1
|
Tietjen I, Kwan DC, Petrich A, Zell R, Antoniadou IT, Gavriilidou A, Tzitzoglaki C, Rallis M, Fedida D, Sureda FX, Mestdagh C, Naesens L, Chiantia S, Johnson FB, Kolocouris A. Antiviral mechanisms and preclinical evaluation of amantadine analogs that continue to inhibit influenza A viruses with M2 S31N-based drug resistance. Antiviral Res 2025; 236:106104. [PMID: 39947434 DOI: 10.1016/j.antiviral.2025.106104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
To better manage seasonal and pandemic influenza infections, new drugs are needed with enhanced activity against amantadine- and rimantadine-resistant influenza A virus (IAV) strains containing the S31N variant of the viral M2 ion channel (M2S31N). Here we tested 36 amantadine analogs against a panel of viruses containing either M2S31N or the parental, M2 S31 wild-type variant (M2WT). We found that several analogs, primarily those with sizeable lipophilic adducts, inhibited up to three M2S31N-containing viruses with activities at least 5-fold lower than rimantadine, without inhibiting M2S31N proton currents or modulating endosomal pH. While M2WT viruses in passaging studies rapidly gained resistance to these analogs through the established M2 mutations V27A and/or A30T, resistance development was markedly slower for M2S31N viruses and did not associate with additional M2 mutations. Instead, a subset of analogs, exemplified by 2-propyl-2-adamantanamine (38), but not 2-(1-adamantyl)piperidine (26), spiro[adamantane-2,2'-pyrrolidine] (49), or spiro[adamantane-2,2'-piperidine] (60), inhibited cellular entry of infectious IAV following pre-treatment and/or H1N1 pseudovirus entry. Conversely, an overlapping subset of the most lipophilic analogs including compounds 26, 49, 60, and others, disrupted viral M2-M1 protein colocalization required for intracellular viral assembly and budding. Finally, a pilot toxicity study in mice demonstrated that 38 and 49 were tolerated at 30 mg/kg. Together, these results indicate that amantadine analogs act on multiple, complementary mechanisms to inhibit replication of M2S31N viruses.
Collapse
Affiliation(s)
- Ian Tietjen
- The Wistar Institute, Philadelphia, PA, 19104, USA; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Daniel C Kwan
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Annett Petrich
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany; Department of Infectious Diseases, Section of Virology, Heidelberg University, Im Neuenheimer Feld 344, 69120, Heidelberg, Germany
| | - Roland Zell
- Jena University Hospital, Institute for Medical Microbiology, Section Experimental Virology, Hans Knoell Str. 2, D-07745, Jena, Germany
| | - Ivi Theodosia Antoniadou
- Laboratory of Pharmaceutical Technology, Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece; Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 115 27 Athens, Greece
| | - Agni Gavriilidou
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Christina Tzitzoglaki
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Michail Rallis
- Laboratory of Pharmaceutical Technology, Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Francesc X Sureda
- Department of Basic Medical Sciences, Faculty of Medicine and Life Sciences, Universitat Rovira i Virgili, 43201, Reus, Spain
| | - Cato Mestdagh
- Rega Institute, KU Leuven, Department of Microbiology, Immunology and Transplantation, B-3000, Leuven, Belgium
| | - Lieve Naesens
- Rega Institute, KU Leuven, Department of Microbiology, Immunology and Transplantation, B-3000, Leuven, Belgium
| | - Salvatore Chiantia
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - F Brent Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece.
| |
Collapse
|
2
|
Kumar G, Sakharam KA. Tackling Influenza A virus by M2 ion channel blockers: Latest progress and limitations. Eur J Med Chem 2024; 267:116172. [PMID: 38330869 DOI: 10.1016/j.ejmech.2024.116172] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Influenza outbreaks cause pandemics in millions of people. The treatment of influenza remains a challenge due to significant genetic polymorphism in the influenza virus. Also, developing vaccines to protect against seasonal and pandemic influenza infections is constantly impeded. Thus, antibiotics are the only first line of defense against antigenically distinct strains or new subtypes of influenza viruses. Among several anti-influenza targets, the M2 protein of the influenza virus performs several activities. M2 protein is an ion channel that permits proton conductance through the virion envelope and the deacidification of the Golgi apparatus. Both these functions are critical for viral replication. Thus, targeting the M2 protein of the influenza virus is an essential target. Rimantadine and amantadine are two well-known drugs that act on the M2 protein. However, these drugs acquired resistance to influenza and thus are not recommended to treat influenza infections. This review discusses an overview of anti-influenza therapy, M2 ion channel functions, and its working principle. It also discusses the M2 structure and its role, and the change in the structure leads to mutant variants of influenza A virus. We also shed light on the recently identified compounds acting against wild-type and mutated M2 proteins of influenza virus A. These scaffolds could be an alternative to M2 inhibitors and be developed as antibiotics for treating influenza infections.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| | - Kakade Aditi Sakharam
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
3
|
Swanson NJ, Marinho P, Dziedzic A, Jedlicka A, Liu H, Fenstermacher K, Rothman R, Pekosz A. 2019-2020 H1N1 clade A5a.1 viruses have better in vitro fitness compared with the co-circulating A5a.2 clade. Sci Rep 2023; 13:10223. [PMID: 37353648 PMCID: PMC10290074 DOI: 10.1038/s41598-023-37122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Surveillance for emerging human influenza virus clades is important for identifying changes in viral fitness and assessing antigenic similarity to vaccine strains. While fitness and antigenic structure are both important aspects of virus success, they are distinct characteristics and do not always change in a complementary manner. The 2019-2020 Northern Hemisphere influenza season saw the emergence of two H1N1 clades: A5a.1 and A5a.2. While several studies indicated that A5a.2 showed similar or even increased antigenic drift compared with A5a.1, the A5a.1 clade was still the predominant circulating clade that season. Clinical isolates of representative viruses from these clades were collected in Baltimore, Maryland during the 2019-2020 season and multiple assays were performed to compare both antigenic drift and viral fitness between clades. Neutralization assays performed on serum from healthcare workers pre- and post-vaccination during the 2019-2020 season show a comparable drop in neutralizing titers against both A5a.1 and A5a.2 viruses compared with the vaccine strain, indicating that A5a.1 did not have antigenic advantages over A5a.2 that would explain its predominance in this population. Plaque assays were performed to investigate fitness differences, and the A5a.2 virus produced significantly smaller plaques compared with viruses from A5a.1 or the parental A5a clade. To assess viral replication, low MOI growth curves were performed on both MDCK-SIAT and primary differentiated human nasal epithelial cell cultures. In both cell cultures, A5a.2 yielded significantly reduced viral titers at multiple timepoints post-infection compared with A5a.1 or A5a. Receptor binding was then investigated through glycan array experiments which showed a reduction in receptor binding diversity for A5a.2, with fewer glycans bound and a higher percentage of total binding attributable to the top three highest bound glycans. Together these data indicate that the A5a.2 clade had a reduction in viral fitness, including reductions in receptor binding, that may have contributed to the limited prevalence observed after emergence.
Collapse
Affiliation(s)
- Nicholas J Swanson
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Paula Marinho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Amanda Dziedzic
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Anne Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA
| | - Katherine Fenstermacher
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, 615 North Wolfe Street, rm W2116, Baltimore, MD, 21205, USA.
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Raut P, Obeng B, Waters H, Zimmerberg J, Gosse JA, Hess ST. Phosphatidylinositol 4,5-Bisphosphate Mediates the Co-Distribution of Influenza A Hemagglutinin and Matrix Protein M1 at the Plasma Membrane. Viruses 2022; 14:v14112509. [PMID: 36423118 PMCID: PMC9698905 DOI: 10.3390/v14112509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The fully assembled influenza A virus (IAV) has on its surface the highest density of a single membrane protein found in nature-the glycoprotein hemagglutinin (HA) that mediates viral binding, entry, and assembly. HA clusters at the plasma membrane of infected cells, and the HA density (number of molecules per unit area) of these clusters correlates with the infectivity of the virus. Dense HA clusters are considered to mark the assembly site and ultimately lead to the budding of infectious IAV. The mechanism of spontaneous HA clustering, which occurs with or without other viral components, has not been elucidated. Using super-resolution fluorescence photoactivation localization microscopy (FPALM), we have previously shown that these HA clusters are interdependent on phosphatidylinositol 4,5-biphosphate (PIP2). Here, we show that the IAV matrix protein M1 co-clusters with PIP2, visualized using the pleckstrin homology domain. We find that cetylpyridinium chloride (CPC), which is a positively charged quaternary ammonium compound known for its antibacterial and antiviral properties at millimolar concentrations, disrupts M1 clustering and M1-PIP2 co-clustering at micromolar concentrations well below the critical micelle concentration (CMC). CPC also disrupts the co-clustering of M1 with HA at the plasma membrane, suggesting the role of host cell PIP2 clusters as scaffolds for gathering and concentrating M1 and HA to achieve their unusually high cluster densities in the IAV envelope.
Collapse
Affiliation(s)
- Prakash Raut
- Department of Physics and Astronomy, University of Maine, Orono, ME 04469-5709, USA
| | - Bright Obeng
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469-5735, USA
| | - Hang Waters
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | - Joshua Zimmerberg
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, USA
| | - Julie A. Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469-5735, USA
| | - Samuel T. Hess
- Department of Physics and Astronomy, University of Maine, Orono, ME 04469-5709, USA
- Correspondence:
| |
Collapse
|
5
|
A Glu-Glu-Tyr Sequence in the Cytoplasmic Tail of the M2 Protein Renders Influenza A Virus Susceptible to Restriction of the Hemagglutinin-M2 Association in Primary Human Macrophages. J Virol 2022; 96:e0071622. [PMID: 36098511 PMCID: PMC9517718 DOI: 10.1128/jvi.00716-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) assembly at the plasma membrane is orchestrated by at least five viral components, including hemagglutinin (HA), neuraminidase (NA), matrix (M1), the ion channel M2, and viral ribonucleoprotein (vRNP) complexes, although particle formation is observed with expression of only HA and/or NA. While these five viral components are expressed efficiently in primary human monocyte-derived macrophages (MDMs) upon IAV infection, this cell type does not support efficient HA-M2 association and IAV particle assembly at the plasma membrane. Both defects are specific to MDMs and can be reversed upon disruption of F-actin. However, the relationship between the two defects is unclear. Here, we examined whether M2 contributes to particle assembly in MDMs and if so, which region of M2 determines the susceptibility to the MDM-specific and actin-dependent suppression. An analysis using correlative fluorescence and scanning electron microscopy showed that an M2-deficient virus failed to form budding structures at the cell surface even after F-actin was disrupted, indicating that M2 is essential for virus particle formation at the MDM surface. Notably, proximity ligation analysis revealed that a single amino acid substitution in a Glu-Glu-Tyr sequence (residues 74 to 76) in the M2 cytoplasmic tail allowed the HA-M2 association to occur efficiently even in MDMs with intact actin cytoskeleton. This phenotype did not correlate with known phenotypes of the M2 substitution mutants regarding M1 interaction or vRNP packaging in epithelial cells. Overall, our study identified M2 as a target of MDM-specific restriction of IAV assembly, which requires the Glu-Glu-Tyr sequence in the cytoplasmic tail. IMPORTANCE Human MDMs represent a cell type that is nonpermissive to particle formation of influenza A virus (IAV). We previously showed that close proximity association between viral HA and M2 proteins is blocked in MDMs. However, whether MDMs express a restriction factor against IAV assembly or whether they lack a dependency factor promoting assembly remained unknown. In the current study, we determined that the M2 protein is necessary for particle formation in MDMs but is also a molecular target of the MDM-specific suppression of assembly. Substitutions in the M2 cytoplasmic tail alleviated the block in both the HA-M2 association and particle production in MDMs. These findings suggest that MDMs express dependency factors necessary for assembly but also express a factor(s) that inhibits HA-M2 association and particle formation. High conservation of the M2 sequence rendering the susceptibility to the assembly block highlights the potential for M2 as a target of antiviral strategies.
Collapse
|
6
|
Ursin RL, Dhakal S, Liu H, Jayaraman S, Park HS, Powell HR, Sherer ML, Littlefield KE, Fink AL, Ma Z, Mueller AL, Chen AP, Seddu K, Woldetsadik YA, Gearhart PJ, Larman HB, Maul RW, Pekosz A, Klein SL. Greater Breadth of Vaccine-Induced Immunity in Females than Males Is Mediated by Increased Antibody Diversity in Germinal Center B Cells. mBio 2022; 13:e0183922. [PMID: 35856618 PMCID: PMC9426573 DOI: 10.1128/mbio.01839-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Inactivated influenza vaccines induce greater antibody responses in females than males among both humans and mice. To test the breadth of protection, we used recombinant mouse-adapted A/California/2009 (maA/Cal/09) H1N1 viruses containing mutations at one (1M), two (2M), or three (3M) antigenic sites, in addition to a virus containing the 1M mutation and a substitution of the Ca2 antigenic site (Sub) with one derived from an H5 hemagglutinin (HA) to challenge mice of both sexes. Following maA/Cal/09 vaccination, females produced greater virus-specific, class-switched total IgG and IgG2c antibodies against the vaccine and all mutant viruses, and antibodies from females recognized a greater number of unique, linear HA epitopes than did antibodies from males. While females had greater neutralizing antibody titers against the vaccine virus, both sexes showed a lower neutralization capacity against mutant viruses. After virus challenge, vaccinated females had lower pulmonary virus titers and reduced morbidity than males for the 1M and 2M viruses, but not the Sub virus. Females generated greater numbers of germinal center (GC) B cells containing superior somatic hypermutation (SHM) frequencies than vaccinated males. Deletion of activation-induced cytidine deaminase (Aicda) eliminated female-biased immunity and protection against the 2M virus. Harnessing methods to improve GC B cell responses and frequencies of SHM, especially in males, should be considered in the development of universal influenza vaccines. IMPORTANCE Adult females develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection would be dependent on the extent of virus diversity as well as molecular mechanisms in B cells which constrain the breadth of epitope recognition. We developed a panel of mouse-adapted (ma) A/Cal/09 viruses that had mutations in the immunodominant hemagglutinin. Following vaccination against maA/Cal/09, females were better able to neutralize maA/Cal/09 than males, but neutralization of mutant maA/Cal/09 viruses was equally poor in both sexes, despite vaccinated females being better protected against these viruses. Vaccinated females benefited from the greater production of class-switched, somatically hypermutated antibodies generated in germinal center B cells, which increased recognition of more diverse maA/Cal/09 hemagglutinin antigen epitopes. Female-biased protection against influenza infection and disease after vaccination is driven by differential mechanisms in males versus females and should be considered in the design of novel vaccine platforms.
Collapse
Affiliation(s)
- Rebecca L. Ursin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sahana Jayaraman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Han-Sol Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Harrison R. Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Morgan L. Sherer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kirsten E. Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ashley L. Fink
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Zexu Ma
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alice L. Mueller
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Allison P. Chen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Yishak A. Woldetsadik
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Patricia J. Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Robert W. Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Canaday LM, Resnick JD, Liu H, Powell H, McCoy AM, Nguyen D, Pekosz A. HA and M2 sequences alter the replication of 2013-16 H1 live attenuated influenza vaccine infection in human nasal epithelial cell cultures. Vaccine 2022; 40:4544-4553. [PMID: 35718589 DOI: 10.1016/j.vaccine.2022.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
From 2013 to 2016, the H1N1 component of live, attenuated influenza vaccine (LAIV) performed very poorly in contrast to the inactivated influenza vaccine. We utilized a primary, differentiated human nasal epithelial cell (hNEC) culture system to assess the replication differences between isogenic LAIVs containing the HA segment from either A/Bolivia/559/2013 (rBol), which showed poor vaccine efficacy, and A/Slovenia/2903/2015 (rSlov), which had reasonable vaccine efficacy. There were minimal differences in infectious virus production in Madin-Darby Canine Kidney (MDCK) cells, but the rSlov LAIV showed markedly improved replication in hNEC cultures at both 32 °C and 37 °C, demonstrating that the HA segment alone could impact LAIV replication in physiologically relevant systems. The rSlov-infected hNEC cultures showed stronger production of interferon and proinflammatory chemokines which might also be contributing to the increased overall vaccine effectiveness through enhanced recruitment and activation of immune cells. An M2-S86A mutation had no positive effects on H1 LAIV replication in hNEC cultures, in contrast to the increased infectious virus production seen in an H3 LAIV. No obvious defects in viral RNA packaging were detected, suggesting that HA function, rather than defective particle production, may be driving the differential infectious virus production in hNEC cultures. Overall, we have shown that not all H1 HA segments can be successfully used in LAIV, and this phenotype cannot be fully explained by segment incompatibilities. Physiologically relevant temperatures and primary cell cultures should be used to demonstrate that candidate LAIVs can replicate efficiently, which is a necessary property for effective vaccines.
Collapse
Affiliation(s)
- Laura M Canaday
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jessica D Resnick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Harrison Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alyssa M McCoy
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dat Nguyen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
8
|
Xi H, Jiang H, Juhas M, Zhang Y. Multiplex Biosensing for Simultaneous Detection of Mutations in SARS-CoV-2. ACS OMEGA 2021; 6:25846-25859. [PMID: 34632242 PMCID: PMC8491437 DOI: 10.1021/acsomega.1c04024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/10/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has become the world's largest public health emergency of the past few decades. Thousands of mutations were identified in the SARS-CoV-2 genome. Some mutants are more infectious and may replace the original strains. Recently, B.1.1.7(Alpha), B1.351(Beta), and B.1.617.2(Delta) strains, which appear to have increased transmissibility, were detected. These strains accounting for the high proportion of newly diagnosed cases spread rapidly over the world. Particularly, the Delta variant has been reported to account for a vast majority of the infections in several countries over the last few weeks. The application of biosensors in the detection of SARS-CoV-2 is important for the control of the COVID-19 pandemic. Due to high demand for SARS-CoV-2 genotyping, it is urgent to develop reliable and efficient systems based on integrated multiple biosensor technology for rapid detection of multiple SARS-CoV-2 mutations simultaneously. This is important not only for the detection and analysis of the current but also for future mutations. Novel biosensors combined with other technologies can be used for the reliable and effective detection of SARS-CoV-2 mutants.
Collapse
Affiliation(s)
- Hui Xi
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| | - Hanlin Jiang
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| | - Mario Juhas
- Medical
and Molecular Microbiology Unit, Department of Medicine, Faculty of
Science and Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Yang Zhang
- College
of Science, Harbin Institute of Technology
(Shenzhen), Shenzhen, Guangdong 518055, China
| |
Collapse
|
9
|
Gniazdowski V, Paul Morris C, Wohl S, Mehoke T, Ramakrishnan S, Thielen P, Powell H, Smith B, Armstrong DT, Herrera M, Reifsnyder C, Sevdali M, Carroll KC, Pekosz A, Mostafa HH. Repeated Coronavirus Disease 2019 Molecular Testing: Correlation of Severe Acute Respiratory Syndrome Coronavirus 2 Culture With Molecular Assays and Cycle Thresholds. Clin Infect Dis 2021; 73:e860-e869. [PMID: 33104776 PMCID: PMC7665437 DOI: 10.1093/cid/ciaa1616] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Repeated coronavirus disease 2019 (COVID-19) molecular testing can lead to positive test results after negative results and to multiple positive results over time. The association between positive test results and infectious virus is important to quantify. METHODS A 2-month cohort of retrospective data and consecutively collected specimens from patients with COVID-19 or patients under investigation were used to understand the correlation between prolonged viral RNA positive test results, cycle threshold (Ct) values and growth of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cell culture. Whole-genome sequencing was used to confirm virus genotype in patients with prolonged viral RNA detection. Droplet digital polymerase chain reaction was used to assess the rate of false-negative COVID-19 diagnostic test results. RESULTS In 2 months, 29 686 specimens were tested and 2194 patients underwent repeated testing. Virus recovery in cell culture was noted in specimens with a mean Ct value of 18.8 (3.4) for SARS-CoV-2 target genes. Prolonged viral RNA shedding was associated with positive virus growth in culture in specimens collected up to 21 days after the first positive result but mostly in individuals symptomatic at the time of sample collection. Whole-genome sequencing provided evidence the same virus was carried over time. Positive test results following negative results had Ct values >29.5 and were not associated with virus culture. Droplet digital polymerase chain reaction results were positive in 5.6% of negative specimens collected from patients with confirmed or clinically suspected COVID-19. CONCLUSIONS Low Ct values in SARS-CoV-2 diagnostic tests were associated with virus growth in cell culture. Symptomatic patients with prolonged viral RNA shedding can also be infectious.
Collapse
Affiliation(s)
- Victoria Gniazdowski
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C Paul Morris
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- National Institutes of Allergy and Infectious Disease, Bethesda, Maryland, USA
| | - Shirlee Wohl
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Thomas Mehoke
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland,USA
| | | | - Peter Thielen
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland,USA
| | | | | | - Derek T Armstrong
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | - Karen C Carroll
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Heba H Mostafa
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Alosaimi B, Naeem A, Hamed ME, Alkadi HS, Alanazi T, Al Rehily SS, Almutairi AZ, Zafar A. Influenza co-infection associated with severity and mortality in COVID-19 patients. Virol J 2021; 18:127. [PMID: 34127006 PMCID: PMC8200793 DOI: 10.1186/s12985-021-01594-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In COVID-19 patients, undetected co-infections may have severe clinical implications associated with increased hospitalization, varied treatment approaches and mortality. Therefore, we investigated the implications of viral and bacterial co-infection in COVID-19 clinical outcomes. METHODS Nasopharyngeal samples were obtained from 48 COVID-19 patients (29% ICU and 71% non-ICU) and screened for the presence of 24 respiratory pathogens using six multiplex PCR panels. RESULTS We found evidence of co-infection in 34 COVID-19 patients (71%). Influenza A H1N1 (n = 17), Chlamydia pneumoniae (n = 13) and human adenovirus (n = 10) were the most commonly detected pathogens. Viral co-infection was associated with increased ICU admission (r = 0.1) and higher mortality (OR 1.78, CI = 0.38-8.28) compared to bacterial co-infections (OR 0.44, CI = 0.08-2.45). Two thirds of COVID-19 critically ill patients who died, had a co-infection; and Influenza A H1N1 was the only pathogen for which a direct relationship with mortality was seen (r = 0.2). CONCLUSIONS Our study highlights the importance of screening for co-infecting viruses in COVID-19 patients, that could be the leading cause of disease severity and death. Given the high prevalence of Influenza co-infection in our study, increased coverage of flu vaccination is encouraged to mitigate the transmission of influenza virus during the on-going COVID-19 pandemic and reduce the risk of severe outcome and mortality.
Collapse
Affiliation(s)
- Bandar Alosaimi
- Department of Research Labs, Research Center, King Fahad Medical City, P.O. Box. 59046, Riyadh, 11525, Saudi Arabia.
| | - Asif Naeem
- Department of Research Labs, Research Center, King Fahad Medical City, P.O. Box. 59046, Riyadh, 11525, Saudi Arabia
| | - Maaweya E Hamed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haitham S Alkadi
- Department of Research Labs, Research Center, King Fahad Medical City, P.O. Box. 59046, Riyadh, 11525, Saudi Arabia
| | - Thamer Alanazi
- Department of Pathology and Laboratory Medicine, King Abdullah Bin Abdulaziz University Hospital, Princess Nourah University, Riyadh, Saudi Arabia
| | | | | | - Adnan Zafar
- Pediatric Pulmonology Department, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Burton TD, Eyre NS. Applications of Deep Mutational Scanning in Virology. Viruses 2021; 13:1020. [PMID: 34071591 PMCID: PMC8227372 DOI: 10.3390/v13061020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Several recently developed high-throughput techniques have changed the field of molecular virology. For example, proteomics studies reveal complete interactomes of a viral protein, genome-wide CRISPR knockout and activation screens probe the importance of every single human gene in aiding or fighting a virus, and ChIP-seq experiments reveal genome-wide epigenetic changes in response to infection. Deep mutational scanning is a relatively novel form of protein science which allows the in-depth functional analysis of every nucleotide within a viral gene or genome, revealing regions of importance, flexibility, and mutational potential. In this review, we discuss the application of this technique to RNA viruses including members of the Flaviviridae family, Influenza A Virus and Severe Acute Respiratory Syndrome Coronavirus 2. We also briefly discuss the reverse genetics systems which allow for analysis of viral replication cycles, next-generation sequencing technologies and the bioinformatics tools that facilitate this research.
Collapse
Affiliation(s)
| | - Nicholas S. Eyre
- College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia;
| |
Collapse
|
12
|
Lamb RA. The Structure, Function, and Pathobiology of the Influenza A and B Virus Ion Channels. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038505. [PMID: 31988204 DOI: 10.1101/cshperspect.a038505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Influenza A virus AM2 protein is an integral membrane protein that is an ion channel (also known as a viroporin). The channel has 24 extracellular residues, 19 residues that span the membrane once and acts as both the channel pore and also the membrane anchoring domain, and a 54-residue cytoplasmic tail. The M2 protein has four identical chains linked via two disulfide bonds that form a four-helix bundle that is 107-108 more permeable to protons than Na+ ions. The M2 channel is activated by low pH, His residue 37 is the pH sensor, and Trp residue 41 is the channel gate. The channel is blocked by the antiviral drug amantadine hydrochloride. The influenza B virus BM2 protein does not have homology with the AM2 channel, but BM2 does have the His proton sensor, Trp gate, and is activated by low pH. It is thought that the AM2 and BM2 proteins have common functions in the influenza A and B virus life cycles. Both BM2 and AM2 also facilitate virus budding. The amphipathic helix in the AM2 cytoplasmic tail has an important role in the assembly of the virus, and functional AM2 protein makes the virus independent of the "endosomal sorting complex required for transport" (ESCRT) complex scission.
Collapse
Affiliation(s)
- Robert A Lamb
- Department of Molecular Biosciences, Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois 60208-3500, USA
| |
Collapse
|
13
|
Kim G, Raymond HE, Herneisen AL, Wong-Rolle A, Howard KP. The distal cytoplasmic tail of the influenza A M2 protein dynamically extends from the membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2019; 1861:1421-1427. [PMID: 31153909 PMCID: PMC6625909 DOI: 10.1016/j.bbamem.2019.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022]
Abstract
The influenza A M2 protein is a multifunctional membrane-associated homotetramer that orchestrates several essential events in the viral infection cycle. The monomeric subunits of the M2 homotetramer consist of an N-terminal ectodomain, a transmembrane domain, and a C-terminal cytoplasmic domain. The transmembrane domain forms a four-helix proton channel that promotes uncoating of virions upon host cell entry. The membrane-proximal region of the C-terminal domain forms a surface-associated amphipathic helix necessary for viral budding. The structure of the remaining ~34 residues of the distal cytoplasmic tail has yet to be fully characterized despite the functional significance of this region for influenza infectivity. Here, we extend structural and dynamic studies of the poorly characterized M2 cytoplasmic tail. We used SDSL-EPR to collect site-specific information on the mobility, solvent accessibility, and conformational properties of residues 61-70 of the full-length, cell-expressed M2 protein reconstituted into liposomes. Our analysis is consistent with the predominant population of the C-terminal tail dynamically extending away from the membranes surface into the aqueous medium. These findings provide insight into the hypothesis that the C-terminal domain serves as a sensor that regulates how M2 protein participates in critical events in the viral infection cycle.
Collapse
Affiliation(s)
- Grace Kim
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Hayley E Raymond
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Alice L Herneisen
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Abigail Wong-Rolle
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America
| | - Kathleen P Howard
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA 19081, United States of America.
| |
Collapse
|
14
|
Grantham ML, McCown MF, Pekosz A. The Influenza A Virus M2 Protein trans-Complementation System Offers a Set of Tools for the Undergraduate Virology Laboratory. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2019; 20:jmbe-20-16. [PMID: 31160927 PMCID: PMC6508898 DOI: 10.1128/jmbe.v20i1.1667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
An authentic, hands-on experience in the laboratory is an important part of any undergraduate biology course. However, there are a limited number of mammalian virus systems that students can work with safely in an undergraduate teaching laboratory. For many systems, the risk to the students is too high. The influenza A virus M2 protein trans-complementation system bridges this gap. This system consists of a virus with mutations that prevent the expression of the essential M2 protein; therefore this virus can only replicate in a cell line that provides M2 in trans. Here, we describe the use of this system to carry out hemagglutination, real-time reverse transcriptase PCR, 50% tissue culture infectious dose, and plaque assays in an undergraduate lab setting.
Collapse
Affiliation(s)
- Michael L. Grantham
- Department of Biology, Missouri Western State University, Saint Joseph, MO 64507
| | | | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
15
|
Genetic Analysis of the M Gene of Equine Influenza Virus Strains Isolated in Poland, in the Context of the Asian-like Group Formation. J Vet Res 2019; 62:405-412. [PMID: 30729195 PMCID: PMC6364155 DOI: 10.2478/jvetres-2018-0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/15/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction Traditionally, evolutionary analysis of equine influenza virus (EIV) is based on the HA gene. However, the specificity of the influenza virus enables the classification of viral strains into different phylogenetic groups, depending on the gene being analysed. The aim of the study was to analyse phylogenetic paths of EIV based on M gene with reference to the HA gene. Material and Methods M gene of Polish isolates has been sequenced and analysed along with all M sequences of EIV available in GenBank database. Phylogenetic analysis was performed using BioEdit, ClustalW, and MEGA7 softwares. Results The clustering of the strains isolated not only from Asia but also from Europe into one common Asian-like group of EIV was observed. Twelve nucleotide substitutions in the M gene of strains from the Asian-like group were crucial for the evolutionary analysis. We also observed homology in the M gene of the Asian-like and H7N7 strains. Conclusions M gene specific for the Asian-like group is present in strains recently isolated in Europe and Asia, which were classified previously in the Florida 2 clade based on HA. Therefore, Asian-like group does not seem to be assigned to a specific geographical region. Traces of H7N7 strains in more conservative genes like M of some contemporary EIV strains may indicate the link between the old phylogenetic group and recent H3N8 strains. Analysis of conservative genes may be more useful in tracking the direction of virus evolution than in the genes where the high variability rate may blur the original relationships.
Collapse
|
16
|
Influenza A Virus M2 Protein Apical Targeting Is Required for Efficient Virus Replication. J Virol 2018; 92:JVI.01425-18. [PMID: 30158290 DOI: 10.1128/jvi.01425-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus (IAV) M2 protein is a multifunctional protein with critical roles in virion entry, assembly, and budding. M2 is targeted to the apical plasma membrane of polarized epithelial cells, and the interaction of the viral proteins M2, M1, HA, and NA near glycolipid rafts in the apical plasma membrane is hypothesized to coordinate the assembly of infectious virus particles. To determine the role of M2 protein apical targeting in IAV replication, a panel of M2 proteins with basolateral plasma membrane (M2-Baso) or endoplasmic reticulum (M2-ER) targeting sequences was generated. MDCK II cells stably expressing M2-Baso, but not M2-ER, complemented the replication of M2-stop viruses. However, in primary human nasal epithelial cell (hNEC) cultures, viruses encoding M2-Baso and M2-ER replicated to negligible titers compared to those of wild-type virus. M2-Baso replication was negatively correlated with cell polarization. These results demonstrate that M2 apical targeting is essential for IAV replication: targeting M2 to the ER results in a strong, cell type-independent inhibition of virus replication, and targeting M2 to the basolateral membrane has greater effects in hNECs than in MDCK cells.IMPORTANCE Influenza A virus assembly and particle release occur at the apical membrane of polarized epithelial cells. The integral membrane proteins encoded by the virus, HA, NA, and M2, are all targeted to the apical membrane and believed to recruit the other structural proteins to sites of virus assembly. By targeting M2 to the basolateral or endoplasmic reticulum membranes, influenza A virus replication was significantly reduced. Basolateral targeting of M2 reduced the infectious virus titers with minimal effects on virus particle release, while targeting to the endoplasmic reticulum resulted in reduced infectious and total virus particle release. Therefore, altering the expression and the intracellular targeting of M2 has major effects on virus replication.
Collapse
|
17
|
Abstract
Identification of host cell determinants promoting or suppressing replication of viruses has been aided by analyses of host cells that impose inherent blocks on viral replication. In this study, we show that primary human MDM, which are not permissive to IAV replication, fail to support virus particle formation. This defect is specific to primary human macrophages, since a human monocytic cell line differentiated to macrophage-like cells supports IAV particle formation. We further identified association between two viral transmembrane proteins, HA and M2, on the cell surface as a discrete assembly step, which is defective in MDM. Defective HA-M2 association and particle budding, but not virus release, in MDM are rescued by disruption of actin cytoskeleton, revealing a previously unknown, negative role for actin, which specifically targets an early step in the multistep IAV production. Overall, our study uncovered a host-mediated restriction of association between viral transmembrane components during IAV assembly. Influenza A virus (IAV) propagates efficiently in epithelial cells, its primary target in the respiratory tract. In contrast, productive infection of most IAV strains is either blocked or highly inefficient in macrophages. The exact nature of the defect in IAV replication in human macrophages remains unknown. In this study, we showed that even compared to a monocytic cell line differentiated to macrophage-like cells, primary human monocyte-derived macrophages (MDM) are inefficient in IAV production, despite comparable levels of expression of viral glycoproteins at the plasma membrane. Correlative fluorescence scanning electron microscopy revealed that formation of budding structures at the cell surface is inefficient in MDM even though clustering of a viral glycoprotein, hemagglutinin (HA), is observed, suggesting that a step in IAV particle assembly is blocked in MDM. Using an in situ proximity ligation assay, we further determined that HA associates with neuraminidase (NA) but fails to associate with another viral transmembrane protein, M2, at the MDM plasma membrane. Notably, the defects in HA-M2 association and particle assembly in MDM were reversed upon cytochalasin D treatment that inhibits actin polymerization. These results suggest that HA-M2 association on the plasma membrane is a discrete step in IAV production, which is susceptible to suppression by actin cytoskeleton in MDM. Virus release remained inefficient in MDM upon cytochalasin D treatment, suggesting the presence of an additional defect(s) in virus release in this cell type. Overall, our study revealed the presence of multiple cell-type-specific mechanisms negatively regulating IAV production at the plasma membrane in MDM.
Collapse
|
18
|
Su WC, Yu WY, Huang SH, Lai MMC. Ubiquitination of the Cytoplasmic Domain of Influenza A Virus M2 Protein Is Crucial for Production of Infectious Virus Particles. J Virol 2018; 92:e01972-17. [PMID: 29167343 PMCID: PMC5790949 DOI: 10.1128/jvi.01972-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Virus replication is mediated by interactions between the virus and host. Here, we demonstrate that influenza A virus membrane protein 2 (M2) can be ubiquitinated. The lysine residue at position 78, which is located in the cytoplasmic domain of M2, is essential for M2 ubiquitination. An M2-K78R (Lys78→Arg78) mutant, which produces ubiquitination-deficient M2, showed a severe defect in the production of infectious virus particles. M2-K78R mutant progeny contained more hemagglutinin (HA) proteins, less viral RNAs, and less internal viral proteins, including M1 and NP, than the wild-type virus. Furthermore, most of the M2-K78R mutant viral particles lacked viral ribonucleoproteins upon examination by electron microscopy and exhibited slightly lower densities. We also found that mutant M2 colocalized with the M1 protein to a lesser extent than for the wild-type virus. These findings may account for the reduced incorporation of viral ribonucleoprotein into virions. By blocking the second round of virus infection, we showed that the M2 ubiquitination-defective mutant exhibited normal levels of virus replication during the first round of infection, thereby proving that M2 ubiquitination is involved in the virus production step. Finally, we found that the M2-K78R mutant virus induced autophagy and apoptosis earlier than did the wild-type virus. Collectively, these results suggest that M2 ubiquitination plays an important role in infectious virus production by coordinating the efficient packaging of the viral genome into virus particles and the timing of virus-induced cell death.IMPORTANCE Annual epidemics and recurring pandemics of influenza viruses represent very high global health and economic burdens. The influenza virus M2 protein has been extensively studied for its important roles in virus replication, particularly in virus entry and release. Rimantadine, one of the most commonly used antiviral drugs, binds to the channel lumen near the N terminus of M2 proteins. However, viruses that are resistant to rimantadine have emerged. M2 undergoes several posttranslational modifications, such as phosphorylation and palmitoylation. Here, we reveal that ubiquitination mediates the functional role of M2. A ubiquitination-deficient M2 mutant predominately produced virus particles either lacking viral ribonucleoproteins or containing smaller amounts of internal viral components, resulting in lower infectivity. Our findings offer insights into the mechanism of influenza virus morphogenesis, particularly the functional role of M1-M2 interactions in viral particle assembly, and can be applied to the development of new influenza therapies.
Collapse
Affiliation(s)
- Wen-Chi Su
- China Medical University, Taichung, Taiwan
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Ya Yu
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Han Huang
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung, Taiwan
| | - Michael M C Lai
- China Medical University, Taichung, Taiwan
- Research Center for Emerging Viruses, China Medical University Hospital, Taichung, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Kordyukova LV, Shtykova EV, Baratova LA, Svergun DI, Batishchev OV. Matrix proteins of enveloped viruses: a case study of Influenza A virus M1 protein. J Biomol Struct Dyn 2018; 37:671-690. [PMID: 29388479 DOI: 10.1080/07391102.2018.1436089] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Influenza A virus, a member of the Orthomyxoviridae family of enveloped viruses, is one of the human and animal top killers, and its structure and components are therefore extensively studied during the last decades. The most abundant component, M1 matrix protein, forms a matrix layer (scaffold) under the viral lipid envelope, and the functional roles as well as structural peculiarities of the M1 protein are still under heavy debate. Despite multiple attempts of crystallization, no high resolution structure is available for the full length M1 of Influenza A virus. The likely reason for the difficulties lies in the intrinsic disorder of the M1 C-terminal part preventing diffraction quality crystals to be grown. Alternative structural methods including synchrotron small-angle X-ray scattering (SAXS), atomic force microscopy, cryo-electron microscopy/tomography are therefore widely applied to understand the structure of M1, its self-association and interactions with the lipid membrane and the viral nucleocapsid. These methods reveal striking similarities in the behavior of M1 and matrix proteins of other enveloped RNA viruses, with the differences accompanied by the specific features of the viral lifecycles, thus suggesting common interaction principles and, possibly, common evolutional ancestors. The structural information on the Influenza A virus M1 protein obtained to the date strongly suggests that the intrinsic disorder in the C-terminal domain has important functional implications.
Collapse
Affiliation(s)
- Larisa V Kordyukova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | - Eleonora V Shtykova
- b Shubnikov Institute of Crystallography of Federal Scientific Research Centre 'Crystallography and Photonics' of Russian Academy of Sciences , Moscow , Russian Federation.,c Semenov Institute of Chemical Physics , Russian Academy of Sciences , Moscow , Russian Federation
| | - Lyudmila A Baratova
- a Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russian Federation
| | | | - Oleg V Batishchev
- e Frumkin Institute of Physical Chemistry and Electrochemistry , Russian Academy of Sciences , Moscow , Russian Federation.,f Moscow Institute of Physics and Technology , Dolgoprudniy , Russian Federation
| |
Collapse
|