1
|
Bussini L, Bartoletti M, Bassetti M, Cortegiani A, De Pascale G, De Rosa FG, Falcone M, Giannella M, Girardis M, Grossi P, Mikulska M, Navalesi P, Pea F, Sanguinetti M, Tascini C, Viaggi B, Viale P. Role of liposomal amphotericin B in intensive care unit: an expert opinion paper. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2025; 5:23. [PMID: 40301956 PMCID: PMC12042420 DOI: 10.1186/s44158-025-00236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/16/2025] [Indexed: 05/01/2025]
Abstract
INTRODUCTION Invasive fungal infections (IFI) are frequent in patients admitted to the intensive care unit (ICU). The use of first-line antifungals like triazoles or echinocandins may be limited by the global spread of multi-drug resistance species, drug-drug interactions, low organ penetration, and some safety concerns in case of multi-organ failure. Liposomal amphotericin B (L-AmB) is a polyene drug with a broad activity against mold and yeast and an acceptable safety profile. To outline the role of L-AmB in the treatment of IFI in critically ill patients, a panel of experts was invited to draw up an expert opinion paper on the appropriate place in therapy of L-AmB in different clinical scenarios of patients admitted to ICU. METHODS A multidisciplinary group of 16 specialists in infectious disease, microbiology, pharmacology, and intensive care elaborated an expert opinion document through a multi-step approach: (1) the scientific panel defined the items and wrote the statements on the management of IFI in ICU, (2) a survey was submitted to an external panel to express agreement or disagreement on the statements, and (3) the panel reviewed the survey and implemented the final document. RESULTS The final document included 35 statements that focused on epidemiology and microbiological rationale of the use of systemic L-AmB in critically ill patients and its potential role in specific clinical scenarios in the ICU. CONCLUSION Systemic L-AmB may represent an appropriate therapeutic choice for IFI in ICU patients with different underlying conditions, especially when the use of first-line agents is undermined. This expert opinion paper may provide a useful guide for clinicians.
Collapse
Affiliation(s)
- Linda Bussini
- Infectious Diseases Unit, Hospital Health Direction, IRCCS Humanitas Research Hospital, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072, Milan, Italy
| | - Michele Bartoletti
- Infectious Diseases Unit, Hospital Health Direction, IRCCS Humanitas Research Hospital, 20089, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072, Milan, Italy
| | - Matteo Bassetti
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical Surgical and Critical Care, University of Palermo, Palermo, Italy
- Department of Anesthesia, Intensive Care and Emergency Policlinico Paolo Giaccone, University of Palermo, Palermo, Italy
| | - Gennaro De Pascale
- Department of Emergency, Intensive Care Medicine and Anaesthesia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Marco Falcone
- Infectious Disease Unit, AOU Pisana PO Cisanello, University of Pisa, Pisa, Italy
| | - Maddalena Giannella
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Infectious Disease Unit, IRCCS Azienda Ospedaliero Universitaria Di Bologna, Bologna, Italy
| | - Massimo Girardis
- Anesthesia and Intensive Care Medicine, Policlinico Di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Grossi
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria - ASST-Sette Laghi, Varese, Italy
| | - Malgorzata Mikulska
- Division of Infectious Diseases, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Division of Infectious Diseases, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Paolo Navalesi
- Institute of Anesthesia and Intensive Care, University of Padua, Padua, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero Universitaria Di Bologna, Bologna, Italy
| | - Maurizio Sanguinetti
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy
| | - Carlo Tascini
- Infectious Diseases Clinic, Azienda Sanitaria Universitaria del Friuli Centrale (ASUFC), Udine, Italy
| | - Bruno Viaggi
- ICU Department, Careggi Hospital, Florence, Italy
| | - Pierluigi Viale
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
- Infectious Disease Unit, IRCCS Azienda Ospedaliero Universitaria Di Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Dagher H, Chaftari AM, Haddad A, Jiang Y, Shrestha J, Sherchan R, Lamie P, Makhoul J, Chaftari P, Hachem R, Raad I. Outcome Analysis of Breakthrough Invasive Aspergillosis on Anti-Mold Azole Prophylaxis and Treatment: 30-Year Experience in Hematologic Malignancy Patients. J Fungi (Basel) 2025; 11:160. [PMID: 39997454 PMCID: PMC11856094 DOI: 10.3390/jof11020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Anti-mold azoles have improved the outcomes of invasive aspergillosis (IA) when used therapeutically, but they are extensively used as prophylaxis. There are limited data regarding the outcomes of patients with hematologic malignancy who develop breakthrough IA on anti-mold azoles. We aimed to determine whether breakthrough IA on azole prophylaxis shows worse outcomes compared to no prophylaxis. METHODS We compared outcomes including therapy response and mortality between antifungal regimens in hematologic malignancy patients with IA between July 1993 and July 2023. RESULTS Compared to an amphotericin B-containing regimen (AMB), an anti-mold azole as the primary therapy was independently associated with successful response at the end of therapy (OR = 4.38, p < 0.0001), protective against 42-day IA-associated mortality (OR = 0.51, p = 0.024) or all cause mortality (OR = 0.35, p < 0.0001), and protective against 84-day mortality, both IA-associated (OR = 0.50, p = 0.01) and all-cause mortality (OR = 0.27, p < 0.0001). Azole prophylaxis was independently associated with higher IA-associated mortality at 42 days (OR = 1.91, p = 0.012) and 84 days (OR = 2.03, p = 0.004), compared to fluconazole or no prophylaxis. CONCLUSIONS Patients with breakthrough IA on anti-mold azole prophylaxis show a worse prognosis than those on other or no prophylaxis, possibly related to the emergence of azole resistance due to their widespread use as prophylaxis agents. On the other hand, anti-mold azole primary therapy is superior to AMB therapy in the treatment of IA.
Collapse
Affiliation(s)
| | - Anne-Marie Chaftari
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (H.D.); (A.H.); (Y.J.); (J.S.); (R.S.); (P.L.); (P.C.); (R.H.); (I.R.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Theobald S, Vesth T, Nybo JL, Frisvad JC, Kjærbølling I, Mondo S, LaButti K, Haridas S, Riley R, Kuo AA, Salamov AA, Pangilinan J, Lipzen A, Koriabine M, Yan M, Barry K, Clum A, Lyhne EK, Drula E, Wiebenga A, Müller A, Lubbers RJ, Kun RS, dos Santos Gomes AC, Mäkelä MR, Henrissat B, Simmons BA, Magnuson JK, Hoof JB, Mortensen UH, Dyer PS, Momany M, Larsen TO, Grigoriev IV, Baker SE, de Vries RP, Andersen MR. Comparative genomics of Aspergillus nidulans and section Nidulantes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100342. [PMID: 39897699 PMCID: PMC11787670 DOI: 10.1016/j.crmicr.2025.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Aspergillus nidulans is an important model organism for eukaryotic biology and the reference for the section Nidulantes in comparative studies. In this study, we de novo sequenced the genomes of 25 species of this section. Whole-genome phylogeny of 34 Aspergillus species and Penicillium chrysogenum clarifies the position of clades inside section Nidulantes. Comparative genomics reveals a high genetic diversity between species with 684 up to 2433 unique protein families. Furthermore, we categorized 2118 secondary metabolite gene clusters (SMGC) into 603 families across Aspergilli, with at least 40 % of the families shared between Nidulantes species. Genetic dereplication of SMGC and subsequent synteny analysis provides evidence for horizontal gene transfer of a SMGC. Proteins that have been investigated in A. nidulans as well as its SMGC families are generally present in the section Nidulantes, supporting its role as model organism. The set of genes encoding plant biomass-related CAZymes is highly conserved in section Nidulantes, while there is remarkable diversity of organization of MAT-loci both within and between the different clades. This study provides a deeper understanding of the genomic conservation and diversity of this section and supports the position of A. nidulans as a reference species for cell biology.
Collapse
Affiliation(s)
- Sebastian Theobald
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tammi Vesth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jane L. Nybo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jens C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Inge Kjærbølling
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Stephen Mondo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kurt LaButti
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sajeet Haridas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Robert Riley
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alan A. Kuo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Asaf A. Salamov
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jasmyn Pangilinan
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Maxim Koriabine
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mi Yan
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Alicia Clum
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ellen K. Lyhne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
- Biodiversité et Biotechnologie Fongiques, UMR 1163, INRAE, Marseille, France
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Astrid Müller
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Ronnie J.M. Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Roland S. Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Miia R. Mäkelä
- Department of Microbiology, University of Helsinki, Finland
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Blake A. Simmons
- US Department of Energy Joint Bioenergy Institute, Berkeley, CA, USA
| | - Jon K. Magnuson
- US Department of Energy Joint Bioenergy Institute, Berkeley, CA, USA
| | - Jakob B. Hoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Uffe H. Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Paul S. Dyer
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Michelle Momany
- Fungal Biology Group & Plant Biology Department, University of Georgia, Athens, Georgia, USA 30602
| | - Thomas O. Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Scott E. Baker
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, USA
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Mikael R. Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Okoroafor CD, Suryadevara M, Gaba P, Jen P. A Case of Aspergillus calidoustus Thoracic Spine Osteomyelitis. Cureus 2024; 16:e65667. [PMID: 39205705 PMCID: PMC11354405 DOI: 10.7759/cureus.65667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Aspergillus infections are of significant concern in patients who are immunocompromised, including transplant recipients. Aspergillus calidoustus is an emerging pathogen reported to cause a wide array of infections. We present a case of A. calidoustus thoracic spine osteomyelitis in a patient with an orthotopic heart transplant (OHT). To our knowledge, this is the first case of A. calidoustus osteomyelitis in a patient with OHT.
Collapse
Affiliation(s)
- Chidi D Okoroafor
- Infectious Diseases, Newark Beth Israel Medical Center, Newark, USA
- Internal Medicine, Trinity Health of New England, New Haven, USA
| | | | - Parveen Gaba
- Infectious Diseases, Newark Beth Israel Medical Center, Newark, USA
| | - Polly Jen
- Pharmacy, Newark Beth Israel Medical Center, Newark, USA
| |
Collapse
|
5
|
Elhaj Mahmoud D, Hérivaux A, Morio F, Briard B, Vigneau C, Desoubeaux G, Bouchara JP, Gangneux JP, Nevez G, Le Gal S, Papon N. The epidemiology of invasive fungal infections in transplant recipients. Biomed J 2024; 47:100719. [PMID: 38580051 PMCID: PMC11220536 DOI: 10.1016/j.bj.2024.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024] Open
Abstract
Transplant patients, including solid-organ transplant (SOT) and hematopoietic stem cell transplant (HSCT) recipients, are exposed to various types of complications, particularly rejection. To prevent these outcomes, transplant recipients commonly receive long-term immunosuppressive regimens that in turn make them more susceptible to a wide array of infectious diseases, notably those caused by opportunistic pathogens. Among these, invasive fungal infections (IFIs) remain a major cause of mortality and morbidity in both SOT and HSCT recipients. Despite the continuing improvement in early diagnostics and treatments of IFIs, the management of these infections in transplant patients is still complicated. Here, we provide an overview concerning the most recent trends in the epidemiology of IFIs in SOT and HSCT recipients by describing the prominent yeast and mold species involved, the timing of post-transplant IFIs and the risk factors associated with their occurrence in these particularly weak populations. We also give special emphasis into basic research advances in the field that recently suggested a role of the global and long-term prophylactic regimen in orchestrating various biological disturbances in the organism and conditioning the emergence of the most adapted fungal strains to the particular physiological profiles of transplant patients.
Collapse
Affiliation(s)
- Dorra Elhaj Mahmoud
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Anaïs Hérivaux
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Florent Morio
- Nantes Université, CHU Nantes, Cibles et Médicaments des Infections et de L'Immunité, UR1155, Nantes, France
| | - Benoit Briard
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Faculté de Médecine de Tours, Tours, France; CHRU Tours, Parasitologie-Mycologie Médicale-Médecine Tropicale, Tours, France
| | - Cécile Vigneau
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085, Rennes, France; Division of Nephrology, Rennes University Hospital, Rennes, France
| | - Guillaume Desoubeaux
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Université de Tours, Faculté de Médecine de Tours, Tours, France; CHRU Tours, Parasitologie-Mycologie Médicale-Médecine Tropicale, Tours, France
| | - Jean-Philippe Bouchara
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France
| | - Jean-Pierre Gangneux
- University of Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085, Rennes, France; Laboratory of Parasitology and Medical Mycology, European Confederation of Medical Mycology (ECMM) Excellence Center, Centre National de Référence Aspergilloses Chroniques, Rennes University Hospital, Rennes, France
| | - Gilles Nevez
- Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France; University of Brest, University of Angers, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Brest, France
| | - Solène Le Gal
- Laboratory of Parasitology and Mycology, Brest University Hospital, Brest, France; University of Brest, University of Angers, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Brest, France
| | - Nicolas Papon
- University of Angers, University of Brest, Infections Respiratoires Fongiques, SFR Interactions Cellulaires et Applications Thérapeutiques, Angers, France.
| |
Collapse
|
6
|
Vergidis P, Sendi P, Alkhateeb HB, Nguyen MH. How do I manage refractory invasive pulmonary aspergillosis. Clin Microbiol Infect 2024; 30:755-761. [PMID: 38286175 DOI: 10.1016/j.cmi.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/06/2023] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Invasive aspergillosis is associated with significant morbidity and mortality in patients with haematologic malignancies and haematopoietic cell transplant recipients. The prognosis is worse among patients who have failed primary antifungal treatment. OBJECTIVES We aim to provide guidance on the diagnosis and management of refractory invasive pulmonary aspergillosis. SOURCES Using PubMed, we performed a review of original articles, meta-analyses, and systematic reviews. CONTENT We discuss the diagnostic criteria for invasive pulmonary aspergillosis and the evidence on the treatment of primary infection. We outline our diagnostic approach to refractory disease. We propose a treatment algorithm for refractory disease and discuss the role of experimental antifungal agents. IMPLICATIONS For patients with worsening disease while on antifungal therapy, a thorough diagnostic evaluation is required to confirm the diagnosis of aspergillosis and exclude another concomitant infection. Treatment should be individualized. Current options include switching to another triazole, transitioning to a lipid formulation of amphotericin B, or using combination antifungal therapy.
Collapse
Affiliation(s)
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - M Hong Nguyen
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Rybak JM, Xie J, Martin-Vicente A, Guruceaga X, Thorn HI, Nywening AV, Ge W, Souza ACO, Shetty AC, McCracken C, Bruno VM, Parker JE, Kelly SL, Snell HM, Cuomo CA, Rogers PD, Fortwendel JR. A secondary mechanism of action for triazole antifungals in Aspergillus fumigatus mediated by hmg1. Nat Commun 2024; 15:3642. [PMID: 38684680 PMCID: PMC11059170 DOI: 10.1038/s41467-024-48029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance.
Collapse
Affiliation(s)
- Jeffrey M Rybak
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinhong Xie
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adela Martin-Vicente
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Xabier Guruceaga
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Harrison I Thorn
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ashley V Nywening
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Integrated Program in Biomedical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Wenbo Ge
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ana C O Souza
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amol C Shetty
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carrie McCracken
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent M Bruno
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Josie E Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Steven L Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| | - Hannah M Snell
- Infectious Diseases and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christina A Cuomo
- Infectious Diseases and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - P David Rogers
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
8
|
Sen P, Vijay M, Kamboj H, Gupta L, Shankar J, Vijayaraghavan P. cyp51A mutations, protein modeling, and efflux pump gene expression reveals multifactorial complexity towards understanding Aspergillus section Nigri azole resistance mechanism. Sci Rep 2024; 14:6156. [PMID: 38486086 PMCID: PMC10940716 DOI: 10.1038/s41598-024-55237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
Black Aspergillus species are the most common etiological agents of otomycosis, and pulmonary aspergillosis. However, limited data is available on their antifungal susceptibility profiles and associated resistance mechanisms. Here, we determined the azole susceptibility profiles of black Aspergillus species isolated from the Indian environment and explored the potential resistance mechanisms through cyp51A gene sequencing, protein homology modeling, and expression analysis of selected genes cyp51A, cyp51B, mdr1, and mfs based on their role in imparting resistance against antifungal drugs. In this study, we have isolated a total of 161 black aspergilli isolates from 174 agricultural soil samples. Isolates had variable resistance towards medical azoles; approximately 11.80%, 3.10%, and 1.24% of isolates were resistant to itraconazole (ITC), posaconazole (POS), and voriconazole (VRC), respectively. Further, cyp51A sequence analysis showed that non-synonymous mutations were present in 20 azole-resistant Aspergillus section Nigri and 10 susceptible isolates. However, Cyp51A homology modeling indicated insignificant protein structural variations because of these mutations. Most of the isolates showed the overexpression of mdr1, and mfs genes. Hence, the study concluded that azole-resistance in section Nigri cannot be attributed exclusively to the cyp51A gene mutation or its overexpression. However, overexpression of mdr1 and mfs genes may have a potential role in drug resistance.
Collapse
Affiliation(s)
- Pooja Sen
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Mukund Vijay
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Himanshu Kamboj
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Lovely Gupta
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India
| | - Jata Shankar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Pooja Vijayaraghavan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, India.
| |
Collapse
|
9
|
Jomat O, Géry A, Leudet A, Capitaine A, Garon D, Bonhomme J. Spectrometric Characterization of Clinical and Environmental Isolates of Aspergillus Series Versicolores. J Fungi (Basel) 2023; 9:868. [PMID: 37754976 PMCID: PMC10532193 DOI: 10.3390/jof9090868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Aspergillus series Versicolores are molds distributed among 17 species, commonly found in our environment, and responsible for infections. Since 2022, a new taxonomy has grouped them into 4 major lineages: A. versicolor, A. subversicolor, A. sydowii, and A. creber. Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) could be a faster and more cost-effective alternative to molecular techniques for identifying them by developing a local database. To evaluate this technique, 30 isolates from Aspergillus series Versicolores were used. A total of 59 main spectra profiles (MSPs) were created in the local database. This protocol enabled accurate identification of 100% of the extracted isolates, of which 97% (29/30) were correctly identified with a log score ≥ 2.00. Some MSPs recorded as Aspergillus versicolor in the supplier's database could lead to false identifications as they did not match with the correct lineages. Although the local database is still limited in the number and diversity of species of Aspergillus series Versicolores, it is sufficiently effective for correct lineage identification according to the latest taxonomic revision, and better than the MALDI-TOF MS supplier's database. This technology could improve the speed and accuracy of routine fungal identification for these species.
Collapse
Affiliation(s)
- Océane Jomat
- Mycology and Parasitology Department, Caen University Hospital, UNICAEN, Normandie University, 14000 Caen, France; (A.L.); (A.C.)
| | - Antoine Géry
- ToxEMAC-ABTE, UNICAEN & UNIROUEN, Normandie University, 14000 Caen, France; (A.G.); (D.G.)
| | - Astrid Leudet
- Mycology and Parasitology Department, Caen University Hospital, UNICAEN, Normandie University, 14000 Caen, France; (A.L.); (A.C.)
| | - Agathe Capitaine
- Mycology and Parasitology Department, Caen University Hospital, UNICAEN, Normandie University, 14000 Caen, France; (A.L.); (A.C.)
| | - David Garon
- ToxEMAC-ABTE, UNICAEN & UNIROUEN, Normandie University, 14000 Caen, France; (A.G.); (D.G.)
| | - Julie Bonhomme
- Mycology and Parasitology Department, Caen University Hospital, UNICAEN, Normandie University, 14000 Caen, France; (A.L.); (A.C.)
- ToxEMAC-ABTE, UNICAEN & UNIROUEN, Normandie University, 14000 Caen, France; (A.G.); (D.G.)
| |
Collapse
|
10
|
Zhang Y, Wang S, Zhou C, Zhang Y, Pan J, Pan B, Wang B, Hu B, Guo W. Epidemiology of Clinically Significant Aspergillus Species from a Large Tertiary Hospital in Shanghai, China, for the Period of Two Years. Infect Drug Resist 2023; 16:4645-4657. [PMID: 37484905 PMCID: PMC10361289 DOI: 10.2147/idr.s417840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023] Open
Abstract
Background Aspergillus species are becoming a major public health concern worldwide due to the increase in the incidence of aspergillosis and emergence of antifungal resistance. In this study, we surveyed all Aspergillus species isolated from aspergillosis patients in Zhongshan Hospital Fudan University, Shanghai, China, from 2019 to 2021. Methods We characterized the susceptibility profiles of these Aspergillus species to medical azoles (voriconazole, itraconazole and posaconazole) using YeastOneTM broth microdilution system. To determine the underlying antifungal resistance mechanisms in azole-resistant A. fumigatus (ARAf) isolates, we characterized mutations in the cyp51A gene. Genotypic diversity of sampled A. fumigatus was investigated using CSP-typing. Results A total of 112 Aspergillus isolates (81 A. fumigatus, 17 A. flavus, 5 A. niger, 2 A. terreus, 2 A. lentulus, 2 A. oryzae, 1 A. nidulans, 1 A. versicolor and 1 A. sydowii) from 105 patients diagnosed with aspergillosis (including proven or probable invasive aspergillosis, chronic pulmonary aspergillosis, allergic bronchopulmonary aspergillosis and cutaneous aspergillosis) were obtained. Eight isolates (7 A. fumigatus and 1 A. niger) from seven patients were either azole non-susceptible or non-wild type. Azole non-susceptible or non-wild type rate was 7.1%/isolate and 6.7%/patient analysed. Four ARAf harbored TR34/L98H mutation, whereas one carried TR46/Y121F/T289A allele. The 81 A. fumigatus isolates were spread across 8 CSP types with t01 to be the predominant type (53.1%). ARAf isolates were distributed over CSP types t01, t02, t04A and t11. Conclusion Results from this study provided us with an understanding of the antifungal resistance and related characteristics of Aspergillus species in Eastern China. Further comparisons of our results with those in other countries reflect potential clonal expansion of A. fumigatus in our region. Further surveillance study is warranted to guide antifungal therapy and for epidemiological purposes.
Collapse
Affiliation(s)
- Yuyi Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Suzhen Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Chunmei Zhou
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yao Zhang
- Department of Infectious Disease, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jue Pan
- Department of Infectious Disease, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Bijie Hu
- Department of Infectious Disease, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Cañete-Gibas CF, Patterson HP, Sanders CJ, Mele J, Fan H, David M, Wiederhold NP. Species Distribution and Antifungal Susceptibilities of Aspergillus Section Terrei Isolates in Clinical Samples from the United States and Description of Aspergillus pseudoalabamensis sp. nov. Pathogens 2023; 12:pathogens12040579. [PMID: 37111465 PMCID: PMC10142542 DOI: 10.3390/pathogens12040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Aspergillus section Terrei consists of numerous cryptic species in addition to A. terreus sensu stricto. The treatment of invasive infections caused by these fungi may pose a unique challenge prior to diagnosis and species identification, in that they are often clinically resistant to amphotericin B, with poor outcomes and low survival rates in patients treated with this polyene. Data on the species distributions and susceptibility profiles of isolates within section Terrei from the United States (U.S.) are limited. Here, we report the species distributions and susceptibility profiles for amphotericin B, isavuconazole, itraconazole, posaconazole, voriconazole, and micafungin against 278 clinical isolates of this section from institutions across the U.S. collected over a 52-month period. Species identification was performed by DNA sequence analysis and phenotypic characterization. Susceptibility testing was performed using the CLSI broth microdilution method. The majority of isolates were identified as Aspergillus terreus sensu stricto (69.8%), although several other cryptic species were also identified. Most were cultured from specimens collected from the respiratory tract. Posaconazole demonstrated the most potent activity of the azoles (MIC range ≤ 0.03-1 mg/L), followed by itraconazole (≤0.03-2 mg/L), voriconazole, and isavuconazole (0.125-8 mg/L for each). Amphotericin B demonstrated reduced in vitro susceptibility against this section (MIC range 0.25-8 mg/L), although this appeared to be species-dependent. A new species within this section, A. pseudoalabamensis, is also described. Our results, which are specific to the U.S., are similar to previous surveillance studies of the Aspergillus section Terrei.
Collapse
Affiliation(s)
- Connie F Cañete-Gibas
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Fungus Testing Laboratory UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Hoja P Patterson
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Fungus Testing Laboratory UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Carmita J Sanders
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Fungus Testing Laboratory UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - James Mele
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hongxin Fan
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Marjorie David
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Nathan P Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Fungus Testing Laboratory UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Systemic Antifungal Therapy for Invasive Pulmonary Infections. J Fungi (Basel) 2023; 9:jof9020144. [PMID: 36836260 PMCID: PMC9966409 DOI: 10.3390/jof9020144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Antifungal therapy for pulmonary fungal diseases is in a state of flux. Amphotericin B, the time-honored standard of care for many years, has been replaced by agents demonstrating superior efficacy and safety, including extended-spectrum triazoles and liposomal amphotericin B. Voriconazole, which became the treatment of choice for most pulmonary mold diseases, has been compared with posaconazole and itraconazole, both of which have shown clinical efficacy similar to that of voriconazole, with fewer adverse events. With the worldwide expansion of azole-resistant Aspergillus fumigatus and infections with intrinsically resistant non-Aspergillus molds, the need for newer antifungals with novel mechanisms of action becomes ever more pressing.
Collapse
|
13
|
Abstract
Isavuconazole is the newest of the clinically available advanced generation triazole antifungals and is active against a variety of yeasts, molds, and dimorphic fungi. Its current FDA-approved indications include the management of invasive aspergillosis as well as mucormycosis, though the latter indication is supported by limited clinical data. Isavuconazole did not achieve noninferiority to caspofungin for the treatment of invasive candidiasis and therefore lacks an FDA-approved indication for this invasive disease. Significant advantages of isavuconazole, primarily over voriconazole but in some circumstances posaconazole as well, make it an appealing option for the management of complex patients with invasive fungal infections. These potential advantages include lack of QTc interval prolongation, more predictable pharmacokinetics, a less complicated drug interaction profile, and improved tolerability, particularly when compared to voriconazole. This review discusses these topics in addition to addressing the in vitro activity of the compound against a variety of fungi and provides insight into other distinguishing factors among isavuconazole, voriconazole, and posaconazole. The review concludes with an opinion section in which the authors provide the reader with a framework for the current role of isavuconazole in the antifungal armamentarium and where further data are required.
Collapse
|
14
|
Bavadharani S, Premamalini T, Karthika K, Kindo AJ. In Vitro Production of Virulence Factors and Antifungal Susceptibility Pattern of Aspergillus Isolates from Clinical Samples in a Tertiary Care Center. J Lab Physicians 2022; 14:479-484. [DOI: 10.1055/s-0042-1747680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Abstract
Objectives This study was aimed to investigate the association between virulence factors and antifungal susceptibility pattern among Aspergillus species.
Materials and Methods This study was carried out in the Department of Microbiology, from May 2018 to June 2019. A total of 52 Aspergillus isolates obtained from various clinical samples were speciated based on microscopic identification by lacto phenol cotton blue (LPCB) mount and slide culture technique. The production of virulence factors such as biofilm, lipase, phospholipase, amylase, and hemolysin were detected using standard phenotypic methods with Aspergillus niger ATCC (American Type Culture Collection) 6275 as the control strain. Antifungal susceptibility patterns of all Aspergillus isolates to amphotericin B, itraconazole, voriconazole, and posaconazole were evaluated in line with the Clinical Laboratory Standards Institute (CLSI) M38-A2 guidelines.
Results The percentage of resistance was the highest in itraconazole (48.08%), followed by amphotericin B (28.85%) and voriconazole (9.62%). All amphotericin B-resistant isolates produced biofilm, itraconazole-resistant isolates exhibited phospholipase activity, and voriconazole-resistant isolates produced biofilm and demonstrated phospholipase and hemolytic activities. Regardless of the virulence factors produced, all isolates were susceptible to posaconazole.
Conclusion Understanding the relationship between virulence factors and antifungal resistance aids in the development of new therapeutic approaches involving virulence mechanisms as potential targets for effective antifungal drug development.
Collapse
Affiliation(s)
- Sukumar Bavadharani
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, India
| | - Thayanidhi Premamalini
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, India
| | - Kanagasabapathi Karthika
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, India
| | - Anupma Jyoti Kindo
- Department of Microbiology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education and Research (SRIHER), Porur, Chennai, India
| |
Collapse
|
15
|
McCarty TP, Luethy PM, Baddley JW, Pappas PG. Clinical utility of antifungal susceptibility testing. JAC Antimicrob Resist 2022; 4:dlac067. [PMID: 35774069 PMCID: PMC9237445 DOI: 10.1093/jacamr/dlac067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Invasive fungal diseases cause significant morbidity and mortality, in particular affecting immunocompromised patients. Resistant organisms are of increasing importance, yet there are many notable differences in the ability to both perform and interpret antifungal susceptibility testing compared with bacteria. In this review, we will highlight the strengths and limitations of resistance data of pathogenic yeasts and moulds that may be used to guide treatment and predict clinical outcomes.
Collapse
Affiliation(s)
- Todd P McCarty
- Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
- Birmingham VA Medical Center , Birmingham, AL , USA
| | - Paul M Luethy
- Department of Pathology, University of Maryland , Baltimore, MD , USA
| | - John W Baddley
- Department of Medicine, University of Maryland , Baltimore, MD , USA
| | - Peter G Pappas
- Department of Medicine, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
16
|
Gold JAW, Revis A, Thomas S, Perry L, Blakney RA, Chambers T, Bentz ML, Berkow EL, Lockhart SR, Lysen C, Nunnally NS, Jordan A, Kelly HC, Montero AJ, Farley MM, Oliver NT, Pouch SM, Webster AS, Jackson BR, Beer KD. Clinical Characteristics, Healthcare Utilization, and Outcomes among Patients in a Pilot Surveillance System for Invasive Mold Disease—Georgia, United States, 2017–2019. Open Forum Infect Dis 2022; 9:ofac215. [DOI: 10.1093/ofid/ofac215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Invasive mold diseases (IMD) cause severe illness, but public health surveillance data are lacking. We describe data collected from a laboratory-based, pilot IMD surveillance system.
Methods
During 2017–2019, the Emerging Infections Program conducted active IMD surveillance at three Atlanta-area hospitals. We ascertained potential cases by reviewing histopathology, culture, and Aspergillus galactomannan results and classified patients as having an IMD case (based on European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group [MSG] criteria) or a non-MSG IMD case (based on the treating clinician’s diagnosis and use of mold-active antifungal therapy). We described patient features and compared patients with MSG versus non-MSG IMD cases.
Results
Among 304 patients with potential IMD, 104 (34.2%) met an IMD case definition (41 MSG, 63 non-MSG). The most common IMD types were invasive aspergillosis (n = 66, 63.5%), mucormycosis (n = 8, 7.7%), and fusariosis (n = 4, 3.8%); the most frequently affected body sites were pulmonary (n = 66, 63.5%), otorhinolaryngologic (n = 17, 16.3%), and cutaneous/deep tissue (n = 9, 8.7%). Forty-five (43.3%) IMD patients received intensive care unit-level care, and 90-day all-cause mortality was 32.7%; these outcomes did not differ significantly between MSG and non-MSG IMD patients.
Conclusions
IMD patients had high mortality rates and a variety of clinical presentations. Comprehensive IMD surveillance is needed to assess emerging trends, and strict application of MSG criteria for surveillance might exclude > one-half of clinically significant IMD cases.
Collapse
Affiliation(s)
| | - Andrew Revis
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | - Stepy Thomas
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lewis Perry
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | - Rebekah A. Blakney
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | - Taylor Chambers
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | - Monica M. Farley
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nora T. Oliver
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephanie M. Pouch
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrew S. Webster
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
- Georgia Emerging Infections, Atlanta, GA, USA
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
17
|
Species Distribution and Antifungal Susceptibilities of
Aspergillus
Section
Fumigati
Isolates in Clinical Samples from the United States. J Clin Microbiol 2022; 60:e0028022. [DOI: 10.1128/jcm.00280-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aspergillus
species are capable of causing both invasive disease and chronic infections in immunocompromised patients or those with preexisting lung conditions.
Aspergillus fumigatus
is the most commonly cultured species, and there is increasing concern regarding resistance to the azoles, which are the mainstays of antifungal therapy against aspergillosis. We evaluated the species distribution and susceptibility profiles of isolates within
Aspergillus
section
Fumigati
in the United States over a 52-month period.
Collapse
|
18
|
Aspergillus terreus and the Interplay with Amphotericin B: from Resistance to Tolerance? Antimicrob Agents Chemother 2022; 66:e0227421. [PMID: 35254091 PMCID: PMC9017323 DOI: 10.1128/aac.02274-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aspergillus terreus is an opportunistic causative agent of invasive aspergillosis and, in most cases, it is refractory to amphotericin B (AMB) therapy. Notably, AMB-susceptible Aspergillus terreus sensu stricto (s.s.) representatives exist which are also associated with poor clinical outcomes. Such findings may be attributable to drug tolerance, which is not detectable by antifungal susceptibility testing. Here, we tested in vitro antifungal susceptibility (AFST) and the fungicidal activity of AMB against 100 clinical isolates of A. terreus species complex in RPMI 1640 and antibiotic medium 3 (AM3). MICs ranged from 0.5 to 16 μg/mL for RPMI 1640 and from 1 to >16 mg/L for AM3. AMB showed medium-dependent activity, with fungicidal effects only in antibiotic medium 3, not in RPMI 1640. Furthermore, the presence of AMB-tolerant phenotypes of A. terreus has been examined by assessing the minimum duration for killing 99% of the population (MDK99) and evaluating the data obtained in a Galleria mellonella infection model. A time-kill curve analysis revealed that A. terreus with AMB MICs of ≤1 mg/L (susceptible range) displayed AMB-tolerant phenotypes, exhibiting MDK99s at 18 and 36 h, respectively. Survival rates of infected G. mellonella highlighted that AMB was effective against susceptible A. terreus isolates, but not against tolerant or resistant isolates. Our analysis reveals that A. terreus isolates which are defined as susceptible based on MIC may comprise tolerant phenotypes, which may, in turn, explain the worse outcome of AMB therapy for phenotypically susceptible isolates.
Collapse
|
19
|
The effect of lichen secondary metabolites on Aspergillus fungi. Arch Microbiol 2021; 204:100. [PMID: 34964912 PMCID: PMC8716355 DOI: 10.1007/s00203-021-02649-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 01/16/2023]
Abstract
A systematic review of literature data on the antifungal potential of extracted lichen compounds and individual secondary metabolites against mold species of the genus Aspergillus is provided. Crude extracts from 49 epiphytic, 16 epigeic and 22 epilithic species of lichens and 44 secondary metabolites against 10 species, Aspergillus candidus, A. flavus, A. fumigatus, A. nidulans, A. niger, A. ochraceus, A. parasiticus, A. restrictus, A. stellatus and A. ustus, were analysed. Several measuring techniques were employed for such analyses. Lichen substances were extracted with alcoholic and other organic solvents mainly using the Soxhlet apparatus. Among the three most-studied mold species, the results showed that the crude extracts from the thalli of the lichens Cladonia foliacea, Hypotrachyna cirrhata, Leucodermia leucomelos, Platismatia glauca and Pseudevernia furfuracea against Aspergillus flavus, from C. foliacea, Nephroma arcticum and Parmelia sulcata against A. fumigatus and from Evernia prunastri, Hypogymnia physodes, Umbilicaria cylindrica and Variospora dolomiticola against A. niger have the greatest antifungal potential. The lichen secondary metabolites showed a higher inhibitory potential, e.g. protolichesterinic acid against A. flavus, lecanoric acid against A. fumigatus and orsellinic acid against A. niger; the other seven species of Aspergillus have been poorly studied and require further investigation. A comparison of the inhibitory potential of the tested mixtures of lichen substances and their secondary metabolites shows that they can compete with commonly used antifungal substances, such as ketoconazole and clotrimazole against A. flavus, A. nidulans, A. niger and A. parasiticus and fluconazole in the case of A. fumigatus.
Collapse
|
20
|
Prognostic Scores and Azole-Resistant Aspergillus fumigatus in Invasive Aspergillosis from an Indian Respiratory Medicine ICU (ICU Patients with IA Suspicion). J Fungi (Basel) 2021; 7:jof7110991. [PMID: 34829278 PMCID: PMC8625311 DOI: 10.3390/jof7110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: To assess the effectiveness of three general prognostic models (APACHE II, SAPS II, and SOFA) with serum galactomannan antigen in a clinically suspected invasive aspergillosis (IA) subpopulation admitted to a respiratory medicine ICU and to identify azole-resistant Aspergillus fumigatus (ARAF) cases. Methodology and Results: A total of 235 clinically suspected IA patients were prospectively enrolled and observed 30-day mortality was 29.7%. The three general models showed poor discrimination assessed by area under receiver operating characteristic (ROC) curves (AUCs, <0.7) and good calibration (p = 0.92, 0.14, and 0.13 for APACHE II, SAPS II, and SOFA, respectively), evaluated using Hosmer–Lemeshow goodness-of-fit tests. However, discrimination was significantly better with galactomannan values (AUC, 0.924). In-vitro antifungal testing revealed higher minimum inhibitory concentration (MIC) for 12/34 isolates (35.3%) whereas azole resistance was noted in 40% of Aspergillus fumigatus isolates (6/15) with two hotspot cyp51A mutations, G54R and P216L. Conclusions: Patients diagnosed with putative and probable IA (71.4% and 34.6%, respectively), had high mortality. The general prognostic model APACHE II seemed fairly accurate for this subpopulation. However, the use of local GM cut-offs calculated for mortality, may help the intensivists in prompt initiation or change of therapy for better outcome of patients. In addition, the high MICs highlight the need of antifungal surveillance to know the local resistance rate which might aid in patient treatment.
Collapse
|
21
|
Wiederhold NP. Antifungal Susceptibility Testing: A Primer for Clinicians. Open Forum Infect Dis 2021; 8:ofab444. [PMID: 34778489 PMCID: PMC8579947 DOI: 10.1093/ofid/ofab444] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Clinicians treating patients with fungal infections may turn to susceptibility testing to obtain information regarding the activity of different antifungals against a specific fungus that has been cultured. These results may then be used to make decisions regarding a patient's therapy. However, for many fungal species that are capable of causing invasive infections, clinical breakpoints have not been established. Thus, interpretations of susceptible or resistant cannot be provided by clinical laboratories, and this is especially true for many molds capable of causing severe mycoses. The purpose of this review is to provide an overview of susceptibility testing for clinicians, including the methods used to perform these assays, their limitations, how clinical breakpoints are established, and how the results may be put into context in the absence of interpretive criteria. Examples of when susceptibility testing is not warranted are also provided.
Collapse
Affiliation(s)
- Nathan P Wiederhold
- Fungus Testing Laboratory, Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
22
|
Kennedy CC, Pennington KM, Beam E, Razonable RR. Fungal Infection in Lung Transplantation. Semin Respir Crit Care Med 2021; 42:471-482. [PMID: 34030208 DOI: 10.1055/s-0041-1729173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Invasive fungal infections threaten lung transplant outcomes with high associated morbidity and mortality. Pharmacologic prophylaxis may be key to prevent posttransplant invasive fungal infections, but cost, adverse effects, and absorption issues are barriers to effective prophylaxis. Trends in fungal infection diagnostic strategies utilize molecular diagnostic methodologies to complement traditional histopathology and culture techniques. While lung transplant recipients are susceptible to a variety of fungal pathogens, Candida spp. and Aspergillus spp. infections remain the most common. With emerging resistant organisms and multiple novel antifungal agents in the research pipeline, it is likely that treatment strategies will continue to evolve.
Collapse
Affiliation(s)
- Cassie C Kennedy
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Kelly M Pennington
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota
| | - Elena Beam
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota.,Division of Infectious Disease, Mayo Clinic, Rochester, Minnesota
| | - Raymund R Razonable
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota.,Division of Infectious Disease, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
Emergence of Triazole Resistance in Aspergillus spp. in Latin America. CURRENT FUNGAL INFECTION REPORTS 2021; 15:93-103. [PMID: 34025901 PMCID: PMC8132279 DOI: 10.1007/s12281-021-00418-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 11/26/2022]
Abstract
Purpose of Review Azole resistance in Aspergillus spp. is becoming a public health problem worldwide. However, data about this subject is lacking in Latin American countries. This review focuses in the epidemiology and molecular mechanisms of azole resistance in Aspergillus spp. emphasizing in Latin America. Data on Aspergillus fumigatus stands out because it is the most prevalent Aspergillus spp. pathogen. Recent Findings Azole resistance in Aspergillus spp. emergence was linked with intensive use of these antifungals both in the clinical setting and in the environment (as pesticides). Reports on azole-resistant A. fumigatus strains are being constantly published in different countries. Molecular mechanisms of resistance mainly involve substitution in the azole target (CYP51A) and/or overexpression of this gene. However, several other non-CYP51A-related mechanisms were described. Moreover, intrinsically resistant cryptic Aspergillus species are starting to be reported as human pathogens. Summary After a comprehensive literature review, it is clear that azole resistance in Aspergillus spp. is emerging in Latin America and perhaps it is underestimated. All the main molecular mechanisms of azole resistance were described in patients and/or environmental samples. Moreover, one of the molecular mechanisms was described only in South America. Cryptic intrinsic azole-resistant species are also described.
Collapse
|
24
|
Rivero-Menendez O, Cuenca-Estrella M, Alastruey-Izquierdo A. In vitro activity of APX001A against rare moulds using EUCAST and CLSI methodologies. J Antimicrob Chemother 2021; 74:1295-1299. [PMID: 30753499 DOI: 10.1093/jac/dkz022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND APX001A (E1210) is a novel broad-spectrum antifungal agent that inhibits Gwt1p, a protein that plays an important role in fungal cell wall integrity. Previous studies have shown that APX001A has broad activity against most species of Candida, Aspergillus, Scedosporium, Fusarium and Mucorales. OBJECTIVES To investigate the in vitro activity of APX001A against 200 isolates belonging to 20 different species of Fusarium, Scedosporium, Lomentospora, Alternaria, cryptic species of Aspergillus and Mucorales. METHODS APX001A and comparators were tested using EUCAST and CLSI methodologies for broth microdilution susceptibility testing of antifungal agents. RESULTS APX001A was generally inactive against Mucorales, but active against all cryptic species of Aspergillus and Scedosporium/Lomentospora species. CONCLUSIONS APX001A shows encouraging in vitro activity against some emerging fungi that are hard to treat with currently available antifungals.
Collapse
Affiliation(s)
- Olga Rivero-Menendez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Nywening AV, Rybak JM, Rogers PD, Fortwendel JR. Mechanisms of triazole resistance in Aspergillus fumigatus. Environ Microbiol 2020; 22:4934-4952. [PMID: 33047482 PMCID: PMC7828461 DOI: 10.1111/1462-2920.15274] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
The ubiquitous fungal pathogen Aspergillus fumigatus is the primary cause of opportunistic mould infections in humans. Aspergilli disseminate via asexual conidia passively travelling through air currents to germinate within a broad range of environs, wherever suitable nutrients are found. Though the average human inhales hundreds of conidia daily, A. fumigatus invasive infections primarily affect the immunocompromised. At-risk individuals can develop often fatal invasive disease for which therapeutic options are limited. Regrettably, the global insurgence of isolates resistant to the triazoles, the frontline antifungal class used in medicine and agriculture to control A. fumigatus, is complicating the treatment of patients. Triazole antifungal resistance in A. fumigatus has become recognized as a global, yet poorly comprehended, problem. Due to a multitude of factors, the magnitude of resistant infections and their contribution to treatment outcomes are likely underestimated. Current studies suggest that human drug-resistant infections can be either environmentally acquired or de novo host selected during patient therapy. While much concerning development of resistance is yet unknown, recent investigations have revealed assorted underlying mechanisms enabling triazole resistance within individual clinical and environmental isolates. This review will provide an overview of triazole resistance as it is currently understood, as well as highlight some of the prominent biological mechanisms associated with clinical and environmental resistance to triazoles in A. fumigatus.
Collapse
Affiliation(s)
- Ashley V Nywening
- Department of Clinical Pharmacy and Translational Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
- College of Graduate Health Sciences, Integrated Biomedical Sciences Program, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jeffrey M Rybak
- Department of Clinical Pharmacy and Translational Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| | - Phillip David Rogers
- Department of Clinical Pharmacy and Translational Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| | - Jarrod R Fortwendel
- Department of Clinical Pharmacy and Translational Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN, USA
| |
Collapse
|
26
|
Carolus H, Pierson S, Lagrou K, Van Dijck P. Amphotericin B and Other Polyenes-Discovery, Clinical Use, Mode of Action and Drug Resistance. J Fungi (Basel) 2020; 6:E321. [PMID: 33261213 PMCID: PMC7724567 DOI: 10.3390/jof6040321] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Although polyenes were the first broad spectrum antifungal drugs on the market, after 70 years they are still the gold standard to treat a variety of fungal infections. Polyenes such as amphotericin B have a controversial image. They are the antifungal drug class with the broadest spectrum, resistance development is still relatively rare and fungicidal properties are extensive. Yet, they come with a significant host toxicity that limits their use. Relatively recently, the mode of action of polyenes has been revised, new mechanisms of drug resistance were discovered and emergent polyene resistant species such as Candida auris entered the picture. This review provides a short description of the history and clinical use of polyenes, and focusses on the ongoing debate concerning their mode of action, the diversity of resistance mechanisms discovered to date and the most recent trends in polyene resistance development.
Collapse
Affiliation(s)
- Hans Carolus
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| | - Siebe Pierson
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| | - Katrien Lagrou
- Laboratory of Clinical Bacteriology and Mycology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3001 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, UZ Leuven, 3001 Leuven, Belgium
| | - Patrick Van Dijck
- VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium; (H.C.); (S.P.)
- Laboratory of Molecular Cell Biology, Department of Biology, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
27
|
Aspergillus fumigatus Cyp51A and Cyp51B Proteins Are Compensatory in Function and Localize Differentially in Response to Antifungals and Cell Wall Inhibitors. Antimicrob Agents Chemother 2020; 64:AAC.00735-20. [PMID: 32660997 DOI: 10.1128/aac.00735-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/06/2020] [Indexed: 02/02/2023] Open
Abstract
Triazole antifungals are the primary therapeutic option against invasive aspergillosis. However, resistance to azoles has increased dramatically over the last decade. Azole resistance is known to primarily occur due to point mutations in the azole target protein Cyp51A, one of two paralogous 14-α sterol demethylases found in Aspergillus fumigatus Despite the importance of Cyp51A, little is known about the function of its paralog, Cyp51B, and the behavior of these proteins within the cell or their functional interrelationship. In this study, we addressed two important aspects of the Cyp51 proteins: (i) we characterized their localization patterns under normal growth versus stress conditions, and (ii) we determined how the proteins compensate for each other's absence and respond to azole treatment. Both the Cyp51A and Cyp51B proteins were found to localize in distinct endoplasmic reticulum (ER) domains, including the perinuclear ER and the peripheral ER. Occasionally, the Cyp51 proteins concentrated in the peripheral ER network of tubules along the hyphal septa and at the hyphal tips. Exposure to voriconazole, caspofungin, and Congo red led to significant increases in fluorescence intensity in these alternative localization sites, indicative of Cyp51 protein translocation in response to cell wall stress. Furthermore, deletion of either Cyp51 paralog increased susceptibility to voriconazole, though a greater effect was observed following deletion of cyp51A, indicating a compensatory response to stress conditions.
Collapse
|
28
|
Rivero-Menendez O, Cuenca-Estrella M, Alastruey-Izquierdo A. In vitro activity of olorofim (F901318) against clinical isolates of cryptic species of Aspergillus by EUCAST and CLSI methodologies. J Antimicrob Chemother 2020; 74:1586-1590. [PMID: 30891600 DOI: 10.1093/jac/dkz078] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To investigate the in vitro activity of olorofim (F901318), a novel broad-spectrum antifungal agent, against 150 strains belonging to 16 different cryptic species of Aspergillus by EUCAST and CLSI methodologies. METHODS Olorofim, amphotericin B, micafungin, posaconazole and voriconazole were tested against cryptic species belonging to Aspergillus fumigatus complex (n = 57), Aspergillus ustus complex (n = 25), Aspergillus niger complex (n = 20), Aspergillus flavus complex (n = 20), Aspergillus circumdati complex (n = 15) and Aspergillus terreus complex (n = 13) using EUCAST and CLSI methodologies for broth microdilution susceptibility testing of antifungal agents. RESULTS Olorofim was the only drug with activity against all cryptic species of Aspergillus tested, including the multiresistant species Aspergillus lentulus, Aspergillus fumigatiaffinis and Aspergillus calidoustus. Geometric means of MICs for olorofim were lower (0.017, 0.015 and 0.098 mg/L, respectively, for EUCAST; and 0.015, 0.015 and 0.048 mg/L, respectively, for CLSI) than for amphotericin B (4.438, 12.699 and 0.554 mg/L, respectively, for EUCAST; and 0.758, 1.320 and 0.447 mg/L, respectively, for CLSI), voriconazole (2.549, 2.297 and 5.856 mg/L, respectively, for EUCAST; and 2.071, 1.741 and 5.657 mg/L, respectively, for CLSI) and posaconazole (0.307, 0.308 and 12.996 mg/L, respectively, for EUCAST; and 0.391, 0.215 and 9.514 mg/L, respectively, for CLSI). CONCLUSIONS Olorofim shows encouraging in vitro activity against cryptic species of Aspergillus that can be hard to treat with current antifungal therapies. Further studies are warranted in order to assess its efficacy.
Collapse
Affiliation(s)
- Olga Rivero-Menendez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD16/CIII/0004/0003), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Adler-Moore J, Lewis RE, Brüggemann RJM, Rijnders BJA, Groll AH, Walsh TJ. Preclinical Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Antifungal Activity of Liposomal Amphotericin B. Clin Infect Dis 2020; 68:S244-S259. [PMID: 31222254 PMCID: PMC6495008 DOI: 10.1093/cid/ciz064] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The improved safety profile and antifungal efficacy of liposomal amphotericin B (LAmB) compared to conventional amphotericin B deoxycholate (DAmB) is due to several factors including, its chemical composition, rigorous manufacturing standards, and ability to target and transit through the fungal cell wall. Numerous preclinical studies have shown that LAmB administered intravenously distributes to tissues frequently infected by fungi at levels above the minimum inhibitory concentration (MIC) for many fungi. These concentrations can be maintained from one day to a few weeks, depending upon the tissue. Tissue accumulation is dose-dependent with drug clearance occurring most rapidly from the brain and slowest from the liver and spleen. LAmB localizes in lung epithelial lining fluid, within liver and splenic macrophages and in kidney distal tubules. LAmB has been used successfully in therapeutic and prophylactic animal models to treat many different fungal pathogens, significantly increasing survival and reducing tissue fungal burden.
Collapse
Affiliation(s)
- Jill Adler-Moore
- Department of Biological Sciences, California State Polytechnic University, Pomona
| | - Russell E Lewis
- Unit of Infectious Diseases, Policlinico Sant'Orsola-Malpighi, Department of Medical Sciences and Surgery, University of Bologna, Italy
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andreas H Groll
- Infectious Disease Research Program, Department of Pediatric Hematology and Oncology and Center for Bone Marrow Transplantation, University Children's Hospital Muenster, Germany
| | - Thomas J Walsh
- Departments of Medicine, Pediatrics, and Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, New York
| |
Collapse
|
30
|
The Inhibitory Effect of Validamycin A on Aspergillus flavus. Int J Microbiol 2020; 2020:3972415. [PMID: 32676114 PMCID: PMC7336217 DOI: 10.1155/2020/3972415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Aspergillus flavus is one of the most common isolates from patients with fungal infections. Aspergillus infection is usually treated with antifungal agents, but side effects of these agents are common. Trehalase is an essential enzyme involved in fungal metabolism, and the trehalase inhibitor, validamycin A, has been used to prevent fungal infections in agricultural products. In this study, we observed that validamycin A significantly increased trehalose levels in A. flavus conidia and delayed germination, including decreased fungal adherence. In addition, validamycin A and amphotericin B showed a combinatorial effect on A. flavus ATCC204304 and clinical isolates with high minimum inhibitory concentrations (MICs) of amphotericin B using checkerboard assays. We observed that validamycin A and amphotericin B had a synergistic effect on A. flavus strains resistant to amphotericin B. The MICs in the combination of validamycin A and amphotericin B were at 0.125 μg/mL and 2 μg/mL, respectively. The FICI of validamycin A and amphotericin B of these clinical isolates was about 0.25-0.28 with synergistic effects. No drug cytotoxicity was observed in human bronchial epithelial cells treated with validamycin A using LDH-cytotoxicity assays. In conclusion, this study demonstrated that validamycin A inhibited the growth of A. flavus and delayed conidial germination. Furthermore, the combined effect of validamycin A with amphotericin B increased A. flavus killing, without significant cytotoxicity to human bronchial epithelial cells. We propose that validamycin A could potentially be used in vivo as an alternative treatment for A. flavus infections.
Collapse
|
31
|
Reynolds KL, Sullivan RJ, Fintelmann FJ, Mansour MK, England J. Case 9-2020: A 64-Year-Old Man with Shortness of Breath, Cough, and Hypoxemia. N Engl J Med 2020; 382:1150-1159. [PMID: 32187473 DOI: 10.1056/nejmcpc1909621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Kerry L Reynolds
- From the Departments of Medicine (K.L.R., R.J.S., M.K.M.), Radiology (F.J.F.), and Pathology (J.E.), Massachusetts General Hospital, and the Departments of Medicine (K.L.R., R.J.S., M.K.M.), Radiology (F.J.F.), and Pathology (J.E.), Harvard Medical School - both in Boston
| | - Ryan J Sullivan
- From the Departments of Medicine (K.L.R., R.J.S., M.K.M.), Radiology (F.J.F.), and Pathology (J.E.), Massachusetts General Hospital, and the Departments of Medicine (K.L.R., R.J.S., M.K.M.), Radiology (F.J.F.), and Pathology (J.E.), Harvard Medical School - both in Boston
| | - Florian J Fintelmann
- From the Departments of Medicine (K.L.R., R.J.S., M.K.M.), Radiology (F.J.F.), and Pathology (J.E.), Massachusetts General Hospital, and the Departments of Medicine (K.L.R., R.J.S., M.K.M.), Radiology (F.J.F.), and Pathology (J.E.), Harvard Medical School - both in Boston
| | - Michael K Mansour
- From the Departments of Medicine (K.L.R., R.J.S., M.K.M.), Radiology (F.J.F.), and Pathology (J.E.), Massachusetts General Hospital, and the Departments of Medicine (K.L.R., R.J.S., M.K.M.), Radiology (F.J.F.), and Pathology (J.E.), Harvard Medical School - both in Boston
| | - Jonathan England
- From the Departments of Medicine (K.L.R., R.J.S., M.K.M.), Radiology (F.J.F.), and Pathology (J.E.), Massachusetts General Hospital, and the Departments of Medicine (K.L.R., R.J.S., M.K.M.), Radiology (F.J.F.), and Pathology (J.E.), Harvard Medical School - both in Boston
| |
Collapse
|
32
|
Nguyen TTT, Pangging M, Bangash NK, Lee HB. Five New Records of the Family Aspergillaceae in Korea, Aspergillus europaeus, A. pragensis, A. tennesseensis, Penicillium fluviserpens, and P. scabrosum. MYCOBIOLOGY 2020; 48:81-94. [PMID: 32363036 PMCID: PMC7178850 DOI: 10.1080/12298093.2020.1726563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 05/15/2023]
Abstract
During an investigation of the fungi from the Aspergillaceae family obtained from different environmental sources in Korea, we isolated six strains, including CNUFC WJC9-1, CNUFC BPM36-33, CNUFC MSW6, CNUFC ESW1, CNUFC TM6-2, and CNUFC WD17-1. The morphology and phylogeny of these isolates were analyzed based on their partial β-tubulin (BenA) and calmodulin (CaM) gene sequences. Based on the morphological characteristics and sequence analyses, the isolates CNUFC WJC9-1, CNUFC BPM36-33, CNUFC TM6-2, and CNUFC WD17-1 were identified as A. europaeus, A. pragensis, Penicillium fluviserpens, and P. scabrosum, respectively, and isolates CNUFC MSW6 and CNUFC ESW1 were identified as A. tennesseensis. To the best of our knowledge, the species A. europaeus, A. pragensis, A. tennesseensis, P. fluviserpens, and P. scabrosum have not been previously reported in Korea.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Monmi Pangging
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Naila Khan Bangash
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| | - Hyang Burm Lee
- Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
33
|
The potency of luliconazole against clinical and environmental Aspergillus nigri complex. IRANIAN JOURNAL OF MICROBIOLOGY 2019; 11:510-519. [PMID: 32148683 PMCID: PMC7048962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Black Aspergillus strains including, Aspergillus niger and A. tubingensis, are the most cause of otomycosis with worldwide distribution. Although, amphotericin B was a Gold standard for the treatment of invasive fungal infection for several decades, it gradually replaced by fluconazole and /or voriconazole. Moreover, luliconazole, appears to offer the best potential for in vitro activity against black Aspergillus strains. The aim of the present study was to compare the in vitro activity luliconazole, with commonly used antifungals against clinical and environmental strains of black Aspergillus. MATERIALS AND METHODS Sixty seven (37 clinical and 30 environmental) strains of black Aspergillus were identified using morphological and molecular technique (β-Tubulin gene). In addition, antifungal susceptibility test was applied according to CLSI M38 A2. The results were reported as minimum inhibitory concentration (MIC) or minimum effective concentration (MEC) range, MIC50 or MEC50, MIC90 or MEC90 and MIC geometric (GM) or MECGM. RESULTS Aspergillus niger was the common isolate followed by, A. tubingensis in both clinical and environmental strains. The lowest MIC range, MIC50, MIC90, and MICGM was attributed to luliconazole in clinical strains. The highest resistant rate was found in amphotericin B for both clinical (86.5%) and environmental (96.7%) strains whereas 54.1% of clinical and 30% of environmental isolates were resistant to caspofungin. Clinical strains of Aspergillus were more sensitive to voriconazole (86.7%) than environmental strains (70.3%). On the other hand, 83.8% of clinical and 70% of environmental isolates were resistant to posaconazole. CONCLUSION Luliconazole versus amphotericin B, voriconazole, posaconazole and caspofungin is a potent antifungal for Aspergillus Nigri complex. The in vitro extremely antifungal efficacy against black Aspergillus strains of luliconazole, is different from those of other used antifungals.
Collapse
|
34
|
Schmidt S, Hogardt M, Demir A, Röger F, Lehrnbecher T. Immunosuppressive Compounds Affect the Fungal Growth and Viability of Defined Aspergillus Species. Pathogens 2019; 8:pathogens8040273. [PMID: 31795350 PMCID: PMC6963520 DOI: 10.3390/pathogens8040273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
Immunosuppressive drugs are administered to a number of patients; e.g., to allogeneic hematopoietic stem cell transplant recipients. Immunosuppressive drugs impair the immune system and thus increase the risk of invasive fungal disease, but may exhibit antifungal activity at the same time. We investigated the impact of various concentrations of three commonly used immunosuppressive compounds—cyclosporin A (CsA), methylprednisolone (mPRED), and mycophenolic acid (MPA)—on the growth and viability of five clinically important Aspergillus species. Methods included disc diffusion, optical density of mycelium, and viability assays such as XTT. MPA and CsA had a species-specific and dose-dependent inhibitory effect on the growth of all Aspergillus spp. tested, although growth inhibition by MPA was highest in A. niger,A. flavus and A. brasiliensis. Both agents exhibited species-specific hyphal damage, which was higher when the immunosuppressants were added to growing conidia than to mycelium. In contrast, mPRED increased the growth of A. niger, but had no major impact on the growth and viability of any of the other Aspergillus species tested. Our findings may help to better understand the interaction of drugs with Aspergillus species and ultimately may have an impact on individualizing immunosuppressive therapy.
Collapse
Affiliation(s)
- Stanislaw Schmidt
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany;
| | - Asuman Demir
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
| | - Frauke Röger
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
| | - Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; (S.S.); (A.D.); (F.R.)
- Correspondence:
| |
Collapse
|
35
|
Thornton CR. Detection of the 'Big Five' mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. ADVANCES IN APPLIED MICROBIOLOGY 2019; 110:1-61. [PMID: 32386603 DOI: 10.1016/bs.aambs.2019.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fungi are an important but frequently overlooked cause of morbidity and mortality in humans. Life-threatening fungal infections mainly occur in immunocompromised patients, and are typically caused by environmental opportunists that take advantage of a weakened immune system. The filamentous fungus Aspergillus fumigatus is the most important and well-documented mold pathogen of humans, causing a number of complex respiratory diseases, including invasive pulmonary aspergillosis, an often fatal disease in patients with acute leukemia or in immunosuppressed bone marrow or solid organ transplant recipients. However, non-Aspergillus molds are increasingly reported as agents of disseminated diseases, with Fusarium, Scedosporium, Lomentospora and mucormycete species now firmly established as pathogens of immunosuppressed and immunocompetent individuals. Despite well-documented risk factors for invasive fungal diseases, and increased awareness of the risk factors for life-threatening infections, the number of deaths attributable to molds is likely to be severely underestimated driven, to a large extent, by the lack of readily accessible, cheap, and accurate tests that allow detection and differentiation of infecting species. Early diagnosis is critical to patient survival but, unlike Aspergillus diseases, where a number of CE-marked or FDA-approved biomarker tests are now available for clinical diagnosis, similar tests for fusariosis, scedosporiosis and mucormycosis remain experimental, with detection reliant on insensitive and slow culture of pathogens from invasive bronchoalveolar lavage fluid, tissue biopsy, or from blood. This review examines the ecology, epidemiology, and contemporary methods of detection of these mold pathogens, and the obstacles to diagnostic test development and translation of novel biomarkers to the clinical setting.
Collapse
|
36
|
Wiederhold NP, Locke JB, Daruwala P, Bartizal K. Rezafungin (CD101) demonstrates potent in vitro activity against Aspergillus, including azole-resistant Aspergillus fumigatus isolates and cryptic species. J Antimicrob Chemother 2019; 73:3063-3067. [PMID: 30032217 DOI: 10.1093/jac/dky280] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/18/2018] [Indexed: 11/12/2022] Open
Abstract
Background Rezafungin is an investigational echinocandin under development for the treatment and prevention of invasive fungal infections, with a long half-life in humans (∼130 h) and potent in vitro activity against Aspergillus spp. Our objective was to further evaluate its activity against Aspergillus fumigatus isolates, including azole-resistant isolates and cryptic Aspergillus spp. Methods Clinical isolates of Aspergillus were used, including 15 WT and 31 azole-resistant A. fumigatus, 11 Aspergillus lentulus, 5 each of Aspergillus thermomutatus and Aspergillus udagawae and 11 Aspergillus calidoustus. Minimum effective concentrations (MECs) and MICs of rezafungin, caspofungin, micafungin, posaconazole and voriconazole were determined by CLSI M38-A2 broth microdilution. Differences in geometric mean (GM) MEC/MIC values were assessed for significance by ANOVA. Results Rezafungin GM MECs for A. fumigatus were 0.024 and 0.043 mg/L for WT and azole-resistant isolates, respectively. Rezafungin was also active against cryptic species, including A. lentulus (0.016 mg/L), A. calidoustus (0.044 mg/L), A. thermomutatus (MEC range ≤0.015-0.25 mg/L) and A. udagawae (≤0.015-0.03 mg/L). This activity was similar to that of caspofungin and micafungin with the exception of A. calidoustus, against which rezafungin was more potent than caspofungin (GM MEC 0.044 versus 0.468 mg/L; P < 0.0001). Conclusions Rezafungin demonstrated potent in vitro activity against Aspergillus spp., including azole-resistant A. fumigatus isolates and cryptic species with elevated posaconazole and voriconazole MICs. Additional studies are warranted to determine whether the in vitro activity translates into in vivo efficacy against infections caused by resistant Aspergillus isolates.
Collapse
Affiliation(s)
- Nathan P Wiederhold
- Fungus Testing Laboratory, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | |
Collapse
|
37
|
Reeve MA, Caine TS, Buddie AG. Spectral Grouping of Nominally Aspergillus versicolor Microbial-Collection Deposits by MALDI-TOF MS. Microorganisms 2019; 7:E235. [PMID: 31382517 PMCID: PMC6722527 DOI: 10.3390/microorganisms7080235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 11/20/2022] Open
Abstract
Historical microbial collections often contain samples that have been deposited over extended time periods, during which accepted taxonomic classification (and also available methods for taxonomic assignment) may have changed considerably. Deposited samples can, therefore, have historical taxonomic assignments (HTAs) that may now be in need of revision, and subdivisions of previously-accepted taxa may also be possible with the aid of current methodologies. One such methodology is matrix-assisted laser-desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). Motivated by the high discriminating power of MALDI-TOF MS coupled with the speed and low cost of the method, we have investigated the use of MALDI-TOF MS for spectral grouping of past deposits made to the Centre for Agriculture and Bioscience International (CABI) Genetic Resource Collection under the HTA Aspergillus versicolor, a common ascomycete fungus frequently associated with soil and plant material, food spoilage, and damp indoor environments. Despite their common HTA, the 40 deposits analyzed in this study fall into six clear spectral-linkage groups (containing nine, four, four, four, four, and two members, respectively), along with a group of ten spectrally-unique samples. This study demonstrates the clear resolving power of MALDI-TOF MS when applied to samples deposited in historical microbial collections.
Collapse
Affiliation(s)
- Michael A Reeve
- Centre for Agriculture and Bioscience International (CABI), Bakeham Lane, Egham, Surrey TW20 9TY, UK.
| | - Thelma S Caine
- Centre for Agriculture and Bioscience International (CABI), Bakeham Lane, Egham, Surrey TW20 9TY, UK
| | - Alan G Buddie
- Centre for Agriculture and Bioscience International (CABI), Bakeham Lane, Egham, Surrey TW20 9TY, UK
| |
Collapse
|
38
|
Rudramurthy SM, Paul RA, Chakrabarti A, Mouton JW, Meis JF. Invasive Aspergillosis by Aspergillus flavus: Epidemiology, Diagnosis, Antifungal Resistance, and Management. J Fungi (Basel) 2019; 5:jof5030055. [PMID: 31266196 PMCID: PMC6787648 DOI: 10.3390/jof5030055] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Aspergillus flavus is the second most common etiological agent of invasive aspergillosis (IA) after A. fumigatus. However, most literature describes IA in relation to A. fumigatus or together with other Aspergillus species. Certain differences exist in IA caused by A. flavus and A. fumigatus and studies on A. flavus infections are increasing. Hence, we performed a comprehensive updated review on IA due to A. flavus. A. flavus is the cause of a broad spectrum of human diseases predominantly in Asia, the Middle East, and Africa possibly due to its ability to survive better in hot and arid climatic conditions compared to other Aspergillus spp. Worldwide, ~10% of cases of bronchopulmonary aspergillosis are caused by A. flavus. Outbreaks have usually been associated with construction activities as invasive pulmonary aspergillosis in immunocompromised patients and cutaneous, subcutaneous, and mucosal forms in immunocompetent individuals. Multilocus microsatellite typing is well standardized to differentiate A. flavus isolates into different clades. A. flavus is intrinsically resistant to polyenes. In contrast to A. fumigatus, triazole resistance infrequently occurs in A. flavus and is associated with mutations in the cyp51C gene. Overexpression of efflux pumps in non-wildtype strains lacking mutations in the cyp51 gene can also lead to high voriconazole minimum inhibitory concentrations. Voriconazole remains the drug of choice for treatment, and amphotericin B should be avoided. Primary therapy with echinocandins is not the first choice but the combination with voriconazole or as monotherapy may be used when the azoles and amphotericin B are contraindicated.
Collapse
Affiliation(s)
- Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India.
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015GD Rotterdam, The Netherlands.
| | - Raees A Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Research, Chandigarh 160012, India
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, 3015GD Rotterdam, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ) and Center of Expertise, 6532SZ Nijmegen, The Netherlands
- Center of Expertise in Mycology Radboudumc/CWZ, 6532SZ Nijmegen, The Netherlands
| |
Collapse
|
39
|
Antifungal synergy of a topical triazole, PC945, with a systemic triazole against respiratory Aspergillus fumigatus infection. Sci Rep 2019; 9:9482. [PMID: 31263150 PMCID: PMC6603190 DOI: 10.1038/s41598-019-45890-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Invasive pulmonary Aspergillosis is a leading cause of morbidity and mortality in immunosuppressed patients and treatment outcomes using oral antifungal triazoles remain suboptimal. Here we show that combining topical treatment using PC945, a novel inhaled triazole, with systemic treatment using known triazoles demonstrated synergistic antifungal effects against Aspergillus fumigatus (AF) in an in vitro human alveolus bilayer model and in the lungs of neutropenic immunocompromised mice. Combination treatment with apical PC945 and either basolateral posaconazole or voriconazole resulted in a synergistic interaction with potency improved over either compound as a monotherapy against both azole-susceptible and resistant AF invasion in vitro. Surprisingly there was little, or no synergistic interaction observed when apical and basolateral posaconazole or voriconazole were combined. In addition, repeated prophylactic treatment with PC945, but not posaconazole or voriconazole, showed superior effects to single prophylactic dose, suggesting tissue retention and/or accumulation of PC945. Furthermore, in mice infected with AF intranasally, 83% of animals treated with a combination of intranasal PC945 and oral posaconazole survived until day 7, while little protective effects were observed by either compound alone. Thus, the combination of a highly optimised topical triazole with oral triazoles potentially induces synergistic effects against AF infection.
Collapse
|
40
|
Triazole resistance in Aspergillus fumigatus: recent insights and challenges for patient management. Clin Microbiol Infect 2019; 25:799-806. [DOI: 10.1016/j.cmi.2018.11.027] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 01/18/2023]
|
41
|
Romero M, Messina F, Marin E, Arechavala A, Depardo R, Walker L, Negroni R, Santiso G. Antifungal Resistance in Clinical Isolates of Aspergillus spp.: When Local Epidemiology Breaks the Norm. J Fungi (Basel) 2019; 5:E41. [PMID: 31117260 PMCID: PMC6617206 DOI: 10.3390/jof5020041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 11/24/2022] Open
Abstract
Aspergillosis is a set of very frequent and widely distributed opportunistic diseases. Azoles are the first choice for most clinical forms. However, the distribution of azole-resistant strains is not well known around the world, especially in developing countries. The aim of our study was to determine the proportion of non-wild type strains among the clinical isolates of Aspergillus spp. To this end, the minimum inhibitory concentration of three azoles and amphotericin B (used occasionally in severe forms) was studied by broth microdilution. Unexpectedly, it was found that 8.1% of the isolates studied have a diminished susceptibility to itraconazole. This value turned out to be similar to the highest azole resistance rate reported in different countries across the world.
Collapse
Affiliation(s)
- Mercedes Romero
- Mycology Unit of the Infectious Diseases Hospital F.J. Muñiz, Reference Center of Mycology of Buenos Aires City, Buenos Aires C1282A, Argentina.
| | - Fernando Messina
- Mycology Unit of the Infectious Diseases Hospital F.J. Muñiz, Reference Center of Mycology of Buenos Aires City, Buenos Aires C1282A, Argentina.
| | - Emmanuel Marin
- Mycology Unit of the Infectious Diseases Hospital F.J. Muñiz, Reference Center of Mycology of Buenos Aires City, Buenos Aires C1282A, Argentina.
| | - Alicia Arechavala
- Mycology Unit of the Infectious Diseases Hospital F.J. Muñiz, Reference Center of Mycology of Buenos Aires City, Buenos Aires C1282A, Argentina.
| | - Roxana Depardo
- Mycology Unit of the Infectious Diseases Hospital F.J. Muñiz, Reference Center of Mycology of Buenos Aires City, Buenos Aires C1282A, Argentina.
| | - Laura Walker
- Mycology Unit of the Infectious Diseases Hospital F.J. Muñiz, Reference Center of Mycology of Buenos Aires City, Buenos Aires C1282A, Argentina.
| | - Ricardo Negroni
- Mycology Unit of the Infectious Diseases Hospital F.J. Muñiz, Reference Center of Mycology of Buenos Aires City, Buenos Aires C1282A, Argentina.
| | - Gabriela Santiso
- Mycology Unit of the Infectious Diseases Hospital F.J. Muñiz, Reference Center of Mycology of Buenos Aires City, Buenos Aires C1282A, Argentina.
| |
Collapse
|
42
|
Kosgey JC, Jia L, Fang Y, Yang J, Gao L, Wang J, Nyamao R, Cheteu M, Tong D, Wekesa V, Vasilyeva N, Zhang F. Probiotics as antifungal agents: Experimental confirmation and future prospects. J Microbiol Methods 2019; 162:28-37. [PMID: 31071354 DOI: 10.1016/j.mimet.2019.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Fungal burden throughout the world is very high and it keeps escalating due to increasing numbers of immunocompromised individuals. In contrast, the drugs used in management of fungal infections are so few some with high toxicity. Furthermore, highly resistant fungal pathogens are emerging for example Candida auris, Candida glabrata, Candida gullemondii and Aspergillus species among others. Thus now, more than ever, there is a need for combined efforts and an all round search for possible solutions to curb these problems. Therefore, the role of probiotics in management of fungal infections is indispensable. In fact, the antimicrobial activity of probiotics has been screened with promising results against microbial pathogens. Although, recent reports indicated that probiotics may also contribute to protect against fungal infections, the research done in checking antifungal activity of probiotics has used varied technology. This calls for harmonization of the methods used to screen and confirm the antimicrobial activity of probiotics and other candidate microorganisms. We therefore sought to address issues of disparity in probiotic research and their outcomes. Thus this paper is in order as it comprehensively reviews' publications, provides a summary of the methods and future prospects of probiotics as antifungal agents.
Collapse
Affiliation(s)
- Janet Cheruiyot Kosgey
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China; School of biological and life sciences, Technical University of Kenya, 52428-00200, Kenya
| | - Lina Jia
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Yong Fang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Jianxun Yang
- WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China; Department of Dermatology, The 2nd Hospital of Harbin Medical University, Harbin 150081, China
| | - Lei Gao
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; Electron Microscopy Center, Basic Medical Science College, Harbin Medical University, China
| | - Jielin Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Rose Nyamao
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Martin Cheteu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Dandan Tong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Vitalis Wekesa
- School of biological and life sciences, Technical University of Kenya, 52428-00200, Kenya; Flamingo Horticulture, Dudutech Division, P.O Box 1927, 20117, Naivasha, Kenya
| | - Natalia Vasilyeva
- Kashkin Research Institute of Medical Mycology, Department of Microbiology, North-Western State Medical University named after Machnikov, Saint Petersburg, Russia
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
43
|
Husain S, Camargo JF. Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13544. [PMID: 30900296 DOI: 10.1111/ctr.13544] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
These updated AST-IDCOP guidelines provide information on epidemiology, diagnosis, and management of Aspergillus after organ transplantation. Aspergillus is the most common invasive mold infection in solid-organ transplant (SOT) recipients, and it is the most common invasive fungal infection among lung transplant recipients. Time from transplant to diagnosis of invasive aspergillosis (IA) is variable, but most cases present within the first year post-transplant, with shortest time to onset among liver and heart transplant recipients. The overall 12-week mortality of IA in SOT exceeds 20%; prognosis is worse among those with central nervous system involvement or disseminated disease. Bronchoalveolar lavage galactomannan is preferred for the diagnosis of IA in lung and non-lung transplant recipients, in combination with other diagnostic modalities (eg, chest CT scan, culture). Voriconazole remains the drug of choice to treat IA, with isavuconazole and lipid formulations of amphotericin B regarded as alternative agents. The role of combination antifungals for primary therapy of IA remains controversial. Either universal prophylaxis or preemptive therapy is recommended in lung transplant recipients, whereas targeted prophylaxis is favored in liver and heart transplant recipients. In these guidelines, we also discuss newer antifungals and diagnostic tests, antifungal susceptibility testing, and special patient populations.
Collapse
Affiliation(s)
- Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Unit, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jose F Camargo
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
44
|
Giannella M, Husain S, Saliba F, Viale P. Use of echinocandin prophylaxis in solid organ transplantation. J Antimicrob Chemother 2019; 73:i51-i59. [PMID: 29304212 DOI: 10.1093/jac/dkx449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections (IFIs) are a major threat to patients undergoing solid organ transplantation (SOT). Owing to improvements in surgical techniques, immunosuppression therapy and antifungal prophylaxis, the incidence of IFIs has been decreasing in recent years. However, IFI-associated morbidity and mortality remain significant. Invasive candidiasis (IC) and aspergillosis (IA) are the main IFIs after SOT. Risk factors for IC and IA continue to evolve, and thus strategies for their prevention should be constantly updated and targeted to both individual patient risk factors and local epidemiology. In this review, we discuss the current epidemiology and risk factors for IFIs in SOT recipients in the context of actual approaches to antifungal prophylaxis, including experience with the use of echinocandins, after SOT.
Collapse
Affiliation(s)
- Maddalena Giannella
- Infectious Diseases Unit, Sant'Orsola Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Faouzi Saliba
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France
| | - Pierluigi Viale
- Infectious Diseases Unit, Sant'Orsola Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
45
|
Aït-Ammar N, Levesque E, Murat JB, Imbert S, Foulet F, Dannaoui E, Botterel F. Aspergillus pseudodeflectus: a new human pathogen in liver transplant patients. BMC Infect Dis 2018; 18:648. [PMID: 30541477 PMCID: PMC6292062 DOI: 10.1186/s12879-018-3527-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Liver transplant recipients are at high risk of developing invasive aspergillosis and in particular by Aspergillus fumigatus which is the most commonly encountered species in this population. Other non-fumigatus Aspergillus species with reduced susceptibility to antifungal drugs can also be involved. Accurate identification associated to antifungal susceptibility testing is essential for therapy adjustment. We report a case of invasive pulmonary aspergillosis due to Aspergillus pseudodeflectus in a liver transplant recipient. To our knowledge, this is the first reported case of invasive aspergillosis due to this species with a reduced susceptibility to azoles. CASE PRESENTATION A 64 year-old woman with drug-induced fulminant hepatitis underwent liver transplantation. Prophylactic treatment with caspofungin was introduced due to aspergillosis risk factors consisting in hemodialysis and fulminant hepatitis. Six weeks after transplantation, CT scan showed a right pulmonary opacity associated with an increase of galactomannan (index 5.4). Culture of BAL grew with several colonies of Aspergillus sp. The diagnosis of invasive aspergillosis was probable according to the EORTC criteria. The antifungal susceptibility tests (Etest®) revealed low MICs to echinocandins and amphotericin B) but high MICs to azoles. After these results, voriconazole was switched to liposomal amphotericin B. The patient died one month after diagnosis from a refractory septic shock with multiple organ failure. A molecular identification of isolate, based on partial β-tubulin and calmodulin genes, was performed and identified A. pseudodeflectus. CONCLUSIONS Our case raises the question of pathogenicity of this species, which belongs to Aspergillus section Usti and is genetically and morphologically very close to Aspergillus calidoustus that was previously reported in human transplant recipients.
Collapse
Affiliation(s)
- Nawel Aït-Ammar
- Unité de Parasitologie–Mycologie, Département de Virologie, Bactériologie–Hygiène, Parasitologie–Mycologie, DHU VIC, CHU Henri Mondor, AP-HP, Créteil, France
- EA Dynamyc UPEC, ENVA, Faculté de Médecine de Créteil, Créteil, France
| | - Eric Levesque
- Réanimation Digestive et Hépato-biliaire, Service d’Anesthésie et des Réanimations Chirurgicales, CHU Henri Mondor, AP-HP, Créteil, France
| | - Jean-Benjamin Murat
- Unité de Parasitologie–Mycologie, Département de Virologie, Bactériologie–Hygiène, Parasitologie–Mycologie, DHU VIC, CHU Henri Mondor, AP-HP, Créteil, France
- EA Dynamyc UPEC, ENVA, Faculté de Médecine de Créteil, Créteil, France
| | - Sébastien Imbert
- Service de Parasitologie-Mycologie, CHU Pitié Salpêtrière, AP-HP, Paris, France
| | - Françoise Foulet
- Unité de Parasitologie–Mycologie, Département de Virologie, Bactériologie–Hygiène, Parasitologie–Mycologie, DHU VIC, CHU Henri Mondor, AP-HP, Créteil, France
| | - Eric Dannaoui
- EA Dynamyc UPEC, ENVA, Faculté de Médecine de Créteil, Créteil, France
- Université Paris–Descartes, Faculté de Médecine, Unité de Parasitologie–Mycologie, Service de Microbiologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Françoise Botterel
- Unité de Parasitologie–Mycologie, Département de Virologie, Bactériologie–Hygiène, Parasitologie–Mycologie, DHU VIC, CHU Henri Mondor, AP-HP, Créteil, France
- EA Dynamyc UPEC, ENVA, Faculté de Médecine de Créteil, Créteil, France
| |
Collapse
|
46
|
Lackner M, Rambach G, Jukic E, Sartori B, Fritz J, Seger C, Hagleitner M, Speth C, Lass-Flörl C. Azole-resistant and -susceptible Aspergillus fumigatus isolates show comparable fitness and azole treatment outcome in immunocompetent mice. Med Mycol 2018; 56:703-710. [PMID: 29228287 DOI: 10.1093/mmy/myx109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/05/2017] [Indexed: 11/15/2022] Open
Abstract
No data are available on the in vivo impact of infections with in vitro azole-resistant Aspergillus fumigatus in immunocompetent hosts. Here, the aim was to investigate fungal fitness and treatment response in immunocompetent mice infected with A. fumigatus (parental strain [ps]) and isogenic mutants carrying either the mutation M220K or G54W (cyp51A). The efficacy of itraconazole (ITC) and posaconazole (PSC) was investigated in mice, intravenously challenged either with a single or a combination of ps and mutants (6 × 105 conidia/mouse). Organ fungal burden and clinical parameters were measured. In coinfection models, no fitness advantage was observed for the ps strain when compared to the mutants (M220K and G54W) independent of the presence or absence of azole-treatment. For G54W, M220K, and the ps, no statistically significant difference in ITC and PSC treatment was observed in respect to fungal kidney burden. However, clinical parameters suggest that in particular the azole-resistant strain carrying the mutation G54W caused a more severe disease than the ps strain. Mice infected with G54W showed a significant decline in body weight and lymphocyte counts, while spleen/body weight ratio and granulocyte counts were increased. In immunocompetent mice, in vitro azole-resistance did not translate into therapeutic failure by either ITC or PSC; the immune system appears to play the key role in clearing the infection.
Collapse
Affiliation(s)
- Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Emina Jukic
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Sartori
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Josef Fritz
- Department for Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Austria
| | - Christoph Seger
- Division of Mass Spectrometry and Chromatography, Institute of Medical and Chemical Laboratory Diagnostics (ZIMCL), University Hospital Innsbruck, Innsbruck, Austria
| | - Magdalena Hagleitner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
47
|
Ukai Y, Kuroiwa M, Kurihara N, Naruse H, Homma T, Maki H, Naito A. Contributions of yap1 Mutation and Subsequent atrF Upregulation to Voriconazole Resistance in Aspergillus flavus. Antimicrob Agents Chemother 2018; 62:AAC.01216-18. [PMID: 30126960 PMCID: PMC6201102 DOI: 10.1128/aac.01216-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 01/16/2023] Open
Abstract
Aspergillus flavus is the second most significant pathogenic cause of invasive aspergillosis; however, its emergence risks and mechanisms of voriconazole (VRC) resistance have not yet been elucidated in detail. Here, we demonstrate that repeated exposure of A. flavus to subinhibitory concentrations of VRC in vitro causes the emergence of a VRC-resistant mutant with a novel resistance mechanism. The VRC-resistant mutant shows a MIC of 16 μg/ml for VRC and of 0.5 μg/ml for itraconazole (ITC). Whole-genome sequencing analysis showed that the mutant possesses a point mutation in yap1, which encodes a bZIP transcription factor working as the master regulator of the oxidative stress response, but no mutations in the cyp51 genes. This point mutation in yap1 caused alteration of Leu558 to Trp (Yap1Leu558Trp) in the putative nuclear export sequence in the carboxy-terminal cysteine-rich domain of Yap1. This Yap1Leu558Trp substitution was confirmed as being responsible for the VRC-resistant phenotype, but not for that of ITC, by the revertant to Yap1wild type with homologous gene replacement. Furthermore, Yap1Leu558Trp caused marked upregulation of the atrF ATP-binding cassette transporter, and the deletion of atrF restored susceptibility to VRC in A. flavus These findings provide new insights into VRC resistance mechanisms via a transcriptional factor mutation that is independent of the cyp51 gene mutation in A. flavus.
Collapse
Affiliation(s)
- Yuuta Ukai
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Miho Kuroiwa
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Naoko Kurihara
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Hiroki Naruse
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Tomoyuki Homma
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Hideki Maki
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Akira Naito
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| |
Collapse
|
48
|
Emergence of Azole-Resistant Aspergillus fumigatus from Immunocompromised Hosts in India. Antimicrob Agents Chemother 2018; 62:AAC.02264-17. [PMID: 29891597 DOI: 10.1128/aac.02264-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/29/2018] [Indexed: 12/17/2022] Open
Abstract
This prospective study shows that the rate of azole-resistant Aspergillus fumigatus (ARAF) in an immunocompromised Indian patient population with invasive aspergillosis (IA) is low, 6/706 (0.8%). This low rate supports the continued use of voriconazole as the first line of treatment. However, the ARAF isolates from India in this study exhibited three kinds of unreported cyp51A mutations, of which two were at hot spots, G54R and P216L, while one was at codon Y431C.
Collapse
|
49
|
Comparison of E Test and Disc Diffusion Methods for Susceptibility Testing of Filamentous Fungi; Experience of a Routine Lab. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2018. [DOI: 10.5812/archcid.57889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Elad D, Segal E. Diagnostic Aspects of Veterinary and Human Aspergillosis. Front Microbiol 2018; 9:1303. [PMID: 29977229 PMCID: PMC6022203 DOI: 10.3389/fmicb.2018.01303] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/29/2018] [Indexed: 12/11/2022] Open
Abstract
The genus Aspergillus is composed of more than 300 species, a fraction of which are involved in animal or human infections mostly following environmental exposure. Various risk factors (i.e., immunosuppression, tuberculosis) have been recognized for human whereas for veterinary infections, unhygienic management, trauma, anatomical conformation of the skull, or suspected immunological deficiencies have been suggested. In animals, aspergillosis is mostly sporadic but in some circumstance such as infections on poultry farms may involve the whole flock. Since the high prevalence of immunosuppression in human patients has not been mirrored in veterinary medicine, and although to the best of our knowledge, no comprehensive data on the prevalence of aspergillosis in animals has been published, their epidemiology has not changed during the last decades. The impact of these infections may be economic or if they are incurable, sentimental. The objective of the first part is to describe the diagnosis of the main clinical entities caused by Aspergillus spp. in animals. It includes disseminated canine aspergillosis, canine and feline sino-nasal and sino-orbital aspergillosis, guttural pouch mycosis in horses, mycotic abortion in cattle, mycotic keratitis in horses, and avian aspergillosis. When pathogenesis and clinical aspects are relevant for diagnosis—they will be addressed as well. The second part deals with human aspergillosis, which is a multifaceted disease, manifested in a spectrum of clinical entities affecting one or more organs. Diagnosis is based on the clinical manifestation, supported and confirmed by laboratory means, involving the classical approach of demonstrating the etiological agent in the clinical specimens and in culture. Noncultural methods, such as antigen detection and/or molecular assays to detect fungal nucleic acids or protein profiles, are used as well. The isolation and identification of the fungus allows the determination of its susceptibility to antifungal drugs. Thus, antifungal susceptibility testing maybe considered as part of the diagnostic process, which is of relevance for management of the infection. In this review article, the part dealing with diagnostic aspects of aspergillosis in humans concentrates on susceptibility testing of Aspergillus spp. to antifungal drugs and drug combinations. The technologies and methods of susceptibility testing are described and evaluated.
Collapse
Affiliation(s)
- Daniel Elad
- Department of Clinical Bacteriology and Mycology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Esther Segal
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|