1
|
Huang Y, Pei S, Lv X, Yang F, Gong X, Li N, Guo Y, Feng Y, Xiao L. Stage-specific expression and divergent functions of two insulinase-like proteases associated with host infectivity in Cryptosporidium. PLoS Negl Trop Dis 2025; 19:e0012777. [PMID: 39804945 PMCID: PMC11760560 DOI: 10.1371/journal.pntd.0012777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/24/2025] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The determinants of differences in host infectivity among Cryptosporidium species and subtypes are poorly understood. Results from recent comparative genomic studies suggest that gains and losses of multicopy subtelomeric genes encoding insulinase-like proteases (INS-19 and INS-20 in Cryptosporidium parvum and their orthologs in closely related species) may potentially contribute to these differences. METHODOLOGY/PRINCIPAL FINDINGS In this study, we investigated the expression and biological function of the INS-19 and INS-20 of C. parvum. CRISPR/Cas9 was used to endogenously tag both genes with the hemagglutinin epitope. Immunofluorescence analysis revealed that INS-19 and INS-20 are expressed at different developmental stages of the pathogen. Although knockout of either had no detectable effect on the in vitro growth of C. parvum, knockout of INS-20, deletion of its multiple domains, or mutation of the active motif in the functional domain reduced the intensity of C. parvum infection in IFN-γ knockout mice. Consistent with this, mice infected with the INS-20-deleted mutant had reduced intestinal damage and parasite burden. CONCLUSIONS/SIGNIFICANCE These results suggest that INS-19 and INS-20 have stage-specific expression with distinct biological functions, and that the presence of the INS-20 in zoonotic C. parvum contributes to its infectivity and fitness in mice.
Collapse
Affiliation(s)
- Yue Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Shifeng Pei
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Xin Lv
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Fuxian Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Xiaoqing Gong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Li J, Fan Y, Li N, Guo Y, Wang W, Feng K, He W, Li F, Huang J, Xu Y, Xiao L, Feng Y. Comparative genomics analysis reveals sequence characteristics potentially related to host preference in Cryptosporidium xiaoi. Int J Parasitol 2024; 54:379-390. [PMID: 38492779 DOI: 10.1016/j.ijpara.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Cryptosporidium spp. are important diarrhea-associated pathogens in humans and livestock. Among the known species, Cryptosporidium xiaoi, which causes cryptosporidiosis in sheep and goats, was previously recognized as a genotype of the bovine-specific Cryptosporidium bovis based on their high sequence identity in the ssrRNA gene. However, the lack of genomic data has limited characterization of the genetic differences between the two closely related species. In this study, we sequenced the genomes of two C. xiaoi isolates and performed comparative genomic analysis to identify the sequence uniqueness of this ovine-adapted species compared with other Cryptosporidium spp. Our results showed that C. xiaoi is genetically related to C. bovis as shown by their 95.8% genomic identity and similar gene content. Consistent with this, both C. xiaoi and C. bovis appear to have fewer genes encoding mitochondrial metabolic enzymes and invasion-related protein families. However, they appear to possess several species-specific genes. Further analysis indicates that the sequence differences between these two Cryptosporidium spp. are mainly in 24 highly polymorphic genes, half of which are located in the subtelomeric regions. Some of these subtelomeric genes encode secretory proteins that have undergone positive selection. In addition, the genomes of two C. xiaoi isolates, identified as subtypes XXIIIf and XXIIIh, share 99.9% nucleotide sequence identity, with six highly divergent genes encoding putative secretory proteins. Therefore, these species-specific genes and sequence polymorphism in subtelomeric genes probably contribute to the different host preference of C. xiaoi and C. bovis.
Collapse
Affiliation(s)
- Jiayu Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Fan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Weijian Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Kangli Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Wei He
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Falei Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Jianbo Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yanhua Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Bayona-Vásquez NJ, Sullivan AH, Beaudry MS, Khan A, Baptista RP, Petersen KN, Bhuiyan M, Brunelle B, Robinson G, Chalmers RM, Alves-Ferreira E, Grigg ME, Kissinger JC, Glenn TC. WHOLE GENOME TARGETED ENRICHMENT AND SEQUENCING OF HUMAN-INFECTING CRYPTOSPORIDIUM spp. RESEARCH SQUARE 2024:rs.3.rs-4294842. [PMID: 38798642 PMCID: PMC11118713 DOI: 10.21203/rs.3.rs-4294842/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cryptosporidium spp. are protozoan parasites that cause severe illness in vulnerable human populations. Obtaining pure Cryptosporidium DNA from clinical and environmental samples is challenging because the oocysts shed in contaminated feces are limited in quantity, difficult to purify efficiently, may derive from multiple species, and yield limited DNA (<40 fg/oocyst). Here, we develop and validate a set of 100,000 RNA baits (CryptoCap_100k) based on six human-infecting Cryptosporidium spp. (C. cuniculus, C. hominis, C. meleagridis, C. parvum, C. tyzzeri, and C. viatorum) to enrich Cryptosporidium spp. DNA from a wide array of samples. We demonstrate that CryptoCap_100k increases the percentage of reads mapping to target Cryptosporidium references in a wide variety of scenarios, increasing the depth and breadth of genome coverage, facilitating increased accuracy of detecting and analyzing species within a given sample, while simultaneously decreasing costs, thereby opening new opportunities to understand the complex biology of these important pathogens.
Collapse
Affiliation(s)
- N J Bayona-Vásquez
- Division of Natural Science and Mathematics, Oxford College of Emory University, Oxford, GA, 30054, USA
| | - A H Sullivan
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - M S Beaudry
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Daicel Arbor Biosciences, Ann Arbor, MI, 48103, USA
| | - A Khan
- Animal Parasitic Disease Laboratory, Agricultural Research Service, US Department of Agriculture, Beltsville, MD, 20705, USA
| | - R P Baptista
- Infectious Diseases, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - K N Petersen
- Odum School of Ecology, University of Georgia, University of Georgia, Athens, GA, 30602, USA
| | - Miu Bhuiyan
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
| | - B Brunelle
- Daicel Arbor Biosciences, Ann Arbor, MI, 48103, USA
| | - G Robinson
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - R M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Evc Alves-Ferreira
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - M E Grigg
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - J C Kissinger
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, 30602, USA
| | - T C Glenn
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
4
|
Khan A, Alves-Ferreira EVC, Vogel H, Botchie S, Ayi I, Pawlowic MC, Robinson G, Chalmers RM, Lorenzi H, Grigg ME. Phylogenomic reconstruction of Cryptosporidium spp. captured directly from clinical samples reveals extensive genetic diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589752. [PMID: 38659886 PMCID: PMC11042339 DOI: 10.1101/2024.04.17.589752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cryptosporidium is a leading cause of severe diarrhea and mortality in young children and infants in Africa and southern Asia. More than twenty Cryptosporidium species infect humans, of which C. parvum and C. hominis are the major agents causing moderate to severe diarrhea. Relatively few genetic markers are typically applied to genotype and/or diagnose Cryptosporidium. Most infections produce limited oocysts making it difficult to perform whole genome sequencing (WGS) directly from stool samples. Hence, there is an immediate need to apply WGS strategies to 1) develop high-resolution genetic markers to genotype these parasites more precisely, 2) to investigate endemic regions and detect the prevalence of different genotypes, and the role of mixed infections in generating genetic diversity, and 3) to investigate zoonotic transmission and evolution. To understand Cryptosporidium global population genetic structure, we applied Capture Enrichment Sequencing (CES-Seq) using 74,973 RNA-based 120 nucleotide baits that cover ~92% of the genome of C. parvum. CES-Seq is sensitive and successfully sequenced Cryptosporidium genomic DNA diluted up to 0.005% in human stool DNA. It also resolved mixed strain infections and captured new species of Cryptosporidium directly from clinical/field samples to promote genome-wide phylogenomic analyses and prospective GWAS studies.
Collapse
Affiliation(s)
- A Khan
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - E V C Alves-Ferreira
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - H Vogel
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Comparative Biomedical Scientist Training Program, National Institutes of Health, Bethesda, MD, 20892, USA
| | - S Botchie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - I Ayi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - M C Pawlowic
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - G Robinson
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - R M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales, Microbiology and Health Protection, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - H Lorenzi
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, National institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Bayona-Vásquez NJ, Sullivan AH, Beaudry MS, Khan A, Baptista RP, Petersen KN, Bhuiyan M, Brunelle B, Robinson G, Chalmers RM, Alves-Ferreira E, Grigg ME, AlvesFerreira Kissinger JC, Glenn TC. WHOLE GENOME TARGETED ENRICHMENT AND SEQUENCING OF HUMAN-INFECTING CRYPTOSPORIDIUM spp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.586458. [PMID: 38585809 PMCID: PMC10996700 DOI: 10.1101/2024.03.29.586458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cryptosporidium spp. are protozoan parasites that cause severe illness in vulnerable human populations. Obtaining pure Cryptosporidium DNA from clinical and environmental samples is challenging because the oocysts shed in contaminated feces are limited in quantity, difficult to purify efficiently, may derive from multiple species, and yield limited DNA (<40 fg/oocyst). Here, we develop and validate a set of 100,000 RNA baits (CryptoCap_100k) based on six human-infecting Cryptosporidium spp. ( C. cuniculus , C. hominis , C. meleagridis , C. parvum , C. tyzzeri , and C. viatorum ) to enrich Cryptosporidium spp. DNA from a wide array of samples. We demonstrate that CryptoCap_100k increases the percentage of reads mapping to target Cryptosporidium references in a wide variety of scenarios, increasing the depth and breadth of genome coverage, facilitating increased accuracy of detecting and analyzing species within a given sample, while simultaneously decreasing costs, thereby opening new opportunities to understand the complex biology of these important pathogens.
Collapse
|
6
|
Agyabeng-Dadzie F, Xiao R, Kissinger JC. Cryptosporidium Genomics - Current Understanding, Advances, and Applications. CURRENT TROPICAL MEDICINE REPORTS 2024; 11:92-103. [PMID: 38813571 PMCID: PMC11130048 DOI: 10.1007/s40475-024-00318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 05/31/2024]
Abstract
Purpose of Review Here we highlight the significant contribution that genomics-based approaches have had on the field of Cryptosporidium research and the insights these approaches have generated into Cryptosporidium biology and transmission. Recent Findings There are advances in genomics, genetic manipulation, gene expression, and single-cell technologies. New and better genome sequences have revealed variable sub-telomeric gene families and genes under selection. RNA expression data now include single-cell and post-infection time points. These data have provided insights into the Cryptosporidium life cycle and host-pathogen interactions. Antisense and ncRNA transcripts are abundant. The critical role of the dsRNA virus is becoming apparent. Summary The community's ability to identify genomic targets in the abundant, yet still lacking, collection of genomic data, combined with their increased ability to assess function via gene knock-out, is revolutionizing the field. Advances in the detection of virulence genes, surveillance, population genomics, recombination studies, and epigenetics are upon us.
Collapse
Affiliation(s)
| | - Rui Xiao
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
| | - Jessica C. Kissinger
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602 USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Coverdell Center, 107, 500 D.W. Brooks Drive, Athens, GA 30602 USA
| |
Collapse
|
7
|
Li M, Sun X, Chen H, Li N, Feng Y, Xiao L, Guo Y. Stable expression of mucin glycoproteins GP40 and GP15 of Cryptosporidium parvum in Toxoplasma gondii. Parasit Vectors 2024; 17:65. [PMID: 38360646 PMCID: PMC10870685 DOI: 10.1186/s13071-024-06159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Cryptosporidium spp. are common protozoa causing diarrhea in humans and animals. There are currently only one FDA-approved drug and no vaccines for cryptosporidiosis, largely due to the limited knowledge of the molecular mechanisms involved in the invasion of the pathogens. Previous studies have shown that GP60, which is cleaved into GP40 and GP15 after expression, is an immunodominant mucin protein involved in the invasion of Cryptosporidium. The protein is highly O-glycosylated, and recombinant proteins expressed in prokaryotic systems are non-functional. Therefore, few studies have investigated the function of GP40 and GP15. METHODS To obtain recombinant GP40 with correct post-translational modifications, we used CRISPR/Cas9 technology to insert GP40 and GP15 into the UPRT locus of Toxoplasma gondii, allowing heterologous expression of Cryptosporidium proteins. In addition, the Twin-Strep tag was inserted after GP40 for efficient purification of GP40. RESULTS Western blotting and immunofluorescent microscopic analyses both indicated that GP40 and GP15 were stably expressed in T. gondii mutants. GP40 localized not only in the cytoplasm of tachyzoites but also in the parasitophorous vacuoles, while GP15 without the GPI anchor was expressed only in the cytoplasm. In addition, a large amount of recTgGP40 was purified using Strep-TactinXT supported by a visible band of ~ 50 kDa in SDS-PAGE. CONCLUSIONS The establishment of a robust and efficient heterologous expression system of GP40 in T. gondii represents a novel approach and concept for investigating Cryptosporidium mucins, overcoming the limitations of previous studies that relied on unstable transient transfection, which involved complex steps and high costs.
Collapse
Affiliation(s)
- Muxiao Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohua Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Haoyu Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Dąbrowska J, Sroka J, Cencek T. Investigating Cryptosporidium spp. Using Genomic, Proteomic and Transcriptomic Techniques: Current Progress and Future Directions. Int J Mol Sci 2023; 24:12867. [PMID: 37629046 PMCID: PMC10454211 DOI: 10.3390/ijms241612867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cryptosporidiosis is a widespread disease caused by the parasitic protozoan Cryptosporidium spp., which infects various vertebrate species, including humans. Once unknown as a gastroenteritis-causing agent, Cryptosporidium spp. is now recognized as a pathogen causing life-threatening disease, especially in immunocompromised individuals such as AIDS patients. Advances in diagnostic methods and increased awareness have led to a significant shift in the perception of Cryptosporidium spp. as a pathogen. Currently, genomic and proteomic studies play a main role in understanding the molecular biology of this complex-life-cycle parasite. Genomics has enabled the identification of numerous genes involved in the parasite's development and interaction with hosts. Proteomics has allowed for the identification of protein interactions, their function, structure, and cellular activity. The combination of these two approaches has significantly contributed to the development of new diagnostic tools, vaccines, and drugs for cryptosporidiosis. This review presents an overview of the significant achievements in Cryptosporidium research by utilizing genomics, proteomics, and transcriptomics approaches.
Collapse
Affiliation(s)
- Joanna Dąbrowska
- Department of Parasitology and Invasive Disease, National Veterinary Research Institute, Partyzantów 57 Avenue, 24-100 Puławy, Poland (T.C.)
| | | | | |
Collapse
|
9
|
Li J, Li N, Roellig DM, Zhao W, Guo Y, Feng Y, Xiao L. High subtelomeric GC content in the genome of a zoonotic Cryptosporidium species. Microb Genom 2023; 9:mgen001052. [PMID: 37399068 PMCID: PMC10438818 DOI: 10.1099/mgen.0.001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Cryptosporidium canis is a zoonotic species causing cryptosporidiosis in humans in addition to its natural hosts dogs and other fur animals. To understand the genetic basis for host adaptation, we sequenced the genomes of C. canis from dogs, minks, and foxes and conducted a comparative genomics analysis. While the genomes of C. canis have similar gene contents and organisations, they (~41.0 %) and C. felis (39.6 %) have GC content much higher than other Cryptosporidium spp. (24.3-32.9 %) sequenced to date. The high GC content is mostly restricted to subtelomeric regions of the eight chromosomes. Most of these GC-balanced genes encode Cryptosporidium-specific proteins that have intrinsically disordered regions and are involved in host-parasite interactions. Natural selection appears to play a more important role in the evolution of codon usage in GC-balanced C. canis, and most of the GC-balanced genes have undergone positive selection. While the identity in whole genome sequences between the mink- and dog-derived isolates is 99.9 % (9365 SNVs), it is only 96.0 % (362 894 SNVs) between them and the fox-derived isolate. In agreement with this, the fox-derived isolate possesses more subtelomeric genes encoding invasion-related protein families. Therefore, the change in subtelomeric GC content appears to be responsible for the more GC-balanced C. canis genomes, and the fox-derived isolate could represent a new Cryptosporidium species.
Collapse
Affiliation(s)
- Jiayu Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| | - Dawn M. Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Wentao Zhao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
10
|
Huang J, Chen M, He Y, Chen H, Huang M, Li N, Ryan U, Kváč M, Feng Y, Xiao L, Guo Y. Cryptosporidium equi n. sp. (Apicomplexa: Cryptosporidiidae): biological and genetic characterisations. Int J Parasitol 2023:S0020-7519(23)00091-7. [PMID: 37150475 DOI: 10.1016/j.ijpara.2023.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 05/09/2023]
Abstract
The horse genotype is one of three common Cryptosporidium spp. in equine animals and has been identified in some human cases. The species status of Cryptosporidium horse genotype remains unclear due to the lack of extensive morphological, biological, and genetic data. In the present study, we have conducted biological and whole genome sequence analyses of an isolate of the genotype from hedgehogs and proposed to name it Cryptosporidium equi n. sp. to reflect its common occurrence in equine animals. Oocysts of C. equi measured 5.12 ± 0.36 μm × 4.46 ± 0.21 μm with a shape index of 1.15 ± 0.08 (n = 50). Cryptosporidium equi was infectious to 3-week-old four-toed hedgehogs (Atelerix albiventris) and mice, with a prepatent period of 2-9 days and a patent period of 30-40 days in hedgehogs. It was not infectious to rats and rabbits. Phylogenetic analyses of small subunit rRNA, 70 kDa heat shock protein, actin, 60 kDa glycoprotein and 100 other orthologous genes revealed that C. equi is genetically distinct from other known Cryptosporidium species and genotypes. The sequence identity between C. equi and Cryptosporidium parvum genomes is 97.9%. Compared with C. parvum, C. equi has lost two MEDLE genes and one insulinase-like protease gene and gained one SKSR gene. In addition, 60 genes have highly divergent sequences (sequence differences ≥ 5.0%), including those encoding mucin-like glycoproteins, insulinase-like peptidases, and MEDLE and SKSR proteins. The genetic uniqueness of C. equi supports its increasing host range and the naming of it as a valid Cryptosporidium species. This is the first known use of whole genome sequence data in delineating new Cryptosporidium species.
Collapse
Affiliation(s)
- Jianbo Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongli He
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haoyu Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mingming Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Una Ryan
- Harry Butler Institute, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yaqiong Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Elwin K, Robinson G, Pérez-Cordón G, Chalmers RM. Development and evaluation of a real-time PCR for genotyping of Cryptosporidium spp. from water monitoring slides. Exp Parasitol 2022; 242:108366. [PMID: 36089005 DOI: 10.1016/j.exppara.2022.108366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 11/04/2022]
Abstract
Cryptosporidium is an important cause of gastroenteritis globally and the main agent of waterborne outbreaks caused by protozoan parasites. Water monitoring for Cryptosporidium oocysts is by detection and enumeration using stained slide microscopy. Species identification (known as genotyping) may be undertaken post hoc and remains a specialist test, only undertaken in some laboratories. The benchmark method is nested PCR-sequencing of part of the SSU rRNA gene, but not all slides are typable and the workflow is cumbersome. We report the development, in-house validation and application of a real-time PCR-sequencing assay based on that gene, using a hydrolysis probe, for the detection and genotyping of all Cryptosporidium spp. The assay was investigated in two formats; a high volume DNA template for analysing all the DNA extracted from Cryptosporidium-positive water monitoring slides with <5 oocysts seen, and a lower volume DNA template permitting several technical replicates from slides with ≥5 oocysts seen where multiple species are more likely to be present. Each format conformed to the MIQE guidelines for amplification dynamics and was specific for Cryptosporidium spp. With high sensitivity, being capable of detecting and genotyping single oocysts by sequencing of a 435 bp amplicon. When 65 water monitoring slides with <5 oocysts seen were tested, slide typeability varied by sending laboratory (n = 9), and ranged from 22 to 60%. Typeability was 75% for slides with ≥5 oocysts seen that were submitted by a single laboratory. The laboratory workflow was improved by using real-time PCR, and decreased the time to result compared with nested PCR-sequencing. In practical application, there was no loss of typeability when the ≥5 oocysts assay was applied to all slides, irrespective of the number of oocysts present.
Collapse
Affiliation(s)
- Kristin Elwin
- Cryptosporidium Reference Unit (CRU), Public Health Wales Microbiology Swansea, Singleton Hospital, Swansea, SA2 8QA, UK; Swansea University Medical School, Institute of Life Science 2, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Guy Robinson
- Cryptosporidium Reference Unit (CRU), Public Health Wales Microbiology Swansea, Singleton Hospital, Swansea, SA2 8QA, UK; Swansea University Medical School, Institute of Life Science 2, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Gregorio Pérez-Cordón
- Cryptosporidium Reference Unit (CRU), Public Health Wales Microbiology Swansea, Singleton Hospital, Swansea, SA2 8QA, UK; Swansea University Medical School, Institute of Life Science 2, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit (CRU), Public Health Wales Microbiology Swansea, Singleton Hospital, Swansea, SA2 8QA, UK; Swansea University Medical School, Institute of Life Science 2, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
12
|
Jia R, Huang W, Huang N, Yu Z, Li N, Xiao L, Feng Y, Guo Y. High infectivity and unique genomic sequence characteristics of Cryptosporidium parvum in China. PLoS Negl Trop Dis 2022; 16:e0010714. [PMID: 35994488 PMCID: PMC9436107 DOI: 10.1371/journal.pntd.0010714] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/01/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
Zoonotic Cryptosporidium parvum infections are mainly caused by IIa and IId subtypes. As most biological characterizations have been performed on IIa subtypes, the biological and genetic characteristics of IId subtypes in China are not clear. We evaluated the infection and genetic characteristics of IId isolates in interferon-γ-knockout mice using qPCR to quantify oocyst shedding, histological examination to monitor pathological changes and comparative genomic analyses to identify infectivity and virulence-associated differences. Compared with the reference IIa isolate, mice infected with the IId isolates had significantly higher and longer oocyst shedding and lower body weight gain. In addition, the four IId isolates examined differed significantly in infectivity (as indicated by the median infective dose), oocyst shedding duration, and pathogenicity. Comparative genomic analysis indicated that the IId isolates had three more subtelomeric genes than the reference IIa isolate and 5385–5548 nucleotide substitutions, with the hypervariable genes mostly in two blocks on chromosome 1. In contrast, the four IId isolates differed from each other by 77–1,452 nucleotides, with virulence-associated sequence differences mainly in nine genes within a 28-kb block on chromosome 6. These data indicate the newly emerged C. parvum IId subtypes in China have high animal infectivity and unique genomic characteristics. Cryptosporidiosis is the most important waterborne disease in industrialized nations and a primary cause of severe diarrhea in children in low- and middle-income countries. While the IIa subtype family of Cryptosporidium parvum is responsible for most zoonotic cryptosporidiosis, its IId subtype family has emerged in China in recent years. To understand the biological differences between the two major zoonotic subtype families, we have compared the infection patterns, virulence, and genetic characteristics of IIa and IId isolates using a newly established mouse model and whole genome sequencing. We have shown that IId isolates induce significantly higher infection intensity, longer infection duration, and more severe pathogenicity than the reference IIa isolate. They also have three more invasion-associated genes and substantial nucleotide sequence differences. In contrast, the four IId isolates with different virulence differ from each other mainly in sequences of nine genes within a small area on chromosome 6. We conclude that C. parvum isolates in China have high infectivity and unique genomic characteristics, and the productive infection model developed in the study should be useful in evaluations of potential therapeutics and studies of pathogenesis of C. parvum.
Collapse
Affiliation(s)
- Ruilian Jia
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Wanyi Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ni Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhengjie Yu
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail: (LX); (YF); (YG)
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail: (LX); (YF); (YG)
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
- * E-mail: (LX); (YF); (YG)
| |
Collapse
|
13
|
Wang T, Guo Y, Roellig DM, Li N, Santín M, Lombard J, Kváč M, Naguib D, Zhang Z, Feng Y, Xiao L. Sympatric Recombination in Zoonotic Cryptosporidium Leads to Emergence of Populations with Modified Host Preference. Mol Biol Evol 2022; 39:6625830. [PMID: 35776423 PMCID: PMC9317183 DOI: 10.1093/molbev/msac150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genetic recombination plays a critical role in the emergence of pathogens with phenotypes such as drug resistance, virulence, and host adaptation. Here, we tested the hypothesis that recombination between sympatric ancestral populations leads to the emergence of divergent variants of the zoonotic parasite Cryptosporidium parvum with modified host ranges. Comparative genomic analyses of 101 isolates have identified seven subpopulations isolated by distance. They appear to be descendants of two ancestral populations, IIa in northwestern Europe and IId from southwestern Asia. Sympatric recombination in areas with both ancestral subtypes and subsequent selective sweeps have led to the emergence of new subpopulations with mosaic genomes and modified host preference. Subtelomeric genes could be involved in the adaptive selection of subpopulations, while copy number variations of genes encoding invasion-associated proteins are potentially associated with modified host ranges. These observations reveal ancestral origins of zoonotic C. parvum and suggest that pathogen import through modern animal farming might promote the emergence of divergent subpopulations of C. parvum with modified host preference.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqiong Guo
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Na Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Mónica Santín
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | - Jason Lombard
- Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, US Department of Agriculture, Fort Collins, CO 80526, USA
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Doaa Naguib
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaoyu Feng
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
14
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
15
|
He X, Huang W, Sun L, Hou T, Wan Z, Li N, Guo Y, Kváč M, Xiao L, Feng Y. A productive immunocompetent mouse model of cryptosporidiosis with long oocyst shedding duration for immunological studies. J Infect 2022; 84:710-721. [PMID: 35192895 DOI: 10.1016/j.jinf.2022.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Studies on the pathogenesis and immune responses of Cryptosporidium infection and development of drugs and vaccines use mostly immunocompromised mouse models. In this study, we establish an immunocompetent mouse model of cryptosporidiosis with high intensity and long duration of infection. METHODS We have obtained a Cryptosporidium tyzzeri isolate from laboratory mice, and infect adult C57BL/6J mice experimentally with the isolate for determinations of infectivity, infection patterns, pathological changes, and transcriptomic responses. RESULTS The isolate has an ID50 of 5.2 oocysts, with oocyst shedding lasting at high levels for >2 months. The oocyst shedding is boosted by immunosuppression of animals and suppressed by paromomycin treatment. The isolate induces strong inflammatory and acquired immune responses, but down-regulates the expression of α-defensins in epithelium. Comparative genomics analysis has revealed significant sequence differences from other isolates in subtelomeric genes. The down-regulation of the expression of α-defensins may be responsible for the high-intensity and long-lasting infection in this animal model. CONCLUSIONS The immunocompetent mouse model of cryptosporidiosis developed has the advantages of high oocyst shedding intensity and long oocyst shedding duration. It provides an effective mechanism for the propagation of Cryptosporidium, evaluations of potential therapeutics, and studies of pathogen biology and immune responses.
Collapse
Affiliation(s)
- Xi He
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| | - Wanyi Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lianbei Sun
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Tianyi Hou
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuowei Wan
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture. Guangzhou, Guangdong 510642, China.
| |
Collapse
|
16
|
Li J, Guo Y, Roellig DM, Li N, Feng Y, Xiao L. Cryptosporidium felis differs from other Cryptosporidium spp. in codon usage. Microb Genom 2021; 7. [PMID: 34907893 PMCID: PMC8767354 DOI: 10.1099/mgen.0.000711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cryptosporidium spp. are important enteric pathogens in a wide range of vertebrates including humans. Previous comparative analysis revealed conservation in genome composition, gene content, and gene organization among Cryptosporidium spp., with a progressive reductive evolution in metabolic pathways and invasion-related proteins. In this study, we sequenced the genome of zoonotic pathogen Cryptosporidium felis and conducted a comparative genomic analysis. While most intestinal Cryptosporidium species have similar genomic characteristics and almost complete genome synteny, fewer protein-coding genes and some sequence inversions and translocations were found in the C. felis genome. The C. felis genome exhibits much higher GC content (39.6 %) than other Cryptosporidium species (24.3–32.9 %), especially at the third codon position (GC3) of protein-coding genes. Thus, C. felis has a different codon usage, which increases the use of less energy costly amino acids (Gly and Ala) encoded by GC-rich codons. While the tRNA usage is conserved among Cryptosporidium species, consistent with its higher GC content, C. felis uses a unique tRNA for GTG for valine instead of GTA in other Cryptosporidium species. Both mutational pressures and natural selection are associated with the evolution of the codon usage in Cryptosporidium spp., while natural selection seems to drive the codon usage in C. felis. Other unique features of the C. felis genome include the loss of the entire traditional and alternative electron transport systems and several invasion-related proteins. Thus, the preference for the use of some less energy costly amino acids in C. felis may lead to a more harmonious parasite–host interaction, and the strengthened host-adaptation is reflected by the further reductive evolution of metabolism and host invasion-related proteins.
Collapse
Affiliation(s)
- Jiayu Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Dawn M. Roellig
- Division of Foodborne, Waterborne and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
- *Correspondence: Yaoyu Feng,
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China
- *Correspondence: Lihua Xiao,
| |
Collapse
|
17
|
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50 year perspective (1971-2021). Int J Parasitol 2021; 51:1099-1119. [PMID: 34715087 DOI: 10.1016/j.ijpara.2021.08.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.
Collapse
Affiliation(s)
- Una M Ryan
- Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ronald Fayer
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, BARC-East, Building 173, Beltsville, MD 20705, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Subtyping Cryptosporidium xiaoi, a Common Pathogen in Sheep and Goats. Pathogens 2021; 10:pathogens10070800. [PMID: 34202513 PMCID: PMC8308752 DOI: 10.3390/pathogens10070800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptosporidiosis is a significant cause of diarrhea in sheep and goats. Among the over 40 established species of Cryptosporidium, Cryptosporidium xiaoi is one of the dominant species infecting ovine and caprine animals. The lack of subtyping tools makes it impossible to examine the transmission of this pathogen. In the present study, we identified and characterized the 60-kDa glycoprotein (gp60) gene by sequencing the genome of C. xiaoi. The GP60 protein of C. xiaoi had a signal peptide, a furin cleavage site of RSRR, a glycosylphosphatidylinositol anchor, and over 100 O-glycosylation sites. Based on the gp60 sequence, a subtyping tool was developed and used in characterizing C. xiaoi in 355 positive samples from sheep and goats in China. A high sequence heterogeneity was observed in the gp60 gene, with 94 sequence types in 12 subtype families, namely XXIIIa to XXIIIl. Co-infections with multiple subtypes were common in these animals, suggesting that genetic recombination might be responsible for the high diversity within C. xiaoi. This was supported by the mosaic sequence patterns among the subtype families. In addition, a potential host adaptation was identified within this species, reflected by the exclusive occurrence of XXIIIa, XXIIIc, XXIIIg, and XXIIIj in goats. This subtyping tool should be useful in studies of the genetic diversity and transmission dynamics of C. xiaoi.
Collapse
|
19
|
Development of a Subtyping Tool for Zoonotic Pathogen Cryptosporidium canis. J Clin Microbiol 2021; 59:JCM.02474-20. [PMID: 33298606 DOI: 10.1128/jcm.02474-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/28/2020] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium canis is an important cause of cryptosporidiosis in canines and humans. Studies of the transmission characteristics of C. canis are currently hampered by the lack of suitable subtyping tools. In this study, we conducted a genomic survey of the pathogen and developed a subtyping tool targeting the partial 60-kDa glycoprotein gene (gp60). Seventy-six isolates previously identified as C. canis were analyzed using the new subtyping tool. Amplicons of the expected size were obtained from 49 isolates, and phylogenetic analysis identified 10 subtypes clustered into five distinct groups (XXa to XXe). The largest group, XXa, contained 43 isolates from four subtypes that differed slightly from each other at the nucleotide level, while groups XXb to XXe contain one to three isolates each. The similar distributions of subtypes in humans and canines suggest that zoonotic transmission might play an important role in the epidemiology of C. canis In addition, suspected zoonotic transmission of C. canis between dogs and humans in a household was confirmed using the subtyping tool. The subtyping tool and data generated in this study might improve our understanding of the transmission of this zoonotic pathogen.
Collapse
|
20
|
Hassan EM, Örmeci B, DeRosa MC, Dixon BR, Sattar SA, Iqbal A. A review of Cryptosporidium spp. and their detection in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1-25. [PMID: 33460403 DOI: 10.2166/wst.2020.515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cryptosporidium spp. are one of the most important waterborne pathogens worldwide and a leading cause of mortality from waterborne gastrointestinal diseases. Detection of Cryptosporidium spp. in water can be very challenging due to their low numbers and the complexity of the water matrix. This review describes the biology of Cryptosporidium spp. and current methods used in their detection with a focus on C. parvum and C. hominis. Among the methods discussed and compared are microscopy, immunology-based methods using monoclonal antibodies, molecular methods including PCR (polymerase chain reaction)-based assays, and emerging aptamer-based methods. These methods have different capabilities and limitations, but one common challenge is the need for better sensitivity and specificity, particularly in the presence of contaminants. The application of DNA aptamers in the detection of Cryptosporidium spp. oocysts shows promise in overcoming these challenges, and there will likely be significant developments in aptamer-based sensors in the near future.
Collapse
Affiliation(s)
- Eman M Hassan
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail:
| | - Banu Örmeci
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail:
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Canada, K1S 5B6
| | - Brent R Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, Ottawa, Canada, K1A 0K9
| | - Syed A Sattar
- Department of Civil and Environmental Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada E-mail: ; C.R.E.M. Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON, Canada, L4V 1T4
| | - Asma Iqbal
- C.R.E.M. Co Labs, Units 1-2, 3403 American Drive, Mississauga, ON, Canada, L4V 1T4
| |
Collapse
|
21
|
Widmer G, Carmena D, Kváč M, Chalmers RM, Kissinger JC, Xiao L, Sateriale A, Striepen B, Laurent F, Lacroix-Lamandé S, Gargala G, Favennec L. Update on Cryptosporidium spp.: highlights from the Seventh International Giardia and Cryptosporidium Conference. ACTA ACUST UNITED AC 2020; 27:14. [PMID: 32167464 PMCID: PMC7069357 DOI: 10.1051/parasite/2020011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 01/23/2023]
Abstract
While cryptosporidiosis is recognized as being among the most common causes of human parasitic diarrhea in the world, there is currently limited knowledge on Cryptosporidium infection mechanisms, incomplete codification of diagnostic methods, and a need for additional therapeutic options. In response, the Seventh International Giardia and Cryptosporidium Conference (IGCC 2019) was hosted from 23 to 26 June 2019, at the Rouen Normandy University, France. This trusted event brought together an international delegation of researchers to synthesize recent advances and identify key research questions and knowledge gaps. The program of the interdisciplinary conference included all aspects of host-parasite relationships from basic research to applications to human and veterinary medicine, and environmental issues associated with waterborne parasites and their epidemiological consequences. In relation to Cryptosporidium and cryptosporidiosis, the primary research areas for which novel findings and the most impressive communications were presented and discussed included: Cryptosporidium in environmental waters, seafood, and fresh produce; Animal epidemiology; Human cryptosporidiosis and epidemiology; Genomes and genomic evolution encompassing: Comparative genomics of Cryptosporidium spp., Genomic insights into biology, Acquiring and utilizing genome sequences, Genetic manipulation; Host-parasite interaction (immunology, microbiome); and Diagnosis and treatment. High quality presentations discussed at the conference reflected decisive progress and identified new opportunities that will engage investigators and funding agencies to spur future research in a “one health” approach to improve basic knowledge and the clinical and public health management of zoonotic cryptosporidiosis.
Collapse
Affiliation(s)
- Giovanni Widmer
- Department of Infectious Disease & Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, 01536 MA, USA
| | - David Carmena
- Spanish National Centre for Microbiology, 28220 Majadahonda, Spain
| | - Martin Kváč
- Institute of Parasitology, Biology Centre CAS, 370 05 České Budějovice, Czech Republic - Faculty of Agriculture, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales, SA2 8QA Swansea, UK - Swansea Medical School, Swansea University, SA2 8PP Swansea, UK
| | - Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, Institute of Bioinformatics and Department of Genetics, University of Georgia, Athens, 30602 GA, USA
| | - Lihua Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 Guangdong, PR China
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104 PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, 19104 PA, USA
| | - Fabrice Laurent
- INRAE, Université François Rabelais de Tours, Centre Val de Loire, ISP, Laboratoire Apicomplexes et Immunité Mucosale, 37380 Nouzilly, France
| | - Sonia Lacroix-Lamandé
- INRAE, Université François Rabelais de Tours, Centre Val de Loire, ISP, Laboratoire Apicomplexes et Immunité Mucosale, 37380 Nouzilly, France
| | - Gilles Gargala
- French National Cryptosporidiosis Reference Center, Rouen University Hospital, 1 Rue de Germont, 76031 Rouen Cedex, France - EA 7510, UFR Santé, University of Rouen Normandy, Normandy University, 22 Bd. Gambetta, 76183 Rouen Cedex, France
| | - Loïc Favennec
- French National Cryptosporidiosis Reference Center, Rouen University Hospital, 1 Rue de Germont, 76031 Rouen Cedex, France - EA 7510, UFR Santé, University of Rouen Normandy, Normandy University, 22 Bd. Gambetta, 76183 Rouen Cedex, France
| |
Collapse
|
22
|
Robinson G, Chalmers RM. Preparation of Cryptosporidium DNA for Whole Genome Sequencing. Methods Mol Biol 2020; 2052:129-138. [PMID: 31452161 DOI: 10.1007/978-1-4939-9748-0_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of whole genome sequencing (WGS) to Cryptosporidium has been challenged by the relatively small numbers of oocysts present in feces and lack of suitable culture systems to generate sufficient DNA that is required. Here, we provide a method for the preparation of sufficient, high-quality Cryptosporidium DNA for WGS from feces, incorporating parasite purification stages and an optional whole genome amplification step.
Collapse
Affiliation(s)
- Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology and Health Protection, Singleton Hospital, Swansea, UK
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology and Health Protection, Singleton Hospital, Swansea, UK.
| |
Collapse
|
23
|
Morris A, Robinson G, Swain MT, Chalmers RM. Direct Sequencing of Cryptosporidium in Stool Samples for Public Health. Front Public Health 2019; 7:360. [PMID: 31921734 PMCID: PMC6917613 DOI: 10.3389/fpubh.2019.00360] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/13/2019] [Indexed: 01/24/2023] Open
Abstract
The protozoan parasite Cryptosporidium is an important cause of diarrheal disease (cryptosporidiosis) in humans and animals, with significant morbidity and mortality especially in severely immunocompromised people and in young children in low-resource settings. Due to the sexual life cycle of the parasite, transmission is complex. There are no restrictions on sexual recombination between sub-populations, meaning that large-scale genetic recombination may occur within a host, potentially confounding epidemiological analysis. To clarify the relationships between infections in different hosts, it is first necessary to correctly identify species and genotypes, but these differentiations are not made by standard diagnostic tests and more sophisticated molecular methods have been developed. For instance, multilocus genotyping has been utilized to differentiate isolates within the major human pathogens, Cryptosporidium parvum and Cryptosporidium hominis. This has allowed mixed populations with multiple alleles to be identified: recombination events are considered to be the driving force of increased variation and the emergence of new subtypes. As yet, whole genome sequencing (WGS) is having limited impact on public health investigations, due in part to insufficient numbers of oocysts and purity of DNA derived from clinical samples. Moreover, because public health agencies have not prioritized parasites, validation has not been performed on user-friendly data analysis pipelines suitable for public health practitioners. Nonetheless, since the first whole genome assembly in 2004 there are now numerous genomes of human and animal-derived cryptosporidia publically available, spanning nine species. It has also been demonstrated that WGS from very low numbers of oocysts is possible, through the use of amplification procedures. These data and approaches are providing new insights into host-adapted infectivity, the presence and frequency of multiple sub-populations of Cryptosporidium spp. within single clinical samples, and transmission of infection. Analyses show that although whole genome sequences do indeed contain many alleles, they are invariably dominated by a single highly abundant allele. These insights are helping to better understand population structures within hosts, which will be important to develop novel prevention strategies in the fight against cryptosporidiosis.
Collapse
Affiliation(s)
- Arthur Morris
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom
- Swansea University Medical School, Swansea, United Kingdom
| | - Martin T. Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Rachel M. Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, United Kingdom
- Swansea University Medical School, Swansea, United Kingdom
| |
Collapse
|
24
|
Fan Y, Feng Y, Xiao L. Comparative genomics: how has it advanced our knowledge of cryptosporidiosis epidemiology? Parasitol Res 2019; 118:3195-3204. [DOI: 10.1007/s00436-019-06537-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/30/2019] [Indexed: 11/30/2022]
|
25
|
Weisz F, Lalle M, Nohynkova E, Sannella AR, Dluhošová J, Cacciò SM. Testing the impact of Whole Genome Amplification on genome comparison using the polyploid flagellated Giardia duodenalis as a model. Exp Parasitol 2019; 207:107776. [PMID: 31628895 DOI: 10.1016/j.exppara.2019.107776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/13/2019] [Indexed: 11/27/2022]
Abstract
The availability of high quality genomic DNA in sufficient amounts to perform Next Generation Sequencing (NGS) experiments is challenging for pathogens that cannot be cultivated in vitro, as is the case for many parasites. Therefore, Whole Genome Amplification (WGA) of genomic DNA is used to overcome this limitation. In this study, we evaluated the effect of WGA using the intestinal flagellated protozoan Giardia duodenalis as a model, due to its genome compactness (12 Mb), the presence of two diploid nuclei with variable levels of allelic sequence heterogeneity (ASH), and the availability of reference genomes. We selected one isolate (ZX15) belonging to the same genetic group of the reference isolate WB, namely Assemblage A, sub-Assemblage AI. Genomic DNA from the ZX15 isolate (GEN dataset) and that obtained by WGA of 1 ng of the same genomic DNA (WGA dataset) were sequenced on a HiSeq Illumina platform. Trimmed reads from the GEN and WGA experiments were mapped against the WB reference genome, showing the presence of a very small number of mutations (846 and 752, respectively). The difference in the number of mutations is largely accounted by local variation in coverage and not by bias introduced by WGA. No significant difference were observed in the distribution of mutations in coding and non-coding regions, in the proportion of heterozygous mutations (ASH), or in the transition/transversion ratio of Single Nucleotide Variants within coding sequences. We conclude that the quantitative and qualitative impact of WGA on the identification of mutations is limited, and that this technique can be used to conduct comparative genomics studies.
Collapse
Affiliation(s)
- Filip Weisz
- Institute of Immunology and Microbiology, First Faculty of Medicine and General University Hospital, Charles University in Prague, Czech Republic; Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Lalle
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Eva Nohynkova
- Institute of Immunology and Microbiology, First Faculty of Medicine and General University Hospital, Charles University in Prague, Czech Republic
| | - Anna Rosa Sannella
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Jana Dluhošová
- Institute of Immunology and Microbiology, First Faculty of Medicine and General University Hospital, Charles University in Prague, Czech Republic
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
26
|
Zhang S, Chen L, Li F, Li N, Feng Y, Xiao L. Divergent Copies of a Cryptosporidium parvum-Specific Subtelomeric Gene. Microorganisms 2019; 7:microorganisms7090366. [PMID: 31540508 PMCID: PMC6780254 DOI: 10.3390/microorganisms7090366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Subtype families of Cryptosporidium parvum differ in host range, with IIa and IId being found in a broad range of animals, IIc in humans, and IIo and IIp in some rodents. Previous studies indicated that the subtelomeric cgd6_5520-5510 gene in C. parvum is lost in many Cryptosporidium species, and could potentially contribute to the broad host range of the former. In this study, we identified the presence of a second copy of the gene in some C. parvum subtype families with a broad host range, and showed sequence differences among them. The sequence differences in the cgd6_5520-5510 gene were not segregated by the sequence type of the 60 kDa glycoprotein gene. Genetic recombination appeared to have played a role in generating divergent nucleotide sequences between copies and among subtype families. These data support the previous conclusion on the potential involvement of the insulinase-like protease encoded by the subtelomeric cgd6_5520-5510 gene in the broad host range of C. parvum IIa and IId subtypes.
Collapse
Affiliation(s)
- Shijing Zhang
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Li Chen
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Falei Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Na Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
27
|
Riebold D, Russow K, Schlegel M, Wollny T, Thiel J, Freise J, Hüppop O, Eccard JA, Plenge-Bönig A, Loebermann M, Ulrich RG, Klammt S, Mettenleiter TC, Reisinger EC. Occurrence of Gastrointestinal Parasites in Small Mammals from Germany. Vector Borne Zoonotic Dis 2019; 20:125-133. [PMID: 31513468 DOI: 10.1089/vbz.2019.2457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An increase in zoonotic infections in humans in recent years has led to a high level of public interest. However, the extent of infestation of free-living small mammals with pathogens and especially parasites is not well understood. This pilot study was carried out within the framework of the "Rodent-borne pathogens" network to identify zoonotic parasites in small mammals in Germany. From 2008 to 2009, 111 small mammals of 8 rodent and 5 insectivore species were collected. Feces and intestine samples from every mammal were examined microscopically for the presence of intestinal parasites by using Telemann concentration for worm eggs, Kinyoun staining for coccidia, and Heidenhain staining for other protozoa. Adult helminths were additionally stained with carmine acid for species determination. Eleven different helminth species, five coccidians, and three other protozoa species were detected. Simultaneous infection of one host by different helminths was common. Hymenolepis spp. (20.7%) were the most common zoonotic helminths in the investigated hosts. Coccidia, including Eimeria spp. (30.6%), Cryptosporidium spp. (17.1%), and Sarcocystis spp. (17.1%), were present in 40.5% of the feces samples of small mammals. Protozoa, such as Giardia spp. and amoebae, were rarely detected, most likely because of the repeated freeze-thawing of the samples during preparation. The zoonotic pathogens detected in this pilot study may be potentially transmitted to humans by drinking water, smear infection, and airborne transmission.
Collapse
Affiliation(s)
- Diana Riebold
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany.,Host Septomics Research Group, ZIK Septomics, University Jena Medical School, Jena, Germany
| | - Kati Russow
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| | - Mathias Schlegel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Theres Wollny
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Faculty of Natural Sciences, Lausitz University of Applied Sciences, Senftenberg, Germany
| | - Jörg Thiel
- Forstliches Forschungs- und Kompetenzzentrum Gotha, Gotha, Germany
| | - Jona Freise
- Department of Pest Control, Veterinary Task-Force, Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Wardenburg, Germany
| | - Ommo Hüppop
- Institute of Avian Research "Vogelwarte Helgoland," Wilhelmshaven, Germany
| | - Jana Anja Eccard
- Animal Ecology, Institute for Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Anita Plenge-Bönig
- Division of Hygiene and Infectious Diseases, Institute of Hygiene and Environment, Hamburg, Germany
| | - Micha Loebermann
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| | - Rainer Günter Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sebastian Klammt
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| | | | - Emil Christian Reisinger
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
28
|
Xu Z, Guo Y, Roellig DM, Feng Y, Xiao L. Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major human-infecting species. BMC Genomics 2019; 20:406. [PMID: 31117941 PMCID: PMC6532270 DOI: 10.1186/s12864-019-5788-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/09/2019] [Indexed: 11/29/2022] Open
Abstract
Background Cryptosporidiosis is a major cause of gastrointestinal diseases in humans and other vertebrates. Previous analyses of invasion-related proteins revealed that Cryptosporidium parvum, Cryptosporidium hominis, and Cryptosporidium ubiquitum mainly differed in copy numbers of secreted MEDLE proteins and insulinase-like proteases and sequences of mucin-type glycoproteins. Recently, Cryptosporidium chipmunk genotype I was identified as a novel zoonotic pathogen in humans. In this study, we sequenced its genome and conducted a comparative genomic analysis. Results The genome of Cryptosporidium chipmunk genotype I has gene content and organization similar to C. parvum and other intestinal Cryptosporidium species sequenced to date. A total of 3783 putative protein-encoding genes were identified in the genome, 3525 of which are shared by Cryptosporidium chipmunk genotype I and three major human-pathogenic Cryptosporidium species, C. parvum, C. hominis, and Cryptosporidium meleagridis. The metabolic pathways are almost identical among these four Cryptosporidium species. Compared with C. parvum, a major reduction in gene content in Cryptosporidium chipmunk genotype I is in the number of telomeric genes encoding MEDLE proteins (two instead of six) and insulinase-like proteases (one instead of two). Highly polymorphic genes between the two species are mostly subtelomeric ones encoding secretory proteins, most of which have higher dN/dS ratios and half are members of multiple gene families. In particular, two subtelomeric ABC transporters are under strong positive selection. Conclusions Cryptosporidium chipmunk genotype I possesses genome organization, gene content, metabolic pathways and invasion-related proteins similar to the common human-pathogenic Cryptosporidium species, reaffirming its human-pathogenic nature. The loss of some subtelomeric genes encoding insulinase-like proteases and secreted MEDLE proteins and high sequence divergence in secreted pathogenesis determinants could contribute to the biological differences among human-pathogenic Cryptosporidium species. Electronic supplementary material The online version of this article (10.1186/s12864-019-5788-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhixiao Xu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yaqiong Guo
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
29
|
Stevens RC, Steele JL, Glover WR, Sanchez-Garcia JF, Simpson SD, O’Rourke D, Ramsdell JS, MacManes MD, Thomas WK, Shuber AP. A novel CRISPR/Cas9 associated technology for sequence-specific nucleic acid enrichment. PLoS One 2019; 14:e0215441. [PMID: 30998719 PMCID: PMC6472885 DOI: 10.1371/journal.pone.0215441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/03/2019] [Indexed: 01/08/2023] Open
Abstract
Massively parallel sequencing technologies have made it possible to generate large quantities of sequence data. However, as research-associated information is transferred into clinical practice, cost and throughput constraints generally require sequence-specific targeted analyses. Therefore, sample enrichment methods have been developed to meet the needs of clinical sequencing applications. However, current amplification and hybrid capture enrichment methods are limited in the contiguous length of sequences for which they are able to enrich. PCR based amplification also loses methylation data and other native DNA features. We have developed a novel technology (Negative Enrichment) where we demonstrate targeting long (>10 kb) genomic regions of interest. We use the specificity of CRISPR-Cas9 single guide RNA (Cas9/sgRNA) complexes to define 5' and 3' termini of sequence-specific loci in genomic DNA, targeting 10 to 36 kb regions. The complexes were found to provide protection from exonucleases, by protecting the targeted sequences from degradation, resulting in enriched, double-strand, non-amplified target sequences suitable for next-generation sequencing library preparation or other downstream analyses.
Collapse
Affiliation(s)
- Richard C. Stevens
- Genetics Research LLC, Wakefield, Massachusetts, United States of America
| | - Jennifer L. Steele
- Genetics Research LLC, Wakefield, Massachusetts, United States of America
| | - William R. Glover
- Genetics Research LLC, Wakefield, Massachusetts, United States of America
| | | | - Stephen D. Simpson
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Devon O’Rourke
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, United States of America
- Department of Molecular Cellular and Developmental Biology, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Jordan S. Ramsdell
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Matthew D. MacManes
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, United States of America
- Department of Molecular Cellular and Developmental Biology, University of New Hampshire, Durham, New Hampshire, United States of America
| | - W. Kelley Thomas
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Anthony P. Shuber
- Genetics Research LLC, Wakefield, Massachusetts, United States of America
| |
Collapse
|
30
|
Abstract
Cryptosporidium spp. (Apicomplexa) causing cryptosporidiosis are of medical and veterinary significance. The genus Cryptosporidium has benefited from the application of what is considered a DNA-barcoding approach, even before the term 'DNA barcoding' was formally coined. Here, the objective to define the DNA barcode diversity of Cryptosporidium infecting mammals is reviewed and considered to be accomplished. Within the Cryptosporidium literature, the distinction between DNA barcoding and DNA taxonomy is indistinct. DNA barcoding and DNA taxonomy are examined using the latest additions to the growing spectrum of named Cryptosporidium species and within-species and between-species identity is revisited. Ease and availability of whole-genome DNA sequencing of the relatively small Cryptosporidium genome offer an initial perspective on the intra-host diversity. The opportunity emerges to apply a metagenomic approach to purified field/clinical Cryptosporidum isolates. The outstanding question remains a reliable definition of Cryptosporidium phenotype. The complementary experimental infections and metagenome approach will need to be applied simultaneously to address Cryptosporidium phenotype with carefully chosen clinical evaluations enabling identification of virulence factors.
Collapse
|
31
|
Kaupke A, Gawor J, Rzeżutka A, Gromadka R. Identification of pig-specific Cryptosporidium species in mixed infections using Illumina sequencing technology. Exp Parasitol 2017; 182:22-25. [PMID: 28939445 DOI: 10.1016/j.exppara.2017.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/21/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
Abstract
Nowadays molecular methods are widely used in epidemiological studies of Cryptosporidium infections in humans and animals. However to gain better understanding of parasite species or genotypes, especially when mixed infections are noticed, highly sensitive tools with adequate resolution power need to be employed. In this article, we report an application of the next generation sequencing method (NGS) for detection and characterisation of Cryptosporidium species concurrently present in pig faeces. A mixture of Cryptosporidium DNA obtained from two faecal samples was amplified at the 18 SSU rRNA gene locus and the resulting amplicons were subsequently used for MiSeq sequencing. Although initial molecular analyses indicated the possible presence of another Cryptosporidium species other than Cryptosporidium scrofarum and Cryptosporidium suis, deep sequencing only confirmed the presence of pig-specific Cryptosporidium.
Collapse
Affiliation(s)
- A Kaupke
- Department of Food and Environmental Virology, National Veterinary Research Institute, al. Partyzantów 57, 24-100 Puławy, Poland
| | - J Gawor
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| | - A Rzeżutka
- Department of Food and Environmental Virology, National Veterinary Research Institute, al. Partyzantów 57, 24-100 Puławy, Poland.
| | - R Gromadka
- Laboratory of DNA Sequencing and Oligonucleotide Synthesis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
32
|
Feng Y, Xiao L. Molecular Epidemiology of Cryptosporidiosis in China. Front Microbiol 2017; 8:1701. [PMID: 28932217 PMCID: PMC5592218 DOI: 10.3389/fmicb.2017.01701] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
Molecular epidemiology of cryptosporidiosis is an active research area in China. The use of genotyping and subtyping tools in prevalence studies has led to the identification of unique characteristics of Cryptosporidium infections in humans and animals. Human cryptosporidiosis in China is exemplified by the high diversity of Cryptosporidium spp. at species and subtype levels, with dominant C. hominis and C. parvum subtypes being rarely detected in other countries. Similarly, preweaned dairy calves, lambs, and goat kids are mostly infected with non-pathogenic Cryptosporidium species (C. bovis in calves and C. xiaoi in lambs and goat kids), with C. parvum starting to appear in dairy calves as a consequence of concentrated animal feeding operations. The latter Cryptosporidium species is dominated by IId subtypes, with IIa subtypes largely absent from the country. Unlike elsewhere, rodents in China appear to be commonly infected with C. parvum IId subtypes, with identical subtypes being found in these animals, calves, other livestock, and humans. In addition to cattle, pigs and chickens appear to be significant contributors to Cryptosporidium contamination in drinking water sources, as reflected by the frequent detection of C. suis, C. baileyi, and C. meleagridis in water samples. Chinese scientists have also made significant contributions to the development of new molecular epidemiological tools for Cryptosporidium spp. and improvements in our understanding of the mechanism involved in the emergence of hyper-transmissible and virulent C. hominis and C. parvum subtypes. Despite this progress, coordinated research efforts should be made to address changes in Cryptosporidium transmission because of rapid economic development in China and to prevent the introduction and spread of virulent and zoonotic Cryptosporidium species and subtypes in farm animals.
Collapse
Affiliation(s)
- Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and PreventionAtlanta, GA, United States
| |
Collapse
|
33
|
Xiao L, Feng Y. Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food Waterborne Parasitol 2017; 8-9:14-32. [PMID: 32095639 PMCID: PMC7034008 DOI: 10.1016/j.fawpar.2017.09.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/26/2023] Open
Abstract
Molecular diagnostic tools have played an important role in improving our understanding of the transmission of Cryptosporidium spp. and Giardia duodenalis, which are two of the most important waterborne parasites in industrialized nations. Genotyping tools are frequently used in the identification of host-adapted Cryptosporidium species and G. duodenalis assemblages, allowing the assessment of infection sources in humans and public health potential of parasites found in animals and the environment. In contrast, subtyping tools are more often used in case linkages, advanced tracking of infections sources, and assessment of disease burdens attributable to anthroponotic and zoonotic transmission. More recently, multilocus typing tools have been developed for population genetic characterizations of transmission dynamics and delineation of mechanisms for the emergence of virulent subtypes. With the recent development in next generation sequencing techniques, whole genome sequencing and comparative genomic analysis are increasingly used in characterizing Cryptosporidium spp. and G. duodenalis. The use of these tools in epidemiologic studies has identified significant differences in the transmission of Cryptosporidium spp. in humans between developing countries and industrialized nations, especially the role of zoonotic transmission in human infection. Geographic differences are also present in the distribution of G. duodenalis assemblages A and B in humans. In contrast, there is little evidence for widespread zoonotic transmission of giardiasis in both developing and industrialized countries. Differences in virulence have been identified among Cryptosporidium species and subtypes, and possibly between G. duodenalis assemblages A and B, and genetic recombination has been identified as one mechanism for the emergence of virulent C. hominis subtypes. These recent advances are providing insight into the epidemiology of waterborne protozoan parasites in both developing and developed countries.
Collapse
Affiliation(s)
- Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
34
|
Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. Int J Parasitol 2017; 47:281-290. [PMID: 28192123 DOI: 10.1016/j.ijpara.2016.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/20/2022]
Abstract
Host adaptation is known to occur in Cryptosporidium parvum, with IIa and IId subtype families preferentially infecting calves and lambs, respectively. To improve our understanding of the genetic basis of host adaptation in Cryptosporidium parvum, we sequenced the genomes of two IId specimens and one IIa specimen from China and Egypt using the Illumina technique and compared them with the published IIa IOWA genome. Sequence data were obtained for >99.3% of the expected genome. Comparative genomic analysis identified differences in numbers of three subtelomeric gene families between sequenced genomes and the reference genome, including those encoding SKSR secretory proteins, the MEDLE family of secretory proteins, and insulinase-like proteases. These gene gains and losses compared with the reference genome were confirmed by PCR analysis. Altogether, 5,191-5,766 single nucleotide variants were seen between genomes sequenced in this study and the reference genome, with most SNVs occurring in subtelomeric regions of chromosomes 1, 4, and 6. The most highly polymorphic genes between IIa and IId encode mainly invasion-associated and immunodominant mucin proteins, and other families of secretory proteins. Further studies are needed to verify the biological significance of these genomic differences.
Collapse
|
35
|
Guthrie JL, Gardy JL. A brief primer on genomic epidemiology: lessons learned from Mycobacterium tuberculosis. Ann N Y Acad Sci 2016; 1388:59-77. [PMID: 28009051 DOI: 10.1111/nyas.13273] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
Abstract
Genomics is now firmly established as a technique for the investigation and reconstruction of communicable disease outbreaks, with many genomic epidemiology studies focusing on revealing transmission routes of Mycobacterium tuberculosis. In this primer, we introduce the basic techniques underlying transmission inference from genomic data, using illustrative examples from M. tuberculosis and other pathogens routinely sequenced by public health agencies. We describe the laboratory and epidemiological scenarios under which genomics may or may not be used, provide an introduction to sequencing technologies and bioinformatics approaches to identifying transmission-informative variation and resistance-associated mutations, and discuss how variation must be considered in the light of available clinical and epidemiological information to infer transmission.
Collapse
Affiliation(s)
- Jennifer L Guthrie
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer L Gardy
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.,Communicable Disease Prevention and Control Services, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| |
Collapse
|
36
|
Genomic Variation in IbA10G2 and Other Patient-Derived Cryptosporidium hominis Subtypes. J Clin Microbiol 2016; 55:844-858. [PMID: 28003424 DOI: 10.1128/jcm.01798-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022] Open
Abstract
In order to improve genotyping and epidemiological analysis of Cryptosporidium spp., genomic data need to be generated directly from a broad range of clinical specimens. Utilizing a robust method that we developed for the purification and generation of amplified target DNA, we present its application for the successful isolation and whole-genome sequencing of 14 different Cryptosporidium hominis patient specimens. Six isolates of subtype IbA10G2 were analyzed together with a single representative each of 8 other subtypes: IaA20R3, IaA23R3, IbA9G3, IbA13G3, IdA14, IeA11G3T3, IfA12G1, and IkA18G1. Parasite burden was measured over a range of more than 2 orders of magnitude for all samples, while the genomes were sequenced to mean depths of between 17× and 490× coverage. Sequence homology-based functional annotation identified several genes of interest, including the gene encoding Cryptosporidium oocyst wall protein 9 (COWP9), which presented a predicted loss-of-function mutation in all the sequence subtypes, except for that seen with IbA10G2, which has a sequence identical to the Cryptosporidium parvum reference Iowa II sequence. Furthermore, phylogenetic analysis showed that all the IbA10G2 genomes form a monophyletic clade in the C. hominis tree as expected and yet display some heterogeneity within the IbA10G2 subtype. The current report validates the aforementioned method for isolating and sequencing Cryptosporidium directly from clinical stool samples. In addition, the analysis demonstrates the potential in mining data generated from sequencing multiple whole genomes of Cryptosporidium from human fecal samples, while alluding to the potential for a higher degree of genotyping within Cryptosporidium epidemiology.
Collapse
|
37
|
Liu S, Roellig DM, Guo Y, Li N, Frace MA, Tang K, Zhang L, Feng Y, Xiao L. Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics 2016; 17:1006. [PMID: 27931183 PMCID: PMC5146892 DOI: 10.1186/s12864-016-3343-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/25/2016] [Indexed: 11/10/2022] Open
Abstract
Background The switch from photosynthetic or predatory to parasitic life strategies by apicomplexans is accompanied with a reductive evolution of genomes and losses of metabolic capabilities. Cryptosporidium is an extreme example of reductive evolution among apicomplexans, with losses of both the mitosome genome and many metabolic pathways. Previous observations on reductive evolution were largely based on comparative studies of various groups of apicomplexans. In this study, we sequenced two divergent Cryptosporidium species and conducted a comparative genomic analysis to infer the reductive evolution of metabolic pathways and differential evolution of invasion-related proteins within the Cryptosporidium lineage. Results In energy metabolism, Cryptosporidium species differ from each other mostly in mitosome metabolic pathways. Compared with C. parvum and C. hominis, C. andersoni possesses more aerobic metabolism and a conventional electron transport chain, whereas C. ubiquitum has further reductions in ubiquinone and polyisprenoid biosynthesis and has lost both the conventional and alternative electron transport systems. For invasion-associated proteins, similar to C. hominis, a reduction in the number of genes encoding secreted MEDLE and insulinase-like proteins in the subtelomeric regions of chromosomes 5 and 6 was also observed in C. ubiquitum and C. andersoni, whereas mucin-type glycoproteins are highly divergent between the gastric C. andersoni and intestinal Cryptosporidium species. Conclusions Results of the study suggest that rapidly evolving mitosome metabolism and secreted invasion-related proteins could be involved in tissue tropism and host specificity in Cryptosporidium spp. The finding of progressive reduction in mitosome metabolism among Cryptosporidium species improves our knowledge of organelle evolution within apicomplexans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3343-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiyou Liu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Yaqiong Guo
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Na Li
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Michael A Frace
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA.
| |
Collapse
|
38
|
Pérez-Cordón G, Robinson G, Nader J, Chalmers RM. Discovery of new variable number tandem repeat loci in multiple Cryptosporidium parvum genomes for the surveillance and investigation of outbreaks of cryptosporidiosis. Exp Parasitol 2016; 169:119-28. [PMID: 27523797 DOI: 10.1016/j.exppara.2016.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/28/2023]
Abstract
Cryptosporidium parvum is a protozoan parasite causing gastro-intestinal disease (cryptosporidiosis) in humans and animals. The ability to investigate sources of contamination and routes of transmission by characterization and comparison of isolates in a cost- and time-efficient manner will help surveillance and epidemiological investigations, but as yet there is no standardised multi-locus typing scheme. To systematically identify variable number tandem repeat (VNTR) loci, which have been shown to provide differentiation in moderately conserved species, we interrogated the reference C. parvum Iowa II genome and seven other C. parvum genomes using a tandem repeat finder software. We identified 28 loci that met criteria defined previously for robust typing schemes for inter-laboratory surveillance, that had potential for generating PCR amplicons analysable on most fragment sizing platforms: repeats ≥6 bp, occurring in tandem in a single repeat region, and providing a total amplicon size of <300 bp including 50 bp for the location of the forward and reverse primers. The qualifying loci will be further investigated in vitro for consideration as preferred loci in the development of a robust VNTR scheme.
Collapse
Affiliation(s)
- Gregorio Pérez-Cordón
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, SA2 8QA, UK
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, SA2 8QA, UK; Swansea University Medical School, Grove Building, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Johanna Nader
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, SA2 8QA, UK; Swansea University Medical School, Grove Building, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
39
|
Troell K, Hallström B, Divne AM, Alsmark C, Arrighi R, Huss M, Beser J, Bertilsson S. Cryptosporidium as a testbed for single cell genome characterization of unicellular eukaryotes. BMC Genomics 2016; 17:471. [PMID: 27338614 PMCID: PMC4917956 DOI: 10.1186/s12864-016-2815-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Background Infectious disease involving multiple genetically distinct populations of pathogens is frequently concurrent, but difficult to detect or describe with current routine methodology. Cryptosporidium sp. is a widespread gastrointestinal protozoan of global significance in both animals and humans. It cannot be easily maintained in culture and infections of multiple strains have been reported. To explore the potential use of single cell genomics methodology for revealing genome-level variation in clinical samples from Cryptosporidium-infected hosts, we sorted individual oocysts for subsequent genome amplification and full-genome sequencing. Results Cells were identified with fluorescent antibodies with an 80 % success rate for the entire single cell genomics workflow, demonstrating that the methodology can be applied directly to purified fecal samples. Ten amplified genomes from sorted single cells were selected for genome sequencing and compared both to the original population and a reference genome in order to evaluate the accuracy and performance of the method. Single cell genome coverage was on average 81 % even with a moderate sequencing effort and by combining the 10 single cell genomes, the full genome was accounted for. By a comparison to the original sample, biological variation could be distinguished and separated from noise introduced in the amplification. Conclusions As a proof of principle, we have demonstrated the power of applying single cell genomics to dissect infectious disease caused by closely related parasite species or subtypes. The workflow can easily be expanded and adapted to target other protozoans, and potential applications include mapping genome-encoded traits, virulence, pathogenicity, host specificity and resistance at the level of cells as truly meaningful biological units. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2815-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karin Troell
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| | - Björn Hallström
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Anna-Maria Divne
- Microbial Single Cell Genomics Facility, Department of Cell and Molecular Biology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Cecilia Alsmark
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.,Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Romanico Arrighi
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Mikael Huss
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Jessica Beser
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
40
|
Vermeulen ET, Lott MJ, Eldridge MDB, Power ML. Evaluation of next generation sequencing for the analysis of Eimeria communities in wildlife. J Microbiol Methods 2016; 124:1-9. [PMID: 26944624 DOI: 10.1016/j.mimet.2016.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 12/31/2022]
Abstract
Next-generation sequencing (NGS) techniques are well-established for studying bacterial communities but not yet for microbial eukaryotes. Parasite communities remain poorly studied, due in part to the lack of reliable and accessible molecular methods to analyse eukaryotic communities. We aimed to develop and evaluate a methodology to analyse communities of the protozoan parasite Eimeria from populations of the Australian marsupial Petrogale penicillata (brush-tailed rock-wallaby) using NGS. An oocyst purification method for small sample sizes and polymerase chain reaction (PCR) protocol for the 18S rRNA locus targeting Eimeria was developed and optimised prior to sequencing on the Illumina MiSeq platform. A data analysis approach was developed by modifying methods from bacterial metagenomics and utilising existing Eimeria sequences in GenBank. Operational taxonomic unit (OTU) assignment at a high similarity threshold (97%) was more accurate at assigning Eimeria contigs into Eimeria OTUs but at a lower threshold (95%) there was greater resolution between OTU consensus sequences. The assessment of two amplification PCR methods prior to Illumina MiSeq, single and nested PCR, determined that single PCR was more sensitive to Eimeria as more Eimeria OTUs were detected in single amplicons. We have developed a simple and cost-effective approach to a data analysis pipeline for community analysis of eukaryotic organisms using Eimeria communities as a model. The pipeline provides a basis for evaluation using other eukaryotic organisms and potential for diverse community analysis studies.
Collapse
Affiliation(s)
- Elke T Vermeulen
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Matthew J Lott
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | - Mark D B Eldridge
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia; Australian Museum Research Institute, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.
| | - Michelle L Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| |
Collapse
|
41
|
Liu G, Weston CQ, Pham LK, Waltz S, Barnes H, King P, Sphar D, Yamamoto RT, Forsyth RA. Epigenetic Segregation of Microbial Genomes from Complex Samples Using Restriction Endonucleases HpaII and McrB. PLoS One 2016; 11:e0146064. [PMID: 26727463 PMCID: PMC4699840 DOI: 10.1371/journal.pone.0146064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/11/2015] [Indexed: 01/05/2023] Open
Abstract
We describe continuing work to develop restriction endonucleases as tools to enrich targeted genomes of interest from diverse populations. Two approaches were developed in parallel to segregate genomic DNA based on cytosine methylation. First, the methyl-sensitive endonuclease HpaII was used to bind non-CG methylated DNA. Second, a truncated fragment of McrB was used to bind CpG methylated DNA. Enrichment levels of microbial genomes can exceed 100-fold with HpaII allowing improved genomic detection and coverage of otherwise trace microbial genomes from sputum. Additionally, we observe interesting enrichment results that correlate with the methylation states not only of bacteria, but of fungi, viruses, a protist and plants. The methods presented here offer promise for testing biological samples for pathogens and global analysis of population methylomes.
Collapse
MESH Headings
- 5-Methylcytosine/analysis
- CpG Islands/genetics
- DNA Methylation
- DNA Restriction Enzymes/isolation & purification
- DNA Restriction Enzymes/metabolism
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- DNA, Plant/genetics
- DNA, Plant/isolation & purification
- DNA, Protozoan/genetics
- DNA, Protozoan/isolation & purification
- DNA, Viral/genetics
- DNA, Viral/isolation & purification
- Deoxyribonuclease HpaII/isolation & purification
- Deoxyribonuclease HpaII/metabolism
- Escherichia coli Proteins/isolation & purification
- Escherichia coli Proteins/metabolism
- Gene Library
- Genetics, Microbial/methods
- Genomics/methods
- Humans
- Metagenome
- Microbiota/genetics
- Sequence Analysis, DNA
- Sputum/microbiology
- Substrate Specificity
Collapse
Affiliation(s)
- Guohong Liu
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
| | - Christopher Q. Weston
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
- Singlera Genomics, Inc., La Jolla, California, 92037, United States of America
| | - Long K. Pham
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
| | - Shannon Waltz
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
- Singlera Genomics, Inc., La Jolla, California, 92037, United States of America
- San Diego State University, San Diego, California, United States of America
| | - Helen Barnes
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
| | - Paula King
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
- Singlera Genomics, Inc., La Jolla, California, 92037, United States of America
| | - Dan Sphar
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
| | - Robert T. Yamamoto
- Zova Systems, LLC, San Diego, California, 92129, United States of America
| | - R. Allyn Forsyth
- FLIR Systems, Inc., La Jolla, California, 92037, United States of America
- Singlera Genomics, Inc., La Jolla, California, 92037, United States of America
- San Diego State University, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Hadfield SJ, Pachebat JA, Swain MT, Robinson G, Cameron SJ, Alexander J, Hegarty MJ, Elwin K, Chalmers RM. Generation of whole genome sequences of new Cryptosporidium hominis and Cryptosporidium parvum isolates directly from stool samples. BMC Genomics 2015; 16:650. [PMID: 26318339 PMCID: PMC4552982 DOI: 10.1186/s12864-015-1805-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022] Open
Abstract
Background Whole genome sequencing (WGS) of Cryptosporidium spp. has previously relied on propagation of the parasite in animals to generate enough oocysts from which to extract DNA of sufficient quantity and purity for analysis. We have developed and validated a method for preparation of genomic Cryptosporidium DNA suitable for WGS directly from human stool samples and used it to generate 10 high-quality whole Cryptosporidium genome assemblies. Our method uses a combination of salt flotation, immunomagnetic separation (IMS), and surface sterilisation of oocysts prior to DNA extraction, with subsequent use of the transposome-based Nextera XT kit to generate libraries for sequencing on Illumina platforms. IMS was found to be superior to caesium chloride density centrifugation for purification of oocysts from small volume stool samples and for reducing levels of contaminant DNA. Results The IMS-based method was used initially to sequence whole genomes of Cryptosporidium hominis gp60 subtype IbA10G2 and Cryptosporidium parvum gp60 subtype IIaA19G1R2 from small amounts of stool left over from diagnostic testing of clinical cases of cryptosporidiosis. The C. parvum isolate was sequenced to a mean depth of 51.8X with reads covering 100 % of the bases of the C. parvum Iowa II reference genome (Bioproject PRJNA 15586), while the C. hominis isolate was sequenced to a mean depth of 34.7X with reads covering 98 % of the bases of the C. hominis TU502 v1 reference genome (Bioproject PRJNA 15585). The method was then applied to a further 17 stools, successfully generating another eight new whole genome sequences, of which two were C. hominis (gp60 subtypes IbA10G2 and IaA14R3) and six C. parvum (gp60 subtypes IIaA15G2R1 from three samples, and one each of IIaA17G1R1, IIaA18G2R1, and IIdA22G1), demonstrating the utility of this method to sequence Cryptosporidium genomes directly from clinical samples. This development is especially important as it reduces the requirement to propagate Cryptosporidium oocysts in animal models prior to genome sequencing. Conclusion This represents the first report of high-quality whole genome sequencing of Cryptosporidium isolates prepared directly from human stool samples.
Collapse
Affiliation(s)
- Stephen J Hadfield
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| | - Justin A Pachebat
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Martin T Swain
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| | - Simon Js Cameron
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Jenna Alexander
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Matthew J Hegarty
- Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom.
| | - Kristin Elwin
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology ABM, Singleton Hospital, Sgeti, Swansea, SA2 8QA, United Kingdom.
| |
Collapse
|
43
|
Andersson S, Sikora P, Karlberg ML, Winiecka-Krusnell J, Alm E, Beser J, Arrighi RB. It's a dirty job — A robust method for the purification and de novo genome assembly of Cryptosporidium from clinical material. J Microbiol Methods 2015; 113:10-2. [DOI: 10.1016/j.mimet.2015.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
|