by commercial multiplexed RT-qPCR targeting three of the Omicron VOC signature mutations: ΔH69/V70, E484A, and N501Y. Of the specimens tested and analyzed in parallel by whole-genome sequencing (WGS), 964 passed the internal quality criteria (genome coverage ≥90%, read depth ≥400×) and the Nextstrain's quality threshold for "good". We validated the detection accuracy of RT-qPCR for each target individually by using WGS as a control. The results were concordant with both approaches for 938 specimens, with the correct classification rate exceeding 96% for each target (CI 95%); however, the presumptive WHO label was misassigned for 21 specimens. The RT-qPCR genotyping provided an acceptable means to pre-monitor the prevalence of the two presumptive Omicron VOC sublineages, BA.1 and BA.2.
Collapse
|
9
|
Zelyas N, Pabbaraju K, Croxen MA, Lynch T, McCullough E, Murphy SA, Shokoples S, Wong A, Kanji JN, Tipples G. Tracking SARS-CoV-2 Omicron lineages using real-time reverse transcriptase PCR assays and prospective comparison with genome sequencing. Sci Rep 2023; 13:17478. [PMID: 37838804 PMCID: PMC10576821 DOI: 10.1038/s41598-023-44796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
Omicron has become the dominant SARS-CoV-2 variant globally since December 2021, with distinct waves being associated with separate Omicron sublineages. Rapid detection of BA.1, BA.2, BA.4, and BA.5 was accomplished in the province of Alberta, Canada, through the design and implementation of real-time reverse transcriptase PCR assays targeting S:N501Y, S:ins214EPE, S:H69/V70, ORF7b:L11F, and M:D3N. Using the combination of results for each of these markers, samples could be designated as belonging to sublineages within BA.1, BA.2, BA.4, or BA.5. The analytical sensitivity of these markers ranged from 132 to 2229 copies/mL and in-laboratory accuracy was 98.9-100%. A 97.3% agreement using 12,592 specimens was demonstrated for the assays compared to genome sequencing. The use of these assays, combined with genome sequencing, facilitated the surveillance of SARS-CoV-2 lineages throughout a BA.5-dominated period.
Collapse
Affiliation(s)
- Nathan Zelyas
- Alberta Precision Laboratories, Public Health Laboratory, Edmonton, AB, Canada.
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| | - Kanti Pabbaraju
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, AB, Canada
| | - Matthew A Croxen
- Alberta Precision Laboratories, Public Health Laboratory, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Tarah Lynch
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, AB, Canada
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Emily McCullough
- Alberta Precision Laboratories, Public Health Laboratory, Edmonton, AB, Canada
| | - Stephanie A Murphy
- Alberta Precision Laboratories, Public Health Laboratory, Edmonton, AB, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Edmonton, AB, Canada
| | - Sandy Shokoples
- Alberta Precision Laboratories, Public Health Laboratory, Edmonton, AB, Canada
| | - Anita Wong
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, AB, Canada
| | - Jamil N Kanji
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
- Alberta Precision Laboratories, Public Health Laboratory, Calgary, AB, Canada
- Division of Infectious Diseases, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Graham Tipples
- Alberta Precision Laboratories, Public Health Laboratory, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Esman A, Dubodelov D, Khafizov K, Kotov I, Roev G, Golubeva A, Gasanov G, Korabelnikova M, Turashev A, Cherkashin E, Mironov K, Cherkashina A, Akimkin V. Development and Application of Real-Time PCR-Based Screening for Identification of Omicron SARS-CoV-2 Variant Sublineages. Genes (Basel) 2023; 14:1218. [PMID: 37372398 DOI: 10.3390/genes14061218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The Omicron strain is currently the main dominant variant of SARS-CoV-2, with a large number of sublineages. In this article, we present our experience in tracing it in Russia using molecular diagnostic methods. For this purpose, different approaches were used; for example, we developed multiprimer panels for RT-PCR and Sanger and NGS sequencing methods. For the centralized collection and analysis of samples, the VGARus database was developed, which currently includes more than 300,000 viral sequences.
Collapse
Affiliation(s)
- Anna Esman
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Dmitry Dubodelov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Kamil Khafizov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 115184 Dolgoprudny, Russia
| | - Ivan Kotov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 115184 Dolgoprudny, Russia
| | - German Roev
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 115184 Dolgoprudny, Russia
| | - Anna Golubeva
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Gasan Gasanov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Marina Korabelnikova
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Askar Turashev
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Evgeniy Cherkashin
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Konstantin Mironov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Anna Cherkashina
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Vasily Akimkin
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| |
Collapse
|
11
|
Specchiarello E, Matusali G, Carletti F, Gruber CEM, Fabeni L, Minosse C, Giombini E, Rueca M, Maggi F, Amendola A, Garbuglia AR. Detection of SARS-CoV-2 Variants via Different Diagnostics Assays Based on Single-Nucleotide Polymorphism Analysis. Diagnostics (Basel) 2023; 13:1573. [PMID: 37174964 PMCID: PMC10177602 DOI: 10.3390/diagnostics13091573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by fast evolution with the appearance of several variants. Next-Generation Sequencing (NGS) technology is considered the gold standard for monitoring known and new SARS-CoV-2 variants. However, the complexity of this technology renders this approach impracticable in laboratories located in areas with limited resources. We analyzed the capability of the ThermoFisher TaqPath COVID-19 RT-PCR (TaqPath) and the Seegene Novaplex SARS-CoV-2 Variant assay (Novaplex) to detect Omicron variants; the Allplex VariantII (Allplex) was also evaluated for Delta variants. Sanger sequencing (SaS) was the reference method. The results obtained with n = 355 nasopharyngeal samples were: negative with TaqPath, although positive with other qualitative molecular assays (n = 35); undetermined (n = 40) with both the assays; negative for the ∆69/70 mutation and confirmed as the Delta variant via SaS (n = 100); positive for ∆69/70 and confirmed as Omicron BA.1 via SaS (n = 80); negative for ∆69/70 and typed as Omicron BA.2 via SaS (n = 80). Novaplex typed 27.5% of samples as undetermined with TaqPath, 11.4% of samples as negative with TaqPath, and confirmed 100% of samples were Omicron subtypes. In total, 99/100 samples were confirmed as the Delta variant with Allplex with a positive per cent agreement (PPA) of 98% compared to SaS. As undermined samples with Novaplex showed RdRp median Ct values (Ct = 35.4) statistically higher than those of typed samples (median Ct value = 22.0; p < 0.0001, Mann-Whitney test), the inability to establish SARS-CoV-2 variants was probably linked to the low viral load. No amplification was obtained with SaS among all 35 negative TaqPath samples. Overall, 20% of samples which were typed as negative or undetermined with TaqPath, and among them, twelve were not typed even by SaS, but they were instead correctly identified with Novaplex. Although full-genome sequencing remains the elected method to characterize new strains, our data show the high ability of a SNP-based assay to identify VOCs, also resolving samples typed as undetermined with TaqPath.
Collapse
Affiliation(s)
- Eliana Specchiarello
- Laboratory of Virology, National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani (IRCCS), 00149 Rome, Italy
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani (IRCCS), 00149 Rome, Italy
| | - Fabrizio Carletti
- Laboratory of Virology, National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani (IRCCS), 00149 Rome, Italy
| | - Cesare Ernesto Maria Gruber
- Laboratory of Virology, National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani (IRCCS), 00149 Rome, Italy
| | - Lavinia Fabeni
- Laboratory of Virology, National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani (IRCCS), 00149 Rome, Italy
| | - Claudia Minosse
- Laboratory of Virology, National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani (IRCCS), 00149 Rome, Italy
| | - Emanuela Giombini
- Laboratory of Virology, National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani (IRCCS), 00149 Rome, Italy
| | - Martina Rueca
- Laboratory of Virology, National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani (IRCCS), 00149 Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani (IRCCS), 00149 Rome, Italy
| | - Alessandra Amendola
- Laboratory of Virology, National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani (IRCCS), 00149 Rome, Italy
| | - Anna Rosa Garbuglia
- Laboratory of Virology, National Institute for Infectious Diseases (INMI) Lazzaro Spallanzani (IRCCS), 00149 Rome, Italy
| |
Collapse
|
12
|
Rahman MM, Akash S, Islam MR. SARS-CoV-2 new variant BF.7: a new public threat globally, symptoms, precautions, transmission rate, and futures perspective - correspondence. Int J Surg 2023; 109:181-183. [PMID: 36799844 PMCID: PMC10389593 DOI: 10.1097/js9.0000000000000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 02/18/2023]
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | | | | |
Collapse
|
13
|
Stanhope BJ, Peterson B, Knight B, Decadiz RN, Pan R, Davis P, Fraser A, Nuth M, vanWestrienen J, Wendlandt E, Goodwin B, Myers C, Stone J, Sozhamannan S. Development, testing and validation of a SARS-CoV-2 multiplex panel for detection of the five major variants of concern on a portable PCR platform. Front Public Health 2022; 10:1042647. [PMID: 36590003 PMCID: PMC9798920 DOI: 10.3389/fpubh.2022.1042647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/11/2022] [Indexed: 12/16/2022] Open
Abstract
Many SARS-CoV-2 variants have emerged during the course of the COVID-19 pandemic. These variants have acquired mutations conferring phenotypes such as increased transmissibility or virulence, or causing diagnostic, therapeutic, or immune escape. Detection of Alpha and the majority of Omicron sublineages by PCR relied on the so-called S gene target failure due to the deletion of six nucleotides coding for amino acids 69-70 in the spike (S) protein. Detection of hallmark mutations in other variants present in samples relied on whole genome sequencing. However, whole genome sequencing as a diagnostic tool is still in its infancy due to geographic inequities in sequencing capabilities, higher cost compared to other molecular assays, longer turnaround time from sample to result, and technical challenges associated with producing complete genome sequences from samples that have low viral load and/or high background. Hence, there is a need for rapid genotyping assays. In order to rapidly generate information on the presence of a variant in a given sample, we have created a panel of four triplex RT-qPCR assays targeting 12 mutations to detect and differentiate all five variants of concern: Alpha, Beta, Gamma, Delta, and Omicron. We also developed an expanded pentaplex assay that can reliably distinguish among the major sublineages (BA.1-BA.5) of Omicron. In silico, analytical and clinical testing of the variant panel indicate that the assays exhibit high sensitivity and specificity. This panel can help fulfill the need for rapid identification of variants in samples, leading to quick decision making with respect to public health measures, as well as treatment options for individuals. Compared to sequencing, these genotyping PCR assays allow much faster turn-around time from sample to results-just a couple hours instead of days or weeks.
Collapse
Affiliation(s)
| | | | | | | | - Roger Pan
- Naval Health Research Center (NHRC), San Diego, CA, United States
| | | | - Anne Fraser
- Naval Health Research Center (NHRC), San Diego, CA, United States
| | | | | | - Erik Wendlandt
- Integrated DNA Technologies, Coralville, IA, United States
| | - Bruce Goodwin
- Defense Biological Product Assurance Office (DBPAO), Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Enabling Biotechnologies, Frederick, MD, United States
| | | | - Jennifer Stone
- MRIGlobal, Kansas City, MO, United States,*Correspondence: Jennifer Stone
| | - Shanmuga Sozhamannan
- Defense Biological Product Assurance Office (DBPAO), Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Enabling Biotechnologies, Frederick, MD, United States,Logistics Management Institute, Tysons, VA, United States,Shanmuga Sozhamannan
| |
Collapse
|
14
|
Bolze A, Basler T, White S, Dei Rossi A, Wyman D, Dai H, Roychoudhury P, Greninger AL, Hayashibara K, Beatty M, Shah S, Stous S, McCrone JT, Kil E, Cassens T, Tsan K, Nguyen J, Ramirez J, Carter S, Cirulli ET, Schiabor Barrett K, Washington NL, Belda-Ferre P, Jacobs S, Sandoval E, Becker D, Lu JT, Isaksson M, Lee W, Luo S. Evidence for SARS-CoV-2 Delta and Omicron co-infections and recombination. MED (NEW YORK, N.Y.) 2022; 3:848-859.e4. [PMID: 36332633 PMCID: PMC9581791 DOI: 10.1016/j.medj.2022.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Between November 2021 and February 2022, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants co-circulated in the United States, allowing for co-infections and possible recombination events. METHODS We sequenced 29,719 positive samples during this period and analyzed the presence and fraction of reads supporting mutations specific to either the Delta or Omicron variant. FINDINGS We identified 18 co-infections, one of which displayed evidence of a low Delta-Omicron recombinant viral population. We also identified two independent cases of infection by a Delta-Omicron recombinant virus, where 100% of the viral RNA came from one clonal recombinant. In the three cases, the 5' end of the viral genome was from the Delta genome and the 3' end from Omicron, including the majority of the spike protein gene, though the breakpoints were different. CONCLUSIONS Delta-Omicron recombinant viruses were rare, and there is currently no evidence that Delta-Omicron recombinant viruses are more transmissible between hosts compared with the circulating Omicron lineages. FUNDING This research was supported by the NIH RADx initiative and by the Centers for Disease Control Contract 75D30121C12730 (Helix).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pavitra Roychoudhury
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | | | - Mark Beatty
- County of San Diego Health and Human Services, San Diego, CA 92110, USA
| | - Seema Shah
- County of San Diego Health and Human Services, San Diego, CA 92110, USA
| | - Sarah Stous
- County of San Diego Health and Human Services, San Diego, CA 92110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hernandez MM, Banu R, Shrestha P, Gonzalez-Reiche AS, van de Guchte A, Farrugia K, Sebra R, Gitman MR, Nowak MD, Cordon-Cardo C, Simon V, van Bakel H, Sordillo EM, Luna N, Ramirez A, Castañeda SA, Patiño LH, Ballesteros N, Muñoz M, Ramírez JD, Paniz-Mondolfi AE. A Robust, Highly Multiplexed Mass Spectrometry Assay to Identify SARS-CoV-2 Variants. Microbiol Spectr 2022; 10:e0173622. [PMID: 36069609 PMCID: PMC9604185 DOI: 10.1128/spectrum.01736-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/12/2022] [Indexed: 12/31/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are characterized by differences in transmissibility and response to therapeutics. Therefore, discriminating among them is vital for surveillance, infection prevention, and patient care. While whole-genome sequencing (WGS) is the "gold standard" for variant identification, molecular variant panels have become increasingly available. Most, however, are based on limited targets and have not undergone comprehensive evaluation. We assessed the diagnostic performance of the highly multiplexed Agena MassARRAY SARS-CoV-2 Variant Panel v3 to identify variants in a diverse set of 391 SARS-CoV-2 clinical RNA specimens collected across our health systems in New York City, USA and Bogotá, Colombia (September 2, 2020 to March 2, 2022). We demonstrated almost perfect levels of interrater agreement between this assay and WGS for 9 of 11 variant calls (κ ≥ 0.856) and 25 of 30 targets (κ ≥ 0.820) tested on the panel. The assay had a high diagnostic sensitivity (≥93.67%) for contemporary variants (e.g., Iota, Alpha, Delta, and Omicron [BA.1 sublineage]) and a high diagnostic specificity for all 11 variants (≥96.15%) and all 30 targets (≥94.34%) tested. Moreover, we highlighted distinct target patterns that could be utilized to identify variants not yet defined on the panel, including the Omicron BA.2 and other sublineages. These findings exemplified the power of highly multiplexed diagnostic panels to accurately call variants and the potential for target result signatures to elucidate new ones. IMPORTANCE The continued circulation of SARS-CoV-2 amid limited surveillance efforts and inconsistent vaccination of populations has resulted in the emergence of variants that uniquely impact public health systems. Thus, in conjunction with functional and clinical studies, continuous detection and identification are quintessential to informing diagnostic and public health measures. Furthermore, until WGS becomes more accessible in the clinical microbiology laboratory, the ideal assay for identifying variants must be robust, provide high resolution, and be adaptable to the evolving nature of viruses like SARS-CoV-2. Here, we highlighted the diagnostic capabilities of a highly multiplexed commercial assay to identify diverse SARS-CoV-2 lineages that circulated from September 2, 2020 to March 2, 2022 among patients seeking care in our health systems. This assay demonstrated variant-specific signatures of nucleotide/amino acid polymorphisms and underscored its utility for the detection of contemporary and emerging SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Matthew M. Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Radhika Banu
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paras Shrestha
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ana S. Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Keith Farrugia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Sema4, a Mount Sinai venture, Stamford, Connecticut, USA
| | - Mount Sinai PSP Study Group
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa R. Gitman
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael D. Nowak
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Viviana Simon
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicolas Luna
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Angie Ramirez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Andres Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto E. Paniz-Mondolfi
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
Alba JMG, Pérez-Martínez Z, Boga JA, Rojo-Alba S, de Oña JG, Alvarez-Argüelles ME, Rodríguez GM, Gonzalez IC, González IH, Coto E, García SM. Emergence of New SARS-CoV2 Omicron Variants after the Change of Surveillance and Control Strategy. Microorganisms 2022; 10:1954. [PMID: 36296230 PMCID: PMC9610377 DOI: 10.3390/microorganisms10101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
In January 2022, there was a global and rapid surge of the Omicron variant of SARS-CoV-2 related to more transmission. This coincided with an increase in the incidence in Asturias, a region where rapid diagnosis and containment measures had limited the circulation of variants. METHODS From January to June 2022, 34,591 variants were determined by the SNP method. From them, 445 were characterized by the WGS method and classified following pangolin program and phylogenic analysis. RESULTS The Omicron variant went from being detected in 2438 (78%) samples in the first week of January 2021 to 4074 (98%) in the third week, according to the SNP method. Using the WGS method, 159 BA.1 (35.7%), 256 BA.2 (57.6%), 1 BA.4 (0.2%) and 10 BA.5 (2.2%) Omicron variants were found. Phylogenetic analysis detected that three new sub-clades, BA.2,3.5, BA.2.56 and BF1, were circulating. CONCLUSIONS The increase in the incidence of SARS-CoV2 caused the circulation of new emerging variants. Viral evolution calls for continuous genomic surveillance.
Collapse
Affiliation(s)
- José María González Alba
- Unit of Virology, Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitario del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Zulema Pérez-Martínez
- Unit of Virology, Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitario del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - José A. Boga
- Unit of Virology, Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitario del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Susana Rojo-Alba
- Unit of Virology, Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitario del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Juan Gómez de Oña
- Instituto de Investigación Sanitario del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Genetic Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Marta E. Alvarez-Argüelles
- Unit of Virology, Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitario del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Garbriel Martín Rodríguez
- Unit of Virology, Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitario del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Isabel Costales Gonzalez
- Unit of Virology, Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitario del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - Eliecer Coto
- Instituto de Investigación Sanitario del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Genetic Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Santiago Melón García
- Unit of Virology, Microbiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Instituto de Investigación Sanitario del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|