1
|
Şimşek H, Gül Ş. Discovering Lassa virus nucleoprotein inhibitors via in silico drug repositioning approach. J Biomol Struct Dyn 2024:1-21. [PMID: 39533921 DOI: 10.1080/07391102.2024.2427370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/27/2024] [Indexed: 11/16/2024]
Abstract
Lassa fever, caused by the zoonotic Lassa virus (LASV), poses a significant health threat in Africa, leading to thousands of infections and deaths annually and has the potential to spread to other parts of the world. Despite the urgency for effective treatments, there are currently no approved drugs or vaccines for Lassa fever. LASV possesses a unique negative-sense RNA genome, and NP plays a crucial role in viral assembly and infection. Crystallographic analysis reveals distinct domains in NP, with the N-terminal domain involved in RNA binding and the C-terminal domain exhibiting exoribonuclease activity, suppressing type I interferon-mediated immune responses. This study explores the potential of repurposing existing FDA-approved drugs by targeting the N-terminal domain of LASV's nucleoprotein (NP). Docking simulations and molecular dynamics experiments were conducted, revealing promising interactions between NP and widely used and well tolerated drugs such as metacycline, eltrombopag, glimepiride, lurasidone, paliperidone, prednisone, doxazosin, flavin mononucleotide, and pimozide. These drugs exhibited stable binding throughout 100 ns simulations, with interactions resembling those observed with the natural ligand, dTTP. Binding free energy calculations identified key amino acids, particularly Phe176 and Arg300, as crucial for drug-NP interactions. Notably, drugs like FMN, prednisone, metacycline, pimozide, and glimepiride displayed binding affinities comparable to dTTP, suggesting their potential as LASV inhibitors. The study underscores the importance of further experimental and clinical validation of these in silico findings. The identified drugs present promising candidates for potential treatments for Lassa fever, addressing the current gap in approved therapeutics for this life-threatening infectious disease.
Collapse
Affiliation(s)
- Handan Şimşek
- Department of Biology Biotechnology Division, Istanbul University, Istanbul, Turkey
| | - Şeref Gül
- Department of Biology Biotechnology Division, Istanbul University, Istanbul, Turkey
- Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkiye
| |
Collapse
|
2
|
Murphy H, Huang Q, Jensen J, Weber N, Mendonça L, Ly H, Liang Y. Characterization of bi-segmented and tri-segmented recombinant Pichinde virus particles. J Virol 2024; 98:e0079924. [PMID: 39264155 PMCID: PMC11494906 DOI: 10.1128/jvi.00799-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Mammarenaviruses include several highly virulent pathogens (e.g., Lassa virus) capable of causing severe hemorrhagic fever diseases for which there are no approved vaccines and limited treatment options. Mammarenaviruses are enveloped, bi-segmented ambisense RNA viruses. There is limited knowledge about cellular proteins incorporated into progeny virion particles and their potential biological roles in viral infection. Pichinde virus (PICV) is a prototypic arenavirus used to characterize mammarenavirus replication and pathogenesis. We have developed a recombinant PICV with a tri-segmented RNA genome as a viral vector platform. Whether the tri-segmented virion differs from the wild-type bi-segmented one in viral particle morphology and protein composition has not been addressed. In this study, recombinant PICV (rPICV) virions with a bi-segmented (rP18bi) and a tri-segmented (rP18tri) genome were purified by density-gradient ultracentrifugation and analyzed by cryo-electron microscopy and mass spectrometry. Both virion types are pleomorphic with spherical morphology and have no significant difference in size despite rP18tri having denser particles. Both virion types also contain similar sets of cellular proteins. Among the highly enriched virion-associated cellular proteins are components of the endosomal sorting complex required for transport pathway and vesicle trafficking, such as ALIX, Tsg101, VPS, CHMP, and Ras-associated binding proteins, which have known functions in virus assembly and budding. Other enriched cellular proteins include peripheral and transmembrane proteins, chaperone proteins, and ribosomal proteins; their biological roles in viral infection warrant further analysis. Our study provides important insights into mammarenavirus particle formation and aids in the future development of viral vectors and antiviral discovery.IMPORTANCEMammarenaviruses, such as Lassa virus, are enveloped RNA viruses that can cause severe hemorrhagic fever diseases (Lassa fever) with no approved vaccine and limited therapeutic options. Cellular proteins incorporated into progeny virion particles and their biological roles in mammarenavirus infection have not been well characterized. Pichinde virus (PICV) is a prototypic mammarenavirus used as a surrogate model for Lassa fever. We used cryo-electron microscopy and proteomic analysis to characterize the morphology and protein contents of the purified PICV particles that package either two (bi-segmented) or three (tri-segmented) genomic RNA segments. Our results demonstrate a similar virion morphology but different particle density for the bi- and tri-segmented viral particles and reveal major virion-associated cellular proteins. This study provides important insights into the virus-host interactions that can be used for antiviral development and optimizing arenavirus-based vaccine vectors.
Collapse
Affiliation(s)
- Hannah Murphy
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Jacob Jensen
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Noah Weber
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Luiza Mendonça
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Bostedt L, Fénéant L, Leske A, Holzerland J, Günther K, Waßmann I, Bohn P, Groseth A. Alternative translation contributes to the generation of a cytoplasmic subpopulation of the Junín virus nucleoprotein that inhibits caspase activation and innate immunity. J Virol 2024; 98:e0197523. [PMID: 38294249 PMCID: PMC10878266 DOI: 10.1128/jvi.01975-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
The highly pathogenic arenavirus, Junín virus (JUNV), expresses three truncated alternative isoforms of its nucleoprotein (NP), i.e., NP53kD, NP47kD, and NP40kD. While both NP47kD and NP40kD have been previously shown to be products of caspase cleavage, here, we show that expression of the third isoform NP53kD is due to alternative in-frame translation from M80. Based on this information, we were able to generate recombinant JUNVs lacking each of these isoforms. Infection with these mutants revealed that, while all three isoforms contribute to the efficient control of caspase activation, NP40kD plays the predominant role. In contrast to full-length NP (i.e., NP65kD), which is localized to inclusion bodies, where viral RNA synthesis takes place, the loss of portions of the N-terminal coiled-coil region in these isoforms leads to a diffuse cytoplasmic distribution and a loss of function in viral RNA synthesis. Nonetheless, NP53kD, NP47kD, and NP40kD all retain robust interferon antagonistic and 3'-5' exonuclease activities. We suggest that the altered localization of these NP isoforms allows them to be more efficiently targeted by activated caspases for cleavage as decoy substrates, and to be better positioned to degrade viral double-stranded (ds)RNA species that accumulate in the cytoplasm during virus infection and/or interact with cytosolic RNA sensors, thereby limiting dsRNA-mediated innate immune responses. Taken together, this work provides insight into the mechanism by which JUNV leverages apoptosis during infection to generate biologically distinct pools of NP and contributes to our understanding of the expression and biological relevance of alternative protein isoforms during virus infection.IMPORTANCEA limited coding capacity means that RNA viruses need strategies to diversify their proteome. The nucleoprotein (NP) of the highly pathogenic arenavirus Junín virus (JUNV) produces three N-terminally truncated isoforms: two (NP47kD and NP40kD) are known to be produced by caspase cleavage, while, here, we show that NP53kD is produced by alternative translation initiation. Recombinant JUNVs lacking individual NP isoforms revealed that all three isoforms contribute to inhibiting caspase activation during infection, but cleavage to generate NP40kD makes the biggest contribution. Importantly, all three isoforms retain their ability to digest double-stranded (ds)RNA and inhibit interferon promoter activation but have a diffuse cytoplasmic distribution. Given the cytoplasmic localization of both aberrant viral dsRNAs, as well as dsRNA sensors and many other cellular components of innate immune activation pathways, we suggest that the generation of NP isoforms not only contributes to evasion of apoptosis but also robust control of the antiviral response.
Collapse
Affiliation(s)
- Linus Bostedt
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lucie Fénéant
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anne Leske
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Julia Holzerland
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Karla Günther
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Irke Waßmann
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Patrick Bohn
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Allison Groseth
- Laboratory for Arenavirus Biology, Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
4
|
Sänger L, Williams HM, Yu D, Vogel D, Kosinski J, Rosenthal M, Uetrecht C. RNA to Rule Them All: Critical Steps in Lassa Virus Ribonucleoparticle Assembly and Recruitment. J Am Chem Soc 2023; 145:27958-27974. [PMID: 38104324 PMCID: PMC10755698 DOI: 10.1021/jacs.3c07325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Lassa virus is a negative-strand RNA virus with only four structural proteins that causes periodic outbreaks in West Africa. The nucleoprotein (NP) encapsidates the viral genome, forming ribonucleoprotein complexes (RNPs) together with the viral RNA and the L protein. RNPs must be continuously restructured during viral genome replication and transcription. The Z protein is important for membrane recruitment of RNPs, viral particle assembly, and budding and has also been shown to interact with the L protein. However, the interaction of NP, viral RNA, and Z is poorly understood. Here, we characterize the interactions between Lassa virus NP, Z, and RNA using structural mass spectrometry. We identify the presence of RNA as the driver for the disassembly of ring-like NP trimers, a storage form, into monomers to subsequently form higher order RNA-bound NP assemblies. We locate the interaction site of Z and NP and demonstrate that while NP binds Z independently of the presence of RNA, this interaction is pH-dependent. These data improve our understanding of RNP assembly, recruitment, and release in Lassa virus.
Collapse
Affiliation(s)
- Lennart Sänger
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Leibniz
Institute of Virology (LIV), Notkestraße 85, 22607 Hamburg, Germany
| | - Harry M. Williams
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
| | - Dingquan Yu
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- European
Molecular Biology Laboratory Notkestraße 85, 22607 Hamburg, Germany
| | - Dominik Vogel
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Jan Kosinski
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- European
Molecular Biology Laboratory Notkestraße 85, 22607 Hamburg, Germany
- Structural
and Computational Biology Unit, European
Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Maria Rosenthal
- Bernhard
Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Discovery Research ScreeningPort, Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Charlotte Uetrecht
- CSSB
Centre for Structural Systems Biology, Notkestraße 85, 22607 Hamburg, Germany
- Leibniz
Institute of Virology (LIV), Notkestraße 85, 22607 Hamburg, Germany
- Faculty
V: School of Life Sciences, University of
Siegen, Am Eichenhang 50, 57076 Siegen, Germany
- Deutsches
Elektronen-Synchrotron (DESY), Notkestr. 85, 22607 Hamburg, Germany
| |
Collapse
|
5
|
Wang C, Chen Y, Hu S, Liu X. Insights into the function of ESCRT and its role in enveloped virus infection. Front Microbiol 2023; 14:1261651. [PMID: 37869652 PMCID: PMC10587442 DOI: 10.3389/fmicb.2023.1261651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) is an essential molecular machinery in eukaryotic cells that facilitates the invagination of endosomal membranes, leading to the formation of multivesicular bodies (MVBs). It participates in various cellular processes, including lipid bilayer remodeling, cytoplasmic separation, autophagy, membrane fission and re-modeling, plasma membrane repair, as well as the invasion, budding, and release of certain enveloped viruses. The ESCRT complex consists of five complexes, ESCRT-0 to ESCRT-III and VPS4, along with several accessory proteins. ESCRT-0 to ESCRT-II form soluble complexes that shuttle between the cytoplasm and membranes, mainly responsible for recruiting and transporting membrane proteins and viral particles, as well as recruiting ESCRT-III for membrane neck scission. ESCRT-III, a soluble monomer, directly participates in vesicle scission and release, while VPS4 hydrolyzes ATP to provide energy for ESCRT-III complex disassembly, enabling recycling. Studies have confirmed the hijacking of ESCRT complexes by enveloped viruses to facilitate their entry, replication, and budding. Recent research has focused on the interaction between various components of the ESCRT complex and different viruses. In this review, we discuss how different viruses hijack specific ESCRT regulatory proteins to impact the viral life cycle, aiming to explore commonalities in the interaction between viruses and the ESCRT system.
Collapse
Affiliation(s)
- Chunxuan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yu Chen
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Bezerra EHS, Melo-Hanchuk TD, Marques RE. Structural and molecular biology of Sabiá virus. Exp Biol Med (Maywood) 2023; 248:1624-1634. [PMID: 37937408 PMCID: PMC10723027 DOI: 10.1177/15353702231199071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
Brazilian mammarenavirus, or Sabiá virus (SABV), is a New World (NW) arenavirus associated with fulminant hemorrhagic disease in humans and the sole biosafety level 4 microorganism ever isolated in Brazil. Since the isolation of SABV in the 1990s, studies on viral biology have been scarce, with no available countermeasures against SABV infection or disease. Here we provide a comprehensive review of SABV biology, including key aspects of SABV replication, and comparisons with related Old World and NW arenaviruses. SABV is most likely a rodent-borne virus, transmitted to humans, through exposure to urine and feces in peri-urban areas. Using protein structure prediction methods and alignments, we analyzed shared and unique features of SABV proteins (GPC, NP, Z, and L) that could be explored in search of therapeutic strategies, including repurposing intended application against arenaviruses. Highly conserved catalytic activities present in L protein could be targeted for broad-acting antiviral activity among arenaviruses, while protein-protein interactions, such as those between L and the matrix protein Z, have evolved in NW arenaviruses and should be specific to SABV. The nucleoprotein (NP) also shares targetable interaction interfaces with L and Z and exhibits exonuclease activity in the C-terminal domain, which may be involved in multiple aspects of SABV replication. Envelope glycoproteins GP1 and GP2 have been explored in the development of promising cross-reactive neutralizing antibodies and vaccines, some of which could be repurposed for SABV. GP1 remains a challenging target in SABV as evolutive pressures render it the most variable viral protein in terms of both sequence and structure, while antiviral strategies targeting the Z protein remain to be validated. In conclusion, the prediction and analysis of protein structures should revolutionize research on viruses such as SABV by facilitating the rational design of countermeasures while reducing dependence on sophisticated laboratory infrastructure for experimental validation.
Collapse
Affiliation(s)
| | | | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo 13083-100, Brazil
| |
Collapse
|
7
|
Sierra AA, Loureiro ME, Esperante S, Borkosky SS, Gallo GL, de Prat Gay G, Lopez N. Nuclease Activity of the Junín Virus Nucleoprotein C-Terminal Domain. Viruses 2023; 15:1818. [PMID: 37766225 PMCID: PMC10535676 DOI: 10.3390/v15091818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The mammarenavirus Junín (JUNV) is the causative agent of Argentine hemorrhagic fever, a severe disease of public health concern. The most abundant viral protein is the nucleoprotein (NP), a multifunctional, two-domain protein with the primary role as structural component of the viral nucleocapsids, used as template for viral polymerase RNA synthesis activities. Here, we report that the C-terminal domain (CTD) of the attenuated Candid#1 strain of the JUNV NP can be purified as a stable soluble form with a secondary structure in line with known NP structures from other mammarenaviruses. We show that the JUNV NP CTD interacts with the viral matrix protein Z in vitro, and that the full-length NP and Z interact with each other in cellulo, suggesting that the NP CTD is responsible for this interaction. This domain comprises an arrangement of four acidic residues and a histidine residue conserved in the active site of exoribonucleases belonging to the DEDDh family. We show that the JUNV NP CTD displays metal-ion-dependent nuclease activity against DNA and single- and double-stranded RNA, and that this activity is impaired by the mutation of a catalytic residue within the DEDDh motif. These results further support this activity, not previously observed in the JUNV NP, which could impact the mechanism of the cellular immune response modulation of this important pathogen.
Collapse
Affiliation(s)
- Alicia Armella Sierra
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Abierta Interamericana, Buenos Aires C1287, Argentina; (A.A.S.); (M.E.L.); (G.L.G.)
| | - María Eugenia Loureiro
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Abierta Interamericana, Buenos Aires C1287, Argentina; (A.A.S.); (M.E.L.); (G.L.G.)
| | - Sebastián Esperante
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires C1405, Argentina; (S.E.); (S.S.B.); (G.d.P.G.)
| | - Silvia Susana Borkosky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires C1405, Argentina; (S.E.); (S.S.B.); (G.d.P.G.)
| | - Giovanna L. Gallo
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Abierta Interamericana, Buenos Aires C1287, Argentina; (A.A.S.); (M.E.L.); (G.L.G.)
| | - Gonzalo de Prat Gay
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA) CONICET, Buenos Aires C1405, Argentina; (S.E.); (S.S.B.); (G.d.P.G.)
| | - Nora Lopez
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Abierta Interamericana, Buenos Aires C1287, Argentina; (A.A.S.); (M.E.L.); (G.L.G.)
| |
Collapse
|
8
|
D'Antuono AL, Gallo GL, Sepulveda C, Fernández J, Brignone J, Gamboa G, Riera L, Saavedra MDC, López N. cis-Acting Element at the 5' Noncoding Region of Tacaribe Virus S RNA Modulates Genome Replication. J Virol 2023; 97:e0012523. [PMID: 36786631 PMCID: PMC10062143 DOI: 10.1128/jvi.00125-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
Tacaribe virus (TCRV) is the prototype of New World mammarenaviruses, a group that includes several members that cause hemorrhagic fevers in humans. The TCRV genome comprises two RNA segments, named S (small) and L (large). Both genomic segments contain noncoding regions (NCRs) at their 5' and 3' ends. While the 5'- and 3'-terminal 19-nucleotide sequences are known to be essential for promoter function, the role of their neighboring internal noncoding region (iNCR) sequences remains poorly understood. To analyze the relevance of the 5' and 3' iNCRs in TCRV S RNA synthesis, mutant S-like minigenomes and miniantigenomes were generated. Using a minireplicon assay, Northern blotting, and reverse transcription-quantitative PCR, we demonstrated that the genomic 5' iNCR is specifically engaged in minigenome replication yet is not directly involved in minigenome transcription, and we showed that the S genome 3' iNCR is barely engaged in this process. Analysis of partial deletions and point mutations, as well as total or partial substitution of the 5' iNCR sequence, led us to conclude that the integrity of the whole genomic 5' iNCR is essential and that a local predicted secondary structure or RNA-RNA interactions between the 5' and 3' iNCRs are not strictly required for viral S RNA synthesis. Furthermore, we employed a TCRV reverse genetic approach to ask whether manipulation of the S genomic 5' iNCR sequence may be suitable for viral attenuation. We found that mutagenesis of the 5' promoter-proximal subregion slightly impacted recombinant TCRV virulence in vivo. IMPORTANCE The Mammarenavirus genus of the Arenaviridae family includes several members that cause severe hemorrhagic fevers associated with high morbidity and mortality rates, for which no FDA-approved vaccines and limited therapeutic resources are available. We provide evidence demonstrating the specific involvement of the TCRV S 5' noncoding sequence adjacent to the viral promoter in replication. In addition, we examined the relevance of this region in the context of an in vivo infection. Our findings provide insight into the mechanism through which this 5' viral RNA noncoding region assists the L polymerase for efficient viral S RNA synthesis. Also, these findings expand our understanding of the effect of genetic manipulation of New World mammarenavirus sequences aimed at the rational design of attenuated recombinant virus vaccine platforms.
Collapse
Affiliation(s)
- Alejandra L. D'Antuono
- Centro de Virología Humana y Animal, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad Abierta Interamericana, Buenos Aires, Argentina
| | - Giovanna L. Gallo
- Centro de Virología Humana y Animal, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad Abierta Interamericana, Buenos Aires, Argentina
| | - Claudia Sepulveda
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jonás Fernández
- Centro de Virología Humana y Animal, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad Abierta Interamericana, Buenos Aires, Argentina
| | - Julia Brignone
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, ANLIS-Malbran, Ministerio de Salud de la Nación, Pergamino, Buenos Aires, Argentina
| | - Graciela Gamboa
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, ANLIS-Malbran, Ministerio de Salud de la Nación, Pergamino, Buenos Aires, Argentina
| | - Laura Riera
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, ANLIS-Malbran, Ministerio de Salud de la Nación, Pergamino, Buenos Aires, Argentina
| | - María del Carmen Saavedra
- Instituto Nacional de Enfermedades Virales Humanas Dr. Julio I. Maiztegui, ANLIS-Malbran, Ministerio de Salud de la Nación, Pergamino, Buenos Aires, Argentina
| | - Nora López
- Centro de Virología Humana y Animal, Consejo Nacional de Investigaciones Científicas y Técnicas—Universidad Abierta Interamericana, Buenos Aires, Argentina
| |
Collapse
|
9
|
Chaperonin TRiC/CCT Participates in Mammarenavirus Multiplication in Human Cells via Interaction with the Viral Nucleoprotein. J Virol 2023; 97:e0168822. [PMID: 36656012 PMCID: PMC9973018 DOI: 10.1128/jvi.01688-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The eukaryotic chaperonin containing tailless complex polypeptide 1 ring complex (CCT, also known as TCP-1 Ring Complex, TRiC/CCT) participates in the folding of 5% to 10% of the cellular proteome and has been involved in the life cycle of several viruses, including dengue, Zika, and influenza viruses, but the mechanisms by which the TRiC/CCT complex contributes to virus multiplication remain poorly understood. Here, we document that the nucleoprotein (NP) of the mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a substrate of the human TRiC/CCT complex, and that pharmacological inhibition of TRiC/CCT complex function, or RNAi-mediated knockdown of TRiC/CCT complex subunits, inhibited LCMV multiplication in human cells. We obtained evidence that the TRiC/CCT complex is required for the production of NP-containing virus-like particles (VLPs), and the activity of the virus ribonucleoprotein (vRNP) responsible for directing replication and transcription of the viral genome. Pharmacological inhibition of the TRIC/CCT complex also restricted multiplication of the live-attenuated vaccine candidates Candid#1 and ML29 of the hemorrhagic fever causing Junin (JUNV) and Lassa (LASV) mammarenaviruses, respectively. Our findings indicate that the TRiC/CCT complex is required for mammarenavirus multiplication and is an attractive candidate for the development of host directed antivirals against human-pathogenic mammarenaviruses. IMPORTANCE Host-directed antivirals have gained great interest as an antiviral strategy to counteract the rapid emergence of drug-resistant viruses. The chaperonin TRiC/CCT complex has been involved in the life cycle of several viruses, including dengue, Zika, and influenza viruses. Here, we have provided evidence that the chaperonin TRiC/CCT complex participates in mammarenavirus infection via its interaction with the viral NP. Importantly, pharmacological inhibition of TRiC/CCT function significantly inhibited multiplication of LCMV and the distantly related mammarenavirus JUNV in human cells. Our findings support that the TRiC/CCT complex is required for multiplication of mammarenaviruses and that the TRiC/CCT complex is an attractive host target for the development of antivirals against human-pathogenic mammarenaviruses.
Collapse
|
10
|
Fénéant L, Leske A, Günther K, Groseth A. Generation of Reporter-Expressing New World Arenaviruses: A Systematic Comparison. Viruses 2022; 14:v14071563. [PMID: 35891543 PMCID: PMC9317149 DOI: 10.3390/v14071563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Replication-competent reporter-expressing viruses are crucial tools in molecular virology with applications that range from antiviral screening to live-cell imaging of protein spatiotemporal dynamics. However, there is currently little information available regarding viable strategies to develop reporter-expressing arenaviruses. To address this, we used Tacaribe virus (TCRV), an apathogenic BSL2 arenavirus, to assess the feasibility of different reporter expression approaches. We first generated trisegmented TCRV viruses with either the glycoprotein (GP) or nucleoprotein (NP) replaced by a reporter (GFP, mCherry, or nanoluciferase). These viruses were all viable, but showed marked differences in brightness and attenuation. Next, we generated terminal fusions with each of the TCRV proteins (i.e., NP, GP, polymerase (L), matrix protein (Z)) either with or without a T2A self-cleavage site. We tested both the function of the reporter-fused proteins alone, and the viability of corresponding recombinant TCRVs. We successfully rescued viruses with both direct and cleavable reporter fusions at the C-terminus of Z, as well as cleavable N-terminal fusions with NP. These viruses all displayed detectable reporter activity, but were also moderately attenuated. Finally, reporter proteins were inserted into a flexible hinge region within L. These viruses were also viable and showed moderate attenuation; however, reporter expression was only detectable for the luminescent virus. These strategies provide an exciting range of new tools for research into the molecular biology of TCRV that can likely also be adapted to other arenaviruses.
Collapse
|
11
|
Giovannoni F, Vazquez CA, Thomas P, Gómez RM, García CC. Promyelocytic leukemia protein is a restriction factor for Junín virus independently of Z matrix protein. Biochem Biophys Res Commun 2022; 606:168-173. [PMID: 35364325 DOI: 10.1016/j.bbrc.2022.03.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
Abstract
The New World (NW) mammarenavirus Junín (JUNV) is the etiological agent of Argentine hemorrhagic fever, a human endemic disease of Argentina. Promyelocytic leukemia protein (PML) has been reported as a restriction factor for several viruses although the mechanism/s behind PML-mediated antiviral effect may be diverse and are a matter of debate. Previous studies have reported a nuclear to cytoplasm translocation of PML during the murine Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) infection. This translocation was found to be mediated by the viral Z protein. Here, we show that PML restricts JUNV infection in human A549 cells. However, in contrast to LCVM, JUNV infection enhances PML expression and PML is not translocated to the cytoplasm neither it colocalizes with JUNV Z protein. Our study demonstrates that a NW mammarenavirus as JUNV interacts differently with the antiviral protein PML than LCMV.
Collapse
Affiliation(s)
- Federico Giovannoni
- Laboratorio de Estrategias Antivirales, Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN, UBA-CONICET, Buenos Aires, Argentina
| | - Cecilia A Vazquez
- Laboratorio de Estrategias Antivirales, Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN, UBA-CONICET, Buenos Aires, Argentina
| | - Pablo Thomas
- Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina
| | - Ricardo M Gómez
- Instituto de Biotecnología y Biología Molecular, CONICET-UNLP, La Plata, Argentina.
| | - Cybele C García
- Laboratorio de Estrategias Antivirales, Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, IQUIBICEN, UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Gallo GL, López N, Loureiro ME. The Virus–Host Interplay in Junín Mammarenavirus Infection. Viruses 2022; 14:v14061134. [PMID: 35746604 PMCID: PMC9228484 DOI: 10.3390/v14061134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Junín virus (JUNV) belongs to the Arenaviridae family and is the causative agent of Argentine hemorrhagic fever (AHF), a severe human disease endemic to agricultural areas in Argentina. At this moment, there are no effective antiviral therapeutics to battle pathogenic arenaviruses. Cumulative reports from recent years have widely provided information on cellular factors playing key roles during JUNV infection. In this review, we summarize research on host molecular determinants that intervene in the different stages of the viral life cycle: viral entry, replication, assembly and budding. Alongside, we describe JUNV tight interplay with the innate immune system. We also review the development of different reverse genetics systems and their use as tools to study JUNV biology and its close teamwork with the host. Elucidating relevant interactions of the virus with the host cell machinery is highly necessary to better understand the mechanistic basis beyond virus multiplication, disease pathogenesis and viral subversion of the immune response. Altogether, this knowledge becomes essential for identifying potential targets for the rational design of novel antiviral treatments to combat JUNV as well as other pathogenic arenaviruses.
Collapse
|
13
|
Silva-Ramos CR, Montoya-Ruíz C, Faccini-Martínez ÁA, Rodas JD. An updated review and current challenges of Guanarito virus infection, Venezuelan hemorrhagic fever. Arch Virol 2022; 167:1727-1738. [PMID: 35579715 PMCID: PMC9110938 DOI: 10.1007/s00705-022-05453-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 03/08/2022] [Indexed: 11/30/2022]
Abstract
Guanarito virus (GTOV) is a member of the family Arenaviridae and has been designated a category A bioterrorism agent by the US Centers for Disease Control and Prevention. It is endemic to Venezuela's western region, and it is the etiological agent of "Venezuelan hemorrhagic fever" (VHF). Similar to other arenaviral hemorrhagic fevers, VHF is characterized by fever, mild hemorrhagic signs, nonspecific symptoms, thrombocytopenia, and leukopenia. Patients with severe disease usually develop signs of internal bleeding. Due to the absence of reference laboratories that can handle GTOV in endemic areas, diagnosis is primarily clinical and epidemiological. No antiviral therapies are available; thus, treatment includes only supportive analgesia and fluids. GTOV is transmitted by contact with the excreta of its rodent reservoir, Zygodontomys brevicauda. The main reasons for the emergence of the disease may be the increase in the human population, migration, and changes in land use patterns in rural areas. Social and environmental changes could make VHF an important cause of underdiagnosed acute febrile illnesses in regions near the endemic areas. Although there is evidence that GTOV circulates among rodents in different Venezuelan states, VHF cases have only been reported in the states of Portuguesa and Barinas. However, due to the increased frequency of invasions by humans into wildlife habitats, it is probable that VHF could become a public health problem in the nearby regions of Colombia and Brazil. The current Venezuelan political crisis is causing an increase in the migration of people and livestock, representing a risk for the redistribution and re-emergence of infectious diseases.
Collapse
Affiliation(s)
- Carlos Ramiro Silva-Ramos
- Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carolina Montoya-Ruíz
- Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 65, #59a, 110, Medellín, Antioquia, Colombia.
| | - Álvaro A Faccini-Martínez
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Comité de Medicina Tropical, Zoonosis y Medicina del Viajero, Asociación Colombiana de Infectología, Bogotá, Colombia
| | - Juan David Rodas
- Grupo de Investigación en Ciencias Veterinarias Centauro, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
14
|
Abstract
Arenaviruses initiate infection by delivering a transcriptionally competent ribonucleoprotein (RNP) complex into the cytosol of host cells. The arenavirus RNP consists of the large (L) RNA-dependent RNA polymerase (RdRP) bound to a nucleoprotein (NP)-encapsidated genomic RNA (viral RNA [vRNA]) template. During transcription and replication, L must transiently displace RNA-bound NP to allow for template access into the RdRP active site. Concomitant with RNA replication, new subunits of NP must be added to the nascent complementary RNAs (cRNA) as they emerge from the product exit channel of L. Interactions between L and NP thus play a central role in arenavirus gene expression. We developed an approach to purify recombinant functional RNPs from mammalian cells in culture using a synthetic vRNA and affinity-tagged L and NP. Negative-stain electron microscopy of purified RNPs revealed they adopt diverse and flexible structures, like RNPs of other Bunyavirales members. Monodispersed L-NP and trimeric ring-like NP complexes were also obtained in excess of flexible RNPs, suggesting that these heterodimeric structures self-assemble in the absence of suitable RNA templates. This work allows for further biochemical analysis of the interaction between arenavirus L and NP proteins and provides a framework for future high-resolution structural analyses of this replication-associated complex. IMPORTANCE Arenaviruses are rodent-borne pathogens that can cause severe disease in humans. All arenaviruses begin the infection cycle with delivery of the virus replication machinery into the cytoplasm of the host cell. This machinery consists of an RNA-dependent RNA polymerase-which copies the viral genome segments and synthesizes all four viral mRNAs-bound to the two nucleoprotein-encapsidated genomic RNAs. How this complex assembles remains a mystery. Our findings provide direct evidence for the formation of diverse intracellular arenavirus replication complexes using purification strategies for the polymerase, nucleoprotein, and genomic RNA of Machupo virus, which causes Bolivian hemorrhagic fever in humans. We demonstrate that the polymerase and nucleoprotein assemble into higher-order structures within cells, providing a model for the molecular events of arenavirus RNA synthesis. These findings provide a framework for probing the architectures and functions of the arenavirus replication machinery and thus advancing antiviral strategies targeting this essential complex.
Collapse
|
15
|
Optimal Expression of the Envelope Glycoprotein of Orthobornaviruses Determines the Production of Mature Virus Particles. J Virol 2021; 95:JVI.02221-20. [PMID: 33268525 PMCID: PMC8092845 DOI: 10.1128/jvi.02221-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
An RNA virus-based episomal vector (REVec) whose backbone is Borna disease virus 1 (BoDV-1) can provide long-term gene expression in transduced cells. To improve the transduction efficiency of REVec, we evaluated the role of the viral envelope glycoprotein (G) of the genus Orthobornavirus, including that of BoDV-1, in the production of infectious particles. By using G-pseudotype assay in which the lack of G in G-deficient REVec (ΔG-REVec) was compensated for expression of G, we found that excess expression of BoDV-1-G does not affect particle production itself but results in uncleaved and aberrant mature G expression in the cells, leading to the production of REVec particles with low transduction titers. We revealed that the expression of uncleaved G in the cells inhibits the incorporation of mature G and vgRNA into the particles. This feature of G was conserved among mammalian and avian orthobornaviruses; however, the cleavage efficacy of canary bornavirus 1 (CnBV-1)-G was exceptionally not impaired by its excess expression, which led to the production of the pseudotype ΔG-REVec with the highest titer. Chimeric G proteins between CnBV-1 and -2 revealed that the signal peptide of CnBV-1-G was responsible for the cleavage efficacy through the interaction with intracellular furin. We showed that CnBV-1 G leads to the development of pseudotyped REVec with high transduction efficiency and a high-titer recombinant REVec. Our study demonstrated that the restricted expression of orthobornavirus G contributes to the regulation of infectious particle production, the mechanism of which can improve the transduction efficiency of REVec.IMPORTANCE Most viruses causing persistent infection produce few infectious particles from the infected cells. Borna disease virus 1, a member of the genus Orthobornavirus, is an RNA virus that persistently infects the nucleus and has been applied to vectors for long-term gene expression. In this study, we showed that, common among orthobornaviruses, excessive G expression does not affect particle production itself but reduces the production of infectious particles with mature G and genomic RNA. This result suggested that limited G expression contributes to suppressing abnormal viral particle production. On the other hand, we found that canary bornavirus 1 has an exceptional G maturation mechanism and produces a high-titer virus. Our study will contribute to not only understanding the mechanism of infectious particle production but also improving the vector system of orthobornaviruses.
Collapse
|
16
|
Foscaldi S, Loureiro ME, Sepúlveda C, Palacios C, Forlenza MB, López N. Development of a Reverse Genetic System to Generate Recombinant Chimeric Tacaribe Virus that Expresses Junín Virus Glycoproteins. Pathogens 2020; 9:pathogens9110948. [PMID: 33203040 PMCID: PMC7696886 DOI: 10.3390/pathogens9110948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Mammarenaviruses are enveloped and segmented negative-stranded RNA viruses that comprise several pathogenic members associated with severe human hemorrhagic fevers. Tacaribe virus (TCRV) is the prototype for the New World group of mammarenaviruses and is not only naturally attenuated but also phylogenetically and antigenically related to all South American pathogenic mammarenaviruses, particularly the Junín virus (JUNV), which is the etiological agent of Argentinian hemorrhagic fever (AHF). Moreover, since TCRV protects guinea pigs and non-human primates from lethal challenges with pathogenic strains of JUNV, it has already been considered as a potential live-attenuated virus vaccine candidate against AHF. Here, we report the development of a reverse genetic system that relies on T7 polymerase-driven intracellular expression of the complementary copy (antigenome) of both viral S and L RNA segments. Using this approach, we successfully recovered recombinant TCRV (rTCRV) that displayed growth properties resembling those of authentic TCRV. We also generated a chimeric recombinant TCRV expressing the JUNV glycoproteins, which propagated similarly to wild-type rTCRV. Moreover, a controlled modification within the S RNA 5′ non-coding terminal sequence diminished rTCRV propagation in a cell-type dependent manner, giving rise to new perspectives where the incorporation of additional attenuation markers could contribute to develop safe rTCRV-based vaccines against pathogenic mammarenaviruses.
Collapse
Affiliation(s)
- Sabrina Foscaldi
- Centro de Virología Animal (CEVAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA, Argentina; (S.F.); (M.E.L.); (M.B.F.)
| | - María Eugenia Loureiro
- Centro de Virología Animal (CEVAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA, Argentina; (S.F.); (M.E.L.); (M.B.F.)
| | - Claudia Sepúlveda
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires C1428EGA, Argentina;
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET- Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Carlos Palacios
- Instituto de Ciencia y Tecnología Dr. César Milstein (CONICET-Fundación Pablo Cassará), Buenos Aires C1440FFX, Argentina;
| | - María Belén Forlenza
- Centro de Virología Animal (CEVAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA, Argentina; (S.F.); (M.E.L.); (M.B.F.)
| | - Nora López
- Centro de Virología Animal (CEVAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428EGA, Argentina; (S.F.); (M.E.L.); (M.B.F.)
- Correspondence:
| |
Collapse
|
17
|
Huang Q, Liu X, Brisse M, Ly H, Liang Y. Effect of Strain Variations on Lassa Virus Z Protein-Mediated Human RIG-I Inhibition. Viruses 2020; 12:E907. [PMID: 32824946 PMCID: PMC7551410 DOI: 10.3390/v12090907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 11/21/2022] Open
Abstract
Mammarenaviruses include several known human pathogens, such as the prototypic lymphocytic choriomeningitis virus (LCMV) that can cause neurological diseases and Lassa virus (LASV) that causes endemic hemorrhagic fever infection. LASV-infected patients show diverse clinical manifestations ranging from asymptomatic infection to hemorrhage, multi-organ failures and death, the mechanisms of which have not been well characterized. We have previously shown that the matrix protein Z of pathogenic arenaviruses, including LASV and LCMV, can strongly inhibit the ability of the innate immune protein RIG-I to suppress type I interferon (IFN-I) expression, which serves as a mechanism of viral immune evasion and virulence. Here, we show that Z proteins of diverse LASV isolates derived from rodents and humans have a high degree of sequence variations at their N- and C-terminal regions and produce variable degrees of inhibition of human RIG-I (hRIG-I) function in an established IFN-β promoter-driven luciferase (LUC) reporter assay. Additionally, we show that Z proteins of four known LCMV strains can also inhibit hRIG-I at variable degrees of efficiency. Collectively, our results confirm that Z proteins of pathogenic LASV and LCMV can inhibit hRIG-I and suggest that strain variations of the Z proteins can influence their efficiency to suppress host innate immunity that might contribute to viral virulence and disease heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | - Yuying Liang
- Correspondence: ; Tel.: +1-612-625-3376; Fax: +1-612-625-0204
| |
Collapse
|
18
|
Klitting R, Mehta SB, Oguzie JU, Oluniyi PE, Pauthner MG, Siddle KJ, Andersen KG, Happi CT, Sabeti PC. Lassa Virus Genetics. Curr Top Microbiol Immunol 2020. [PMID: 32418034 DOI: 10.1007/82_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In a pattern repeated across a range of ecological niches, arenaviruses have evolved a compact four-gene genome to orchestrate a complex life cycle in a narrow range of susceptible hosts. A number of mammalian arenaviruses cross-infect humans, often causing a life-threatening viral hemorrhagic fever. Among this group of geographically bound zoonoses, Lassa virus has evolved a unique niche that leads to significant and sustained human morbidity and mortality. As a biosafety level 4 pathogen, direct study of the pathogenesis of Lassa virus is limited by the sparse availability, high operating costs, and technical restrictions of the high-level biocontainment laboratories required for safe experimentation. In this chapter, we introduce the relationship between genome structure and the life cycle of Lassa virus and outline reverse genetic approaches used to probe and describe functional elements of the Lassa virus genome. We then review the tools used to obtain viral genomic sequences used for phylogeny and molecular diagnostics, before shifting to a population perspective to assess the contributions of phylogenetic analysis in understanding the evolution and ecology of Lassa virus in West Africa. We finally consider the future outlook and clinical applications for genetic study of Lassa virus.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | - Samar B Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Judith U Oguzie
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Paul E Oluniyi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Matthias G Pauthner
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA
| | | | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute , La Jolla, CA, USA.
| | - Christian T Happi
- African Center of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemers University, Ede, Osun State, Nigeria
| | - Pardis C Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
19
|
Zadeh VR, Urata S, Sakaguchi M, Yasuda J. Human BST-2/tetherin inhibits Junin virus release from host cells and its inhibition is partially counteracted by viral nucleoprotein. J Gen Virol 2020; 101:573-586. [PMID: 32375950 DOI: 10.1099/jgv.0.001414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Bone marrow stromal cell antigen-2 (BST-2), also known as tetherin, is an interferon-inducible membrane-associated protein. It effectively targets enveloped viruses at the release step of progeny viruses from host cells, thereby restricting the further spread of viral infection. Junin virus (JUNV) is a member of Arenaviridae, which causes Argentine haemorrhagic fever that is associated with a high rate of mortality. In this study, we examined the effect of human BST-2 on the replication and propagation of JUNV. The production of JUNV Z-mediated virus-like particles (VLPs) was significantly inhibited by over-expression of BST-2. Electron microscopy analysis revealed that BST-2 functions by forming a physical link that directly retains VLPs on the cell surface. Infection using JUNV showed that infectious JUNV production was moderately inhibited by endogenous or exogenous BST-2. We also observed that JUNV infection triggers an intense interferon response, causing an upregulation of BST-2, in infected cells. However, the expression of cell surface BST-2 was reduced upon infection. Furthermore, the expression of JUNV nucleoprotein (NP) partially recovered VLP production from BST-2 restriction, suggesting that the NP functions as an antagonist against antiviral effect of BST-2. We further showed that JUNV NP also rescued the production of Ebola virus VP40-mediated VLP from BST-2 restriction as a broad spectrum BST-2 antagonist. To our knowledge, this is the first report showing that an arenavirus protein counteracts the antiviral function of BST-2.
Collapse
Affiliation(s)
- Vahid Rajabali Zadeh
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Shuzo Urata
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan.,Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Jiro Yasuda
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| |
Collapse
|
20
|
E3 Ligase ITCH Interacts with the Z Matrix Protein of Lassa and Mopeia Viruses and Is Required for the Release of Infectious Particles. Viruses 2019; 12:v12010049. [PMID: 31906112 PMCID: PMC7019300 DOI: 10.3390/v12010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 12/18/2022] Open
Abstract
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related, rodent-born mammarenaviruses. LASV is the causative agent of Lassa fever, a deadly hemorrhagic fever endemic in West Africa, whereas MOPV is non-pathogenic in humans. The Z matrix protein of arenaviruses is essential to virus assembly and budding by recruiting host factors, a mechanism that remains partially defined. To better characterize the interactions involved, a yeast two-hybrid screen was conducted using the Z proteins from LASV and MOPV as a bait. The cellular proteins ITCH and WWP1, two members of the Nedd4 family of HECT E3 ubiquitin ligases, were found to bind the Z proteins of LASV, MOPV and other arenaviruses. The PPxY late-domain motif of the Z proteins is required for the interaction with ITCH, although the E3 ubiquitin-ligase activity of ITCH is not involved in Z ubiquitination. The silencing of ITCH was shown to affect the replication of the old-world mammarenaviruses LASV, MOPV, Lymphocytic choriomeningitis virus (LCMV) and to a lesser extent Lujo virus (LUJV). More precisely, ITCH was involved in the egress of virus-like particles and the release of infectious progeny viruses. Thus, ITCH constitutes a novel interactor of LASV and MOPV Z proteins that is involved in virus assembly and release.
Collapse
|
21
|
Wendt L, Bostedt L, Hoenen T, Groseth A. High-throughput screening for negative-stranded hemorrhagic fever viruses using reverse genetics. Antiviral Res 2019; 170:104569. [PMID: 31356830 DOI: 10.1016/j.antiviral.2019.104569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Viral hemorrhagic fevers (VHFs) cause thousands of fatalities every year, but the treatment options for their management remain very limited. In particular, the development of therapeutic interventions is restricted by the lack of commercial viability of drugs targeting individual VHF agents. This makes approaches like drug repurposing and/or the identification of broad range therapies (i.e. those directed at host responses or common proviral factors) highly attractive. However, the identification of candidates for such antiviral repurposing or of host factors/pathways important for the virus life cycle is reliant on high-throughput screening (HTS). Recently, such screening work has been increasingly facilitated by the availability of reverse genetics-based approaches, including tools such as full-length clone (FLC) systems to generate reporter-expressing viruses or various life cycle modelling (LCM) systems, many of which have been developed and/or greatly improved during the last years. In particular, since LCM systems are capable of modelling specific steps in the life cycle, they are a valuable tool for both targeted screening (i.e. for inhibitors of a specific pathway) and mechanism of action studies. This review seeks to summarize the currently available reverse genetics systems for negative-sense VHF causing viruses (i.e. arenaviruses, bunyaviruses and filoviruses), and to highlight the recent advancements made in applying these systems for HTS to identify either antivirals or new virus-host interactions that might hold promise for the development of future treatments for the infections caused by these deadly but neglected virus groups.
Collapse
Affiliation(s)
- Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Linus Bostedt
- Junior Research Group - Arenavirus Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany.
| | - Allison Groseth
- Junior Research Group - Arenavirus Biology, Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany.
| |
Collapse
|
22
|
Autophagy Promotes Infectious Particle Production of Mopeia and Lassa Viruses. Viruses 2019; 11:v11030293. [PMID: 30909570 PMCID: PMC6466445 DOI: 10.3390/v11030293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
Lassa virus (LASV) and Mopeia virus (MOPV) are two closely related Old-World mammarenaviruses. LASV causes severe hemorrhagic fever with high mortality in humans, whereas no case of MOPV infection has been reported. Comparing MOPV and LASV is a powerful strategy to unravel pathogenic mechanisms that occur during the course of pathogenic arenavirus infection. We used a yeast two-hybrid approach to identify cell partners of MOPV and LASV Z matrix protein in which two autophagy adaptors were identified, NDP52 and TAX1BP1. Autophagy has emerged as an important cellular defense mechanism against viral infections but its role during arenavirus infection has not been shown. Here, we demonstrate that autophagy is transiently induced by MOPV, but not LASV, in infected cells two days after infection. Impairment of the early steps of autophagy significantly decreased the production of MOPV and LASV infectious particles, whereas a blockade of the degradative steps impaired only MOPV infectious particle production. Our study provides insights into the role played by autophagy during MOPV and LASV infection and suggests that this process could partially explain their different pathogenicity.
Collapse
|
23
|
Brisse ME, Ly H. Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors. Front Immunol 2019; 10:372. [PMID: 30918506 PMCID: PMC6424867 DOI: 10.3389/fimmu.2019.00372] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 12/22/2022] Open
Abstract
Hemorrhagic fevers (HF) resulting from pathogenic arenaviral infections have traditionally been neglected as tropical diseases primarily affecting African and South American regions. There are currently no FDA-approved vaccines for arenaviruses, and treatments have been limited to supportive therapy and use of non-specific nucleoside analogs, such as Ribavirin. Outbreaks of arenaviral infections have been limited to certain geographic areas that are endemic but known cases of exportation of arenaviruses from endemic regions and socioeconomic challenges for local control of rodent reservoirs raise serious concerns about the potential for larger outbreaks in the future. This review synthesizes current knowledge about arenaviral evolution, ecology, transmission patterns, life cycle, modulation of host immunity, disease pathogenesis, as well as discusses recent development of preventative and therapeutic pursuits against this group of deadly viral pathogens.
Collapse
Affiliation(s)
- Morgan E Brisse
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
24
|
Loureiro ME, D'Antuono A, López N. Virus⁻Host Interactions Involved in Lassa Virus Entry and Genome Replication. Pathogens 2019; 8:pathogens8010017. [PMID: 30699976 PMCID: PMC6470645 DOI: 10.3390/pathogens8010017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 01/08/2023] Open
Abstract
Lassa virus (LASV) is the causative agent of Lassa fever, a human hemorrhagic disease associated with high mortality and morbidity rates, particularly prevalent in West Africa. Over the past few years, a significant amount of novel information has been provided on cellular factors that are determinant elements playing a role in arenavirus multiplication. In this review, we focus on host proteins that intersect with the initial steps of the LASV replication cycle: virus entry and genome replication. A better understanding of relevant virus⁻host interactions essential for sustaining these critical steps may help to identify possible targets for the rational design of novel therapeutic approaches against LASV and other arenaviruses that cause severe human disease.
Collapse
Affiliation(s)
- María Eugenia Loureiro
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| | - Alejandra D'Antuono
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| | - Nora López
- Centro de Virología Animal (CEVAN), CONICET-SENASA, Av Sir Alexander Fleming 1653, Martínez, Provincia de Buenos Aires B1640CSI, Argentina.
| |
Collapse
|
25
|
Loureiro ME, Zorzetto-Fernandes AL, Radoshitzky S, Chi X, Dallari S, Marooki N, Lèger P, Foscaldi S, Harjono V, Sharma S, Zid BM, López N, de la Torre JC, Bavari S, Zúñiga E. DDX3 suppresses type I interferons and favors viral replication during Arenavirus infection. PLoS Pathog 2018; 14:e1007125. [PMID: 30001425 PMCID: PMC6042795 DOI: 10.1371/journal.ppat.1007125] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 05/27/2018] [Indexed: 11/19/2022] Open
Abstract
Several arenaviruses cause hemorrhagic fever (HF) diseases that are associated with high morbidity and mortality in humans. Accordingly, HF arenaviruses have been listed as top-priority emerging diseases for which countermeasures are urgently needed. Because arenavirus nucleoprotein (NP) plays critical roles in both virus multiplication and immune-evasion, we used an unbiased proteomic approach to identify NP-interacting proteins in human cells. DDX3, a DEAD-box ATP-dependent-RNA-helicase, interacted with NP in both NP-transfected and virus-infected cells. Importantly, DDX3 deficiency compromised the propagation of both Old and New World arenaviruses, including the HF arenaviruses Lassa and Junin viruses. The DDX3 role in promoting arenavirus multiplication associated with both a previously un-recognized DDX3 inhibitory role in type I interferon production in arenavirus infected cells and a positive DDX3 effect on arenavirus RNA synthesis that was dependent on its ATPase and Helicase activities. Our results uncover novel mechanisms used by arenaviruses to exploit the host machinery and subvert immunity, singling out DDX3 as a potential host target for developing new therapies against highly pathogenic arenaviruses.
Collapse
Affiliation(s)
- María Eugenia Loureiro
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | | | - Sheli Radoshitzky
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Xiaoli Chi
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Simone Dallari
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Nuha Marooki
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Psylvia Lèger
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| | - Sabrina Foscaldi
- Centro de Virología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Vince Harjono
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Sonia Sharma
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States of America
| | - Brian M. Zid
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Nora López
- Centro de Virología Animal, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Juan Carlos de la Torre
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, United States of America
| | - Sina Bavari
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Elina Zúñiga
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
26
|
A Highly Conserved Leucine in Mammarenavirus Matrix Z Protein Is Required for Z Interaction with the Virus L Polymerase and Z Stability in Cells Harboring an Active Viral Ribonucleoprotein. J Virol 2018; 92:JVI.02256-17. [PMID: 29593035 DOI: 10.1128/jvi.02256-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022] Open
Abstract
Mammarenaviruses cause chronic infections in their natural rodent hosts. Infected rodents shed infectious virus into excreta. Humans are infected through mucosal exposure to aerosols or direct contact of abraded skin with fomites, resulting in a wide range of manifestations from asymptomatic or mild febrile illness to severe life-threatening hemorrhagic fever. The mammarenavirus matrix Z protein has been shown to be a main driving force of virus budding and to act as a negative regulator of viral RNA synthesis. To gain a better understanding of how the Z protein exerts its several different functions, we investigated the interaction between Z and viral polymerase L protein using the prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV). We found that in the presence of an active viral ribonucleoprotein (vRNP), the Z protein translocated from nonionic detergent-resistant, membrane-rich structures to a subcellular compartment with a different membrane composition susceptible to disruption by nonionic detergents. Alanine (A) substitution of a highly conserved leucine (L) at position 72 in LCMV Z protein abrogated Z-L interaction. The L72A mutation did not affect the stability or budding activity of Z when expressed alone, but in the presence of an active vRNP, mutation L72A promoted rapid degradation of Z via a proteasome- and lysosome-independent pathway. Accordingly, L72A mutation in the Z protein resulted in nonviable LCMV. Our findings have uncovered novel aspects of the dynamics of the Z protein for which a highly conserved L residue was strictly required.IMPORTANCE Several mammarenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever disease in humans and pose important public health concerns in their regions of endemicity. Moreover, mounting evidence indicates that the worldwide-distributed, prototypic mammarenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. The mammarenavirus matrix Z protein plays critical roles in different steps of the viral life cycle by interacting with viral and host cellular components. Here we report that alanine substitution of a highly conserved leucine residue, located at position 72 in LCMV Z protein, abrogated Z-L interaction. The L72A mutation did not affect Z budding activity but promoted its rapid degradation in the presence of an active viral ribonucleoprotein (vRNP). Our findings have uncovered novel aspects of the dynamics of the Z protein for which a highly conserved L residue was strictly required.
Collapse
|
27
|
Role of the ERK1/2 Signaling Pathway in the Replication of Junín and Tacaribe Viruses. Viruses 2018; 10:v10040199. [PMID: 29673133 PMCID: PMC5923493 DOI: 10.3390/v10040199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023] Open
Abstract
We have previously shown that the infection of cell cultures with the arenaviruses Junín (JUNV), Tacaribe (TCRV), and Pichindé promotes the phosphorylation of mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinases 1 and 2 (ERK1/2) and that this activation is required for the achievement of a productive infection. Here we examined the contribution of ERK1/2 in early steps of JUNV and TCRV multiplication. JUNV adsorption, internalization, and uncoating were not affected by treatment of cultured cells with U0126, an inhibitor of the ERK1/2 signaling pathway. In contrast, U0126 caused a marked reduction in viral protein expression and RNA synthesis, while JUNV RNA synthesis was significantly augmented in the presence of an activator of the ERK1/2 pathway. Moreover, U0126 impaired the expression of a reporter gene in a TCRV-based replicon system, confirming the ability of the compound to hinder arenavirus macromolecular synthesis. By using a cell-based assay, we determined that the inhibitor did not affect the translation of a synthetic TCRV-like mRNA. No changes in the phosphorylation pattern of the translation factor eIF2α were found in U0126-treated cells. Our results indicate that U0126 impairs viral RNA synthesis, thereby leading to a subsequent reduction in viral protein expression. Thus, we conclude that ERK1/2 signaling activation is required for an efficient arenavirus RNA synthesis.
Collapse
|
28
|
Zaza AD, Herbreteau CH, Peyrefitte CN, Emonet SF. Mammarenaviruses deleted from their Z gene are replicative and produce an infectious progeny in BHK-21 cells. Virology 2018; 518:34-44. [PMID: 29453057 DOI: 10.1016/j.virol.2018.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/16/2018] [Accepted: 01/18/2018] [Indexed: 11/19/2022]
Abstract
Mammarenaviruses bud out of infected cells via the recruitment of the endosomal sorting complex required for transport through late domain motifs localized into their Z protein. Here, we demonstrated that mammarenaviruses lacking this protein can be rescued and are replicative, despite a 3-log reduction in virion production, in BHK-21 cells, but not in five other cell lines. Mutations of putative late domain motifs identified into the viral nucleoprotein resulted in the almost complete abolition of infectious virion production by Z-deleted mammarenaviruses. This result strongly suggested that the nucleoprotein may compensate for the deletion of Z. These observations were primarily obtained using the Lymphocytic choriomeningitis virus, and further confirmed using the Old World Lassa and New World Machupo viruses, responsible of human hemorrhagic fevers. Z-deleted viruses should prove very useful tools to investigate the biology of Mammarenaviruses.
Collapse
Affiliation(s)
- Amélie D Zaza
- Fab'entech, 24 rue Jean Baldassini, 69007 Lyon, France; Unité de virologie, Département de Biologie des Agents Transmissibles, Institut de Recherche Biomédicale des Armées, 1 place général Valérie André, BP 73 91 223 Brétigny-sur-Orge cedex, France.
| | | | - Christophe N Peyrefitte
- Unité de virologie, Département de Biologie des Agents Transmissibles, Institut de Recherche Biomédicale des Armées, 1 place général Valérie André, BP 73 91 223 Brétigny-sur-Orge cedex, France.
| | - Sébastien F Emonet
- Unité de virologie, Département de Biologie des Agents Transmissibles, Institut de Recherche Biomédicale des Armées, 1 place général Valérie André, BP 73 91 223 Brétigny-sur-Orge cedex, France.
| |
Collapse
|
29
|
Shao J, Liang Y, Ly H. Roles of Arenavirus Z Protein in Mediating Virion Budding, Viral Transcription-Inhibition and Interferon-Beta Suppression. Methods Mol Biol 2018; 1604:217-227. [PMID: 28986837 PMCID: PMC6439471 DOI: 10.1007/978-1-4939-6981-4_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The smallest arenaviral protein is the zinc-finger protein (Z) that belongs to the RING finger protein family. Z serves as a main component required for virus budding from the membrane of the infected cells through self-oligomerization, a process that can be aided by the viral nucleoprotein (NP) to form the viral matrix of progeny virus particles. Z has also been shown to be essential for mediating viral transcriptional repression activity by locking the L polymerase onto the viral promoter in a catalytically inactive state, thus limiting viral replication. The Z protein has also recently been shown to inhibit the type I interferon-induction pathway by directly binding to the intracellular pathogen-sensor proteins RIG-I and MDA5, and thus inhibiting their normal functions. This chapter describes several assays used to examine the important roles of the arenaviral Z protein in mediating virus budding (i.e., either Z self-budding or NP-Z budding activities), viral transcriptional inhibition in a viral minigenome (MG) assay, and type I IFN suppression in an IFN-β promoter-mediated luciferase reporter assay.
Collapse
Affiliation(s)
- Junjie Shao
- Department of Veterinary and Biomedical Sciences, University of Minnesota - Twin Cities, 1988 Fitch Ave., 295 AS/VM Bldg, Saint Paul, MN, 55108, USA
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, University of Minnesota - Twin Cities, 1988 Fitch Ave., 295 AS/VM Bldg, Saint Paul, MN, 55108, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota - Twin Cities, 1988 Fitch Ave., 295 AS/VM Bldg, Saint Paul, MN, 55108, USA.
| |
Collapse
|
30
|
Regulation of Tacaribe Mammarenavirus Translation: Positive 5' and Negative 3' Elements and Role of Key Cellular Factors. J Virol 2017; 91:JVI.00084-17. [PMID: 28468879 DOI: 10.1128/jvi.00084-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
Mammarenaviruses are enveloped viruses with a bisegmented negative-stranded RNA genome that encodes the nucleocapsid protein (NP), the envelope glycoprotein precursor (GPC), the RNA polymerase (L), and a RING matrix protein (Z). Viral proteins are synthesized from subgenomic mRNAs bearing a capped 5' untranslated region (UTR) and lacking 3' poly(A) tail. We analyzed the translation strategy of Tacaribe virus (TCRV), a prototype of the New World mammarenaviruses. A virus-like transcript that carries a reporter gene in place of the NP open reading frame and transcripts bearing modified 5' and/or 3' UTR were evaluated in a cell-based translation assay. We found that the presence of the cap structure at the 5' end dramatically increases translation efficiency and that the viral 5' UTR comprises stimulatory signals while the 3' UTR,specifically the presence of a terminal C+G-rich sequence and/or a stem-loop structure, down-modulates translation. Additionally, translation was profoundly reduced in eukaryotic initiation factor (eIF) 4G-inactivated cells, whereas depletion of intracellular levels of eIF4E had less impact on virus-like mRNA translation than on a cell-like transcript. Translation efficiency was independent of NP expression or TCRV infection. Our results indicate that TCRV mRNAs are translated using a cap-dependent mechanism, whose efficiency relies on the interplay between stimulatory signals in the 5' UTR and a negative modulatory element in the 3' UTR. The low dependence on eIF4E suggests that viral mRNAs may engage yet-unknown noncanonical host factors for a cap-dependent initiation mechanism.IMPORTANCE Several members of the Arenaviridae family cause serious hemorrhagic fevers in humans. In the present report, we describe the mechanism by which Tacaribe virus, a prototypic nonpathogenic New World mammarenavirus, regulates viral mRNA translation. Our results highlight the impact of untranslated sequences and key host translation factors on this process. We propose a model that explains how viral mRNAs outcompete cellular mRNAs for the translation machinery. A better understanding of the mechanism of translation regulation of this virus can provide the bases for the rational design of new antiviral tools directed to pathogenic arenaviruses.
Collapse
|
31
|
Human hemorrhagic Fever causing arenaviruses: molecular mechanisms contributing to virus virulence and disease pathogenesis. Pathogens 2015; 4:283-306. [PMID: 26011826 PMCID: PMC4493475 DOI: 10.3390/pathogens4020283] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 12/22/2022] Open
Abstract
Arenaviruses include multiple human pathogens ranging from the low-risk lymphocytic choriomeningitis virus (LCMV) to highly virulent hemorrhagic fever (HF) causing viruses such as Lassa (LASV), Junin (JUNV), Machupo (MACV), Lujo (LUJV), Sabia (SABV), Guanarito (GTOV), and Chapare (CHPV), for which there are limited preventative and therapeutic measures. Why some arenaviruses can cause virulent human infections while others cannot, even though they are isolated from the same rodent hosts, is an enigma. Recent studies have revealed several potential pathogenic mechanisms of arenaviruses, including factors that increase viral replication capacity and suppress host innate immunity, which leads to high viremia and generalized immune suppression as the hallmarks of severe and lethal arenaviral HF diseases. This review summarizes current knowledge of the roles of each of the four viral proteins and some known cellular factors in the pathogenesis of arenaviral HF as well as of some human primary cell-culture and animal models that lend themselves to studying arenavirus-induced HF disease pathogenesis. Knowledge gained from these studies can be applied towards the development of novel therapeutics and vaccines against these deadly human pathogens.
Collapse
|
32
|
Urata S, Yasuda J. Cis- and cell-type-dependent trans-requirements for Lassa virus-like particle production. J Gen Virol 2015; 96:1626-35. [PMID: 25722347 DOI: 10.1099/vir.0.000105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lassa virus (LASV) small zinc-finger protein (Z), which contains two L-domain motifs, plays a central role in virus budding. Here, we report that co-expression of glycoprotein (GPC) altered the requirements for cholesterol but not the L-domains and host factor, Tsg101, for Z-induced virus-like particle (VLP) production. In particular, the cholesterol requirement for VLP production was cell-type-dependent. In addition, GPC was found to be important for co-localization of Z with CD63, a late endosomal marker. We also found that the N-terminal region (aa 3-10) of Z was critical for its myristoylation and VLP production. These findings will contribute to our understanding of LASV assembly and budding.
Collapse
Affiliation(s)
- Shuzo Urata
- 1Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Jiro Yasuda
- 1Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan 2The Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
33
|
A novel life cycle modeling system for Ebola virus shows a genome length-dependent role of VP24 in virus infectivity. J Virol 2014; 88:10511-24. [PMID: 24965473 DOI: 10.1128/jvi.01272-14] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Work with infectious Ebola viruses is restricted to biosafety level 4 (BSL4) laboratories, presenting a significant barrier for studying these viruses. Life cycle modeling systems, including minigenome systems and transcription- and replication-competent virus-like particle (trVLP) systems, allow modeling of the virus life cycle under BSL2 conditions; however, all current systems model only certain aspects of the virus life cycle, rely on plasmid-based viral protein expression, and have been used to model only single infectious cycles. We have developed a novel life cycle modeling system allowing continuous passaging of infectious trVLPs containing a tetracistronic minigenome that encodes a reporter and the viral proteins VP40, VP24, and GP1,2. This system is ideally suited for studying morphogenesis, budding, and entry, in addition to genome replication and transcription. Importantly, the specific infectivity of trVLPs in this system was ∼ 500-fold higher than that in previous systems. Using this system for functional studies of VP24, we showed that, contrary to previous reports, VP24 only very modestly inhibits genome replication and transcription when expressed in a regulated fashion, which we confirmed using infectious Ebola viruses. Interestingly, we also discovered a genome length-dependent effect of VP24 on particle infectivity, which was previously undetected due to the short length of monocistronic minigenomes and which is due at least partially to a previously unknown function of VP24 in RNA packaging. Based on our findings, we propose a model for the function of VP24 that reconciles all currently available data regarding the role of VP24 in nucleocapsid assembly as well as genome replication and transcription. IMPORTANCE Ebola viruses cause severe hemorrhagic fevers in humans, with no countermeasures currently being available, and must be studied in maximum-containment laboratories. Only a few of these laboratories exist worldwide, limiting our ability to study Ebola viruses and develop countermeasures. Here we report the development of a novel reverse genetics-based system that allows the study of Ebola viruses without maximum-containment laboratories. We used this system to investigate the Ebola virus protein VP24, showing that, contrary to previous reports, it only modestly inhibits virus genome replication and transcription but is important for packaging of genomes into virus particles, which constitutes a previously unknown function of VP24 and a potential antiviral target. We further propose a comprehensive model for the function of VP24 in nucleocapsid assembly. Importantly, on the basis of this approach, it should easily be possible to develop similar experimental systems for other viruses that are currently restricted to maximum-containment laboratories.
Collapse
|
34
|
Differential contributions of tacaribe arenavirus nucleoprotein N-terminal and C-terminal residues to nucleocapsid functional activity. J Virol 2014; 88:6492-505. [PMID: 24696466 DOI: 10.1128/jvi.00321-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The arenavirus nucleoprotein (NP) is the main protein component of viral nucleocapsids and is strictly required for viral genome replication mediated by the L polymerase. Homo-oligomerization of NP is presumed to play an important role in nucleocapsid assembly, albeit the underlying mechanism and the relevance of NP-NP interaction in nucleocapsid activity are still poorly understood. Here, we evaluate the contribution of the New World Tacaribe virus (TCRV) NP self-interaction to nucleocapsid functional activity. We show that alanine substitution of N-terminal residues predicted to be available for NP-NP interaction strongly affected NP self-association, as determined by coimmunoprecipitation assays, produced a drastic inhibition of transcription and replication of a TCRV minigenome RNA, and impaired NP binding to RNA. Mutagenesis and functional analysis also revealed that, while dispensable for NP self-interaction, key amino acids at the C-terminal domain were essential for RNA synthesis. Furthermore, mutations at these C-terminal residues rendered NP unable to bind RNA both in vivo and in vitro but had no effect on the interaction with the L polymerase. In addition, while all oligomerization-defective variants tested exhibited unaltered capacities to sustain NP-L interaction, NP deletion mutants were fully incompetent to bind L, suggesting that, whereas NP self-association is dispensable, the integrity of both the N-terminal and C-terminal domains is required for binding the L polymerase. Overall, our results suggest that NP self-interaction mediated by the N-terminal domain may play a critical role in TCRV nucleocapsid assembly and activity and that the C-terminal domain of NP is implicated in RNA binding. IMPORTANCE The mechanism of arenavirus functional nucleocapsid assembly is still poorly understood. No detailed information is available on the nucleocapsid structure, and the regions of full-length NP involved in binding to viral RNA remain to be determined. In this report, novel findings are provided on critical interactions between the viral ribonucleoprotein components. We identify several amino acid residues in both the N-terminal and C-terminal domains of TCRV NP that differentially contribute to NP-NP and NP-RNA interactions and analyze their relevance for binding of NP to the L polymerase and for nucleocapsid activity. Our results provide insight into the contribution of NP self-interaction to RNP assembly and activity and reveal the involvement of the NP C-terminal domain in RNA binding.
Collapse
|
35
|
Abstract
The attenuated Lassa vaccine candidate ML29 is a laboratory-produced reassortant between Lassa and Mopeia viruses, two Old World arenaviruses that differ by 40% in nucleic acid sequence. In our previous studies, ML29 elicited sterilizing immunity against Lassa virus challenge in guinea pigs and marmosets and virus-specific cell-mediated immunity in both simian immunodeficiency virus (SIV)-infected and uninfected rhesus macaques. Here, we show that ML29 is stable after 12 passages in vitro without losing its plaque morphology or its attenuated phenotype in suckling mice. Additionally, we used deep sequencing to characterize the viral population comprising the original stock of ML29, the stock of ML29 after 12 passages in Vero cells, and the ML29 isolates obtained from vaccinated animals. Twenty-seven isolates bore approximately 77 mutations that exceeded 20% of the single-nucleotide polymorphism (SNP) changes at any single locus. Of these 77 mutations, 5 appeared to be host specific, for example, appearing in mice but not in primates. None of these mutations were reversions of ML29 to the sequences of the parental Lassa and Mopeia viruses. The host-specific mutations indicate viral adaptations to virus-host interactions, and such interactions make reasonable targets for antiviral approaches. Variants capable of chronic infection did not emerge from any of the primate infections, even in immune-deficient animals, indicating that the ML29 reassortant is reasonably stable in vivo. In conclusion, the preclinical studies of ML29 as a Lassa virus vaccine candidate have been advanced, showing high levels of protection in nonhuman primates and acceptable stability both in vitro and in vivo.
Collapse
|
36
|
Sepúlveda CS, García CC, Levingston Macleod JM, López N, Damonte EB. Targeting of arenavirus RNA synthesis by a carboxamide-derivatized aromatic disulfide with virucidal activity. PLoS One 2013; 8:e81251. [PMID: 24278404 PMCID: PMC3835668 DOI: 10.1371/journal.pone.0081251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 10/21/2013] [Indexed: 12/14/2022] Open
Abstract
Several arenaviruses can cause severe hemorrhagic fever (HF) in humans, representing a public health threat in endemic areas of Africa and South America. The present study characterizes the potent virucidal activity of the carboxamide-derivatized aromatic disulfide NSC4492, an antiretroviral zinc finger-reactive compound, against Junín virus (JUNV), the causative agent of Argentine HF. The compound was able to inactivate JUNV in a time and temperature-dependent manner, producing more than 99 % reduction in virus titer upon incubation with virions at 37°C for 90 min. The ability of NSC4492-treated JUNV to go through different steps of the multiplication cycle was then evaluated. Inactivated virions were able to bind and enter into the host cell with similar efficiency as control infectious particles. In contrast, treatment with NSC4492 impaired the capacity of JUNV to drive viral RNA synthesis, as measured by quantitative RT-PCR, and blocked viral protein expression, as determined by indirect immunofluorescence. These results suggest that the disulfide NSC4492 targets on the arenavirus replication complex leading to impairment in viral RNA synthesis. Additionally, analysis of VLP produced in NSC4492-treated cells expressing JUNV matrix Z protein revealed that the compound may interact with Z resulting in an altered aggregation behavior of this protein, but without affecting its intrinsic self-budding properties. The potential perspectives of NSC4492 as an inactivating vaccinal compound for pathogenic arenaviruses are discussed.
Collapse
Affiliation(s)
- Claudia S. Sepúlveda
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cybele C. García
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Jesica M. Levingston Macleod
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Buenos Aires, Argentina
| | - Nora López
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César Milstein, CONICET, Buenos Aires, Argentina
| | - Elsa B. Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
37
|
Zhang Y, Li L, Liu X, Dong S, Wang W, Huo T, Guo Y, Rao Z, Yang C. Crystal structure of Junin virus nucleoprotein. J Gen Virol 2013; 94:2175-2183. [DOI: 10.1099/vir.0.055053-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Junin virus (JUNV) has been identified as the aetiological agent of Argentine haemorrhagic fever (AHF), which is a serious public health problem with approximately 5 million people at risk. It is treated as a potential bioterrorism agent because of its rapid transmission by aerosols. JUNV is a negative-sense ssRNA virus that belongs to the genus Arenavirus within the family Arenaviridae, and its genomic RNA contains two segments encoding four proteins. Among these, the nucleoprotein (NP) has essential roles in viral RNA synthesis and immune suppression, but the molecular mechanisms of its actions are only partially understood. Here, we determined a 2.2 Å crystal structure of the C-terminal domain of JUNV NP. This structure showed high similarity to the Lassa fever virus (LASV) NP C-terminal domain. However, both the structure and function of JUNV NP showed differences compared with LASV NP. This study extends our structural insight into the negative-sense ssRNA virus NPs.
Collapse
Affiliation(s)
- Yinjie Zhang
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Le Li
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xiang Liu
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
| | - Shishang Dong
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Wenming Wang
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Tong Huo
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Yu Guo
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Zihe Rao
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| | - Cheng Yang
- High-Throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biomedicine and Technology, Tianjin 300457, PR China
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
38
|
Abstract
Assembly of negative-strand RNA viruses occurs by budding from host plasma membranes. The budding process involves association of the viral core or nucleocapsid with a region of cellular membrane that will become the virus budding site, which contains the envelope glycoproteins and matrix protein. This region of membrane then buds out and pinches off to become the virus envelope. This review will address the questions of what are the mechanisms that bring the nucleocapsid and envelope glycoproteins together to form the virus budding site, and how does this lead to release of progeny virions? Recent evidence supports the idea that viral envelope glycoproteins and matrix proteins are organized into membrane microdomains that coalesce to form virus budding sites. There has also been substantial progress in understanding the last step in virus release, referred to as the "late budding function," which often involves host proteins of the vacuolar protein sorting apparatus. Key questions are raised as to the mechanism of the initial steps in formation of virus budding sites: How are membrane microdomains brought together and how are nucleocapsids selected for incorporation into these budding sites, particularly in the case of viruses for which genome RNA sequences are important for envelopment of nucleocapsids?
Collapse
Affiliation(s)
- Douglas S Lyles
- Department of Biochemistry, Medical Center Boulevard, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
39
|
Lennartz F, Hoenen T, Lehmann M, Groseth A, Garten W. The role of oligomerization for the biological functions of the arenavirus nucleoprotein. Arch Virol 2013; 158:1895-905. [PMID: 23553456 DOI: 10.1007/s00705-013-1684-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/20/2013] [Indexed: 10/27/2022]
Abstract
The Lassa virus nucleoprotein (NP) is a multifunctional protein that plays an essential role in many aspects of the viral life cycle, including RNA encapsidation, viral transcription and replication, recruitment of ribonucleoprotein complexes to viral budding sites, and inhibition of the host cell interferon response. While it is known that NP is capable of forming oligomers, both the oligomeric state of NP in mammalian cells and the significance of NP oligomerization for its various functions remain unclear. Here, we demonstrate that Lassa virus NP solely forms trimers upon expression in mammalian cells. Using a minigenome assay we show that mutants that are not able to form stable trimers are no longer functional during transcription and/or replication of the minigenome, indicating that NP trimerization is essential for transcription and/or replication of the viral genome. However, mutations leading to destabilization of the NP trimer did not impact the incorporation of NP into virus-like particles or its ability to suppress interferon-induced gene expression, two important functions of arenavirus NP.
Collapse
Affiliation(s)
- Frank Lennartz
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | | | | | | | | |
Collapse
|
40
|
Arenavirus budding: a common pathway with mechanistic differences. Viruses 2013; 5:528-49. [PMID: 23435234 PMCID: PMC3640512 DOI: 10.3390/v5020528] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 11/17/2022] Open
Abstract
The Arenaviridae is a diverse and growing family of viruses that includes several agents responsible for important human diseases. Despite the importance of this family for public health, particularly in Africa and South America, much of its biology remains poorly understood. However, in recent years significant progress has been made in this regard, particularly relating to the formation and release of new enveloped virions, which is an essential step in the viral lifecycle. While this process is mediated chiefly by the viral matrix protein Z, recent evidence suggests that for some viruses the nucleoprotein (NP) is also required to enhance the budding process. Here we highlight and compare the distinct budding mechanisms of different arenaviruses, concentrating on the role of the matrix protein Z, its known late domain sequences, and the involvement of cellular endosomal sorting complex required for transport (ESCRT) pathway components. Finally we address the recently described roles for the nucleoprotein NP in budding and ribonucleoprotein complex (RNP) incorporation, as well as discussing possible mechanisms related to its involvement.
Collapse
|
41
|
Strandin T, Hepojoki J, Vaheri A. Cytoplasmic tails of bunyavirus Gn glycoproteins-Could they act as matrix protein surrogates? Virology 2013; 437:73-80. [PMID: 23357734 DOI: 10.1016/j.virol.2013.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/21/2012] [Accepted: 01/02/2013] [Indexed: 12/31/2022]
Abstract
Viruses of the family Bunyaviridae are negative-sense RNA viruses (NRVs). Unlike other NRVs bunyaviruses do not possess a matrix protein, which typically facilitates virus release from host cells and acts as an anchor between the viral membrane and its genetic core. Therefore the functions of matrix protein in bunyaviruses need to be executed by other viral proteins. In fact, the cytoplasmic tail of glycoprotein Gn (Gn-CT) of various bunyaviruses interacts with the genetic core (nucleocapsid protein and/or genomic RNA). In addition the Gn-CT of phleboviruses (a genus in the family Bunyaviridae) has been demonstrated to be essential for budding. This review brings together what is known on the role of various bunyavirus Gn-CTs in budding and assembly, and hypothesizes on their yet unrevealed functions in viral life cycle by comparing to the matrix proteins of NRVs.
Collapse
Affiliation(s)
- Tomas Strandin
- Department of Virology, Haartman Institute, P.O. Box 21, FI-00014, University of Helsinki, Finland.
| | | | | |
Collapse
|
42
|
Zapata JC, Salvato MS. Arenavirus variations due to host-specific adaptation. Viruses 2013; 5:241-78. [PMID: 23344562 PMCID: PMC3564120 DOI: 10.3390/v5010241] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/11/2013] [Accepted: 01/14/2013] [Indexed: 01/08/2023] Open
Abstract
Arenavirus particles are enveloped and contain two single-strand RNA genomic segments with ambisense coding. Genetic plasticity of the arenaviruses comes from transcription errors, segment reassortment, and permissive genomic packaging, and results in their remarkable ability, as a group, to infect a wide variety of hosts. In this review, we discuss some in vitro studies of virus genetic and phenotypic variation after exposure to selective pressures such as high viral dose, mutagens and antivirals. Additionally, we discuss the variation in vivo of selected isolates of Old World arenaviruses, particularly after infection of different animal species. We also discuss the recent emergence of new arenaviruses in the context of our observations of sequence variations that appear to be host-specific.
Collapse
Affiliation(s)
- Juan C Zapata
- Institute of Human Virology-School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| | | |
Collapse
|
43
|
Pushko P, Pumpens P, Grens E. Development of Virus-Like Particle Technology from Small Highly Symmetric to Large Complex Virus-Like Particle Structures. Intervirology 2013; 56:141-65. [DOI: 10.1159/000346773] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
44
|
McLay L, Ansari A, Liang Y, Ly H. Targeting virulence mechanisms for the prevention and therapy of arenaviral hemorrhagic fever. Antiviral Res 2012; 97:81-92. [PMID: 23261843 DOI: 10.1016/j.antiviral.2012.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 11/28/2012] [Accepted: 12/07/2012] [Indexed: 11/28/2022]
Abstract
A number of arenaviruses are pathogenic for humans, but they differ significantly in virulence. Lassa virus, found in West Africa, causes severe hemorrhagic fever (HF), while the other principal Old World arenavirus, lymphocytic choriomeningitis virus, causes mild illness in persons with normal immune function, and poses a threat only to immunocompromised individuals. The New World agents, including Junin, Machupo and Sabia virus, are highly pathogenic for humans. Arenaviral HF is characterized by high viremia and general immune suppression, the mechanism of which is unknown. Studies using viral reverse genetics, cell-based assays, animal models and human genome-wide association analysis have revealed potential mechanisms by which arenaviruses cause severe disease in humans. Each of the four viral gene products (GPC, L polymerase, NP, and Z matrix protein) and several host-cell factors (e.g., α-dystroglycan) are responsible for mediating viral entry, genome replication, and the inhibition of apoptosis, translation and interferon-beta (IFNβ) production. This review summarizes current knowledge of the role of each viral protein and host factor in the pathogenesis of arenaviral HF. Insights from recent studies are being exploited for the development of novel therapies.
Collapse
Affiliation(s)
- Lisa McLay
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, United States
| | | | | | | |
Collapse
|
45
|
Abstract
Arenaviruses are a family of enveloped negative-stranded RNA viruses that can cause severe human disease ranging from encephalitis symptoms to fulminant hemorrhagic fever. The bi‑segmented RNA genome encodes four polypeptides: the nucleoprotein NP, the surface glycoprotein GP, the polymerase L, and the RING finger protein Z. Although it is the smallest arenavirus protein with a length of 90 to 99 amino acids and a molecular weight of approx. 11 kDa, the Z protein has multiple functions in the viral life cycle including (i) regulation of viral RNA synthesis, (ii) orchestration of viral assembly and budding, (iii) interaction with host cell proteins, and (iv) interferon antagonism. In this review, we summarize our current understanding of the structural and functional role of the Z protein in the arenavirus replication cycle.
Collapse
Affiliation(s)
- Sarah Katharina Fehling
- Institut für Virologie der Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.
| | | | | |
Collapse
|
46
|
Borio CS, Bilen MF, Argüelles MH, Goñi SE, Iserte JA, Glikmann G, Lozano ME. Antigen vehiculization particles based on the Z protein of Junin virus. BMC Biotechnol 2012; 12:80. [PMID: 23121996 PMCID: PMC3534497 DOI: 10.1186/1472-6750-12-80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/25/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Arenavirus matrix protein Z plays an important role in virus budding and is able to generate enveloped virus-like-particles (VLPs) in absence of any other viral proteins. In these VLPs, Z protein is associated to the plasma membrane inner surface by its myristoyl residue. Budding induction and vesicle formation properties can be exploited to generate enveloped VLPs platform. These structures can be designed to carry specific antigen in the inner side or on the surface of VLPs.Vaccines based on VLPs are a highly effective type of subunit vaccines that mimic the overall structure of virus particles in absence of viral nucleic acid, being noninfectious.In this work we assayed the capacity of Junin Z protein to produce VLPs carrying the green fluorescent protein (eGFP), as a model antigen. RESULTS In this report the Junin Z protein ability to produce VLPs from 293T cells and its capacity to deliver a specific antigen (eGFP) fused to Z was evaluated. Confocal microscopy showed a particular membrane bending in cells expressing Z and a spot welded distribution in the cytoplasm. VLPs were detected by TEM (transmission electron microscopy) and were purified from cell supernatant. The proteinase protection assay demonstrated the VLPs integrity and the absence of degradation of the fused antigen, thus indicating its internal localization. Finally, immunization of mice with purified VLPs produced high titres of anti-eGFP antibodies compared to the controls. CONCLUSIONS It was proved that VLPs can be generated from cells transfected with a fusion Junin virus Z-eGFP protein in absence of any other viral protein, and the capacity of Z protein to support fusions at the C-terminal, without impairing its budding activity, allowing vehiculization of specific antigens into VLPs.
Collapse
Affiliation(s)
- Cristina S Borio
- LIGBCM-AVEZ, Department of Science and Technology, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Arenaviruses include lethal human pathogens which pose serious public health threats. So far, no FDA approved vaccines are available against arenavirus infections, and therapeutic options are limited, making the identification of novel drug targets for the development of efficacious therapeutics an urgent need. Arenaviruses are comprised of two RNA genome segments and four proteins, the polymerase L, the envelope glycoprotein GP, the matrix protein Z, and the nucleoprotein NP. A crucial step in the arenavirus life-cycle is the biosynthesis and maturation of the GP precursor (GPC) by cellular signal peptidases and the cellular enzyme Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) yielding a tripartite mature GP complex formed by GP1/GP2 and a stable signal peptide (SSP). GPC cleavage by SKI-1/S1P is crucial for fusion competence and incorporation of mature GP into nascent budding virion particles. In a first part of our review, we cover basic aspects and newer developments in the biosynthesis of arenavirus GP and its molecular interaction with SKI-1/S1P. A second part will then highlight the potential of SKI-1/S1P-mediated processing of arenavirus GPC as a novel target for therapeutic intervention to combat human pathogenic arenaviruses.
Collapse
|
48
|
Abstract
Arenaviruses have a bisegmented negative-strand RNA genome, which encodes four viral proteins: GP and NP by the S segment and L and Z by the L segment. These four viral proteins possess multiple functions in infection, replication and release of progeny viruses from infected cells. The small RING finger protein, Z protein is a matrix protein that plays a central role in viral assembly and budding. Although all arenaviruses encode Z protein, amino acid sequence alignment showed a huge variety among the species, especially at the C-terminus where the L-domain is located. Recent publications have demonstrated the interactions between viral protein and viral protein, and viral protein and host cellular protein, which facilitate transportation and assembly of viral components to sites of virus egress. This review presents a summary of current knowledge regarding arenavirus assembly and budding, in comparison with other enveloped viruses. We also refer to the restriction of arenavirus production by the antiviral cellular factor, Tetherin/BST-2.
Collapse
|
49
|
Loureiro ME, D’Antuono A, Levingston Macleod JM, López N. Uncovering viral protein-protein interactions and their role in arenavirus life cycle. Viruses 2012; 4:1651-67. [PMID: 23170177 PMCID: PMC3499824 DOI: 10.3390/v4091651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/04/2012] [Accepted: 09/10/2012] [Indexed: 11/16/2022] Open
Abstract
The Arenaviridae family includes widely distributed pathogens that cause severe hemorrhagic fever in humans. Replication and packaging of their single-stranded RNA genome involve RNA recognition by viral proteins and a number of key protein-protein interactions. Viral RNA synthesis is directed by the virus-encoded RNA dependent-RNA polymerase (L protein) and requires viral RNA encapsidation by the Nucleoprotein. In addition to the role that the interaction between L and the Nucleoprotein may have in the replication process, polymerase activity appears to be modulated by the association between L and the small multifunctional Z protein. Z is also a structural component of the virions that plays an essential role in viral morphogenesis. Indeed, interaction of the Z protein with the Nucleoprotein is critical for genome packaging. Furthermore, current evidence suggests that binding between Z and the viral envelope glycoprotein complex is required for virion infectivity, and that Z homo-oligomerization is an essential step for particle assembly and budding. Efforts to understand the molecular basis of arenavirus life cycle have revealed important details on these viral protein-protein interactions that will be reviewed in this article.
Collapse
Affiliation(s)
- Maria Eugenia Loureiro
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Consejo Nacional de Ciencia y Tecnología (CONICET), Saladillo 2468, Buenos Aires C1440FFX, Argentina. (M.E.L.); (A.D.A.)
| | - Alejandra D’Antuono
- Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. Cesar Milstein, Consejo Nacional de Ciencia y Tecnología (CONICET), Saladillo 2468, Buenos Aires C1440FFX, Argentina. (M.E.L.); (A.D.A.)
| | - Jesica M. Levingston Macleod
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA. (J.M.L.M.)
| | - Nora López
- Author to whom correspondence should be addressed; (N.L.); Tel/Fax: +54-11-4687-8735
| |
Collapse
|
50
|
Koukuntla R, Mandell RB, Flick R. Virus-Like Particle-Based Countermeasures Against Rift Valley Fever Virus. Zoonoses Public Health 2012; 59 Suppl 2:142-50. [DOI: 10.1111/j.1863-2378.2012.01478.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|