1
|
Meilleur C, Kus J, Navarro C, Dubey V, Lucidarme J, Borrow R, Tsang RSW. Genetically distinct Hajj and South American-related strains of serogroup W Neisseria meningitidis causing invasive meningococcal disease in Ontario, Canada, January 1, 2015 to June 30, 2024. J Infect Public Health 2025; 18:102728. [PMID: 40056891 DOI: 10.1016/j.jiph.2025.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025] Open
Abstract
OBJECTIVES To characterize the recent trends in serogroup W isolates from invasive meningococcal disease (IMD) cases (MenW) in Ontario, Canada since 2015. METHODS IMD case isolates in Ontario between January 1, 2015 and June 30, 2024 were examined by phenotypic and genetic methods for possession of vaccine antigen genes and clonal characteristics. MenW ST-11 clonal complex (CC) strains were compared against global MenW isolates by core-genome multi-locus sequence typing (cgMLST). RESULTS The percentage of culture-confirmed IMD caused by MenW in Ontario increased from 10 % in 2015-40.9 % in the first half of 2024, consisting entirely of strains belonging to the ST-11 CC. cgMLST comparison of the Ontario invasive MenW isolates versus international MenW ST-11CC strains showed that the Ontario isolates were related to those found globally, with a recent cluster of eight cases from one city due to a strain highly related to international Umrah outbreak strains. Most MenW IMD cases (60 %) occurred in individuals older than 40 years of age and the majority (83.3 %) predicted to express antigens covered by the 4CMenB vaccine. CONCLUSIONS Multiple different introductions of international MenW strains likely accounted for the recent shift towards invasive MenW disease in Ontario.
Collapse
Affiliation(s)
- Courtney Meilleur
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Julianne Kus
- Public Health Ontario, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Vinita Dubey
- Toronto Public Health, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Jay Lucidarme
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, UK
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Medical Microbiology Partnership, Manchester Royal Infirmary, Manchester, UK
| | - Raymond S W Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory Branch, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.
| |
Collapse
|
2
|
Guo Y, Cao Y, He B, Dong X, Bi M, Wang X, Gao T, Liu X, Wang K, Wang Y, Zhang H, Sun Y, Gao W, Zhang Y, Jia Z. The First Case of Serogroup Y Neisseria meningitidis and An Expanded Investigation of Healthy Carriers - Shijiazhuang City, Hebei Province, China, 2023. China CDC Wkly 2024; 6:1242-1247. [PMID: 39697828 PMCID: PMC11649992 DOI: 10.46234/ccdcw2024.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
What is already known about this topic? Neisseria meningitidis (Nm) is a bacterial pathogen that causes meningococcal disease. Serogroups A, B, C, W, X, and Y account for the vast majority of cases. However, invasive meningococcal disease (IMD) caused by NmY is rare in China and has been reported only in Tianjin, Guangdong, Shanghai, and Hunan provinces and cities. What is added by this report? This article reports the first case of NmY:cc23 meningococcal disease in Hebei Province, confirmed by metagenomic sequencing. We also present the results of expanded surveillance in the healthy population associated with the case. What are the implications for public health practice? NmY has caused multiple case reports across China, especially in southern cities. The first report of a serogroup Y case in Hebei Province, and the carriage rate in the healthy population, reminds us to increase public health attention on Nm. The results of this study suggest that surveillance of the Nm carriage rate among healthy carriers and serogroup changes in Nm should be strengthened.
Collapse
Affiliation(s)
- Yumei Guo
- Shijiazhuang Center for Disease Control and Prevention, Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang City, Hebei Province, China
| | - Yuwen Cao
- Hebei Provincial Center for Disease Control and Prevention Bacterial Disease Prevention and Disinfection Institute, Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Shijiazhuang City, Hebei Province, China
| | - Baohua He
- Hebei Provincial Center for Disease Control and Prevention Bacterial Disease Prevention and Disinfection Institute, Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Shijiazhuang City, Hebei Province, China
| | - Xinyan Dong
- Shijiazhuang Center for Disease Control and Prevention, Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang City, Hebei Province, China
| | - Meng Bi
- Shijiazhuang Center for Disease Control and Prevention, Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang City, Hebei Province, China
| | - Xiaoli Wang
- Shijiazhuang Center for Disease Control and Prevention, Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang City, Hebei Province, China
| | - Teng Gao
- Shijiazhuang Center for Disease Control and Prevention, Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang City, Hebei Province, China
| | - Xingle Liu
- Shijiazhuang Center for Disease Control and Prevention, Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang City, Hebei Province, China
| | - Ke Wang
- Shijiazhuang Center for Disease Control and Prevention, Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang City, Hebei Province, China
| | - Yuhao Wang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Zhang
- Shijiazhuang Center for Disease Control and Prevention, Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang City, Hebei Province, China
| | - Yinqi Sun
- Hebei Provincial Center for Disease Control and Prevention Bacterial Disease Prevention and Disinfection Institute, Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Shijiazhuang City, Hebei Province, China
| | - Weili Gao
- Shijiazhuang Center for Disease Control and Prevention, Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang City, Hebei Province, China
| | - Yulan Zhang
- Shijiazhuang Center for Disease Control and Prevention, Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang City, Hebei Province, China
| | - Zhaoyi Jia
- Hebei Provincial Center for Disease Control and Prevention Bacterial Disease Prevention and Disinfection Institute, Hebei Key Laboratory of Pathogens and Epidemiology of Infectious Diseases, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
3
|
Bettencourt C, Nunes A, Nogueira P, Duarte S, Silva C, Gomes JP, Simões MJ. Epidemiology and genetic diversity of invasive Neisseria meningitidis strains circulating in Portugal from 2003 to 2020. Int Microbiol 2024; 27:1125-1136. [PMID: 38057459 PMCID: PMC11300501 DOI: 10.1007/s10123-023-00463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Invasive meningococcal disease (IMD) continues to be a public health problem due to its epidemic potential, affecting mostly children. We aimed to present a detailed description of the epidemiology of IMD in Portugal, including insights into the genetic diversity of Neisseria meningitidis strains. Epidemiological analysis included data from the Portuguese National Reference Laboratory of Neisseria meningitidis during 2003 to 2020. Since 2012, N. meningitidis isolates have also been assessed for their susceptibility to antibiotics and were characterized by whole genome sequencing. During 2003-2020, 1392 confirmed cases of IMD were analyzed. A decrease in the annual incidence rate was observed, ranging from 1.99 (2003) to 0.39 (2020), with an average case fatality rate of 7.1%. Serogroup B was the most frequent (69.7%), followed by serogroups C (9.7%), Y (5.7%), and W (2.6%). Genomic characterization of 329 isolates identified 20 clonal complexes (cc), with the most prevalent belonging to serogroup B cc41/44 (26.3%) and cc213 (16.3%). Isolates belonging to cc11 were predominantly from serogroups W (77.3%) and C (76.5%), whereas cc23 was dominant from serogroup Y (65.7%). Over the past 4 years (2017-2020), we observed an increasing trend of cases assigned to cc213, cc32, and cc11. Regarding antimicrobial susceptibility, all isolates were susceptible to ceftriaxone and 61.8% were penicillin-nonsusceptible, whereas 1.4% and 1.0% were resistant to ciprofloxacin and rifampicin. This is the first detailed study on the epidemiology and genomics of invasive N. meningitidis infections in Portugal, providing relevant data to public health policy makers for a more effective control of this disease.
Collapse
Affiliation(s)
- Célia Bettencourt
- National Reference Laboratory for Neisseria Meningitidis, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal.
| | - Alexandra Nunes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Paulo Nogueira
- Escola Nacional de Saúde Pública, NOVA University of Lisbon, Lisbon, Portugal
| | - Sílvia Duarte
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Catarina Silva
- Innovation and Technology Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Veterinary and Animal Research Centre (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Maria João Simões
- National Reference Laboratory for Neisseria Meningitidis, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| |
Collapse
|
4
|
Ewe K, Fathima P, Effler P, Giele C, Richmond P. Impact of Meningococcal ACWY Vaccination Program during 2017-18 Epidemic, Western Australia, Australia. Emerg Infect Dis 2024; 30:270-278. [PMID: 38270172 PMCID: PMC10826768 DOI: 10.3201/eid3002.230144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The rising incidence of invasive meningococcal disease (IMD) caused by Neisseria meningitidis serogroup W in Western Australia, Australia, presents challenges for prevention. We assessed the effects of a quadrivalent meningococcal vaccination program using 2012-2020 IMD notification data. Notification rates peaked at 1.8/100,000 population in 2017; rates among Aboriginal and Torres Strait Islander populations were 7 times higher than for other populations. Serogroup W disease exhibited atypical manifestations and increased severity. Of 216 cases, 20 IMD-related deaths occurred; most (19/20) were in unvaccinated persons. After the 2017-2018 targeted vaccination program, notification rates decreased from 1.6/100,000 population in 2018 to 0.9/100,000 population in 2019 and continued to decline in 2020. Vaccine effectiveness (in the 1-4 years age group) using the screening method was 93.6% (95% CI 50.1%-99.2%) in 2018 and 92.5% (95% CI 28.2%-99.2%) in 2019. Strategic planning and prompt implementation of targeted vaccination programs effectively reduce IMD.
Collapse
Affiliation(s)
| | | | - Paul Effler
- Wesfarmers Centre of Vaccines and Infectious Diseases, Perth, Western Australia, Australia (K. Ewe, P. Fathima, P. Richmond)
- Perth Children’s Hospital, Perth (K. Ewe, P. Richmond)
- Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia (P. Fathima)
- Communicable Disease Control Directorate, Western Australia Department of Health, Perth (P. Effler, C. Giele)
- University of Western Australia School of Medicine, Perth (P. Richmond)
| | - Carolien Giele
- Wesfarmers Centre of Vaccines and Infectious Diseases, Perth, Western Australia, Australia (K. Ewe, P. Fathima, P. Richmond)
- Perth Children’s Hospital, Perth (K. Ewe, P. Richmond)
- Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia (P. Fathima)
- Communicable Disease Control Directorate, Western Australia Department of Health, Perth (P. Effler, C. Giele)
- University of Western Australia School of Medicine, Perth (P. Richmond)
| | - Peter Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Perth, Western Australia, Australia (K. Ewe, P. Fathima, P. Richmond)
- Perth Children’s Hospital, Perth (K. Ewe, P. Richmond)
- Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia (P. Fathima)
- Communicable Disease Control Directorate, Western Australia Department of Health, Perth (P. Effler, C. Giele)
- University of Western Australia School of Medicine, Perth (P. Richmond)
| |
Collapse
|
5
|
Eriksson L, Johannesen TB, Stenmark B, Jacobsson S, Säll O, Hedberg ST, Fredlund H, Stegger M, Mölling P. Genetic variants linked to the phenotypic outcome of invasive disease and carriage of Neisseria meningitidis. Microb Genom 2023; 9:001124. [PMID: 37874326 PMCID: PMC10634450 DOI: 10.1099/mgen.0.001124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Neisseria meningitidis can be a human commensal in the upper respiratory tract but is also capable of causing invasive diseases such as meningococcal meningitis and septicaemia. No specific genetic markers have been detected to distinguish carriage from disease isolates. The aim here was to find genetic traits that could be linked to phenotypic outcomes associated with carriage versus invasive N. meningitidis disease through a bacterial genome-wide association study (GWAS). In this study, invasive N. meningitidis isolates collected in Sweden (n=103) and carriage isolates collected at Örebro University, Sweden (n=213) 2018-2019 were analysed. The GWAS analysis, treeWAS, was applied to single-nucleotide polymorphisms (SNPs), genes and k-mers. One gene and one non-synonymous SNP were associated with invasive disease and seven genes and one non-synonymous SNP were associated with carriage isolates. The gene associated with invasive disease encodes a phage transposase (NEIS1048), and the associated invasive SNP glmU S373C encodes the enzyme N-acetylglucosamine 1-phosphate (GlcNAC 1-P) uridyltransferase. Of the genes associated with carriage isolates, a gene variant of porB encoding PorB class 3, the genes pilE/pilS and tspB have known functions. The SNP associated with carriage was fkbp D33N, encoding a FK506-binding protein (FKBP). K-mers from PilS, tbpB and tspB were found to be associated with carriage, while k-mers from mtrD and tbpA were associated with invasiveness. In the genes fkbp, glmU, PilC and pilE, k-mers were found that were associated with both carriage and invasive isolates, indicating that specific variations within these genes could play a role in invasiveness. The data presented here highlight genetic traits that are significantly associated with invasive or carriage N. meningitidis across the species population. These traits could prove essential to our understanding of the pathogenicity of N. meningitidis and could help to identify future vaccine targets.
Collapse
Affiliation(s)
- Lorraine Eriksson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Thor Bech Johannesen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Bianca Stenmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Susanne Jacobsson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Olof Säll
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sara Thulin Hedberg
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hans Fredlund
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marc Stegger
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
6
|
Prevalence and persistence of Neisseria meningitidis carriage in Swedish university students. Epidemiol Infect 2023; 151:e25. [PMID: 36775828 PMCID: PMC9990396 DOI: 10.1017/s0950268823000018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
The bacterium Neisseria meningitidis causes life-threatening disease worldwide, typically with a clinical presentation of sepsis or meningitis, but can be carried asymptomatically as part of the normal human oropharyngeal microbiota. The aim of this study was to examine N. meningitidis carriage with regard to prevalence, risk factors for carriage, distribution of meningococcal lineages and persistence of meningococcal carriage. Throat samples and data from a self-reported questionnaire were obtained from 2744 university students (median age: 23 years) at a university in Sweden on four occasions during a 12-month period. Meningococcal isolates were characterised using whole-genome sequencing. The carriage rate among the students was 9.1% (319/3488; 95% CI 8.2-10.1). Factors associated with higher carriage rate were age ≤22 years, previous tonsillectomy, cigarette smoking, drinking alcohol and attending parties, pubs and clubs. Female gender and sharing a household with children aged 0-9 years were associated with lower carriage. The most frequent genogroups were capsule null locus (cnl), group B and group Y and the most commonly identified clonal complexes (cc) were cc198 and cc23. Persistent carriage with the same meningococcal strain for 12 months was observed in two students. Follow-up times exceeding 12 months are recommended for future studies investigating long-term carriage of N. meningitidis.
Collapse
|
7
|
Santos DRDS, Bianco K, Clementino MBM, Dávila AMR, de Filippis I. Characterisation of Neisseria meningitidis cc11/ET-15 variant by whole genome sequencing. Mem Inst Oswaldo Cruz 2022; 117:e220118. [PMID: 36228280 PMCID: PMC9543360 DOI: 10.1590/0074-02760220118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Neisseria meningitidis strains belonging to clonal complex 11 is the cause of numerous outbreaks and epidemics in the United States, Canada and Europe, accounting for 49.5% of cases of meningococcal disease caused by serogroup C worldwide. In Brazil, it is the second most frequent clonal complex within this serogroup. The genetic characterisation of cc11/ET-15 variants is important for the epidemiological monitoring of meningococcal disease, through the identification of circulating epidemic clones, to support specific actions of Health Surveillance aiming outbreaks control. OBJECTIVES The objective of this study was to identify features in the genome of cc11/ET-15 clones through whole-genome sequencing (WGS), that differ from cc11/non-ET-15 strains that could explain their virulence. METHODS The whole genome of three cc11/ET-15 representative strains were sequenced with a minimum coverage of 100X with the MiSeq System and compared to the genome of cc11/non-ET-15 strains. RESULTS Genome analysis of cc11/ET-15 variants showed the presence of resistance factors, mobile genetic elements and virulence factors not found in cc11/non-ET-15 strains. MAIN CONCLUSIONS Our results show that these strains carry virulence factors not identified in cc11/non-ET-15 strains, which could explain the high lethality rates attributed to this clone worldwide.
Collapse
Affiliation(s)
- Debora Ribeiro de Souza Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| | - Kayo Bianco
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, RJ, Brasil
| | | | | | - Ivano de Filippis
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Controle de Qualidade em Saúde, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
8
|
Guedes S, Bertrand-Gerentes I, Evans K, Coste F, Oster P. Invasive meningococcal disease in older adults in North America and Europe: is this the time for action? A review of the literature. BMC Public Health 2022; 22:380. [PMID: 35197024 PMCID: PMC8864456 DOI: 10.1186/s12889-022-12795-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neisseria meningitidis is an encapsulated Gram-negative diplococcus that asymptomatically colonises the upper respiratory tract in up to 25% of the population (mainly adolescents and young adults). Invasive meningococcal disease (IMD) caused by Neisseria meningitidis imposes a substantial public health burden,. The case fatality rate (CFR) of IMD remains high. IMD epidemiology varies markedly by region and over time, and there appears to be a shift in the epidemiology towards older adults. The objective of our review was to assess the published data on the epidemiology of IMD in older adults (those aged ≥ 55 years)in North America and Europe. Such information would assist decision-makers at national and international levels in developing future public health programmes for managing IMD. METHODS A comprehensive literature review was undertaken on 11 August 2020 across three databases: EMBASE, Medline and BIOSIS. Papers were included if they met the following criteria: full paper written in the English language; included patients aged ≥ 56 years; were published between 1/1/2009 11/9/2020 and included patients with either suspected or confirmed IMD or infection with N. meningitidis in North America or Europe. Case studies/reports/series were eligible for inclusion if they included persons in the age range of interest. Animal studies and letters to editors were excluded. In addition, the websites of international and national organisations and societies were also checked for relevant information. RESULTS There were 5,364 citations identified in total, of which 76 publications were included in this review. We identified that older adults with IMD were mainly affected by serogroups W and Y, which are generally not the predominant strains in circulation in most countries. Older adults had the highest CFRs, probably linked to underlying comorbidities and more atypical presentations hindering appropriate timely management. In addition, there was some evidence of a shift in the incidence of IMD from younger to older adults. CONCLUSIONS The use of meningococcal vaccines that include coverage against serogroups W and Y in immunization programs for older adults needs to be evaluated to inform health authorities' decisions of the relative benefits of vaccination and the utility of expanding national immunization programmes to this age group.
Collapse
Affiliation(s)
- Sandra Guedes
- Sanofi Pasteur, 14 Espace Henry Vallée, 69007, Lyon, France
| | | | | | - Florence Coste
- Sanofi Pasteur, 14 Espace Henry Vallée, 69007, Lyon, France
| | - Philipp Oster
- Sanofi Pasteur, 14 Espace Henry Vallée, 69007, Lyon, France.
| |
Collapse
|
9
|
Lemos APSD, Gorla MCO, de Moraes C, Willemann MC, Sacchi CT, Fukasawa LO, Camargo CH, Barreto G, Rodrigues DS, Gonçalves MG, Higa FT, Salgado MM, de Moraes JC. Emergence of Neisseria meningitidis W South American sublineage strain variant in Brazil: disease and carriage. J Med Microbiol 2022; 71. [PMID: 35144719 DOI: 10.1099/jmm.0.001484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction. Invasive meningococcal disease is a major health problem, impacting morbidity and mortality worldwide. Exploratory genomics has revealed insights into adaptation, transmissibility and virulence to elucidate endemic, outbreaks or epidemics caused by Neisseria meningitidis serogroup W (MenW) strains.Gap Statement. Limited information on the genomics of Neisseria meningitis serogroup W ST11/cc11 is available from emerging countries, especially in contemporary isolates.Aim. To (i) describe the antigenic diversity and distribution of genetic lineages of N. meningitidis serogroup W circulating in Brazil; (ii) study the carriage prevalence of hypervirulent clones in adolescents students and (iii) analyse the potential risk factors for meningococcal carriage.Methodology. Using whole-genome sequencing, we analysed the genomic diversity of 92 invasive N. meningitidis serogroup W isolates circulating in Brazil from 2016 to 2019. A cross-sectional survey of meningococcal carriage was conducted in 2019, in the city of Florianópolis, Brazil, among a representative sample of 538 students.Results. A predominance (58.5 %, 41/82) of ST11/cc11 presenting PorB2-144, PorA VR1-5, VR2-2, FetA 1-1, and a novel fHbp peptide 1241 was found on invasive N. meningitidis W isolates, on the other hand, a high diversity of clonal complexes was found among carriage isolates. The overall carriage rate was 7.5 % (40/538). A total of 28 of 538 swab samples collected were culture positive for N. meningitidis, including four serogroup/genogroup B isolates (14.8 %;4/27), 1 serogroup/genogroup Y isolate (3.7 %;1/27), 22 (81.5 %; 22/27) non-groupable isolates. No MenW isolate was identified among carriages isolates.Conclusion. This report describes the emergence of the new MenW ST11/cc11 South America sublineage variant, named here, 2016 strain, carrying a novel fHbp peptide 1241, but its emergence, was not associated with an increased MenW carriage prevalence. Continuous surveillance is necessary to ascertain the role of this sublineage diversification and how its emergence can impact transmission.
Collapse
Affiliation(s)
| | | | - Camile de Moraes
- Coordenação Geral de Emergências em Saúde Pública, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Gisele Barreto
- Vigilância Epidemiológica de Santa Catarina, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Zhang Y, Deng X, Jiang Y, Zhang J, Zhan L, Mei L, Lu H, Yao P, He H. The Epidemiology of Meningococcal Disease and Carriage, Genotypic Characteristics and Antibiotic Resistance of Neisseria meningitidis Isolates in Zhejiang Province, China, 2011–2021. Front Microbiol 2022; 12:801196. [PMID: 35140696 PMCID: PMC8819144 DOI: 10.3389/fmicb.2021.801196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 11/26/2022] Open
Abstract
Neisseria meningitidis (Nm) remains a worldwide leading cause of epidemic meningitis. During 2011–July 2021, 55 meningococcal disease (MD) cases were reported with a case fatality rate of 5.45% in Zhejiang Province, China. The median age was 7 years. The annual incidence was 0.0017–0.0183 per 100,000 population. The highest age-specific incidence was observed in the group younger than 1 year. Serogroup was identified in 30 laboratory-confirmed MD cases, and MenB was most predominant. MenB was mainly observed in two age groups: younger than 5 and older than 35 years. MenB incidence was significantly increasing from 0.0018 per 100,000 in 2013 to 0.0070 per 100,000 in 2019. During 2015–2020, 17 positive samples were detected from 2,827 throat swabs from healthy population, of which 70.59% was MenB. Twenty multilocus sequence typing sequence types (STs) containing eight newly assigned STs (ST15881–ST15888) were determined in all Nm isolates. Either in MD cases or in healthy population, MenB CC ST-4821 was the predominant ST. It was worth noting that two MenY CC ST-23 cases occurred in 2019 and 2021, respectively. MenY CC ST-23 MD cases increased gradually in China. Phylogeny results based on genome sequencing indicated that Chinese MenW CC ST-11 isolates were genetically linked and grouped together with Japanese isolates, separated from MenW CC ST-11 isolates from Saudi Arabia Hajj outbreak, Europe, South Africa, South America, North America, and Oceania. MenW CC ST-11 isolates from East Asia might have evolved locally. Antibiotic susceptibility tests revealed a relatively high resistance rate (22.86%) of Nm isolates to penicillin. This study provided valuable data for Chinese public health authorities to grasp the temporal epidemiological characteristics of MD and healthy carriage.
Collapse
Affiliation(s)
- Yunyi Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Xuan Deng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junyan Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Li Zhan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lingling Mei
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hangjing Lu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Pingping Yao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- *Correspondence: Pingping Yao,
| | - Hanqing He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
- Hanqing He,
| |
Collapse
|
11
|
Bettencourt C, Nunes A, Gomes JP, Simões MJ. Genomic surveillance of Neisseria meningitidis serogroup W in Portugal from 2003 to 2019. Eur J Clin Microbiol Infect Dis 2021; 41:289-298. [PMID: 34787749 DOI: 10.1007/s10096-021-04371-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
In recent years, a change in the epidemiology of meningococcal disease caused by Neisseria meningitidis serogroup W (MenW) has been observed worldwide, with the emergence of new sublineages associated with a higher rate of fatal cases. The present study intends to describe the epidemiology of invasive meningococcal disease (IMD) due to MenW in Portugal between 2003 and 2019, and to genetically characterize population structure. Despite MenW has a low incidence in Portugal, having almost disappeared from 2008 to 2015, since 2016, the number of MenW cases has been steadily increasing at a rate of ~ twofold per year, with more than 80% of the characterized isolates belonging to clonal complex 11 (cc11). Core-genome phylogeny of 25 Portuguese (PT) MenW isolates showed a strain clustering mainly either with the Original UK or the UK 2013 sublineages. Our study also reported for the first time the presence of distinct prophages with a notable overrepresentation of an ~ 32-35-kb PS_1-like prophage found in MenW cc11 genomes. The presence of the PS_1-like prophage in almost all 4723 cc11 genomes selected from Neisseria PubMLST database regardless of the capsular group they belong to suggests an ancestral acquisition of this mobile element prior to capsular switching events. Overall, by mimicking the scenario observed worldwide, this study reinforces the importance of a close monitoring of MenW disease, especially from cc11, in order to promptly adapt the vaccination plan for IMD control in Portugal. Moreover, future studies are needed to understand the putative contribution of prophages to fitness and virulence of PT MenW strains.
Collapse
Affiliation(s)
- Célia Bettencourt
- National Reference Laboratory for Neisseria meningitidis, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal.
| | - Alexandra Nunes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal. .,CBIOS - Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisbon, Portugal.
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Maria João Simões
- National Reference Laboratory for Neisseria meningitidis, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
12
|
Yang Z, Ren X, Davies H, Wood T, Lopez L, Sherwood J, Tiong A, Carter PE. Genomic Surveillance of a Globally Circulating Distinct Group W Clonal Complex 11 Meningococcal Variant, New Zealand, 2013-2018. Emerg Infect Dis 2021; 27:1087-1097. [PMID: 33754994 PMCID: PMC8007299 DOI: 10.3201/eid2704.191716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Genomic surveillance is an essential part of effective disease control, enabling identification of emerging and expanding strains and monitoring of subsequent interventions. Whole-genome sequencing was used to analyze the genomic diversity of all Neisseria meningitidis isolates submitted to the New Zealand Meningococcal Reference Laboratory during 2013–2018. Of the 347 isolates submitted for whole-genome sequencing, we identified 68 sequence types belonging to 18 clonal complexes (CC). The predominant CC was CC41/44; next in predominance was CC11. Comparison of the 45 New Zealand group W CC11 isolates with worldwide representatives of group W CC11 isolates revealed that the original UK strain, the 2013 UK strain, and a distinctive variant (the 2015 strain) were causing invasive group W meningococcal disease in New Zealand. The 2015 strain also demonstrated increased resistance to penicillin and has been circulating in Canada and several countries in Europe, highlighting that close monitoring is needed to prevent future outbreaks around the world.
Collapse
|
13
|
Hovmand N, Lundbo LF, Kronborg G, Voss SS, Sandholdt H, Hoffmann S, Valentiner-Branth P, Benfield T. Recent increased incidence of invasive serogroup W meningococcal disease: A retrospective observational study. Int J Infect Dis 2021; 108:582-587. [PMID: 34102306 DOI: 10.1016/j.ijid.2021.05.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Neisseria meningitidis serogroup W incidence has increased. Mortality associated with serogroup W has been higher than for other serogroups. Here we report epidemiological characteristics and risks of poor outcomes associated with invasive meningococcal disease in Denmark since 1980. METHODS All cases of invasive meningococcal disease reported from 1980-2018 were analyzed. Incidence rates by age, sex, manifestation, and serogroup were calculated. Poisson regression was used to analyze the rise in serogroup W, and multivariate logistic analysis was used to analyze risk factors for mortality. RESULTS A total of 5825 cases were analyzed. Risk of serogroup W infection increased after 2015 compared with all previous periods. Younger (<20 years) and older age (≥60 years) was associated with an increased risk of serogroup W infection compared with being aged 20-39. Crude case fatality was 12.0%, 11.9%, 9.2%, and 7.9% for serogroups W, Y, C, and B, respectively. After adjustment for age, sex, and manifestation, 30-day mortality was comparable for serogroups. Older age and manifestation with sepsis independently predicted risk of death. CONCLUSIONS Invasive meningococcal disease caused by serogroup W has increased, but serogroup per se was not associated with an increased risk of 30-day mortality.
Collapse
Affiliation(s)
- Nichlas Hovmand
- Center of Research & Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Hvidovre Hospital, Kettegaard Alle 30, 2650 Hvidovre, Denmark; Faculty of Human Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Lene Fogt Lundbo
- Center of Research & Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Hvidovre Hospital, Kettegaard Alle 30, 2650 Hvidovre, Denmark.
| | - Gitte Kronborg
- Department of Infectious Diseases, Hvidovre Hospital, Kettegaard Alle 30, 2650 Hvidovre, Denmark.
| | - Sidsel Skou Voss
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Håkon Sandholdt
- Center of Research & Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Hvidovre Hospital, Kettegaard Alle 30, 2650 Hvidovre, Denmark.
| | - Steen Hoffmann
- Bacteria, Parasites & Fungi, Infectious Disease Preparedness, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Palle Valentiner-Branth
- Department of Infectious Disease Epidemiology & Prevention, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| | - Thomas Benfield
- Center of Research & Disruption of Infectious Diseases (CREDID), Department of Infectious Diseases, Hvidovre Hospital, Kettegaard Alle 30, 2650 Hvidovre, Denmark; Faculty of Human Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
14
|
Drew RJ, Bennett D, O'Donnell S, Mulhall R, Cunney R. Risk factors for carriage of meningococcus in third-level students in Ireland: an unsupervised machine learning approach. Hum Vaccin Immunother 2021; 17:3702-3709. [PMID: 34165378 DOI: 10.1080/21645515.2021.1940651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The aim of this study was to examine the risk factors for pharyngeal carriage of meningococci in third-level students using an unsupervised machine learning approach. Data were gathered as part of meningococcal prevalence studies conducted by the Irish Meningitis and Sepsis Reference Laboratory (IMSRL). Pharyngeal swab cultures for meningococcal carriage were taken from each student once they had completed a single-page anonymous questionnaire addressing basic demographics, social behaviors, living arrangements, vaccination, and antibiotic history. Data were analyzed using multiple correspondence analysis through a machine learning approach.In total, 16,285 students who had a pharyngeal throat swab taken returned a fully completed questionnaire. Overall, meningococcal carriage rate was 20.6%, and the carriage of MenW was 1.9% (n = 323). Young Irish adults aged under 20 years and immunized with the meningococcal C vaccine had a higher MenW colonization rate (n = 171/1260, 13.5%) compared with non-Irish adults aged 20 years or older without the MenC vaccine (n = 5/81, 6%, chi-square = 3.6, p = .05). Unsupervised machine learning provides a useful technique to explore meningococcal carriage risk factors. The issue is very complex, and asked risk factors only explain a small proportion of the carriage. This technique could be used on other conditions to explore reasons for carriage.
Collapse
Affiliation(s)
- Richard J Drew
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland.,Clinical Innovation Unit, Rotunda Hospital, Dublin, Ireland.,Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Desirée Bennett
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Sinéad O'Donnell
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Robert Mulhall
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Robert Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland.,Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
15
|
Atypical presentation of Neisseria meningitidis serogroup W disease is associated with the introduction of the 2013 strain. Epidemiol Infect 2021; 149:e126. [PMID: 33910672 PMCID: PMC8161285 DOI: 10.1017/s0950268821001035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Since 2015, the incidence of invasive meningococcal disease (IMD) caused by serogroup W (MenW) has increased in Sweden, due to the introduction of the 2013 strain belonging to clonal complex 11. The aim of this study was to describe the clinical presentation of MenW infections, in particular the 2013 strain, including genetic associations. Medical records of confirmed MenW IMD cases in Sweden during the years 1995–2019 (n = 113) were retrospectively reviewed and the clinical data analysed according to strain. Of all MenW patients, bacteraemia without the focus of infection was seen in 44%, bacteraemic pneumonia in 26%, meningitis in 13% and epiglottitis in 8%, gastrointestinal symptoms in 48% and 4% presented with petechiae. Phylogenetic analysis was used for possible links between genetic relationship and clinical picture. The 2013 strain infections, particularly in one cluster, were associated with more severe disease compared with other MenW infections. The patients with 2013 strain infections (n = 68) were older (52 years vs. 25 years for other strains), presented more often with diarrhoea as an atypical presentation (P = 0.045) and were more frequently admitted for intensive care (P = 0.032). There is a risk that the atypical clinical presentation of MenW infections, with predominantly gastrointestinal or respiratory symptoms rather than neck stiffness or petechiae, may lead to delay in life-saving treatment.
Collapse
|
16
|
Genome-wide methylome analysis of two strains belonging to the hypervirulent Neisseria meningitidis serogroup W ST-11 clonal complex. Sci Rep 2021; 11:6239. [PMID: 33737546 PMCID: PMC7973814 DOI: 10.1038/s41598-021-85266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/26/2021] [Indexed: 11/08/2022] Open
Abstract
A rising incidence of meningococcal serogroup W disease has been evident in many countries worldwide. Serogroup W isolates belonging to the sequence type (ST)-11 clonal complex have been associated with atypical symptoms and increased case fatality rates. The continued expansion of this clonal complex in the later part of the 2010s has been largely due to a shift from the so-called original UK strain to the 2013 strain. Here we used single-molecule real-time (SMRT) sequencing to determine the methylomes of the two major serogroup W strains belonging to ST-11 clonal complex. Five methylated motifs were identified in this study, and three of the motifs, namely 5'-GATC-3', 5'-GAAGG-3', 5'-GCGCGC-3', were found in all 13 isolates investigated. The results showed no strain-specific motifs or difference in active restriction modification systems between the two strains. Two phase variable methylases were identified and the enrichment or depletion of the methylation motifs generated by these methylases varied between the two strains. Results from this work give further insight into the low diversity of methylomes in highly related strains and encourage further research to decipher the role of regions with under- or overrepresented methylation motifs.
Collapse
|
17
|
Tzeng YL, Stephens DS. A Narrative Review of the W, X, Y, E, and NG of Meningococcal Disease: Emerging Capsular Groups, Pathotypes, and Global Control. Microorganisms 2021; 9:microorganisms9030519. [PMID: 33802567 PMCID: PMC7999845 DOI: 10.3390/microorganisms9030519] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Neisseria meningitidis, carried in the human nasopharynx asymptomatically by ~10% of the population, remains a leading cause of meningitis and rapidly fatal sepsis, usually in otherwise healthy individuals. The epidemiology of invasive meningococcal disease (IMD) varies substantially by geography and over time and is now influenced by meningococcal vaccines and in 2020–2021 by COVID-19 pandemic containment measures. While 12 capsular groups, defined by capsular polysaccharide structures, can be expressed by N. meningitidis, groups A, B, and C historically caused most IMD. However, the use of mono-, bi-, and quadrivalent-polysaccharide-conjugate vaccines, the introduction of protein-based vaccines for group B, natural disease fluctuations, new drugs (e.g., eculizumab) that increase meningococcal susceptibility, changing transmission dynamics and meningococcal evolution are impacting the incidence of the capsular groups causing IMD. While the ability to spread and cause illness vary considerably, capsular groups W, X, and Y now cause significant IMD. In addition, group E and nongroupable meningococci have appeared as a cause of invasive disease, and a nongroupable N. meningitidis pathotype of the hypervirulent clonal complex 11 is causing sexually transmitted urethritis cases and outbreaks. Carriage and IMD of the previously “minor” N. meningitidis are reviewed and the need for polyvalent meningococcal vaccines emphasized.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: ; Tel.: +404-727-8357
| |
Collapse
|
18
|
Fazio C, Neri A, Vacca P, Ciammaruconi A, Arghittu M, Barbui AM, Vocale C, Bernaschi P, Isola P, Galanti IA, Mencacci A, De Nittis R, Chironna M, Giammanco A, Pagani E, Bisbano A, Stefanelli P. Cocirculation of Hajj and non-Hajj strains among serogroup W meningococci in Italy, 2000 to 2016. ACTA ACUST UNITED AC 2020; 24. [PMID: 30696530 PMCID: PMC6352001 DOI: 10.2807/1560-7917.es.2019.24.4.1800183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In Italy, B and C are the predominant serogroups among meningococci causing invasive diseases. Nevertheless, in the period from 2013 to 2016, an increase in serogroup W Neisseria meningitidis (MenW) was observed. This study intends to define the main characteristics of 63 MenW isolates responsible of invasive meningococcal disease (IMD) in Italy from 2000 to 2016. We performed whole genome sequencing on bacterial isolates or single gene sequencing on culture-negative samples to evaluate molecular heterogeneity. Our main finding was the cocirculation of the Hajj and the South American sublineages belonging to MenW/clonal complex (cc)11, which gradually surpassed the MenW/cc22 in Italy. All MenW/cc11 isolates were fully susceptible to cefotaxime, ceftriaxone, ciprofloxacin, penicillin G and rifampicin. We identified the full-length NadA protein variant 2/3, present in all the MenW/cc11. We also identified the fHbp variant 1, which we found exclusively in the MenW/cc11/Hajj sublineage. Concern about the epidemic potential of MenW/cc11 has increased worldwide since the year 2000. Continued surveillance, supported by genomic characterisation, allows high-resolution tracking of pathogen dissemination and the detection of epidemic-associated strains.
Collapse
Affiliation(s)
- Cecilia Fazio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Arianna Neri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Vacca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Ciammaruconi
- Molecular Biology Section, Army Medical and Veterinary Research Center, Rome, Italy
| | - Milena Arghittu
- Microbiology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Maria Barbui
- Microbiology and Virology Laboratory, Molinette Hospital, Turin, Italy
| | - Caterina Vocale
- Unit of Clinical Microbiology, Regional Reference Centre for Microbiological Emergencies, St. Orsola Malpighi University Hospital, Bologna, Italy
| | | | - Patrizia Isola
- Clinical Pathology Department, Azienda USL 6, Livorno, Italy
| | | | - Antonella Mencacci
- Medical Microbiology Section, Dept. of Medicine, University of Perugia, Perugia, Italy
| | | | - Maria Chironna
- Biomedical Sciences and Human Oncology Department - Hygiene Section, University Hospital, Bari, Italy
| | - Anna Giammanco
- Department of Sciences for Health Promotion and Mother and Child Care "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Elisabetta Pagani
- Microbiology and Virology Laboratory, Azienda Sanitaria dell'Alto Adige, Bolzano, Italy
| | | | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
19
|
Krone M, Gray S, Abad R, Skoczyńska A, Stefanelli P, van der Ende A, Tzanakaki G, Mölling P, João Simões M, Křížová P, Emonet S, Caugant DA, Toropainen M, Vazquez J, Waśko I, Knol MJ, Jacobsson S, Rodrigues Bettencourt C, Musilek M, Born R, Vogel U, Borrow R. Increase of invasive meningococcal serogroup W disease in Europe, 2013 to 2017. ACTA ACUST UNITED AC 2020; 24. [PMID: 30968827 PMCID: PMC6462787 DOI: 10.2807/1560-7917.es.2019.24.14.1800245] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BackgroundThe total incidence of invasive meningococcal disease (IMD) in Europe has been declining in recent years; however, a rising incidence due to serogroup W (MenW), predominantly sequence type 11 (ST-11), clonal complex 11 (cc11), was reported in some European countries.AimThe aim of this study was to compile the most recent laboratory surveillance data on MenW IMD from several European countries to assess recent trends in Europe.MethodsIn this observational, retrospective study, IMD surveillance data collected from 2013-17 by national reference laboratories and surveillance units from 13 European countries were analysed using descriptive statistics.ResultsThe overall incidence of IMD has been stable during the study period. Incidence of MenW IMD per 100,000 population (2013: 0.03; 2014: 0.05; 2015: 0.08; 2016: 0.11; 2017: 0.11) and the proportion of this serogroup among all invasive cases (2013: 5% (116/2,216); 2014: 9% (161/1,761); 2015: 13% (271/2,074); 2016: 17% (388/2,222); 2017: 19% (393/2,112)) continuously increased. The most affected countries were England, the Netherlands, Switzerland and Sweden. MenW was more frequent in older age groups (≥ 45 years), while the proportion in children (< 15 years) was lower than in other age groups. Of the culture-confirmed MenW IMD cases, 80% (615/767) were caused by hypervirulent cc11.ConclusionDuring the years 2013-17, an increase in MenW IMD, mainly caused by MenW cc11, was observed in the majority of European countries. Given the unpredictable nature of meningococcal spread and the epidemiological potential of cc11, European countries may consider preventive strategies adapted to their contexts.
Collapse
Affiliation(s)
- Manuel Krone
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Steve Gray
- Meningococcal Reference Unit, Public Health England, Manchester, United Kingdom
| | - Raquel Abad
- Spanish Reference Laboratory for Meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Anna Skoczyńska
- National Reference Centre for Bacterial Meningitis, National Medicines Institute, Warsaw, Poland
| | - Paola Stefanelli
- Dept. of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Arie van der Ende
- The Netherlands Reference Laboratory for Bacterial Meningitis, Department of Medical Microbiology, Academic Medical Center, Amsterdam, Netherlands
| | - Georgina Tzanakaki
- National Meningitis Reference Laboratory, National School of Public Health, Athens, Greece
| | - Paula Mölling
- National Reference Laboratory for Neisseria meningitidis, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Maria João Simões
- Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - Pavla Křížová
- National Reference Laboratory for Meningococcal Infections, National Institute of Public Health, Prague, Czech Republic
| | - Stéphane Emonet
- Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Maija Toropainen
- Department of Health Security, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Julio Vazquez
- Spanish Reference Laboratory for Meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Izabela Waśko
- National Reference Centre for Bacterial Meningitis, National Medicines Institute, Warsaw, Poland
| | - Mirjam J Knol
- Department of Epidemiology and Surveillance, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Susanne Jacobsson
- National Reference Laboratory for Neisseria meningitidis, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Martin Musilek
- National Reference Laboratory for Meningococcal Infections, National Institute of Public Health, Prague, Czech Republic
| | - Rita Born
- Division of Communicable Diseases, Federal Office of Public Health (FOPH), Bern, Switzerland
| | - Ulrich Vogel
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester, United Kingdom
| |
Collapse
|
20
|
Eriksson L, Stenmark B, Deghmane AE, Thulin Hedberg S, Säll O, Fredlund H, Mölling P, Taha MK. Difference in virulence between Neisseria meningitidis serogroups W and Y in transgenic mice. BMC Microbiol 2020; 20:92. [PMID: 32295520 PMCID: PMC7160935 DOI: 10.1186/s12866-020-01760-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/23/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neisseria meningitidis serogroups W and Y are the most common serogroups causing invasive meningococcal disease in Sweden. The majority of cases are caused by the serogroup W UK 2013 strain of clonal complex (cc) 11, and subtype 1 of the serogroup Y, YI strain of cc23. In this study, virulence factors of several lineages within cc11 and cc23 were investigated in transgenic BALB/c mice expressing human transferrin. Transgenic mice were infected intraperitoneally with serogroup W and Y isolates. Levels of bacteria and the proinflammatory cytokine CXCL1 were determined in blood collected 3 h and 24 h post-infection. Apoptosis was investigated in immune cells from peritoneal washes of infected mice. Adhesion and induction of apoptosis in human epithelial cells were also scored. RESULTS The levels of bacteraemia, CXCL1, and apoptosis were higher in serogroup W infected mice than in serogroup Y infected mice. Serogroup W isolates also induced higher levels of apoptosis and adhesion in human epithelial cells. No significant differences were observed between different lineages within cc11 and cc23. CONCLUSIONS N. meningitidis Serogroup W displayed a higher virulence in vivo in transgenic mice, compared to serogroup Y. This was reflected by higher bacteremia, proinflammatory activity, and ability to induce apoptosis in mouse immune cells and human epithelial cells.
Collapse
Affiliation(s)
- Lorraine Eriksson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Bianca Stenmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Sara Thulin Hedberg
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Olof Säll
- Department of Infectious Diseases, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hans Fredlund
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | |
Collapse
|
21
|
Stenmark B, Harrison OB, Eriksson L, Anton BP, Fomenkov A, Roberts RJ, Tooming-Klunderud A, Bratcher HB, Bray JE, Thulin-Hedberg S, Maiden MCJ, Mölling P. Complete genome and methylome analysis of Neisseria meningitidis associated with increased serogroup Y disease. Sci Rep 2020; 10:3644. [PMID: 32108139 PMCID: PMC7046676 DOI: 10.1038/s41598-020-59509-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Invasive meningococcal disease (IMD) due to serogroup Y Neisseria meningitidis emerged in Europe during the 2000s. Draft genomes of serogroup Y isolates in Sweden revealed that although the population structure of these isolates was similar to other serogroup Y isolates internationally, a distinct strain (YI) and more specifically a sublineage (1) of this strain was responsible for the increase of serogroup Y IMD in Sweden. We performed single molecule real-time (SMRT) sequencing on eight serogroup Y isolates from different sublineages to unravel the genetic and epigenetic factors delineating them, in order to understand the serogroup Y emergence. Extensive comparisons between the serogroup Y sublineages of all coding sequences, complex genomic regions, intergenic regions, and methylation motifs revealed small point mutations in genes mainly encoding hypothetical and metabolic proteins, and non-synonymous variants in genes involved in adhesion, iron acquisition, and endotoxin production. The methylation motif CACNNNNNTAC was only found in isolates of sublineage 2. Only seven genes were putatively differentially expressed, and another two genes encoding hypothetical proteins were only present in sublineage 2. These data suggest that the serogroup Y IMD increase in Sweden was most probably due to small changes in genes important for colonization and transmission.
Collapse
Affiliation(s)
- Bianca Stenmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Odile B Harrison
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Lorraine Eriksson
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | | | | | - Ave Tooming-Klunderud
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Holly B Bratcher
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - James E Bray
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Sara Thulin-Hedberg
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Paula Mölling
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
22
|
Caugant DA, Brynildsrud OB. Neisseria meningitidis: using genomics to understand diversity, evolution and pathogenesis. Nat Rev Microbiol 2019; 18:84-96. [PMID: 31705134 DOI: 10.1038/s41579-019-0282-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 01/30/2023]
Abstract
Meningococcal disease remains an important cause of morbidity and death worldwide despite the development and increasing implementation of effective vaccines. Elimination of the disease is hampered by the enormous diversity and antigenic variability of the causative agent, Neisseria meningitidis, one of the most variable bacteria in nature. These features are attained mainly through high rates of horizontal gene transfer and alteration of protein expression through phase variation. The recent availability of whole-genome sequencing (WGS) of large-scale collections of N. meningitidis isolates from various origins, databases to facilitate storage and sharing of WGS data and the concomitant development of effective bioinformatics tools have led to a much more thorough understanding of the diversity of the species, its evolution and population structure and how virulent traits may emerge. Implementation of WGS is already contributing to enhanced epidemiological surveillance and is essential to ascertain the impact of vaccination strategies. This Review summarizes the recent advances provided by WGS studies in our understanding of the biology of N. meningitidis and the epidemiology of meningococcal disease.
Collapse
Affiliation(s)
- Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway. .,Department of Community Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Ola B Brynildsrud
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Food Safety and Infection Biology, Faculty of Veterinary Science, Norwegian University of Life Science, Oslo, Norway
| |
Collapse
|
23
|
Bai X, Borrow R, Bukovski S, Caugant DA, Culic D, Delic S, Dinleyici EC, Eloshvili M, Erdősi T, Galajeva J, Křížová P, Lucidarme J, Mironov K, Nurmatov Z, Pana M, Rahimov E, Savrasova L, Skoczyńska A, Smith V, Taha MK, Titov L, Vázquez J, Yeraliyeva L. Prevention and control of meningococcal disease: Updates from the Global Meningococcal Initiative in Eastern Europe. J Infect 2019; 79:528-541. [PMID: 31682877 DOI: 10.1016/j.jinf.2019.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 12/20/2022]
Abstract
The Global Meningococcal Initiative (GMI) aims to prevent invasive meningococcal disease (IMD) worldwide through education, research and cooperation. In March 2019, a GMI meeting was held with a multidisciplinary group of experts and representatives from countries within Eastern Europe. Across the countries represented, IMD surveillance is largely in place, with incidence declining in recent decades and now generally at <1 case per 100,000 persons per year. Predominating serogroups are B and C, followed by A, and cases attributable to serogroups W, X and Y are emerging. Available vaccines differ between countries, are generally not included in immunization programs and provided to high-risk groups only. Available vaccines include both conjugate and polysaccharide vaccines; however, current data and GMI recommendations advocate the use of conjugate vaccines, where possible, due to the ability to interrupt the acquisition of carriage. Ongoing carriage studies are expected to inform vaccine effectiveness and immunization schedules. Additionally, IMD prevention and control should be guided by monitoring outbreak progression and the emergence and international spread of strains and antibiotic resistance through use of genomic analyses and implementation of World Health Organization initiatives. Protection of high-risk groups (such as those with complement deficiencies, laboratory workers, migrants and refugees) is recommended.
Collapse
Affiliation(s)
- Xilian Bai
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester M13 9WZ, UK.
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester M13 9WZ, UK.
| | - Suzana Bukovski
- University Hospital for Infectious Diseases, Zagreb, Croatia.
| | | | - Davor Culic
- Institute for Public Health, Sombor, Serbia.
| | | | | | - Medeia Eloshvili
- National Center for Disease Control & Public Health, Tbilisi, Georgia.
| | - Tímea Erdősi
- National Public Health Center, Budapest, Hungary.
| | | | - Pavla Křížová
- National Institute of Public Health, Prague, Czechia.
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester M13 9WZ, UK.
| | | | - Zuridin Nurmatov
- Scientific and Production Association "Preventive Medicine", Bishkek, Kyrgyzstan.
| | - Marina Pana
- Cantacuzino National Medico Military Institute for Research Development, Bucharest, Romania
| | | | - Larisa Savrasova
- The Centre for Disease Prevention and Control of Latvia, Riga, Latvia.
| | - Anna Skoczyńska
- National Reference Centre for Bacterial Meningitis, National Medicines Institute, Warsaw, Poland.
| | - Vinny Smith
- Meningitis Research Foundation, Bristol, UK.
| | - Muhamed-Kheir Taha
- National Reference Centre for Meningococci, Institute Pasteur, Paris, France.
| | - Leonid Titov
- Republican Research & Practical Center for Epidemiology & Microbiology, Minsk, Belarus.
| | | | | |
Collapse
|
24
|
Leo S, Lazarevic V, Girard M, Velasco GCGJ, Anson L, Gaïa N, Renzi G, Cherkaoui A, Born R, Basler S, Schrenzel J. Genomic epidemiology of Neisseria meningitidis serogroup W in Switzerland between 2010 and 2016. J Infect 2019; 79:277-287. [DOI: 10.1016/j.jinf.2019.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/26/2022]
|
25
|
Krizova P, Honskus M. Genomic surveillance of invasive meningococcal disease in the Czech Republic, 2015-2017. PLoS One 2019; 14:e0219477. [PMID: 31295279 PMCID: PMC6622526 DOI: 10.1371/journal.pone.0219477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/25/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The study presents the results of the genomic surveillance of invasive meningococcal disease (IMD) in the Czech Republic for the period of 2015-2017. MATERIAL AND METHODS The study set includes all available IMD isolates recovered in the Czech Republic and referred to the National Reference Laboratory for Meningococcal Infections in 2015-2017, a total of 89 Neissseria meningitidis isolates-from 2015 (n = 20), 2016 (n = 27), and from 2017 (n = 42). All isolates were studied by whole genome sequencing (WGS). RESULTS Serogroup B (MenB) was the most common, followed by serogroups C, W, and Y. Altogether 17 clonal complexes were identified, the most common of which was hypervirulent complex cc11, followed by complexes cc32, cc41/44, cc269, and cc865. Over the three study years, hypervirulent cc11 (MenC) showed an upward trend. The WGS method showed two clearly differentiated clusters of N. meningitidis C: P1.5,2:F3-3:ST-11 (cc11). The first cluster is represented by nine isolates, all of which are from 2017. The second cluster consisted of five isolates from 2016 and eight isolates from 2017. Their genetic discordance is illustrated by the changing nadA allele and subsequently by the variance in BAST type. Clonal complex cc269 (MenB) also increased over the time frame. WGS identified the presence of MenB vaccine antigen genes in all B and non-B isolates of N. meningitidis. Altogether 49 different Bexsero antigen sequence types (BAST) were identified and 10 combinations of these have not been previously described in the PubMLST database. CONCLUSIONS The genomic surveillance of IMD in the Czech Republic provides data needed to update immunisation guidelines for this disease. WGS showed a higher discrimination power and provided more accurate data on molecular characteristics and genetic relationships among invasive N. meningitidis isolates.
Collapse
Affiliation(s)
- Pavla Krizova
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
- * E-mail:
| | - Michal Honskus
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
26
|
Mulhall RM, Bennett DE, Bratcher HB, Jolley KA, Bray JE, O’Lorcain PP, Cotter SM, Maiden MCJ, Cunney RJ. cgMLST characterisation of invasive Neisseria meningitidis serogroup C and W strains associated with increasing disease incidence in the Republic of Ireland. PLoS One 2019; 14:e0216771. [PMID: 31141820 PMCID: PMC6541471 DOI: 10.1371/journal.pone.0216771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/30/2019] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION AND AIMS Since 2013 MenC and MenW disease incidence and associated mortality rates have increased in the Republic of Ireland. From 2002/2003 to 2012/2013, the average annual MenC incidence was 0.08/100,000, which increased to 0.34/100,000 during 2013/2014 to 2017/18, peaking in 2016/17 (0.72/100,000) with an associated case fatality rate (CFR) of 14.7%. MenW disease incidence has increased each year from 0.02/100,000 in 2013/2014, to 0.29/100,000 in 2017/18, with an associated CFR of 28.6%. We aimed to characterise and relate recent MenC isolates to the previously prevalent MenC:cc11 ET-15 clones, and also characterise and relate recent MenW isolates to the novel 'Hajj' clones. METHODS Using WGS we characterised invasive (n = 74, 1997/98 to 2016/17) and carried (n = 16, 2016/17) MenC isolates, and invasive (n = 18, 2010/11 to 2016/17) and carried (n = 15, 2016/17) MenW isolates. Genomes were assembled using VelvethOptimiser and stored on the PubMLST Neisseria Bacterial Isolate Genome Sequence Database. Isolates were compared using the cgMLST approach. RESULTS Most MenC and MenW isolates identified were cc11. A single MenC:cc11 sub-lineage contained the majority (68%, n = 19/28) of recent MenC:cc11 disease isolates and all carried MenC:cc11 isolates, which were interspersed and distinct from the historically significant ET-15 clones. MenW:cc11 study isolates clustered among international examples of both the original UK 2009 MenW:cc11, and novel 2013 MenW:cc11clones. CONCLUSIONS We have shown that the majority of recent MenC disease incidence was caused by strain types distinct from the MenC:cc11 ET-15 clone of the late 1990s, which still circulate but have caused only sporadic disease in recent years. We have identified that the same aggressive MenW clone now established in several other European countries, is endemic in the RoI and responsible for the recent MenW incidence increases. This data informed the National immunisation Advisory Committee, who are currently deliberating a vaccine policy change to protect teenagers.
Collapse
Affiliation(s)
- Robert M. Mulhall
- Irish Meningitis and Sepsis Reference Laboratory, Temple Street Children’s University Hospital, Dublin, Ireland
| | - Desiree E. Bennett
- Irish Meningitis and Sepsis Reference Laboratory, Temple Street Children’s University Hospital, Dublin, Ireland
| | - Holly B. Bratcher
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - Keith A. Jolley
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - James E. Bray
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | | | | | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, Oxford, England, United Kingdom
| | - Robert J. Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Temple Street Children’s University Hospital, Dublin, Ireland
- Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
27
|
Acevedo R, Bai X, Borrow R, Caugant DA, Carlos J, Ceyhan M, Christensen H, Climent Y, De Wals P, Dinleyici EC, Echaniz-Aviles G, Hakawi A, Kamiya H, Karachaliou A, Lucidarme J, Meiring S, Mironov K, Sáfadi MAP, Shao Z, Smith V, Steffen R, Stenmark B, Taha MK, Trotter C, Vázquez JA, Zhu B. The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: Epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev Vaccines 2018; 18:15-30. [PMID: 30526162 DOI: 10.1080/14760584.2019.1557520] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The 2018 Global Meningococcal Initiative (GMI) meeting focused on evolving invasive meningococcal disease (IMD) epidemiology, surveillance, and protection strategies worldwide, with emphasis on emerging antibiotic resistance and protection of high-risk populations. The GMI is comprised of a multidisciplinary group of scientists and clinicians representing institutions from several continents. AREAS COVERED Given that the incidence and prevalence of IMD continually varies both geographically and temporally, and surveillance systems differ worldwide, the true burden of IMD remains unknown. Genomic alterations may increase the epidemic potential of meningococcal strains. Vaccination and (to a lesser extent) antimicrobial prophylaxis are the mainstays of IMD prevention. Experiences from across the globe advocate the use of conjugate vaccines, with promising evidence growing for protein vaccines. Multivalent vaccines can broaden protection against IMD. Application of protection strategies to high-risk groups, including individuals with asplenia, complement deficiencies and human immunodeficiency virus, laboratory workers, persons receiving eculizumab, and men who have sex with men, as well as attendees at mass gatherings, may prevent outbreaks. There was, however, evidence that reduced susceptibility to antibiotics was increasing worldwide. EXPERT COMMENTARY The current GMI global recommendations were reinforced, with several other global initiatives underway to support IMD protection and prevention.
Collapse
Affiliation(s)
- Reinaldo Acevedo
- a Biologic Evaluation Department , Finlay Institute of Vaccines , Havana , Cuba
| | - Xilian Bai
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Ray Borrow
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Dominique A Caugant
- c Division of Infection Control and Environmental Health , Norwegian Institute of Public Health , Oslo , Norway
| | - Josefina Carlos
- d Department of Pediatrics, College of Medicine , University of the East - Ramon Magsaysay Memorial Medical Center , Quezon City , Philippines
| | - Mehmet Ceyhan
- e Faculty of Medicine, Department of Pediatric Infectious Diseases , Hacettepe University , Ankara , Turkey
| | - Hannah Christensen
- f Population Health Sciences, Bristol Medical School , University of Bristol , Bristol , UK
| | - Yanet Climent
- a Biologic Evaluation Department , Finlay Institute of Vaccines , Havana , Cuba
| | - Philippe De Wals
- g Department of Social and Preventive Medicine , Laval University , Quebec City , QC , Canada
| | - Ener Cagri Dinleyici
- h Department of Paediatrics , Eskisehir Osmangazi University Faculty of Medicine , Eskisehir , Turkey
| | - Gabriela Echaniz-Aviles
- i Center for Research on Infectious Diseases , Instituto Nacional de Salud Pública , Cuernavaca , México
| | - Ahmed Hakawi
- j Infectious Diseases Control , Ministry of Health , Riyadh , Saudi Arabia
| | - Hajime Kamiya
- k Infectious Disease Surveillance Center , National Institute of Infectious Diseases , Tokyo , Japan
| | | | - Jay Lucidarme
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Susan Meiring
- m Division of Public Health Surveillance and Response , National Institute for Communicable Diseases , Johannesburg , South Africa
| | - Konstantin Mironov
- n Central Research Institute of Epidemiology , Moscow , Russian Federation
| | - Marco A P Sáfadi
- o Department of Pediatrics , FCM Santa Casa de São Paulo School of Medical Sciences , São Paulo , Brazil
| | - Zhujun Shao
- p National Institute for Communicable Disease Control and Prevention , Chinese Centre for Disease Control and Prevention , Beijing , China
| | - Vinny Smith
- q Meningitis Research Foundation , Bristol , UK
| | - Robert Steffen
- r Department of Epidemiology and Prevention of Infectious Diseases , WHO Collaborating Centre for Travellers' Health, University of Zurich , Zurich , Switzerland
| | - Bianca Stenmark
- s Department of Laboratory Medicine , Örebro University Hospital , Örebro , Sweden
| | - Muhamed-Kheir Taha
- t Institut Pasteur , National Reference Centre for Meningococci , Paris , France
| | - Caroline Trotter
- l Department of Veterinary Medicine , University of Cambridge , Cambridge , UK
| | - Julio A Vázquez
- u National Centre of Microbiology , Institute of Health Carlos III , Madrid , Spain
| | - Bingqing Zhu
- p National Institute for Communicable Disease Control and Prevention , Chinese Centre for Disease Control and Prevention , Beijing , China
| |
Collapse
|
28
|
Booy R, Gentile A, Nissen M, Whelan J, Abitbol V. Recent changes in the epidemiology of Neisseria meningitidis serogroup W across the world, current vaccination policy choices and possible future strategies. Hum Vaccin Immunother 2018; 15:470-480. [PMID: 30296197 PMCID: PMC6505668 DOI: 10.1080/21645515.2018.1532248] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Invasive meningococcal disease (IMD) is a serious disease that is fatal in 5–15% and disabling in 12–20% of cases. The dynamic and unpredictable epidemiology is a particular challenge of IMD prevention. Although vaccination against meningococcal serogroups A (MenA), MenC and, more recently, MenB, are proving successful, other serogroups are emerging as major IMD causes. Recently, surges in MenW incidence occurred in South America, Europe, Australia and parts of sub-Saharan Africa, with hypervirulent strains being associated with severe IMD and higher fatality rates. This review describes global trends in MenW-IMD epidemiology over the last 5–10 years, with emphasis on the response of national/regional health authorities to increased MenW prevalence in impacted areas. Several countries (Argentina, Australia, Chile, the Netherlands and UK) have implemented reactive vaccination campaigns to reduce MenW-IMD, using MenACWY conjugate vaccines. Future vaccination programs should consider the evolving epidemiology of MenW-IMD and the most impacted age groups.
Collapse
Affiliation(s)
- Robert Booy
- a The Discipline of Child and Adolescent Health , Sydney Medical School, University of Sydney , Sydney , New South Wales , Australia.,b Westmead Institute of Medical Research , University of Sydney , Sydney , New South Wales , Australia
| | - Angela Gentile
- c Department of Epidemiology , Ricardo Gutiérrez Children's Hospital , Buenos Aires , Argentina
| | - Michael Nissen
- d Research and Development , GSK Intercontinental , Singapore
| | - Jane Whelan
- e Clinical Research and Development , GSK , Amsterdam , The Netherlands
| | | |
Collapse
|
29
|
Honskus M, Okonji Z, Musilek M, Kozakova J, Krizova P. Whole genome sequencing of Neisseria meningitidis W isolates from the Czech Republic recovered in 1984-2017. PLoS One 2018; 13:e0199652. [PMID: 30212468 PMCID: PMC6136696 DOI: 10.1371/journal.pone.0199652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
Introduction The study presents the analysis of whole genome sequence (WGS) data for Neisseria meningitidis serogroup W isolates recovered in the Czech Republic in 1984–2017 and their comparison with WGS data from other countries. Material and methods Thirty-one Czech N. meningitidis W isolates, 22 from invasive meningococcal disease (IMD) and nine from healthy carriers were analysed. The 33-year study period was divided into three periods: 1984–1999, 2000–2009, and 2010–2017. Results Most study isolates from IMD and healthy carriers were assigned to clonal complex cc22 (n = 10) in all study periods. The second leading clonal complex was cc865 (n = 8) presented by IMD (n = 7) and carriage (n = 1) isolates that emerged in the last study period, 2010–2017. The third clonal complex was cc11 (n = 4) including IMD isolates from the first (1984–1999) and third (2010–2017) study periods. The following clonal complex was cc174 (n = 3) presented by IMD isolates from the first two study periods, i.e. 1984–1999 and 2000–2009. One isolate of each cc41/44 and cc1136 originated from healthy carriers from the second study period, 2000–2009. The comparison of WGS data for N. meningitidis W isolates recovered in the Czech Republic in the study period 1984–2017 and for isolates from other countries recovered in the same period showed that clonal complex cc865, ST-3342 is unique to the Czech Republic since 2010. Moreover, the comparison shows that cc11 in the Czech Republic does not comprise novel hypervirulent lineages reported from both European and non-European countries. All 31 study isolates were assigned to Bexsero® Antigen Sequence Types (BAST), and seven of them were of newly described BASTs. Conclusions WGS analysis contributed considerably to a more detailed molecular characterization of N. meningitidis W isolates recovered in the Czech Republic over a 33-year period and allowed for a spatial and temporal comparison of these characteristics between isolates from the Czech Republic and other countries. The most interesting finding of this study is that eight of 31 Czech isolates of N. meningitidis W belong to clonal complex cc865, which is uncommon for serogroup W. In addition, the WGS data precised the base for the update of the recommendation for vaccination in the Czech Republic.
Collapse
Affiliation(s)
- Michal Honskus
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Zuzana Okonji
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Martin Musilek
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Jana Kozakova
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
| | - Pavla Krizova
- National Reference Laboratory for Meningococcal Infections, Centre for Epidemiology and Microbiology, National Institute of Public Health, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
30
|
Jacobsson S, Stenmark B, Hedberg ST, Mölling P, Fredlund H. Neisseria meningitidis carriage in Swedish teenagers associated with the serogroup W outbreak at the World Scout Jamboree, Japan 2015. APMIS 2018. [PMID: 29543345 DOI: 10.1111/apm.12819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aims of the study were to estimate the carrier state of Neisseria meningitidis in Swedish teenagers and its association with an outbreak at the World Scout Jamboree in 2015 as well as to compare sensitivity of throat versus nasopharyngeal swab for optimal detection of carriage. In total, 1 705 samples (cultures n = 32, throat swabs n = 715, nasopharyngeal swabs n = 958) from 1 020 Jamboree participants were collected and sent to the National Reference Laboratory for Neisseria meningitidis for culture and molecular analysis. The overall positivity for N. meningitidis was 8% (83/1 020), whereas 2% (n = 22) belonged to a known sero/genogroup while the majority (n = 61) were non-groupable. Throat sample is clearly the sampling method of choice, in 56 individuals where both throat and nasopharynx samples were taken, N. meningitidis was detected in both throat and nasopharynx in eight individuals, in 46 individuals N. meningitidis was only detected in the throat and in two individuals only in the nasopharynx. Carriage studies are important to provide knowledge of the current epidemiology and association between carrier isolates and disease-causing isolates in a given population. Therefore, planning for a carriage study in Sweden is in progress.
Collapse
Affiliation(s)
- Susanne Jacobsson
- National Reference Laboratory for Neisseria meningitidis, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bianca Stenmark
- National Reference Laboratory for Neisseria meningitidis, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Sara Thulin Hedberg
- National Reference Laboratory for Neisseria meningitidis, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paula Mölling
- National Reference Laboratory for Neisseria meningitidis, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Hans Fredlund
- National Reference Laboratory for Neisseria meningitidis, Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|