1
|
Hetzroni A, Yosef PG, Hedar M, Ishay RTB, Sharon N, Rubinstein U. Length of hospital stay not affected by empirical treatment with ceftriaxone versus cefuroxime for bacteraemia. Acta Paediatr 2025; 114:1323-1328. [PMID: 39754407 DOI: 10.1111/apa.17572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
AIM The preferred antibiotic treatment for bacteraemia in infants continues to be debated. We examined the duration of hospital stays as a surrogate for the effectiveness of initial treatment with ceftriaxone versus cefuroxime. METHODS This was a retrospective review of the medical records of all infants aged 3-36 months, admitted with suspected occult bacteraemia to the paediatric department at Laniado Hospital, Israel, between 2016 and 2022. The effect of antibiotic treatment, namely ceftriaxone versus cefuroxime, on hospital stays was determined, in both the total study population and population subgroups. RESULTS We identified 217 patients (59.0% male) with a median age of 13 months and 12.4% had positive blood cultures. Approximately three-quarters (75.6%) received cefuroxime as their initial treatment for bacteraemia and the other quarter (24.4%) received ceftriaxone. The median length of hospital stay was 3.0 (interquartile range 3.0-4.0), with no statistically significant difference between the two drugs. However, we did notice a statistically significant shorter median length of hospital stay among fully vaccinated infants treated with cefuroxime rather than ceftriaxone (p = 0.055). CONCLUSION The length of hospital stay among infants diagnosed with bacteraemia was not affected by whether they initially received ceftriaxone or cefuroxime. Further studies in larger populations are needed.
Collapse
Affiliation(s)
| | | | - Muna Hedar
- Pediatric Department, Laniado Hospital, Netanya, Israel
| | | | | | | |
Collapse
|
2
|
Rapszky GA, Do To UN, Kiss VE, Kói T, Walter A, Gergő D, Meznerics FA, Rakovics M, Váncsa S, Kemény LV, Csupor D, Hegyi P, Filbin MR, Varga C, Fenyves BG. Rapid molecular assays versus blood culture for bloodstream infections: a systematic review and meta-analysis. EClinicalMedicine 2025; 79:103028. [PMID: 39968206 PMCID: PMC11833021 DOI: 10.1016/j.eclinm.2024.103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 02/20/2025] Open
Abstract
Background Timely management of sepsis with early targeted antimicrobial therapy improves patient outcomes. Rapid molecular assays (RMAs) have emerged, enabling the detection of bloodstream infection (BSI) with a shorter turnaround time than blood cultures (BCs). The accuracy of several RMAs has not been comprehensively reviewed. We aimed to identify commercial RMAs reported in the literature and evaluate their diagnostic performance compared to BC. Methods A systematic review and meta-analysis was conducted, covering MEDLINE, Cochrane Library, Embase, and Web of Science from inception to September 23, 2024. Eligible studies included patients with suspected or documented BSI, tested with both an RMA (turnaround time of ≤12 h, targeting ≥20 pathogens) and BC. Non-original research articles and animal studies were excluded. The primary outcomes were pooled sensitivity and specificity of RMAs for pathogen detection compared to BC. Bivariate analysis was used to produce summary receiver operating characteristic plots and diagnostic metric measures stratified by different units of analysis (sample versus patient), RMA types, and patient populations. Risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) and Quality Assessment of Diagnostic Accuracy Studies-Comparative (QUADAS-C) tools. The study was registered with PROSPERO, CRD42022377280. Findings A total of 63,916 articles were identified, of which 104 were included in the qualitative synthesis and 75 in the quantitative synthesis, covering 17,952 samples and 11,393 patients analyzed separately. Eleven RMAs were identified, with four included in the RMA-based subgroup analysis (LightCycler SeptiFast Test MGRADE®, IRIDICA BAC BSI assay, SepsiTest, MagicPlex Sepsis Test) and five additional ones in the pooled analysis (UMD-SelectNA, VYOO®, MicrobScan assay, MicrobScan-Kairos24/7, REBA Sepsis-ID test). Two RMAs were included in the qualitative synthesis only (InfectID-BSI, Pilot Gene Technology droplet digital polymerase chain reaction). Pooled specificity of RMAs was higher (0.858, 95% confidence interval (CI) 0.830-0.883) than sensitivity (0.659, 95% CI 0.594-0.719) by patient. Sensitivities varied by RMA type from 0.492 (95% CI 0.390-0.594, MagicPlex Sepsis Test) to 0.783 (95% CI 0.662-0.870, IRIDICA BAC BSI assay) by patient. Specificities varied more by patient population, ranging from 0.811 (95% CI 0.716-0.879) in the intensive care population to 0.892 (95% CI 0.838-0.930) in the emergency department population, by patient. Similar metrics were observed when the analysis was done by sample. Risk of bias was judged to be high in all included articles. Interpretation Despite their shorter turnaround time, low sensitivity means RMAs cannot replace BCs. However, our data indicate that RMAs may have value as an add-on test by increasing pathogen detection rates. Higher-sensitivity RMAs are needed which could possibly be achieved by expanding pathogen coverage and increasing blood sample volumes. High-quality implementation studies and standardized reporting are required to assess the clinical advantages of RMAs. Funding Centre for Translational Medicine, Semmelweis University.
Collapse
Affiliation(s)
- Gabriella Anna Rapszky
- Department of Emergency Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Uyen Nguyen Do To
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- András Pető Faculty, Semmelweis University, Budapest, Hungary
| | | | - Tamás Kói
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Budapest University of Technology and Economics, Department of Stochastics, Budapest, Hungary
| | - Anna Walter
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Dorottya Gergő
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Pharmacognosy, Semmelweis University, Budapest, Hungary
| | - Fanni Adél Meznerics
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
| | - Márton Rakovics
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Eötvös Loránd University, Faculty of Social Sciences, Department of Statistics, Budapest, Hungary
| | - Szilárd Váncsa
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Lajos Vince Kemény
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, Budapest, Hungary
- Department of Physiology, Semmelweis University, Budapest, Hungary
- HCEMM-SU, Translational Dermatology Research Group, Semmelweis University, Budapest, Hungary
| | - Dezső Csupor
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Clinical Pharmacy, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
- Institute of Pancreatic Diseases, Semmelweis University, Budapest, Hungary
| | - Michael R. Filbin
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Emergency Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Csaba Varga
- Department of Emergency Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Bánk G. Fenyves
- Department of Emergency Medicine, Semmelweis University, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Lee SM, Song JH, Lee KS, Yoo KH. Pathogenic Bacterial Detection Using Vertical-Capacitance Sensor Array Immobilized with the Antimicrobial Peptide Melittin. SENSORS (BASEL, SWITZERLAND) 2024; 25:12. [PMID: 39796801 PMCID: PMC11722802 DOI: 10.3390/s25010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria. It also inhibits bacterial biofilm formation in blood culture media. In our study, bacterial growth was measured using electrical vertical-capacitance sensors with interdigitated electrodes functionalized with melittin, a widely studied AMP. The melittin-immobilized vertical-capacitance sensors demonstrated real-time detection of both standard and clinically isolated bacteria in media. Furthermore, these sensors successfully detected clinically isolated bacteria in blood culture media while inhibiting bacterial biofilm formation. Melittin-immobilized vertical-capacitance sensors provide a rapid and sensitive pathogen detection platform, with significant potential for improving patient care.
Collapse
Affiliation(s)
- Sun-Mi Lee
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; (J.-H.S.)
- Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jun-Ho Song
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; (J.-H.S.)
| | - Kyo-Seok Lee
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; (J.-H.S.)
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; (J.-H.S.)
- Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
4
|
Narula K, Rajpal S, Bhakta S, Kulanthaivel S, Mishra P. Rationally designed protein A surface molecularly imprinted magnetic nanoparticles for the capture and detection of Staphylococcus aureus. J Mater Chem B 2024; 12:5699-5710. [PMID: 38757517 DOI: 10.1039/d4tb00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Staphylococcus aureus (S. aureus), a commensal organism found on the human skin, is commonly associated with nosocomial infections and exhibits virulence mediated by toxins and resistance to antibiotics. The global threat of antibiotic resistance has necessitated antimicrobial stewardship to improve the safe and appropriate use of antimicrobials; hence, there is an urgent demand for the advanced, cost-effective, and rapid detection of specific bacteria. In this regard, we aimed to selectively detect S. aureus using surface molecularly imprinted magnetic nanoparticles templated with a well-known biomarker protein A, specific to S. aureus. Herein, a highly selective surface molecularly imprinted polymeric thin layer was created on ∼250 nm magnetic nanoparticles (MNPs) through the immobilization of protein A to aldehyde functionalized MNPs, followed by monomer polymerization and template washing. This study employs the rational selection of monomers based on their computationally predicted binding affinity to protein A at multiple surface residues. The resulting MIPs from rationally selected monomer combinations demonstrated an imprinting factor as high as ∼5. Selectivity studies revealed MIPs with four-fold higher binding capacity (BC) to protein A than other non-target proteins, such as lysozyme and serum albumin. In addition, it showed significant binding to S. aureus, whereas negligible binding to other non-specific Gram-negative, i.e. Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), and Gram-positive, i.e. Bacillus subtilis (B. subtilis), bacteria. This MIP was employed for the capture and specific detection of fluorescently labeled S. aureus. Quantitative detection was performed using a conventional plate counting technique in a linear detection range of 101-107 bacterial cells. Remarkably, the MIPs also exhibited approximately 100% cell recovery from milk samples spiked with S. aureus (106 CFU mL-1), underscoring its potential as a robust tool for sensitive and accurate bacterial detection in dairy products. The developed MIP exhibiting high affinity and selective binding to protein A finds its potential applications in the magnetic capture and selective detection of protein A as well as S. aureus infections and contaminations.
Collapse
Affiliation(s)
- Kritika Narula
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | - Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | - Snehasis Bhakta
- Department of Chemistry, Cooch Behar College, West Bengal, India
| | - Senthilguru Kulanthaivel
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
5
|
Kota PK, Vu HA, LeJeune D, Han M, Syed S, Baraniuk RG, Drezek RA. Expanded Multiplexing on Sensor-Constrained Microfluidic Partitioning Systems. Anal Chem 2023; 95:17458-17466. [PMID: 37971927 PMCID: PMC10759160 DOI: 10.1021/acs.analchem.3c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Microfluidics can split samples into thousands or millions of partitions, such as droplets or nanowells. Partitions capture analytes according to a Poisson distribution, and in diagnostics, the analyte concentration is commonly inferred with a closed-form solution via maximum likelihood estimation (MLE). Here, we present a new scalable approach to multiplexing analytes. We generalize MLE with microfluidic partitioning and extend our previously developed Sparse Poisson Recovery (SPoRe) inference algorithm. We also present the first in vitro demonstration of SPoRe with droplet digital PCR (ddPCR) toward infection diagnostics. Digital PCR is intrinsically highly sensitive, and SPoRe helps expand its multiplexing capacity by circumventing its channel limitations. We broadly amplify bacteria with 16S ddPCR and assign barcodes to nine pathogen genera by using five nonspecific probes. Given our two-channel ddPCR system, we measured two probes at a time in multiple groups of droplets. Although individual droplets are ambiguous in their bacterial contents, we recover the concentrations of bacteria in the sample from the pooled data. We achieve stable quantification down to approximately 200 total copies of the 16S gene per sample, enabling a suite of clinical applications given a robust upstream microbial DNA extraction procedure. We develop a new theory that generalizes the application of this framework to many realistic sensing modalities, and we prove scaling rules for system design to achieve further expanded multiplexing. The core principles demonstrated here could impact many biosensing applications with microfluidic partitioning.
Collapse
Affiliation(s)
- Pavan K. Kota
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Hoang-Anh Vu
- Department of Bioengineering, Rice University, Houston, Texas 77005
| | - Daniel LeJeune
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005
| | - Margaret Han
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Saamiya Syed
- Department of Engineering Technology, University of Houston, Houston, Texas 77204
| | - Richard G. Baraniuk
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005
| | | |
Collapse
|
6
|
Drevinek P, Hollweck R, Lorenz MG, Lustig M, Bjarnsholt T. Direct 16S/18S rRNA Gene PCR Followed by Sanger Sequencing as a Clinical Diagnostic Tool for Detection of Bacterial and Fungal Infections: a Systematic Review and Meta-Analysis. J Clin Microbiol 2023; 61:e0033823. [PMID: 37367430 PMCID: PMC10575125 DOI: 10.1128/jcm.00338-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
rRNA gene Sanger sequencing is being used for the identification of cultured pathogens. A new diagnostic approach is sequencing of uncultured samples by using the commercial DNA extraction and sequencing platform SepsiTest (ST). The goal was to analyze the clinical performance of ST with a focus on nongrowing pathogens and the impact on antibiotic therapy. A literature search used PubMed/Medline, Cochrane, Science Direct, and Google Scholar. Eligibility followed PRISMA-P criteria. Quality and risk of bias were assessed drawing on QUADAS-2 (quality assessment of diagnostic accuracy studies, revised) criteria. Meta-analyses were performed regarding accuracy metrics compared to standard references and the added value of ST in terms of extra found pathogens. We identified 25 studies on sepsis, infectious endocarditis, bacterial meningitis, joint infections, pyomyositis, and various diseases from routine diagnosis. Patients with suspected infections of purportedly sterile body sites originated from various hospital wards. The overall sensitivity (79%; 95% confidence interval [CI], 73 to 84%) and specificity (83%; 95% CI, 72 to 90%) were accompanied by large effect sizes. ST-related positivity was 32% (95% CI, 30 to 34%), which was significantly higher than the culture positivity (20%; 95% CI, 18 to 22%). The overall added value of ST was 14% (95% CI, 10 to 20%) for all samples. With 130 relevant taxa, ST uncovered high microbial richness. Four studies demonstrated changes of antibiotic treatment at 12% (95% CI, 9 to 15%) of all patients upon availability of ST results. ST appears to be an approach for the diagnosis of nongrowing pathogens. The potential clinical role of this agnostic molecular diagnostic tool is discussed regarding changes of antibiotic treatment in cases where culture stays negative.
Collapse
Affiliation(s)
- Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | | | | | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Centre for Diagnostics, Rigshospitalet, Copenhagen, Denmark
- Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Both A, Christner M, Berinson B, Dreimann M, Viezens L, Lütgehetmann M, Aepfelbacher M, Rohde H, Stangenberg M. The added value of a commercial 16S/18S-PCR assay (UMD-SelectNA, Molzym) for microbiological diagnosis of spondylodiscitis: an observational study. Diagn Microbiol Infect Dis 2023; 106:115926. [PMID: 36963329 DOI: 10.1016/j.diagmicrobio.2023.115926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/26/2023]
Abstract
In spondylodiscitis, pathogen identification is important to guide therapy strategies. Here the use of an rDNA PCR assay (Molzym UMDSelectNA) for pathogen detection in spondylodiscitis was evaluated in 182 specimens from 124 spondylodiscitis patients. In 81% of specimens rDNA PCR and conventional culture produced concordant results. Compared to conventional culture, sensitivity and specificity of rDNA PCR were 75% and 83.9%, respectively. The rDNA PCR performed better than conventional culture in identification of Streptococcus spp.. However, overall sensitivity was suboptimal, e.g., in cases with low bacterial burden, and only 5 of 124 patients (4%) received a microbiological diagnosis by employing rDNA PCR. Thus, the added value of routine use of rDNA PCR on spondylodiscitis specimens is limited. Targeted use of the assay in culture-negative cases may be efficient and moderately increase diagnostic yield. The need for susceptibility information implies that 16S rDNA PCR may only be used as an add-on tool to culture.
Collapse
Affiliation(s)
- Anna Both
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Christner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Berinson
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Dreimann
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Lennart Viezens
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Martin Stangenberg
- Division of Spine Surgery, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Zhang J, Li M, Xu R, Kapur S, Bombard A, Song Y. Electrokinetics in antimicrobial resistance analysis: A review. Electrophoresis 2023; 44:323-336. [PMID: 35940104 DOI: 10.1002/elps.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023]
Abstract
Infections caused by antimicrobial resistance are a serious problem in the world. Currently, commercial devices for antimicrobial susceptibility testing and resistant bacteria identification are time-consuming. There is an urgent need to develop fast and accurate methods, especially in the process of sample pretreatment. Electrokinetic (EK) is a family of electric-field-based kinetic phenomena of fluid or embedded objects, and EK applications have been found in various fields. In this paper, EK bacteria manipulation, including enrichment and separation, is reviewed. Focus is given to the rapid electric-based minimum inhibitory concentration measurement. The future directions and major challenges in this field are also outlined.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Mengqi Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Runxin Xu
- Department of Navigation, Dalian Maritime University, Dalian, P. R. China
| | - Suman Kapur
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Antonio Bombard
- Physics and Chemistry Institute, Federal University of Itajubá, Itajubá, Brazil
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| |
Collapse
|
9
|
Schüle S, Gluzman-Poltorak Z, Vainstein V, Basile LA, Haimerl M, Stroszczynski C, Majewski M, Schwanke D, Port M, Abend M, Ostheim P. Gene Expression Changes in a Prefinal Health Stage of Lethally Irradiated Male and Female Rhesus Macaques. Radiat Res 2023; 199:17-24. [PMID: 36445953 DOI: 10.1667/rade-22-00083.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Radiation-induced gene expression (GE) changes can be used for early and high-throughput biodosimetry within the first three days postirradiation. However, is the method applicable in situations such as the Alexander Litvinenko case or the Goiania accident, where diagnosis occurred in a prefinal health stage? We aimed to characterize gene expression changes in a prefinal health stage of lethally irradiated male and female rhesus macaques. Peripheral blood was drawn pre-exposure and at the prefinal stage of male and female animals, which did not survive whole-body exposure with 700 cGy (LD66/60). RNA samples originated from a blinded randomized Good Laboratory Practice study comprising altogether 142 irradiated rhesus macaques of whom 60 animals and blood samples (15 samples for both time points and sexes) were used for this analysis. We evaluated GE on 34 genes widely used in biodosimetry and prediction of the hematological acute radiation syndrome severity (H-ARS) employing quantitative real-time polymerase chain reaction (qRT-PCR). These genes were run in duplicate and triplicate and altogether 96 measurements per time point and sex could be performed. In addition, 18S ribosomal RNA (rRNA) was measured to depict the ribosome/transcriptome status as well as for normalization purposes and 16S rRNA was evaluated as a surrogate for bacteremia. Mean differential gene expression (DGE) was calculated for each gene and sex including all replicate measurements and using pre-exposure samples as the reference. From 34 genes, altogether 27 genes appeared expressed. Pre-exposure samples revealed no signs of bacteremia and 18S rRNA GE was in the normal range in all 30 samples. Regarding prefinal samples, 46.7% and 40% of animals appeared infected in females and males, respectively, and for almost all males this was associated with out of normal range 18S rRNA values. The total number of detectable GE measurements was sixfold (females) and 15-fold (males) reduced in prefinal relative to pre-exposure samples and about tenfold lower in 80% of prefinal compared to pre-exposure samples (P < 0.0001). An overall 11-fold (median) downregulation in prefinal compared to pre-exposure samples was identified for most of the 27 genes and even FDXR appeared 4-14-fold downregulated in contrast to a pronounced up-regulation according to cited work. This pattern of overall downregulation of almost all genes and the rapid reduction of detectable genes at a prefinal stage was found in uninfected animals with normal range 18S rRNA as well. In conclusion, in a prefinal stage after lethal radiation exposure, the ribosome/transcriptome status remains present (based on normal range 18S rRNA values) in 60-67% of animals, but the whole transcriptome activity in general appears silenced and cannot be used for biodosimetry purposes, but probably as an indicator for an emerging prefinal health stage.
Collapse
Affiliation(s)
- S Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Z Gluzman-Poltorak
- Neumedicines Inc, Pasadena, California.,Applied Stem Cell Therapeutics, Milpitas, California
| | - V Vainstein
- Neumedicines Inc, Pasadena, California.,Hadassah Medical Center, Jerusalem, Israel
| | | | - M Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - C Stroszczynski
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - M Majewski
- Bundeswehr Institute of Radiobiology, Munich, Germany.,Department of Urology, Armed Services Hospital Ulm, Ulm, Germany
| | - D Schwanke
- Bundeswehr Institute of Radiobiology, Munich, Germany.,Department of Urology, Armed Services Hospital Ulm, Ulm, Germany
| | - M Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - P Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany.,Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Kashef MT, Helmy OM. Development of a Multiplex Polymerase Chain Reaction-Based DNA Lateral Flow Assay as a Point-of-Care Diagnostic for Fast and Simultaneous Detection of MRSA and Vancomycin Resistance in Bacteremia. Diagnostics (Basel) 2022; 12:2691. [PMID: 36359534 PMCID: PMC9689860 DOI: 10.3390/diagnostics12112691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 12/06/2024] Open
Abstract
To reduce high mortality and morbidity rates, timely and proper treatment of methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infection is required. A multiplex polymerase reaction (mPCR)-based DNA lateral flow assay (MBDLFA) was developed as a point-of-care diagnostic for simultaneous identification of S. aureus, methicillin resistance, and vancomycin resistance directly from blood or blood cultures. A mPCR was developed to detect nuc, mecA, and vanA/B; its sensitivity, specificity, and limit of detection (LOD) were determined. The developed reaction was further modified for use in MBDLFA and its sensitivity for detection of target genes from artificially inoculated blood samples was checked. The optimized mPCR successfully detected nuc, mecA, and vanA/B from genomic DNA of bacterial colonies with LODs of 107, 107, and 105 CFU/mL, respectively. The reaction was sensitive and specific. The optimized mPCR was used in MBDLFA that detected nuc, mecA, and vanA/B with LODs of 107, 108, and 104 CFU/mL, respectively, directly from artificially inoculated blood. The developed MBDLFA can be used as a rapid, cheap point-of-care diagnostic for detecting S. aureus, MRSA, and vancomycin resistance directly from blood and blood cultures in ~2 h with the naked eye. This will reduce morbidity, mortality, and treatment cost in S. aureus bacteremia.
Collapse
Affiliation(s)
| | - Omneya M. Helmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
11
|
Jahn M, Özçürümez MK, Dolff S, Rohn H, Heider D, Dechêne A, Canbay A, Rath PM, Katsounas A. A Multipathogen Bile Sample-based PCR Assay Can Guide Empirical Antimicrobial Strategies in Cholestatic Liver Diseases. J Clin Transl Hepatol 2022; 10:788-795. [PMID: 36304501 PMCID: PMC9547272 DOI: 10.14218/jcth.2021.00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/19/2021] [Accepted: 01/29/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Polymerase chain reaction (PCR) techniques provide rapid detection of pathogens. This pilot study evaluated the diagnostic utility and clinical impact of multiplex real-time PCR (mRT-PCR, SeptiFast) vs. conventional microbial culture (CMC) in bile samples of patients with chronic cholestatic liver diseases (cCLDs), endoscopic retrograde cholangio-pancreatography (ERCP), and peri-interventional-antimicrobial-prophylaxis (pAP). METHODS We prospectively collected bile samples from 26 patients for microbiological analysis by CMC and mRT-PCR. Concordance of the results of both methods was determined by Krippendorff's alpha (α) for inter-rater reliability and the Jaccard index of similarity. RESULTS mRT-PCRbile and CMCbile results were concordant for only Candida albicans (α=0.8406; Jaccard index=0.8181). mRT-PCRbile detected pathogens in 8/8 cases (100%), CMCbile in 7/8 (87.5%), and CMCblood in 5/8 (62.5%) with clinical signs of infection. mRT-PCRbile, CMCbile, and CMCblood had identical detection results in 3/8 (37.5%) with clinical signs of infection (two Klebsiella spp. and one Enterococcus faecium). The total pathogen count was significantly higher with mRT-PCRbile than with CMCbile (62 vs. 31; χ2=30.031, p<0.001). However, pathogens detected by mRT-PCRbile were more often susceptible to pAP according to the patient infection/colonization history (PI/CH) and surveillance data for antibiotic resistance in our clinic (DARC). Pathogens identified by mRT-PCRbile and resistant to pAP by PI/CH and DARC were likely to be clinically relevant. CONCLUSIONS mRT-PCR in conjunction with CMCs for bile analysis increased diagnostic sensitivity and may benefit infection management in patients with cholestatic diseases. Implementation of mRT-PCR in a bile sample-based diagnostic routine can support more rapid and targeted use of antimicrobial agents in cCLD-patients undergoing ERCP and reduce the rate/length of unnecessary administration of broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Michael Jahn
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Correspondence to: Michael Jahn, Department of Nephrology, University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany. Tel: +49-201-723-83840, Fax: +49-201-723-5500, E-mail:
| | - Mustafa K Özçürümez
- Department of Medicine, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hana Rohn
- Department of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science, University of Marburg, Marburg, Germany
| | - Alexander Dechêne
- Department for Internal Medicine, Nuremberg Hospital North, Paracelsus Private Medical University Nuremberg, Nuremberg, Germany
| | - Ali Canbay
- Department of Medicine, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Peter M. Rath
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Antonios Katsounas
- Department of Medicine, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Lamoureux C, Surgers L, Fihman V, Gricourt G, Demontant V, Trawinski E, N'Debi M, Gomart C, Royer G, Launay N, Le Glaunec JM, Wemmert C, La Martire G, Rossi G, Lepeule R, Pawlotsky JM, Rodriguez C, Woerther PL. Prospective Comparison Between Shotgun Metagenomics and Sanger Sequencing of the 16S rRNA Gene for the Etiological Diagnosis of Infections. Front Microbiol 2022; 13:761873. [PMID: 35464955 PMCID: PMC9020828 DOI: 10.3389/fmicb.2022.761873] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Bacteriological diagnosis is traditionally based on culture. However, this method may be limited by the difficulty of cultivating certain species or by prior exposure to antibiotics, which justifies the resort to molecular methods, such as Sanger sequencing of the 16S rRNA gene (Sanger 16S). Recently, shotgun metagenomics (SMg) has emerged as a powerful tool to identify a wide range of pathogenic microorganisms in numerous clinical contexts. In this study, we compared the performance of SMg to Sanger 16S for bacterial detection and identification. All patients’ samples for which Sanger 16S was requested between November 2019 and April 2020 in our institution were prospectively included. The corresponding samples were tested with a commercial 16S semi-automated method and a semi-quantitative pan-microorganism DNA- and RNA-based SMg method. Sixty-seven samples from 64 patients were analyzed. Overall, SMg was able to identify a bacterial etiology in 46.3% of cases (31/67) vs. 38.8% (26/67) with Sanger 16S. This difference reached significance when only the results obtained at the species level were compared (28/67 vs. 13/67). This study provides one of the first evidence of a significantly better performance of SMg than Sanger 16S for bacterial detection at the species level in patients with infectious diseases for whom culture-based methods have failed. This technology has the potential to replace Sanger 16S in routine practice for infectious disease diagnosis.
Collapse
Affiliation(s)
- Claudie Lamoureux
- Microbiology Unit, Department of Diagnostic, Prevention and Treatment of Infections, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France.,Department of Bacteriology, Virology, Hospital Hygiene, and Parasitology-Mycology, Brest University Hospital, Brest, France.,Univ Brest, INSERM, EFS, UMR 1078, GGB, Brest, France
| | - Laure Surgers
- GHU AP-HP Sorbonne Université, Service des Maladies Infectieuses et Tropicales, Hôpital Saint-Antoine, Paris, France.,INSERM U955, IMRB Institute, University of Paris-Est Créteil, Créteil, France
| | - Vincent Fihman
- Microbiology Unit, Department of Diagnostic, Prevention and Treatment of Infections, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France.,EA 7380 Dynamyc, EnvA, UPEC, University of Paris-Est Créteil, Créteil, France
| | - Guillaume Gricourt
- NGS Platform, Henri Mondor Hospital, AP-HP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Vanessa Demontant
- NGS Platform, Henri Mondor Hospital, AP-HP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Elisabeth Trawinski
- NGS Platform, Henri Mondor Hospital, AP-HP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Melissa N'Debi
- NGS Platform, Henri Mondor Hospital, AP-HP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Camille Gomart
- Microbiology Unit, Department of Diagnostic, Prevention and Treatment of Infections, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France
| | - Guilhem Royer
- Microbiology Unit, Department of Diagnostic, Prevention and Treatment of Infections, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France
| | - Nathalie Launay
- Microbiology Unit, Department of Diagnostic, Prevention and Treatment of Infections, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France
| | - Jeanne-Marie Le Glaunec
- Microbiology Unit, Department of Diagnostic, Prevention and Treatment of Infections, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France
| | - Charlotte Wemmert
- Antimicrobial Stewardship Unit, Diagnostic, Prevention and Treatment of Infections Department, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France
| | - Giulia La Martire
- Antimicrobial Stewardship Unit, Diagnostic, Prevention and Treatment of Infections Department, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France
| | - Geoffrey Rossi
- Antimicrobial Stewardship Unit, Diagnostic, Prevention and Treatment of Infections Department, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France
| | - Raphaël Lepeule
- Antimicrobial Stewardship Unit, Diagnostic, Prevention and Treatment of Infections Department, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France
| | - Jean-Michel Pawlotsky
- Microbiology Unit, Department of Diagnostic, Prevention and Treatment of Infections, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France.,INSERM U955, IMRB Institute, University of Paris-Est Créteil, Créteil, France
| | - Christophe Rodriguez
- Microbiology Unit, Department of Diagnostic, Prevention and Treatment of Infections, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France.,INSERM U955, IMRB Institute, University of Paris-Est Créteil, Créteil, France.,NGS Platform, Henri Mondor Hospital, AP-HP, and IMRB Institute, University of Paris-Est-Créteil, Créteil, France
| | - Paul-Louis Woerther
- Microbiology Unit, Department of Diagnostic, Prevention and Treatment of Infections, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France.,EA 7380 Dynamyc, EnvA, UPEC, University of Paris-Est Créteil, Créteil, France.,Antimicrobial Stewardship Unit, Diagnostic, Prevention and Treatment of Infections Department, Henri Mondor Hospital, AP-HP, University of Paris-Est-Créteil, Créteil, France
| |
Collapse
|
13
|
Chen KH, Lee SH, Kok LC, Ishdorj TO, Chang HY, Tseng FG. A 3D-ACEK/SERS system for highly efficient and selectable electrokinetic bacteria concentration/detection/ antibiotic-susceptibility-test on whole blood. Biosens Bioelectron 2022; 197:113740. [PMID: 34785491 DOI: 10.1016/j.bios.2021.113740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022]
Abstract
This study demonstrates a novel multi-functional microfluidic system, designated three dimensional Alternative Current Electrokinetic/Surface Enhanced Raman Scattering (3D-ACEK/SERS), which can concentrate bacteria from whole blood, identify bacterial species, and determine antibiotic susceptibilities of the bacteria rapidly. The system consists of a hybrid electrokinetic mechanism, integrating AC-electroosmosis (AC-EO) and dielectrophoresis (DEP) that allows thousand-fold concentration of bacteria, including S. aureus, Escherichia coli, and Chryseobacterium indologenes, in the center of an electrode with a wide range of working distance (hundreds to thousands of μm), while exclusion of blood cells through negative DEP forces. This microchip employs SERS assay to determine the identity of the concentrated bacteria in approximately 2 min with a limit of detection of 3 CFU/ml, 5 orders of magnitude lower than that using standard centrifugation-purification process. Finally, label-free antibiotic susceptibility testing has been successfully demonstrated on the platform using both antibiotic-sensitive and multidrug-resistant bacterial strains illustrating a potential utility of the system to clinical applications.
Collapse
Affiliation(s)
- Kuan-Hung Chen
- Institute of NanoEngineering and MicroSystem, National Tsing Hua University, HsinChu, Taiwan
| | - Shih-Han Lee
- Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsin Chu, Taiwan
| | - Li-Ching Kok
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu, Taiwan
| | - Tseren-Onolt Ishdorj
- School of Information and Communication Technology, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
| | - Hwan-You Chang
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu, Taiwan
| | - Fan-Gang Tseng
- Institute of NanoEngineering and MicroSystem, National Tsing Hua University, HsinChu, Taiwan; Department of Engineering and System Science, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsin Chu, Taiwan; Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
14
|
Badran S, Chen M, Coia JE. Multiplex Droplet Digital Polymerase Chain Reaction Assay for Rapid Molecular Detection of Pathogens in Patients With Sepsis: Protocol for an Assay Development Study. JMIR Res Protoc 2021; 10:e33746. [PMID: 34898460 PMCID: PMC8713102 DOI: 10.2196/33746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Blood cultures are the cornerstone of diagnosis for detecting the presence of bacteria or fungi in the blood, with an average detection time of 48 hours and failure to detect a pathogen occurring in approximately 50% of patients with sepsis. Rapid diagnosis would facilitate earlier treatment and/or an earlier switch to narrow-spectrum antibiotics. OBJECTIVE The aim of this study is to develop and implement a multiplex droplet digital polymerase chain reaction (ddPCR) assay as a routine diagnostic tool in the detection and identification of pathogens from whole blood and/or blood culture after 3 hours of incubation. METHODS The study consists of three phases: (1) design of primer-probe pairs for accurate and reliable quantification of the most common sepsis-causing microorganisms using a multiplex reaction, (2) determination of the analytical sensitivity and specificity of the multiplex ddPCR assay, and (3) a clinical study in patients with sepsis using the assay. The QX200 Droplet Digital PCR System will be used for the detection of the following species-specific genes in blood from patients with sepsis: coa (staphylocoagulase) in Staphylococcus aureus, cpsA (capsular polysaccharide) in Streptococcus pneumoniae, uidA (beta-D-glucuronidase) in Escherichia coli, oprL (peptidoglycan-associated lipoprotein) in Pseudomonas aeruginosa, and the highly conserved regions of the 16S rRNA gene for Gram-positive and Gram-negative bacteria. All data will be analyzed using QuantaSoft Analysis Pro Software. RESULTS In phase 1, to determine the optimal annealing temperature for the designed primer-probe pairs, results from a gradient temperature experiment will be collected and the limit of detection (LOD) of the assay will be determined. In phase 2, results for the analytical sensitivity and specificity of the assay will be obtained after an optimization of the extraction and purification method in spiked blood. In phase 3, clinical sensitivity and specificity as compared to the standard blood culture technique will be determined using 301 clinical samples. CONCLUSIONS Successful design of primer-probe pairs in the first phase and subsequent optimization and determination of the LOD will allow progression to phase 3 to compare the novel method with existing blood culture methods. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) PRR1-10.2196/33746.
Collapse
Affiliation(s)
- Samir Badran
- Research Unit in Clinical Microbiology, Department of Clinical Diagnostics, Hospital South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Ming Chen
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Hospital of Southern Jutland, University Hospital of Southern Denmark, Aabenraa, Denmark
| | - John E Coia
- Research Unit in Clinical Microbiology, Department of Clinical Diagnostics, Hospital South West Jutland, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Gram-negative bloodstream infections (GNBSI) are common and carry considerable mortality. Treatment is complicated by increasing antimicrobial resistance, posing a challenge for timely appropriate antibiotics and limiting the choices of effective definitive therapy. The present review aims to summarize recent studies addressing the management of GNBSI. RECENT FINDINGS New rapid diagnostic tests (RDT) for pathogen identification and antibiotic susceptibility are associated with improved antimicrobial stewardship and reduced length of stay. No mortality benefit or patient-related outcomes are reported. Data regarding the use of new beta-lactam beta-lactamase inhibitors (BLBLIs) for treating multidrug resistance Gram-negative bacteria is supportive, though questions regarding combinations, optimal dosing, mode of administration, and resistance emergence remain to be clarified. Current data regarding cefiderocol necessitates further studies in order to support its use in GNBSI. Shortened (≤7 days) duration of therapy and early oral step down for GNBSI are supported by the literature. The role of repeated blood cultures should be further defined. SUMMARY RDTs should be implemented to improve antibiotic stewardship. Clinical implications on patient-related outcomes should be evaluated. New BLBLIs show promise in the treatment of GNBSI. Additional data are needed regarding the use of cefiderocol. Antibiotic therapy should be shortened and early oral step down should be considered.
Collapse
|
16
|
Shin J, Shin S, Jung SH, Park C, Cho SY, Lee DG, Chung YJ. Duplex dPCR System for Rapid Identification of Gram-Negative Pathogens in the Blood of Patients with Bloodstream Infection: A Culture-Independent Approach. J Microbiol Biotechnol 2021; 31:1481-1489. [PMID: 34528911 PMCID: PMC9705831 DOI: 10.4014/jmb.2103.03044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/17/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022]
Abstract
Early and accurate detection of pathogens is important to improve clinical outcomes of bloodstream infections (BSI), especially in the case of drug-resistant pathogens. In this study, we aimed to develop a culture-independent digital PCR (dPCR) system for multiplex detection of major sepsiscausing gram-negative pathogens and antimicrobial resistance genes using plasma DNA from BSI patients. Our duplex dPCR system successfully detected nine targets (five bacteria-specific targets and four antimicrobial resistance genes) through five reactions within 3 hours. The minimum detection limit was 50 ag of bacterial DNA, suggesting that 1 CFU/ml of bacteria in the blood can be detected. To validate the clinical applicability, cell-free DNA samples from febrile patients were tested with our system and confirmed high consistency with conventional blood culture. This system can support early identification of some drug-resistant gram-negative pathogens, which can help improving treatment outcomes of BSI.
Collapse
Affiliation(s)
- Juyoun Shin
- Department of Microbiology, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea
| | - Sun Shin
- Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea
| | - Seung-Hyun Jung
- Department of Biochemistry, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea
| | - Sung-Yeon Cho
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea,Department of Internal Medicine, The Catholic University of Korea, College of Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea
| | - Dong-Gun Lee
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea,Department of Internal Medicine, The Catholic University of Korea, College of Medicine, Seoul St. Mary’s Hospital, Seoul 06591, Republic of Korea
| | - Yeun-Jun Chung
- Department of Microbiology, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea,Precision Medicine Research Center, Integrated Research Center for Genome Polymorphism, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea,Corresponding author Phone: +82-2-2258-7343 Fax: +82-2-537-0572 E-mail:
| |
Collapse
|
17
|
Kamel O, Van Noten H, Argudín MA, Martiny D. Butyricimonas faecihominis and Eubacterium callanderi mixed bloodstream infection after appendicular peritonitis. Anaerobe 2021; 71:102419. [PMID: 34311107 DOI: 10.1016/j.anaerobe.2021.102419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Omar Kamel
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Héloïse Van Noten
- Infectious Diseases Department, CHU Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maria A Argudín
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium; Faculty of Medicine and Franco, University of Mons (UMONS), Mons, Belgium
| |
Collapse
|
18
|
Singhal C, Bruno JG, Kaushal A, Sharma TK. Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections. ACS APPLIED BIO MATERIALS 2021; 4:3962-3984. [PMID: 35006817 DOI: 10.1021/acsabm.0c01358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present review is intended to describe bloodstream infections (BSIs), the major pathogens responsible for BSIs, conventional tests and their limitations, commercially available methods used, and the aptamer and nanomaterials-based approaches developed so far for the detection of BSIs. The advantages associated with aptamers and the aptamer-based sensors, the comparison between the aptamers and the antibodies, and the various types of aptasensors developed so far for the detection of bloodstream infections have been described in detail in the present review. Also, the future outlook and roadmap toward aptamer-based sensors and the challenges associated with the aptamer development have also been concluded in this review.
Collapse
Affiliation(s)
- Chaitali Singhal
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - John G Bruno
- Nanohmics, Inc., Austin, Texas 78741, United States
| | - Ankur Kaushal
- Centre of Nanotechnology, Amity University, Manesar, Gurugram, Haryana 122413, India
| | - Tarun K Sharma
- Aptamer Technology and Diagnostic Laboratory, Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|
19
|
Maheshwarappa HM, Guru P, Mundre RS, Lawrence N, Majumder S, Sigamani A, Anupama CN, Adak S. Validation of an Isothermal Amplification Platform for Microbial Identification and Antimicrobial Resistance Detection in Blood: A Prospective Study. Indian J Crit Care Med 2021; 25:299-304. [PMID: 33790511 PMCID: PMC7991769 DOI: 10.5005/jp-journals-10071-23761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: Recent advances in nucleic acid amplification technique (NAAT)-based identification of pathogens in blood stream infections (BSI) have revolutionized molecular diagnostics in comparison to traditional clinical microbiology practice of blood culture. Rapid pathogen detection with point-of-care diagnostic-applicable platform is prerequisite for efficient patient management. The aim of the study is to evaluate an in-house developed, lyophilized OmiX-AMP pathogen test for the detection of top six BSI-causing bacteria along with two major antimicrobial resistance (AMR) markers of carbapenem and compare it to the traditional blood culture-based detection. Materials and methods: One hundred forty-three patients admitted to the Medical Intensive Care Unit, Narayana Hrudayalaya, Bangalore, with either suspected or proven sepsis, of either gender, of age ≥18 years were enrolled for the study. Pathogen DNA extracted from blood culture sample using OmiX pReP method was amplified at isothermal conditions and analyzed in real time using OmiX Analysis software. Results: Among the processed 143 samples, 54 were true negative, 83 were true positive, 3 were false negative, and 2 were false positive as analyzed by OmiX READ software. Gram-negative bacteria (91.3%) and gram-positive bacteria (75%) were detected with 100% specificity and 95.6% sensitivity along with the AMR marker pattern with a turnaround time of 4 hours from sample collection to results. Conclusion: OmiX-AMP pathogen test detected pathogens with 96.5% concordance in comparison to traditional blood culture. Henceforth, OmiX-AMP pathogen test could be used as a readily deployable diagnostic kit even in low-resource settings. How to cite this article: Maheshwarappa HM, Guru P, Mundre RS, Lawrence N, Majumder S, Sigamani A, et al. Validation of an Isothermal Amplification Platform for Microbial Identification and Antimicrobial Resistance Detection in Blood: A Prospective Study. Indian J Crit Care Med 2021;25(3):299–304.
Collapse
Affiliation(s)
- Harish M Maheshwarappa
- Department of Intensive Care Medicine, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | - Prasadini Guru
- Department of Laboratory Medicine, Microbiology and Serology, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | | | - Nima Lawrence
- OmiX Research and Diagnostics Laboratories, Bangalore, Karnataka, India
| | - Snehali Majumder
- Department of Clinical Research, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | - Alben Sigamani
- Department of Clinical Research, Narayana Hrudayalaya, Bangalore, Karnataka, India
| | - C N Anupama
- OmiX Research and Diagnostics Laboratories, Bangalore, Karnataka, India
| | - Sudeshna Adak
- OmiX Research and Diagnostics Laboratories, Bangalore, Karnataka, India
| |
Collapse
|
20
|
Can a Presepsin (Scd14-St) Obtained from Tracheal Aspirate Be a Biomarker for Early- Onset Neonatal Sepsis. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020. [DOI: 10.2478/sjecr-2018-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
In absence of clear clinical signs and clear definition, neonatal sepsis is still one of the major cause of morbidity and mortality. Most researchs in past time was directional on finding new biomarkers with greater sensitivity and specificity in detection of neonatal sepsis. The aim of our study was to investigate if presepsin obtained from tracheal asprate in intubated newborns, can be a novel biomarker of systemic bacterial infection. Our ‘’case control’’ study included 60 newborns, 11 with suspected neonatal sepsis. Tracheal aspirate for examination was taken in the usual toilets, in aseptic conditions, by lavage with 2 ml of 0.9% NaCl in Mucus suction set. In the same day were mesured presepsin (blood), CRP, PCT, leukocytes and neutrophyls, as well as blood culture. Our research showed higher levels for PCT and presepsin (blood) in septic newborns, as well as in newborns with clinical signs of SIRS. Presepsin obtained from a tracheal aspirate had high score for septic newborns. As the coefficients of simple linear correlation showed, there was quantitative agreement between presepsin (blood) with presepsin (tracheal aspirate)- increase in the value of one leads to an increase in other. In conjunction with an already validated markers of infection, presepsin obtained from tracheal aspirate cam be turned on in diagnostic procedures.
Collapse
|
21
|
Rub DM, Dhudasia MB, Healy T, Mukhopadhyay S. Role of microbiological tests and biomarkers in antibiotic stewardship. Semin Perinatol 2020; 44:151328. [PMID: 33158600 DOI: 10.1016/j.semperi.2020.151328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Laboratory tests are critical in the detection and timely treatment of infection. Two categories of tests are commonly used in neonatal sepsis management: those that identify the pathogen and those that detect host response to a potential pathogen. Decision-making around antibiotic choice is related to the performance of tests that directly identify pathogens. Advances in these tests hold the key to progress in antibiotic stewardship. Tests measuring host response, on the other hand, are an indirect marker of potential infection. While an important measure of the patient's clinical state, in the absence of pathogen detection these tests cannot confirm the appropriateness of antibiotic selection. The overall impact these tests then have on antibiotic utilization depends the test's specificity for bacterial infection, clinical scenario where it is being used and the decision-rule it is being integrated into for use. In this review we discuss common and emerging laboratory tests available for assisting management of neonatal infection and specifically focus on the role they play in optimizing antibiotic utilization.
Collapse
Affiliation(s)
- David M Rub
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miren B Dhudasia
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tracy Healy
- Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, USA
| | - Sagori Mukhopadhyay
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Pennsylvania Hospital, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Emerging Microbiology Diagnostics for Transplant Infections: On the Cusp of a Paradigm Shift. Transplantation 2020; 104:1358-1384. [PMID: 31972701 DOI: 10.1097/tp.0000000000003123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In light of the heightened risk for infection associated with solid organ and hematopoietic stem cell transplantation, rapid and accurate microbiology diagnostics are essential to the practice of transplant clinicians, including infectious diseases specialists. In the last decade, diagnostic microbiology has seen a shift toward culture-independent techniques including single-target and multiplexed molecular testing, mass-spectrometry, and magnetic resonance-based methods which have together greatly expanded the array of pathogens identified, increased processing speed and throughput, allowed for detection of resistance determinants, and ultimately improved the outcomes of infected transplant recipients. More recently, a newer generation of diagnostics with immense potential has emerged, including multiplexed molecular panels directly applicable to blood and blood culture specimens, next-generation metagenomics, and gas chromatography mass spectrometry. Though these methods have some recognized drawbacks, many have already demonstrated improved sensitivity and a positive impact on clinical outcomes in transplant and immunocompromised patients.
Collapse
|
23
|
Camp I, Spettel K, Willinger B. Molecular Methods for the Diagnosis of Invasive Candidiasis. J Fungi (Basel) 2020; 6:E101. [PMID: 32640656 PMCID: PMC7558065 DOI: 10.3390/jof6030101] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/19/2022] Open
Abstract
Invasive infections caused by members of the genus Candida are on the rise. Especially patients in intensive care units, immunocompromised patients, and those recovering from abdominal surgery are at risk for the development of candidemia or deep-seated candidiasis. Rapid initiation of appropriate antifungal therapy can increase survival rates significantly. In the past, most of these infections were caused by C. albicans, a species that typically is very susceptible to antifungals. However, in recent years a shift towards infections caused by non-albicans species displaying various susceptibly patterns has been observed and the prompt diagnosis of the underlying species has become an essential factor determining the therapeutic outcome. The gold standard for diagnosing invasive candidiasis is blood culture, even though its sensitivity is low and the time required for species identification usually exceeds 48 h. To overcome these issues, blood culture can be combined with other methods, and a large number of tests have been developed for this purpose. The aim of this review was to give an overview on strengths and limitations of currently available molecular methods for the diagnosis of invasive candidiasis.
Collapse
Affiliation(s)
| | | | - Birgit Willinger
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; (I.C.); (K.S.)
| |
Collapse
|
24
|
Wouters Y, Dalloyaux D, Christenhusz A, Roelofs HMJ, Wertheim HF, Bleeker‐Rovers CP, te Morsche RH, Wanten GJA. Droplet digital polymerase chain reaction for rapid broad-spectrum detection of bloodstream infections. Microb Biotechnol 2020; 13:657-668. [PMID: 31605465 PMCID: PMC7111091 DOI: 10.1111/1751-7915.13491] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/21/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022] Open
Abstract
The droplet digital polymerase chain reaction (ddPCR) is a novel molecular technique that allows rapid quantification of rare target DNA sequences. Aim of this study was to explore the feasibility of the ddPCR technique to detect pathogen DNA in whole blood and to assess the diagnostic accuracy of ddPCR to detect bloodstream infections (BSIs), benchmarked against blood cultures. Broad-range primers and probes were designed to detect bacterial 16S rRNA (and Gram stain for differentiation) and fungal 28S rRNA. To determine the detection limit of ddPCR, 10-fold serial dilutions of E. coli and C. albicans were spiked in both PBS and whole blood. The diagnostic accuracy of ddPCR was tested in historically collected frozen blood samples from adult patients suspected of a BSI and compared with blood cultures. Analyses were independently performed by two research analysts. Outcomes included sensitivity and specificity of ddPCR. Within 4 h, blood samples were drawn, and DNA was isolated and analysed. The ddPCR detection limit was approximately 1-2 bacteria or fungi per ddPCR reaction. In total, 45 blood samples were collected from patients, of which 15 (33%) presented with positive blood cultures. The overall sensitivity of ddPCR was 80% (95% CI 52-96) and specificity 87% (95% CI 69-96). In conclusion, the ddPCR technique has considerable potential and is able to detect very low amounts of pathogen DNA in whole blood within 4 h. Currently, ddPCR has a reasonable sensitivity and specificity, but requires further optimization to make it more useful for clinical practice.
Collapse
Affiliation(s)
- Yannick Wouters
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Daisy Dalloyaux
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Anke Christenhusz
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Hennie M. J. Roelofs
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Heiman F. Wertheim
- Department of Medical MicrobiologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Chantal P. Bleeker‐Rovers
- Department of Internal Medicine and Infectious DiseasesRadboud University Medical CentreNijmegenThe Netherlands
| | - René H. te Morsche
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Geert J. A. Wanten
- Intestinal Failure UnitDepartment of Gastroenterology and HepatologyRadboud University Medical CentreNijmegenThe Netherlands
| |
Collapse
|
25
|
Sune D, Rydberg H, Augustinsson ÅN, Serrander L, Jungeström MB. Optimization of 16S rRNA gene analysis for use in the diagnostic clinical microbiology service. J Microbiol Methods 2020; 170:105854. [PMID: 31982454 DOI: 10.1016/j.mimet.2020.105854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/01/2022]
Abstract
Broad-range amplification and sequencing of the 16S rRNA gene, directly from clinical samples, is a method that potentially allows detection of any cultivable or non-cultivable bacteria. However, the method is prone to false positive results due to PCR contamination. Another concern is the human DNA abundance compared to bacterial DNA in samples from sterile sites. Those factors may decrease the sensitivity and specificity of the assay and can complicate the analysis and interpretation of the results. The objective of this prospective study was to try to avoid the most common pitfalls, mentioned above, and develop a molecular 16S assay with a high clinical sensitivity and specificity. Fifty-six consecutive tissue samples from patients with suspected deep infections were extracted by 3 different DNA-extraction methods; two based on a principle of bacterial DNA enrichment, and one conventional DNA extraction method. We compared three primer pairs, including both conventional and DPO principle, targeting different variable regions of the 16S rRNA gene. Results from routine tissue culture were used as reference. Clinical data was recorded from patient charts and analyzed in parallel. Of a total of 56 samples, collected from 39 patients, 70% (39 samples) were assessed as true infections by analysis of clinical data. Bacterial enrichment extraction increased sensitivity from 54% to 72%. The 2 sets of primer pairs defining region V1-V3 and V3-V4, showed similar sensitivity, but DPO-primers resulted in better specificity, i.e. less contaminations. The primer pairs covering V1-V8 show significantly lower sensitivity (p < .001) than V1-V3 and V3-V4. Optimizing extraction protocols and choice of primers can increase the sensitivity and specificity of a molecular 16S-analysis, rendering a valuable complement to tissue culture.
Collapse
Affiliation(s)
- Dan Sune
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, Linköping University, Sweden.
| | - Helene Rydberg
- Division of Clinical Microbiology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Åsa Nilsdotter Augustinsson
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, Linköping University, Sweden.
| | - Lena Serrander
- Division of Clinical Microbiology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Malin Bergman Jungeström
- Division of Clinical Microbiology and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
26
|
16S rDNA droplet digital PCR for monitoring bacterial DNAemia in bloodstream infections. PLoS One 2019; 14:e0224656. [PMID: 31721817 PMCID: PMC6853374 DOI: 10.1371/journal.pone.0224656] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
Repeated quantitative measurement of bacterial DNA on whole blood has been shown to be a promising method for monitoring bloodstream infection (BSI) with selected bacterial species. To enable broad use of this method, we developed a quantitative droplet digital PCR (ddPCR) method for 16S rDNA. It was validated with species-specific ddPCRs for Staphylococcus aureus (nuc), Streptococcus pneumoniae (lytA), and Escherichia coli (uidA) on spiked whole blood samples and on repeated whole blood samples (days 0, 1–2, 3–4, 6–8, and 13–15) from 83 patients with BSI with these pathogens. In these patients, 16S rDNA and species-specific DNA were detected in 60% and 61%, respectively, at least at one time-point. The highest positivity rates were seen in S. aureus BSI, where 92% of the patients were 16S rDNA-positive and 85% nuc-positive. Quantitative 16S rDNA and species-specific DNA showed strong correlations in spiked samples (r = 0.98; p < 0.0001) and clinical samples (r = 0.84; p < 0.0001). Positivity for 16S rDNA was rapidly cleared in patients with S. pneumoniae and E. coli BSI, but more slowly and sometimes persisted, in those with S. aureus BSI. The initial 16S rDNA load was higher in BSI patients with sepsis (Sepsis-3 definition) than without sepsis (median 2.38 vs. 0 lg10 copies/mL; p = 0.031) and in non-survivors than in survivors (median 2.83 vs. 0 lg10 copies/mL; p = 0.006). 16S rDNA ddPCR appears to be a promising method for bacterial DNA monitoring during BSI. The clinical value of such monitoring should be further studied.
Collapse
|
27
|
Schenz J, Weigand MA, Uhle F. Molecular and biomarker-based diagnostics in early sepsis: current challenges and future perspectives. Expert Rev Mol Diagn 2019; 19:1069-1078. [PMID: 31608730 DOI: 10.1080/14737159.2020.1680285] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Introduction: Sepsis, defined as a life-threatening organ dysfunction resulting from dysregulated host response to infection, is still a major challenge for healthcare systems. Early diagnosis is highly needed, yet challenging, due to the non-specificity of clinical symptoms. Rapid and targeted application of therapy strategies is crucial for patient's outcome.Areas covered: Faster and better diagnostics with high accuracy is promised by novel host response biomarkers and a wide variety of direct pathogen identification technologies, which have emerged over the last years. This review will cover both - host response-guided diagnostics and methods for direct pathogen detection. Some of the markers and technologies are already market-ready, others are more likely aspirants. We will discuss them in terms of their performance and benefit for use in clinical diagnostics.Expert opinion: Latest technological advances enable the development of promising diagnostic tests, detecting the host response as well as identifying pathogens without the need of cultivation. However, the syndrome's heterogeneity makes it difficult to develop a universal test suitable for routine use. Moreover, the robustness of the biomarkers and technologies still has to be verified. Combining these technologies and clinical routine parameters with bioinformatic methods (e.g., machine-learning algorithms) may revolutionize sepsis diagnostics.
Collapse
Affiliation(s)
- Judith Schenz
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
28
|
Rapid microbiological tests for bloodstream infections due to multidrug resistant Gram-negative bacteria: therapeutic implications. Clin Microbiol Infect 2019; 26:713-722. [PMID: 31610299 DOI: 10.1016/j.cmi.2019.09.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/20/2019] [Accepted: 09/27/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Treating severe infections due to multidrug-resistant Gram-negative bacteria (MDR-GNB) is one of the most important challenges for clinicians worldwide, partly because resistance may remain unrecognized until identification of the causative agent and/or antimicrobial susceptibility testing (AST). Recently, some novel rapid test for identification and/or AST of MDR-GNB from positive blood cultures or the blood of patients with bloodstream infections (BSIs) have become available. OBJECTIVES The objective of this narrative review is to discuss the advantages and limitations of different rapid tests for identification and/or AST of MDR-GNB from positive blood cultures or the blood of patients with BSI, as well as the available evidence on their possible role to improve therapeutic decisions and antimicrobial stewardship. SOURCES Inductive PubMed search for publications relevant to the topic. CONTENT The present review is structured in the following way: (a) rapid tests on positive blood cultures; (b) rapid tests directly on whole blood; (c) therapeutic implications. IMPLICATIONS Novel molecular and phenotypic rapid tests for identification and AST show the potential for favourably influencing patients' outcomes and results of antimicrobial stewardship interventions by reducing both the time to effective treatment and the misuse of antibiotics, although the interpretation about their impact on actual therapeutic decisions and patients' outcomes is still complex. Factors such as feasibility and personnel availability, as well as the detailed knowledge of the local microbiological epidemiology, need to be considered very carefully when implementing novel rapid tests in laboratory workflows and algorithms. Providing high-level, comparable evidence on the clinical impact of rapid identification and AST is becoming of paramount importance for MDR-GNB infections, since in the near future rapid identification of specific resistance mechanisms could be crucial for guiding rapid, effective, and targeted therapy against specific resistance mechanisms.
Collapse
|
29
|
Ahmed-Yahia S, Decousser JW, Flouzat-Lachaniette CH, Dervin G, Roubineau F, Audureau E, Hourdille A, Royer G, Eymard F, Chevalier X. Is the discopathy associated with Modic changes an infectious process? Results from a prospective monocenter study. PLoS One 2019; 14:e0221030. [PMID: 31415619 PMCID: PMC6695213 DOI: 10.1371/journal.pone.0221030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The local infectious origin and the putative role of Cutibacterium acnes (CA) of a particular subtype of discopathy (Modic 1) are still debated. PURPOSE To establish the association of CA in intervertebral disc (IVD) and Modic 1 discopathy in patients with low back pain. METHODS The prevalence of bacteria in IVD samples obtained by anterior approach in patient with chronic low back pain harboring Modic type 1, 2 or no Modic changes was compared to that measured in IVD samples obtained by posterior approach for sciatica. From 45 patients included in the study, 77 discs samples were obtained: 58 by anterior approach (32 Modic 1/2 changes, 26 without Modic change) and 19 by posterior approach. Conventional microbial cultures, universal 16S rRNA molecular detection and a CA specific PCR were performed. RESULTS 12 /77 (15.6%) disc samples were culture positive. Among the 10 CA positive cultures, 5 out of 58 (8.6%) were identified from specimens obtained by anterior approach and 5/19 (26.3%) from posterior approach (p = 0.046). Moreover, the percentage of CA culture positive sample was statistically no different between the patient with or without Modic changes. The CA prevalence was lower through molecular, culture-free approaches: the universal 16S rRNA PCR was positive for 6 specimens, including one CA positive sample and the CA specific PCR was positive for one specimen obtained by posterior approach. CONCLUSIONS In spine surgery the prevalence of CA in culture was significantly higher in IVD samples collected through a posterior approach compared to an anterior approach, suggesting a contamination process. This study did not support the CA related local infectious origin of Modic 1 discopathy.
Collapse
Affiliation(s)
- Salim Ahmed-Yahia
- Rheumatology Departement, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Jean-Winoc Decousser
- Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
- EA 7380 Dynamyc Université Paris-Est Créteil (UPEC), Ecole nationale vétérinaire d’Alfort (EnvA), Faculté de Médecine de Créteil, Créteil, France
- * E-mail:
| | | | - Guillaume Dervin
- Rheumatology Departement, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - François Roubineau
- Orthopaedic Departement, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Etienne Audureau
- Public Health Departement, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Alexia Hourdille
- Rheumatology Departement, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Guilhem Royer
- Department of Bacteriology and Infection Control, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Florent Eymard
- Rheumatology Departement, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Xavier Chevalier
- Rheumatology Departement, University Hospital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| |
Collapse
|
30
|
Du Y, Xu Z, Yu G, Liu W, Zhou Q, Yang D, Li J, Chen L, Zhang Y, Xue C, Cao Y. A Newly Isolated Bacillus subtilis Strain Named WS-1 Inhibited Diarrhea and Death Caused by Pathogenic Escherichia coli in Newborn Piglets. Front Microbiol 2019; 10:1248. [PMID: 31249559 PMCID: PMC6582243 DOI: 10.3389/fmicb.2019.01248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/20/2019] [Indexed: 01/31/2023] Open
Abstract
Bacillus subtilis is recognized as a safe and reliable human and animal probiotic and is associated with bioactivities such as production of vitamin and immune stimulation. Additionally, it has great potential to be used as an alternative to antimicrobial drugs, which is significant in the context of antibiotic abuse in food animal production. In this study, we isolated one strain of B. subtilis, named WS-1, from apparently healthy pigs growing with sick cohorts on one Escherichia coli endemic commercial pig farm in Guangdong, China. WS-1 can strongly inhibit the growth of pathogenic E. coli in vitro. The B. subtilis strain WS-1 showed typical Bacillus characteristics by endospore staining, biochemical test, enzyme activity analysis, and 16S rRNA sequence analysis. Genomic analysis showed that the B. subtilis strain WS-1 shares 100% genomic synteny with B. subtilis with a size of 4,088,167 bp. Importantly, inoculation of newborn piglets with 1.5 × 1010 CFU of B. subtilis strain WS-1 by oral feeding was able to clearly inhibit diarrhea (p < 0.05) and death (p < 0.05) caused by pathogenic E. coli in piglets. Furthermore, histopathological results showed that the WS-1 strain could protect small intestine from lesions caused by E. coli infection. Collectively, these findings suggest that the probiotic B. subtilis strain WS-1 acts as a potential biocontrol agent protecting pigs from pathogenic E. coli infection. Importance: In this work, one B. subtilis strain (WS-1) was successfully isolated from apparently healthy pigs growing with sick cohorts on one E. coli endemic commercial pig farm in Guangdong, China. The B. subtilis strain WS-1 was identified to inhibit the growth of pathogenic E. coli both in vitro and in vivo, indicating its potential application in protecting newborn piglets from diarrhea caused by E. coli infections. The isolation and characterization will help better understand this bacterium, and the strain WS-1 can be further explored as an alternative to antimicrobial drugs to protect human and animal health.
Collapse
Affiliation(s)
- Yunping Du
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Zhichao Xu
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Guolian Yu
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Wei Liu
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Qingfeng Zhou
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Dehong Yang
- Animal Disease Laboratory, Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xingning, China
| | - Jie Li
- Department of Biological Engineering, School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, China
| | - Li Chen
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yun Zhang
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Chunyi Xue
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| | - Yongchang Cao
- Biochemistry and Molecular Biology Laboratory, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Firoozeh F, Shiralinezhad A, Momen-Heravi M, Aghadavod E, Zibaei M. Rapid Detection of Pathogenic Bacteria in Whole Blood Samples Using 23S rRNA PCR Assays. Open Microbiol J 2019. [DOI: 10.2174/1874285801913010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose:Bloodstream infections are a general cause of death among hospitalized patients. Rapid diagnosis and timely treatment can reduce mortality. The aim of this investigation was to evaluate the 23S rRNA PCR assays as a rapid detection method for diagnose of sepsis in patients with suspected bacteremia.Methods:A cross-sectional study was conducted at Shahid Beheshti University Hospital in Kashan from November 2017 to December 2018. The blood samples of 265 patients with suspected bacteremia were studied by blood culture and 23S rRNA PCR techniques. The results were analyzed using SPSS version 16 and Chi-square test.Results:Eighty (30.2%) blood samples of 265 suspected patients, were identified as positive by PCR assays, whereas 27 (10.2%) were identified as positive by the blood culture technique. The statistical analysis showed a significant association between the results of PCR assays and blood culture and factors such as prior antibiotic use and underlying diseases (P˂0.05). Also a significant correlation was observed between laboratory and clinical criteria and the results of both PCR assays and blood culture (P˂ 0.05).Conclusion:The 23S rRNA PCR method is a rapid and sensitive technique specially for diagnosing sepsis among patients in whom bacteremia is difficult to diagnose with culture method including neonates and patients who have taken antibiotics before microbial culture.
Collapse
|
32
|
Dixon M, Stefil M, McDonald M, Bjerklund-Johansen TE, Naber K, Wagenlehner F, Mouraviev V. Metagenomics in diagnosis and improved targeted treatment of UTI. World J Urol 2019; 38:35-43. [PMID: 30944967 DOI: 10.1007/s00345-019-02731-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/13/2019] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION The genomic revolution has transformed our understanding of urinary tract infection. There has been a paradigm shift from the dogmatic statement that urine is sterile in healthy people, as we are becoming forever more familiar with the knowledge that bacterial communities exist within the urinary tracts of healthy people. Metagenomics can investigate the broad populations of microbial communities, analysing all the DNA present within a sample, providing comprehensive data regarding the state of the microenvironment of a patient's urinary tract. This permits medical practitioners to more accurately target organisms that may be responsible for disease-a form of 'precision medicine'. METHODS AND RESULTS This paper is derived from an extensive review and analysis of the available literature on the topic of metagenomic sequencing in urological science, using the PubMed search engine. The search yielded a total of 406 results, and manual selection of appropriate papers was subsequently performed. Only one randomised clinical trial comparing metagenomic sequencing to standard culture and sensitivity in the arena of urinary tract infection was found. CONCLUSION Out of this process, this paper explores the limitations of traditional methods of culture and sensitivity and delves into the recent studies involving new high-throughput genomic technologies in urological basic and clinical research, demonstrating the advances made in the urinary microbiome in its entire spectrum of pathogens and the first attempts of clinical implementation in several areas of urology. Finally, this paper discusses the challenges that must be overcome for such technology to become widely used in clinical practice.
Collapse
Affiliation(s)
- Matthew Dixon
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Maria Stefil
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Michael McDonald
- Florida Hospital Celebration Health, Celebration, FL, USA
- University of Central Florida, Orlando, FL, USA
| | | | - Kurt Naber
- Department of Urology, Technical University of Munich, Munich, Germany
| | - Florian Wagenlehner
- Department of Urology, Pediatric Urology and Andrology, Justus-Liebig University, Giessen, Germany
| | - Vladimir Mouraviev
- Florida Hospital Celebration Health, Celebration, FL, USA.
- University of Central Florida, Orlando, FL, USA.
- Central Florida Cancer Institute, Davenport, FL, USA.
| |
Collapse
|
33
|
Zboromyrska Y, Cillóniz C, Cobos-Trigueros N, Almela M, Hurtado JC, Vergara A, Mata C, Soriano A, Mensa J, Marco F, Vila J. Evaluation of the Magicplex™ Sepsis Real-Time Test for the Rapid Diagnosis of Bloodstream Infections in Adults. Front Cell Infect Microbiol 2019; 9:56. [PMID: 30931259 PMCID: PMC6423426 DOI: 10.3389/fcimb.2019.00056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a serious health condition worldwide, affecting more than 30 million people globally each year. Blood culture (BC) is generally used to diagnose sepsis because of the low quantity of microbes occurring in the blood during such infections. However, ~50% of bloodstream infections (BSI) give negative BC, this figure being higher for sepsis, which delays the start of appropriate antimicrobial therapy. This prospective study evaluated a multiplex real-time polymerase chain reaction, the MagicplexTM Sepsis test (MP), for the detection of pathogens from whole blood, comparing it to routine BC. We analyzed 809 blood samples from 636 adult patients, with 132/809 (16.3%) of the samples positive for one or more relevant microorganism according to BC and/or MP. The sensitivity and specificity of MP were 29 and 95%, respectively, while the level of agreement between BC and MP was 87%. The rate of contaminated samples was higher for BC (10%) than MP (4.8%) (P < 0.001). Patients with only MP-positive samples were more likely to be on antimicrobial treatment (47%) than those with only BC-positive samples (18%) (P = 0.002). In summary, the MP test could be useful in some clinical setting, such as among patients on antibiotic therapy. Nevertheless, a low sensitivity demonstrated impairs its use as a part of a routine diagnostic algorithm.
Collapse
Affiliation(s)
- Yuliya Zboromyrska
- The Consortium of the Intercomarcal Laboratory of the Alt Penedès, Department of Microbiology, Vilafranca del Penedès, Spain
| | - Catia Cillóniz
- Department of Pneumology, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Networked Biomedical Research Center for Respiratory Diseases (CIBERES), University of Barcelona, Barcelona, Spain
| | - Nazaret Cobos-Trigueros
- Department of Infectious Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Manel Almela
- The Consortium of the Intercomarcal Laboratory of the Alt Penedès, Department of Microbiology, Vilafranca del Penedès, Spain
| | - Juan Carlos Hurtado
- Department of Microbiology, ISGlobal, Barcelona Centre for International Health Research, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Andrea Vergara
- Department of Microbiology, ISGlobal, Barcelona Centre for International Health Research, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Caterina Mata
- Sample Preparation Team, Centre Nacional d'Anàlisi Genòmica, Parc Científic de Barcelona – Torre I, Barcelona, Spain
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Josep Mensa
- Department of Infectious Diseases, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Francesc Marco
- Department of Microbiology, ISGlobal, Barcelona Centre for International Health Research, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Jordi Vila
- Department of Microbiology, ISGlobal, Barcelona Centre for International Health Research, Hospital Clinic, University of Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Minasyan H. Sepsis: mechanisms of bacterial injury to the patient. Scand J Trauma Resusc Emerg Med 2019; 27:19. [PMID: 30764843 PMCID: PMC6376788 DOI: 10.1186/s13049-019-0596-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022] Open
Abstract
In bacteremia the majority of bacterial species are killed by oxidation on the surface of erythrocytes and digested by local phagocytes in the liver and the spleen. Sepsis-causing bacteria overcome this mechanism of human innate immunity by versatile respiration, production of antioxidant enzymes, hemolysins, exo- and endotoxins, exopolymers and other factors that suppress host defense and provide bacterial survival. Entering the bloodstream in different forms (planktonic, encapsulated, L-form, biofilm fragments), they cause different types of sepsis (fulminant, acute, subacute, chronic, etc.). Sepsis treatment includes antibacterial therapy, support of host vital functions and restore of homeostasis. A bacterium killing is only one of numerous aspects of antibacterial therapy. The latter should inhibit the production of bacterial antioxidant enzymes and hemolysins, neutralize bacterial toxins, modulate bacterial respiration, increase host tolerance to bacterial products, facilitate host bactericidal mechanism and disperse bacterial capsule and biofilm.
Collapse
|
35
|
Al Jalbout N, Troncoso R, Evans JD, Rothman RE, Hinson JS. Biomarkers and Molecular Diagnostics for Early Detection and Targeted Management of Sepsis and Septic Shock in the Emergency Department. J Appl Lab Med 2018; 3:724-729. [PMID: 31639740 DOI: 10.1373/jalm.2018.027425] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Nour Al Jalbout
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ruben Troncoso
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jared D Evans
- Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD
| | - Richard E Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jeremiah S Hinson
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD;
| |
Collapse
|
36
|
Pilecky M, Schildberger A, Orth-Höller D, Weber V. Pathogen enrichment from human whole blood for the diagnosis of bloodstream infection: Prospects and limitations. Diagn Microbiol Infect Dis 2018; 94:7-14. [PMID: 30579657 DOI: 10.1016/j.diagmicrobio.2018.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
Blood culture represents the current reference method for the detection of bacteria or fungi in the circulation. To accelerate pathogen identification, molecular diagnostic methods, mainly based on polymerase chain reaction (PCR), have been introduced to ensure early and targeted antibiotic treatment of patients suffering from bloodstream infection. Still, these approaches suffer from a lack of sensitivity and from inhibition of PCR in a number of clinical samples, leading to false negative results. To overcome these limitations, various approaches aiming at the enrichment of pathogens from larger blood volumes prior to the extraction of pathogen DNA, thereby also depleting factors interfering with PCR, have been developed. Here, we provide an overview of current systems for diagnosing bloodstream infection, with a focus on approaches for pre-analytical pathogen enrichment, and highlight emerging applications of pathogen depletion for therapeutic purposes as a potential adjunctive treatment of sepsis patients.
Collapse
Affiliation(s)
- Matthias Pilecky
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria.
| | - Anita Schildberger
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria.
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, A-6020 Innsbruck, Austria.
| | - Viktoria Weber
- Center for Biomedical Technology, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria; Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Department for Biomedical Research, Danube University Krems, Dr.-Karl-Dorrek-Strasse 30, 3500 Krems, Austria.
| |
Collapse
|
37
|
Substantial diagnostic impact of blood culture independent molecular methods in bloodstream infections: Superior performance of PCR/ESI-MS. Sci Rep 2018; 8:16024. [PMID: 30375435 PMCID: PMC6207717 DOI: 10.1038/s41598-018-34298-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/28/2018] [Indexed: 02/06/2023] Open
Abstract
This study analyzed the performance of different molecular technologies along with blood culture (BC) in the diagnosis of bloodstream infections (BSI) in patients from internal medicine wards - including intensive care units (ICUs) - and the emergency room. Patients with systemic inflammatory response syndrome were prospectively included. BCs and EDTA whole blood were obtained simultaneously. The latter was analyzed by PCR combined with electrospray ionization mass spectrometry (PCR/ESI-MS; IRIDICA BAC BSI assay, Abbott) and by SeptiFast (Roche). Cases were classified as BSI according to adapted European Centre for Disease Prevention and Control criteria. Out of 462 analyzed episodes, 193 with valid test results fulfilled the inclusion criteria and were further evaluated. Sixty-nine (35.8%) were classified as BSI. PCR/ESI-MS showed a significantly better overall performance than BC (p = 0.004) or SeptiFast (p = 0.034). Only in patients from the ICU the performance of SeptiFast was comparable to that of PCR/ESI-MS. Mainly due to the negative effect of antimicrobial pre-treatment on BC results, the cumulative performance of each of the molecular tests with BC was significantly higher than that of BC alone (p < 0.001). SeptiFast and in particular the broad-range pathogen detection system PCR/ESI-MS proved to be an essential addition to BC-based diagnostics in BSI.
Collapse
|
38
|
Tkadlec J, Peckova M, Sramkova L, Rohn V, Jahoda D, Raszka D, Berousek J, Mosna F, Vymazal T, Kvapil M, Drevinek P. The use of broad-range bacterial PCR in the diagnosis of infectious diseases: a prospective cohort study. Clin Microbiol Infect 2018; 25:747-752. [PMID: 30321604 DOI: 10.1016/j.cmi.2018.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/25/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Broad-range PCR has the potential to detect virtually any bacterial species via amplification and nucleotide sequencing of a DNA region common to all bacteria. We aimed to evaluate its usefulness and clinical relevance when applied to a wide variety of primary sterile materials. METHODS A prospective study including 1370 samples (75 heart valves, 151 joint tissue samples, 230 joint aspirates, 848 whole blood samples and 66 culture-negative cerebrospinal fluid samples) were studied by using a commercial PCR system for detecting 16S rDNA (Molzym). The PCR results were compared with culture and were considered to provide added diagnostic value only if the PCR approach revealed new pathogens that were missed by culture. RESULTS The added value of PCR was evident in 173 of 555 PCR-positive samples (0.126; 0.109-0.144 (proportion from all tested samples; 95% confidence interval)), most frequently in examinations of heart valves (0.56; 0.448-0.672) and joint tissue samples (0.219; 0.153-0.284). In contrast, the lowest rate of PCR with added value was noted for blood samples, regardless of the patient cohort they had been drawn from (nononcologic patients from intensive care: 0.065; 0.043-0.087, haematooncologic children: 0.048; 0.027-0.070). Moreover, PCR missed up to 7.1% of blood culture findings (0.071; 0.048-0.095) regarded as clinically relevant, which was the second highest failure rate after joint tissue samples (0.099; 0.052-0.147). CONCLUSIONS Broad-range PCR substantially increases detection rate of pathogens, especially from heart valves and joint samples. However, a concurrent risk of false-negative PCR results justifies the need for parallel culture.
Collapse
Affiliation(s)
- J Tkadlec
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - M Peckova
- Institute of Applied Mathematics and Information Technologies, Faculty of Science, Charles University, Czech Republic
| | - L Sramkova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - V Rohn
- Department of Cardiovascular Surgery, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - D Jahoda
- 1st Orthopaedic Department, 1st Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - D Raszka
- 1st Orthopaedic Department, 1st Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - J Berousek
- Department of Anaesthesiology and ICM, Motol University Hospital, Prague, Czech Republic
| | - F Mosna
- Department of Anaesthesiology and ICM, Motol University Hospital, Prague, Czech Republic
| | - T Vymazal
- Department of Anaesthesiology and ICM, Motol University Hospital, Prague, Czech Republic
| | - M Kvapil
- Department of Internal Medicine, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - P Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic.
| |
Collapse
|
39
|
Rutanga JP, Van Puyvelde S, Heroes AS, Muvunyi CM, Jacobs J, Deborggraeve S. 16S metagenomics for diagnosis of bloodstream infections: opportunities and pitfalls. Expert Rev Mol Diagn 2018; 18:749-759. [PMID: 29985081 DOI: 10.1080/14737159.2018.1498786] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Bacterial bloodstream infections (BSI) form a large public health threat worldwide. Current routine diagnosis is based on blood culture (BC) but this technique suffers from limited sensitivity. Molecular diagnostic tools have been developed for identification of bacteria in the blood of BSI patients. 16S metagenomics is an open-ended technique that can detect simultaneously all bacteria in a given sample based on PCR amplification of the 16S ribosomal RNA gene (rDNA) followed by sequencing of the PCR amplicons and taxonomic labeling of the sequence reads at genus or species level. Areas covered: Here we review the studies that have used 16S metagenomics for the identification of bacteria in human blood samples. We also discuss the potential added value of 16S metagenomics in the diagnosis of BSI, challenges as well as future directions for implementation in clinical settings. Expert commentary: 16S metagenomics has the potential to complement conventional BC; however, the technique currently suffers from several technical limitations jeopardizing implementation in routine clinical microbiology laboratories. Further studies are required to assess the cost-efficiency and clinical impact of 16S metagenomics in comparison to BC which remains the gold standard diagnostic method for BSI.
Collapse
Affiliation(s)
- Jean Pierre Rutanga
- a College of Science and Technology , University of Rwanda , Kigali , Rwanda.,b Department of Biomedical Sciences , Institute of Tropical Medicine , Antwerp , Belgium.,d Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium
| | - Sandra Van Puyvelde
- b Department of Biomedical Sciences , Institute of Tropical Medicine , Antwerp , Belgium.,c Wellcome Trust Sanger Institute , Hinxton , United Kingdom
| | - Anne-Sophie Heroes
- d Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium.,e Department of Clinical Sciences , Institute of Tropical Medicine , Antwerp , Belgium
| | - Claude Mambo Muvunyi
- f College of Medicine and Health Sciences , University of Rwanda , Kigali , Rwanda
| | - Jan Jacobs
- d Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium.,e Department of Clinical Sciences , Institute of Tropical Medicine , Antwerp , Belgium
| | - Stijn Deborggraeve
- b Department of Biomedical Sciences , Institute of Tropical Medicine , Antwerp , Belgium
| |
Collapse
|
40
|
Peker N, Couto N, Sinha B, Rossen JW. Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches. Clin Microbiol Infect 2018; 24:944-955. [PMID: 29787889 DOI: 10.1016/j.cmi.2018.05.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/02/2018] [Accepted: 05/12/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bloodstream infections are a major cause of death with increasing incidence and severity. Blood cultures are still the reference standard for microbiological diagnosis, but are rather slow. Molecular methods can be used as add-on complementary assays. They can be useful to speed up microbial identification and to predict antimicrobial susceptibility, applied to direct blood samples or positive blood cultures. AIM To review recent developments in molecular-based diagnostic platforms used for the identification of bloodstream infections, with a focus on assays performed directly on blood samples and positive blood cultures. SOURCES Peer reviewed articles, conference abstracts, and manufacturers' websites. CONTENT We give an update on recent developments of molecular methods in diagnosing BSIs. We first describe the currently available molecular methods to be used for positive blood cultures including: a) in situ hybridization-based methods; b) DNA-microarray-based hybridization technology; c) nucleic acid amplification-based methods; and d) combined methods. Subsequently, molecular methods applied directly to whole blood samples are discussed, including the use of nucleic acid amplification-based methods, T2 magnetic resonance-based methods, and metagenomics for diagnosing BSIs. IMPLICATIONS Advances in molecular-based methods complementary to conventional blood culture diagnostics and antimicrobial stewardship programmes may optimize infection management by allowing rapid identification of pathogens and relevant antimicrobial resistance genes. Rapid diagnosis of the causing microorganism and relevant resistance determinants is important for early administration and modification of appropriate antimicrobial therapy. Ultimately, this may lead to improved quality and cost-effectiveness of health care, as well as reduced antimicrobial resistance selection.
Collapse
Affiliation(s)
- N Peker
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - N Couto
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - B Sinha
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands
| | - J W Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, The Netherlands.
| |
Collapse
|
41
|
Sinha M, Jupe J, Mack H, Coleman TP, Lawrence SM, Fraley SI. Emerging Technologies for Molecular Diagnosis of Sepsis. Clin Microbiol Rev 2018; 31:e00089-17. [PMID: 29490932 PMCID: PMC5967692 DOI: 10.1128/cmr.00089-17] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rapid and accurate profiling of infection-causing pathogens remains a significant challenge in modern health care. Despite advances in molecular diagnostic techniques, blood culture analysis remains the gold standard for diagnosing sepsis. However, this method is too slow and cumbersome to significantly influence the initial management of patients. The swift initiation of precise and targeted antibiotic therapies depends on the ability of a sepsis diagnostic test to capture clinically relevant organisms along with antimicrobial resistance within 1 to 3 h. The administration of appropriate, narrow-spectrum antibiotics demands that such a test be extremely sensitive with a high negative predictive value. In addition, it should utilize small sample volumes and detect polymicrobial infections and contaminants. All of this must be accomplished with a platform that is easily integrated into the clinical workflow. In this review, we outline the limitations of routine blood culture testing and discuss how emerging sepsis technologies are converging on the characteristics of the ideal sepsis diagnostic test. We include seven molecular technologies that have been validated on clinical blood specimens or mock samples using human blood. In addition, we discuss advances in machine learning technologies that use electronic medical record data to provide contextual evaluation support for clinical decision-making.
Collapse
Affiliation(s)
- Mridu Sinha
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
| | - Julietta Jupe
- Donald Danforth Plant Science Center, Saint Louis, Missouri, USA
| | - Hannah Mack
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
| | - Todd P Coleman
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, San Diego, California, USA
| | - Shelley M Lawrence
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, University of California, San Diego, San Diego, California, USA
- Rady Children's Hospital of San Diego, San Diego, California, USA
- Clinical Translational Research Institute, University of California, San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, San Diego, California, USA
| | - Stephanie I Fraley
- Bioengineering Department, University of California, San Diego, San Diego, California, USA
- Clinical Translational Research Institute, University of California, San Diego, San Diego, California, USA
- Center for Microbiome Innovation, University of California, San Diego, San Diego, California, USA
| |
Collapse
|
42
|
Microfluidic-Based Bacteria Isolation from Whole Blood for Diagnostics of Blood Stream Infection. Methods Mol Biol 2018; 1547:175-186. [PMID: 28044296 DOI: 10.1007/978-1-4939-6734-6_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Bacterial blood stream infection (BSI) potentially leads to life-threatening clinical conditions and medical emergencies such as severe sepsis, septic shock, and multi organ failure syndrome. Blood culturing is currently the gold standard for the identification of microorganisms and, although it has been automated over the decade, the process still requires 24-72 h to complete. This long turnaround time, especially for the identification of antimicrobial resistance, is driving the development of rapid molecular diagnostic methods. Rapid detection of microbial pathogens in blood related to bloodstream infections will allow the clinician to decide on or adjust the antimicrobial therapy potentially reducing the morbidity, mortality, and economic burden associated with BSI. For molecular-based methods, there is a lot to gain from an improved and straightforward method for isolation of bacteria from whole blood for downstream processing.We describe a microfluidic-based sample-preparation approach that rapidly and selectively lyses all blood cells while it extracts intact bacteria for downstream analysis. Whole blood is exposed to a mild detergent, which lyses most blood cells, and then to osmotic shock using deionized water, which eliminates the remaining white blood cells. The recovered bacteria are 100 % viable, which opens up possibilities for performing drug susceptibility tests and for nucleic-acid-based molecular identification.
Collapse
|
43
|
Stevenson M, Pandor A, Martyn-St James M, Rafia R, Uttley L, Stevens J, Sanderson J, Wong R, Perkins GD, McMullan R, Dark P. Sepsis: the LightCycler SeptiFast Test MGRADE®, SepsiTest™ and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi - a systematic review and economic evaluation. Health Technol Assess 2018; 20:1-246. [PMID: 27355222 DOI: 10.3310/hta20460] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sepsis can lead to multiple organ failure and death. Timely and appropriate treatment can reduce in-hospital mortality and morbidity. OBJECTIVES To determine the clinical effectiveness and cost-effectiveness of three tests [LightCycler SeptiFast Test MGRADE(®) (Roche Diagnostics, Risch-Rotkreuz, Switzerland); SepsiTest(TM) (Molzym Molecular Diagnostics, Bremen, Germany); and the IRIDICA BAC BSI assay (Abbott Diagnostics, Lake Forest, IL, USA)] for the rapid identification of bloodstream bacteria and fungi in patients with suspected sepsis compared with standard practice (blood culture with or without matrix-absorbed laser desorption/ionisation time-of-flight mass spectrometry). DATA SOURCES Thirteen electronic databases (including MEDLINE, EMBASE and The Cochrane Library) were searched from January 2006 to May 2015 and supplemented by hand-searching relevant articles. REVIEW METHODS A systematic review and meta-analysis of effectiveness studies were conducted. A review of published economic analyses was undertaken and a de novo health economic model was constructed. A decision tree was used to estimate the costs and quality-adjusted life-years (QALYs) associated with each test; all other parameters were estimated from published sources. The model was populated with evidence from the systematic review or individual studies, if this was considered more appropriate (base case 1). In a secondary analysis, estimates (based on experience and opinion) from seven clinicians regarding the benefits of earlier test results were sought (base case 2). A NHS and Personal Social Services perspective was taken, and costs and benefits were discounted at 3.5% per annum. Scenario analyses were used to assess uncertainty. RESULTS For the review of diagnostic test accuracy, 62 studies of varying methodological quality were included. A meta-analysis of 54 studies comparing SeptiFast with blood culture found that SeptiFast had an estimated summary specificity of 0.86 [95% credible interval (CrI) 0.84 to 0.89] and sensitivity of 0.65 (95% CrI 0.60 to 0.71). Four studies comparing SepsiTest with blood culture found that SepsiTest had an estimated summary specificity of 0.86 (95% CrI 0.78 to 0.92) and sensitivity of 0.48 (95% CrI 0.21 to 0.74), and four studies comparing IRIDICA with blood culture found that IRIDICA had an estimated summary specificity of 0.84 (95% CrI 0.71 to 0.92) and sensitivity of 0.81 (95% CrI 0.69 to 0.90). Owing to the deficiencies in study quality for all interventions, diagnostic accuracy data should be treated with caution. No randomised clinical trial evidence was identified that indicated that any of the tests significantly improved key patient outcomes, such as mortality or duration in an intensive care unit or hospital. Base case 1 estimated that none of the three tests provided a benefit to patients compared with standard practice and thus all tests were dominated. In contrast, in base case 2 it was estimated that all cost per QALY-gained values were below £20,000; the IRIDICA BAC BSI assay had the highest estimated incremental net benefit, but results from base case 2 should be treated with caution as these are not evidence based. LIMITATIONS Robust data to accurately assess the clinical effectiveness and cost-effectiveness of the interventions are currently unavailable. CONCLUSIONS The clinical effectiveness and cost-effectiveness of the interventions cannot be reliably determined with the current evidence base. Appropriate studies, which allow information from the tests to be implemented in clinical practice, are required. STUDY REGISTRATION This study is registered as PROSPERO CRD42015016724. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Matt Stevenson
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Abdullah Pandor
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | | | - Rachid Rafia
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Lesley Uttley
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - John Stevens
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Jean Sanderson
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Ruth Wong
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Gavin D Perkins
- Warwick Clinical Trials Unit, University of Warwick, Coventry, UK.,Heart of England NHS Foundation Trust, Coventry, UK
| | - Ronan McMullan
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK.,Belfast Health and Social Care Trust, The Royal Hospitals, Belfast, UK
| | - Paul Dark
- Institute of Inflammation and Repair, University of Manchester, Manchester, UK.,Salford Royal NHS Foundation Trust, Salford, UK
| |
Collapse
|
44
|
Abstract
In this study, we have identified a bacterium that can inhibit the growth of Staphylococcus aureus, and further analyzed its antibacterial activity and other biological characteristics and laid the
foundation for its future application. Through isolation and culture of the unknown bacteria, the culture characteristics, morphology observation, biochemical test, preliminary antibacterial test, 16S rRNA PCR
amplification, sequence analysis, and homology analysis were performed. It was found that the bacteria are Gram positive spore chain Bacillus. The bacteria could only ferment glucose for acid production,
but could not utilize lactose and maltose. The VP test for this bacteria was positive, while indole and methyl red tests were negative. Further analysis showed that these bacteria shared a homology up to 99.4% with
Bacillus subtilis DQ198162.1. Thus, this newly identified bacterium was classified as Bacillus subtilis. Importantly, the crude bacteriocin of this Bacillus subtilis
could inhibit the growth of Staphylococcus aureus, Escherichia coli, Enterococcus and Salmonella, which implies its potential usage in the future.
Collapse
Affiliation(s)
- Zhenxiang Lu
- College of Animal Science, Anhui Sciences and Technology University, Fengyang, Anhui 233100, China
| | - Weina Guo
- College of Animal Science, Anhui Sciences and Technology University, Fengyang, Anhui 233100, China
| | - Chang Liu
- College of Animal Science, Anhui Sciences and Technology University, Fengyang, Anhui 233100, China
| |
Collapse
|
45
|
Tat Trung N, Van Tong H, Lien TT, Van Son T, Thanh Huyen TT, Quyen DT, Hoan PQ, Meyer CG, Song LH. Clinical utility of an optimised multiplex real-time PCR assay for the identification of pathogens causing sepsis in Vietnamese patients. Int J Infect Dis 2017; 67:122-128. [PMID: 29253706 DOI: 10.1016/j.ijid.2017.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION For the identification of bacterial pathogens, blood culture is still the gold standard diagnostic method. However, several disadvantages apply to blood cultures, such as time and rather large volumes of blood sample required. We have previously established an optimised multiplex real-time PCR method in order to diagnose bloodstream infections. MATERIAL AND METHODS In the present study, we evaluated the diagnostic performance of this optimised multiplex RT-PCR in blood samples collected from 110 septicaemia patients enrolled at the 108 Military Central Hospital, Hanoi, Vietnam. RESULTS Positive results were obtained by blood culture, the Light Cylcler-based SeptiFast® assay and our multiplex RT-PCR in 35 (32%), 31 (28%), and 31 (28%) samples, respectively. Combined use of the three methods confirmed 50 (45.5%) positive cases of bloodstream infection, a rate significantly higher compared to the exclusive use of one of the three methods (P=0.052, 0.012 and 0.012, respectively). The sensitivity, specificity and area under the curve (AUC) of our assay were higher compared to that of the SeptiFast® assay (77.4%, 86.1% and 0.8 vs. 67.7%, 82.3% and 0.73, respectively). Combined use of blood culture and multiplex RT-PCR assay showed a superior diagnostic performance, as the sensitivity, specificity, and AUC reached 83.3%, 100%, and 0.95, respectively. The concordance between blood culture and the multiplex RT-PCR assay was highest for Klebsiella pneumonia (100%), followed by Streptococcus spp. (77.8%), Escherichia coli (66.7%), Staphylococcus spp. (50%) and Salmonella spp. (50%). In addition, the use of the newly established multiplex RT-PCR assay increased the spectrum of identifiable agents (Acintobacter baumannii, 1/32; Proteus mirabilis, 1/32). CONCLUSION The combination of culture and the multiplex RT-PCR assay provided an excellent diagnostic accomplishment and significantly supported the identification of causative pathogens in clinical samples obtained from septic patients.
Collapse
Affiliation(s)
- Ngo Tat Trung
- Department of Molecular Biology, 108 Military Central Hospital, No 1, Tran Hung Dao Street, Hai Ba Trung Dist, Hanoi, Vietnam; Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam.
| | - Hoang Van Tong
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam; Biomedical and Pharmaceutical Applied Research Center, Vietnam Military Medical University, Hanoi, Vietnam.
| | - Tran Thi Lien
- Faculty of Infectious diseases, Hai Phong Medical University, 72A Nguyen Binh Khiem, Ngo Quyen District, Hai Phong, Vietnam.
| | - Trinh Van Son
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam; Institute of Clinical Infectious Diseases, 108 Military Central Hospital, No 1, Tran Hung Dao Street, Hai Ba Trung Dist, Hanoi, Vietnam.
| | - Tran Thi Thanh Huyen
- Department of Molecular Biology, 108 Military Central Hospital, No 1, Tran Hung Dao Street, Hai Ba Trung Dist, Hanoi, Vietnam.
| | - Dao Thanh Quyen
- Department of Molecular Biology, 108 Military Central Hospital, No 1, Tran Hung Dao Street, Hai Ba Trung Dist, Hanoi, Vietnam.
| | - Phan Quoc Hoan
- Department of Molecular Biology, 108 Military Central Hospital, No 1, Tran Hung Dao Street, Hai Ba Trung Dist, Hanoi, Vietnam.
| | - Christian G Meyer
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam; Institute of Tropical Medicine, Eberhard Karls University Tübingen, Wilhelmstr. 27, 72074, Tübingen, Germany; Faculty of Medicine, Duy Tan University, Da Nang, Vietnam.
| | - Le Huu Song
- Vietnamese - German Centre for Medical Research (VG-CARE), Hanoi, Vietnam; Institute of Clinical Infectious Diseases, 108 Military Central Hospital, No 1, Tran Hung Dao Street, Hai Ba Trung Dist, Hanoi, Vietnam.
| |
Collapse
|
46
|
Florio W, Morici P, Ghelardi E, Barnini S, Lupetti A. Recent advances in the microbiological diagnosis of bloodstream infections. Crit Rev Microbiol 2017; 44:351-370. [PMID: 29185372 DOI: 10.1080/1040841x.2017.1407745] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rapid identification (ID) and antimicrobial susceptibility testing (AST) of the causative agent(s) of bloodstream infections (BSIs) are essential for the prompt administration of an effective antimicrobial therapy, which can result in clinical and financial benefits. Immediately after blood sampling, empirical antimicrobial therapy, chosen on clinical and epidemiological data, is administered. When ID and AST results are available, the clinician decides whether to continue or streamline the antimicrobial therapy, based on the results of the in vitro antimicrobial susceptibility profile of the pathogen. The aim of the present study is to review and discuss the experimental data, advantages, and drawbacks of recently developed technological advances of culture-based and molecular methods for the diagnosis of BSI (including mass spectrometry, magnetic resonance, PCR-based methods, direct inoculation methods, and peptide nucleic acid fluorescence in situ hybridization), the understanding of which could provide new perspectives to improve and fasten the diagnosis and treatment of septic patients. Although blood culture remains the gold standard to diagnose BSIs, newly developed methods can significantly shorten the turnaround time of reliable microbial ID and AST, thus substantially improving the diagnostic yield.
Collapse
Affiliation(s)
- Walter Florio
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Paola Morici
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Emilia Ghelardi
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| | - Simona Barnini
- b U.O. Microbiologia Universitaria Azienda Ospedaliero-Universitaria Pisana , Pisa , Italy
| | - Antonella Lupetti
- a Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia , Università di Pisa , Pisa , Italy
| |
Collapse
|
47
|
Rogina P, Stubljar D, Lejko Zupanc T, Ihan A, Skvarc M. Neutrophil CD64 molecule expression can predict bloodstream infection in septic shock patients. Clin Chem Lab Med 2017; 55:e130-e132. [PMID: 27816955 DOI: 10.1515/cclm-2016-0776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/26/2016] [Indexed: 11/15/2022]
Affiliation(s)
| | - David Stubljar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana
| | - Tatjana Lejko Zupanc
- Department of Infectious Diseases and Febrile Illnesses, University Medical Centre Ljubljana, Ljubljana
| | - Alojz Ihan
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana
| | - Miha Skvarc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana
| |
Collapse
|
48
|
Nakayama M. Significance of pathological examination of the placenta, with a focus on intrauterine infection and fetal growth restriction. J Obstet Gynaecol Res 2017; 43:1522-1535. [DOI: 10.1111/jog.13430] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/14/2017] [Accepted: 05/21/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Masahiro Nakayama
- Department of Pathology; Osaka Medical Center and Research Institute for Maternal and Child Health; Osaka Japan
| |
Collapse
|
49
|
Abstract
Bacteremia and sepsis are conditions associated with high mortality and are of great impact to health care operations. Among the top causes of mortality in the United States, these conditions cause over 600 fatalities each day. Empiric, broad-spectrum treatment is a common but often a costly approach that may fail to effectively target the correct microbe, may inadvertently harm patients via antimicrobial toxicity or downstream antimicrobial resistance. To meet the diagnostic challenges of bacteremia and sepsis, laboratories must understand the complexity of diagnosing and treating septic patients, in order to focus on creating algorithms that can help direct a more targeted approach to antimicrobial therapy and synergize with existing clinical practices defined in new Surviving Sepsis Guidelines. Significant advances have been made in improving blood culture media; as yet no molecular or antigen-based method has proven superior for the detection of bacteremia in terms of limit of detection. Several methods for rapid molecular identification of pathogens from blood cultures bottles are available and many more are on the diagnostic horizon. Ultimately, early intervention by molecular detection of bacteria and fungi directly from whole blood could provide the most patient benefit and contribute to tailored antibiotic coverage of the patient early on in the course of the disease. Although blood cultures remain as the best means of diagnosing bacteremia and candidemia, complementary testing with antigen tests, microbiologic investigations from other body sites, and histopathology can often aid in the diagnosis of disseminated disease, and application of emerging nucleic acid test methods and other new technology may greatly impact our ability to bacteremic and septic patients, particularly those who are immunocompromised.
Collapse
|
50
|
Marco F. Molecular methods for septicemia diagnosis. Enferm Infecc Microbiol Clin 2017; 35:586-592. [PMID: 28427796 DOI: 10.1016/j.eimc.2017.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
Abstract
Septicemia remains a major cause of hospital mortality. Blood culture remains the best approach to identify the etiological microorganisms when a bloodstream infection is suspected but it takes long time because it relies on bacterial or fungal growth. The introduction in clinical microbiology laboratories of the matrix-assisted laser desorption ionization time-of-flight mass spectrometry technology, DNA hybridization, microarrays or rapid PCR-based test significantly reduce the time to results. Tests for direct detection in whole blood samples are highly desirable because of their potential to identify bloodstream pathogens without waiting for blood cultures to become positive. Nonetheless, limitations of current molecular diagnostic methods are substantial. This article reviews these new molecular approaches (LightCycler SeptiFast, Magicplex sepsis real time, Septitest, VYOO, PCR/ESI-MS analysis, T2Candida).
Collapse
Affiliation(s)
- Francesc Marco
- Servicio de Microbiología, Centro de Diagnóstico Biomédico, Hospital Clínic, Barcelona, España; ISGlobal, Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, España.
| |
Collapse
|