1
|
Villanueva RA, Loyola A. The Intrinsically Disordered Region of HBx and Virus-Host Interactions: Uncovering New Therapeutic Approaches for HBV and Cancer. Int J Mol Sci 2025; 26:3552. [PMID: 40332052 PMCID: PMC12026620 DOI: 10.3390/ijms26083552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Human viral infections remain a significant global health challenge, contributing to a substantial number of cancer cases worldwide. Among them, infections with oncoviruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) are key drivers of hepatocellular carcinoma (HCC). Despite the availability of an effective HBV vaccine since the 1980s, millions remain chronically infected due to the persistence of covalently closed circular DNA (cccDNA) as a reservoir in hepatocytes. Current antiviral therapies, including nucleos(t)ide analogs and interferon, effectively suppress viral replication but fail to eliminate cccDNA, underscoring the urgent need for innovative therapeutic strategies. Direct-acting antiviral agents (DAAs), which have revolutionized HCV treatment with high cure rates, offer a promising model for HBV therapy. A particularly attractive target is the intrinsically disordered region (IDR) of the HBx protein, which regulates cccDNA transcription, viral replication, and oncogenesis by interacting with key host proteins. DAAs targeting these interactions could inhibit viral persistence, suppress oncogenic signaling, and overcome treatment resistance. This review highlights the potential of HBx-directed DAAs to complement existing therapies, offering renewed hope for a functional HBV cure and reduced cancer risk.
Collapse
Affiliation(s)
- Rodrigo A. Villanueva
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile
| | - Alejandra Loyola
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile
- Facultad de Ciencias, Universidad San Sebastián, Santiago 7510602, Chile
| |
Collapse
|
2
|
Choi YM, Jang J, Kim DH, Kim Z, Kim E, Choe WH, Kim BJ. PreS1 deletions in genotype C HBV leads to severe hepatic inflammation and hepatocarcinogenesis via the IRE1-JNK axis. JHEP Rep 2025; 7:101274. [PMID: 39980750 PMCID: PMC11840487 DOI: 10.1016/j.jhepr.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 02/22/2025] Open
Abstract
Background & Aims Deletion of 15-21 nucleotides covering the preS1 start codon frequently occurs in patients with chronic HBV (CHB) with HBV genotype C and has been reported to be related to progression to hepatocellular carcinoma (HCC). However, the underlying mechanism causing the distinct phenotype of this HBV variant remains largely unknown. We investigated the mechanism by which preS1Del is related to liver disease progression and enhanced HBV replication, focusing on endoplasmic reticulum (ER) stress. Methods The effects of HBV replicative capacity, ER stress signaling, inflammation, cell death, and tumorigenesis resulting from PreS1 deletions were investigated through in vitro and in vivo experiments. Inhibitors of the IRE1-JNK pathway and IL6 blockade were used to examine HCC tumor load induced by preS1 deletions. Results The PreS1Del variant selectively activates the IRE1 pathway, mainly via enhanced colocalization between the ER and HBsAg in infected hepatocytes. This leads to enhanced HBV replication and production of tumor-promoting inflammatory cytokines and IL6 and COX2 via the IRE1-JNK signaling pathway. Furthermore, in vivo data showed that the activation of IRE1-JNK signaling consequently leads to lipid accumulation and apoptosis within 21Del-HBV-infected hepatocytes, collectively driving severe tumorigenesis in the liver. Notably, several inhibitors of the IRE1-JNK pathway dramatically inhibited HBV replication and inflammation induced by 21Del-HBV but not by the wild-type HBV in infected hepatocytes. Furthermore, IL6 blockade significantly reduced HCC tumor load induced by 21Del-HBV. Conclusions PreS1Del leads to enhanced HBV replication and HCC development through IRE1-JNK-IL6/COX2-mediated hepatocyte proliferation and liver inflammation. Inhibitors interfering with the IRE1-JNK-IL6 pathway could selectively inhibit HBV replication and inflammation in preS1Dels, suggesting their potential for the treatment of patients with CHB with preS1-deleted HBV variants. Impact and implications Deletion of 15-21 nucleotides at the preS1 start codon is common in patients with CHB with HBV genotype C and is linked to HCC progression. However, the mechanisms underlying the distinct phenotype of this variant remain largely unknown. We found that the preS1Del variant selectively activates the IRE1 pathway, primarily through enhanced IRE1-JNK-IL6 signaling. Inhibition of either the IRE1-JNK pathway or IL6 reduced HBV replication and tumor load in in vivo HCC models. This study enhances our understanding of the mechanisms of liver disease progression caused by 5' preS1Del variants and provides new insights into treatment strategies for patients with these variants. We believe our findings will resonate with a diverse audience, including patients and their physicians, the medical community, academia, the life sciences sector, and the general public.
Collapse
Affiliation(s)
- Yu-Min Choi
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Junghwa Jang
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Ziyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Eunseo Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
| | - Won Hyeok Choe
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul 05030, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul 110-799, Republic of Korea
- Institute of Endemic Disease, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Seoul National University Medical Research Center (SNUMRC), Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Choi YM, Kim DH, Jang J, Choe WH, Kim BJ. rt269L-Type hepatitis B virus (HBV) in genotype C infection leads to improved mitochondrial dynamics via the PERK-eIF2α-ATF4 axis in an HBx protein-dependent manner. Cell Mol Biol Lett 2023; 28:26. [PMID: 36997871 PMCID: PMC10064691 DOI: 10.1186/s11658-023-00440-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND In our previous report, the rt269I type versus the rt269L type in genotype C2 infection led to poor clinical outcomes and enhanced mitochondrial stress in infected hepatocytes. Here, we sought to investigate differences between the rt269L and rt269I types in mitochondrial functionality in hepatitis B virus (HBV) genotype C2 infection, mainly focusing on endoplasmic reticulum (ER) stress-mediated autophagy induction as an upstream signal. METHODS Mitochondrial functionality, ER stress signaling, autophagy induction, and apoptotic cell death between rt269L-type and rt269I-type groups were investigated via in vitro and in vivo experiments. Serum samples were collected from 187 chronic hepatitis patients who visited Konkuk or Seoul National University Hospital. RESULTS Our data revealed that genotype C rt269L versus rt269I infection led to improved mitochondrial dynamics and enhanced autophagic flux, mainly due to the activation of the PERK-eIF2α-ATF4 axis. Furthermore, we demonstrated that the traits found in genotype C rt269L infection were mainly due to increased stability of the HBx protein after deubiquitination. In addition, clinical data using patient sera from two independent Korean cohorts showed that, compared with rt269I, rt269L in infection led to lower 8-OHdG levels, further supporting its improved mitochondrial quality control. CONCLUSION Our data showed that, compared with the rt269I type, the rt269L type, which presented exclusively in HBV genotype C infection, leads to improved mitochondrial dynamics or bioenergetics, mainly due to autophagy induction via activation of the PERK-eIF2α-ATF4 axis in an HBx protein-dependent manner. This suggests that HBx stability and cellular quality control in the rt269L type predominating in genotype C endemic areas could at least partly contribute to some distinctive traits of genotype C infection, such as higher infectivity or longer duration of the hepatitis B e antigen (HBeAg) positive stage.
Collapse
Affiliation(s)
- Yu-Min Choi
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Junghwa Jang
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Won Hyeok Choe
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea.
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Korea.
- Seoul National University Medical Research Center (SNUMRC), Seoul, 03080, Korea.
| |
Collapse
|
4
|
Yin GQ, Chen KP, Gu XC. Heterogeneity of immune control in chronic hepatitis B virus infection: Clinical implications on immunity with interferon-α treatment and retreatment. World J Gastroenterol 2022; 28:5784-5800. [PMID: 36353205 PMCID: PMC9639659 DOI: 10.3748/wjg.v28.i40.5784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue. Interferon-α (IFN-α) treatment has been used to treat hepatitis B for over 20 years, but fewer than 5% of Asians receiving IFN-α treatment achieve functional cure. Thus, IFN-α retreatment has been introduced to enhance antiviral function. In recent years, immune-related studies have found that the complex interactions between immune cells and cytokines could modulate immune response networks, in-cluding both innate and adaptive immunity, triggering immune responses that control HBV replication. However, heterogeneity of the immune system to control HBV infection, particularly HBV-specific CD8+ T cell heterogeneity, has consequ-ential effects on T cell-based immunotherapy for treating HBV infection. Altogether, the host’s genetic variants, negative-feedback regulators and HBV components affecting the immune system's ability to control HBV. In this study, we reviewed the literature on potential immune mechanisms affecting the immune control of HBV and the clinical effects of IFN-α treatment and retreatment.
Collapse
Affiliation(s)
- Guo-Qing Yin
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ke-Ping Chen
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiao-Chun Gu
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
5
|
Kim ES, Zhou J, Zhang H, Marchetti A, van de Klundert M, Cai D, Yu X, Mitra B, Liu Y, Wang M, Protzer U, Guo H. Hepatitis B virus X protein counteracts high mobility group box 1 protein-mediated epigenetic silencing of covalently closed circular DNA. PLoS Pathog 2022; 18:e1010576. [PMID: 35679251 PMCID: PMC9182688 DOI: 10.1371/journal.ppat.1010576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), serving as the viral persistence form and transcription template of HBV infection, hijacks host histone and non-histone proteins to form a minichromosome and utilizes posttranslational modifications (PTMs) "histone code" for its transcriptional regulation. HBV X protein (HBx) is known as a cccDNA transcription activator. In this study we established a dual system of the inducible reporter cell lines modelling infection with wildtype (wt) and HBx-null HBV, both secreting HA-tagged HBeAg as a semi-quantitative marker for cccDNA transcription. The cccDNA-bound histone PTM profiling of wt and HBx-null systems, using chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR), confirmed that HBx is essential for maintenance of cccDNA at transcriptionally active state, characterized by active histone PTM markers. Differential proteomics analysis of cccDNA minichromosome established in wt and HBx-null HBV cell lines revealed group-specific hits. One of the hits in HBx-deficient condition was a non-histone host DNA-binding protein high mobility group box 1 (HMGB1). Its elevated association to HBx-null cccDNA was validated by ChIP-qPCR assay in both the HBV stable cell lines and infection systems in vitro. Furthermore, experimental downregulation of HMGB1 in HBx-null HBV inducible and infection models resulted in transcriptional re-activation of the cccDNA minichromosome, accompanied by a switch of the cccDNA-associated histones to euchromatic state with activating histone PTMs landscape and subsequent upregulation of cccDNA transcription. Mechanistically, HBx interacts with HMGB1 and prevents its binding to cccDNA without affecting the steady state level of HMGB1. Taken together, our results suggest that HMGB1 is a novel host restriction factor of HBV cccDNA with epigenetic silencing mechanism, which can be counteracted by viral transcription activator HBx.
Collapse
Affiliation(s)
- Elena S. Kim
- Cancer Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jun Zhou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Hu Zhang
- Cancer Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Alexander Marchetti
- Cancer Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | | | - Dawei Cai
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaoyang Yu
- Cancer Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bidisha Mitra
- Cancer Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yuanjie Liu
- Cancer Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Mu Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Ulrike Protzer
- Technical University of Munich, School of Medicine/Helmholtz Center Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Haitao Guo
- Cancer Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
6
|
Abstract
Hepatitis B virus (HBV) is a hepatotropic virus and an important human pathogen. There are an estimated 296 million people in the world that are chronically infected by this virus, and many of them will develop severe liver diseases including hepatitis, cirrhosis and hepatocellular carcinoma (HCC). HBV is a small DNA virus that replicates via the reverse transcription pathway. In this review, we summarize the molecular pathways that govern the replication of HBV and its interactions with host cells. We also discuss viral and non-viral factors that are associated with HBV-induced carcinogenesis and pathogenesis, as well as the role of host immune responses in HBV persistence and liver pathogenesis.
Collapse
Affiliation(s)
- Yu-Chen Chuang
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Kuen-Nan Tsai
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Salarnia F, Behboudi E, Shahramian I, Moradi A. Novel X gene point mutations in chronic hepatitis B and HBV related cirrhotic patients. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105186. [PMID: 34920100 DOI: 10.1016/j.meegid.2021.105186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/01/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION HBx is a multifunctional modulator viral protein with key roles in various biological processes such as signal transduction, transcription, proliferation, and cell apoptosis. Also, HBx has an important role in the progression of cirrhosis and hepatocellular carcinoma (HCC). This study aimed to determine mutations in X gene, enhancer II (EnhII), and basal core promoter (BCP) of genotype D of Hepatitis B Virus (HBV) in cirrhotic and chronic HBV patients. MATERIAL AND METHODS This cross-sectional study was performed on 68 cases with chronic HBV (cHBV) and 50 cases with HBV related cirrhosis. Serum samples were obtained for genomic DNA extraction. Semi-nested PCR was used to amplify the HBx region. Point mutations in the HBx region were detected by sequencing. RESULT Novel mutations were detected, including C1491G, C1500T, G1613T, and G1658T in the N-terminal of the X gene. The frequency of C1481T/G1479A, T1498C, C1500T, G1512A, A1635T, C1678T, A1727T, and A1762T/ G1764A/ C1773T was significantly higher in cirrhotic patients compared to chronically HBV infected ones. A higher rate of A1635T, C1678T, A1727T, A1762T, G1764A, and C1773T was observed in cirrhotic patients. CONCLUSION Our findings showed that the frequency of mutations in the basal-core promoter, enhancer II, and regulatory region of the HBx gene was more seen in cirrhotic patients than in chronic HBV cases. Novel mutations were detected in the HBx gene, causing amino acid substitutions; however, the clinical impact of these novel mutations is yet to be cleared.
Collapse
Affiliation(s)
- Farzaneh Salarnia
- Department of Microbiology, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Emad Behboudi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Iraj Shahramian
- Department of Pediatric, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Abdolvahab Moradi
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
8
|
Proteomic Analysis of Nuclear HBV rcDNA Associated Proteins Identifies UV-DDB as a Host Factor Involved in cccDNA Formation. J Virol 2021; 96:e0136021. [PMID: 34705558 DOI: 10.1128/jvi.01360-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) utilizes host DNA repair mechanisms to convert viral relaxed circular DNA (rcDNA) into a persistent viral genome, the covalently closed circular DNA (cccDNA). To identify said host factors involved in cccDNA formation, we developed an unbiased approach to discover proteins involved in cccDNA formation by precipitating nuclear rcDNA from induced HepAD38 cells and identifying the co-precipitated proteins by mass spectrometry. The DNA damage binding protein 1 (DDB1) surfaced as a hit, coinciding with our previously reported shRNA screen in which shRNA-DDB1 in HepDES19 cells reduced cccDNA production. DDB1 binding to nuclear rcDNA was confirmed in HepAD38 cells via ChIP-qPCR. DDB1 and DNA damage binding protein 2 (DDB2) form the UV-DDB complex and the latter senses DNA damage to initiate the global genome nucleotide excision repair (GG-NER) pathway. To investigate the role of DDB complex in cccDNA formation, DDB2 was knocked out in HepAD38 and HepG2-NTCP cells. In both knockout cell lines, cccDNA formation was stunted significantly, and in HepG2-NTCP-DDB2 knockout cells, downstream indicators of cccDNA such as HBV RNA, HBcAg, and HBeAg were similarly reduced. Knockdown of DDB2 in HBV-infected HepG2-NTCP cells and primary human hepatocytes (PHH) also resulted in cccDNA reduction. Trans-complementation of wild type DDB2 in HepG2-NTCP-DDB2 knockout cells rescued cccDNA formation and its downstream indicators. However, ectopic expression of DDB2 mutants deficient in DNA-binding, DDB1-binding, or ubiquitination failed to rescue cccDNA formation. Our study thus suggests an integral role of UV-DDB, specifically DDB2, in the formation of HBV cccDNA. IMPORTANCE Serving as a key viral factor for chronic hepatitis B virus (HBV) infection, HBV covalently closed circular DNA (cccDNA) is formed in the cell nucleus from viral relaxed circular DNA (rcDNA) by hijacking host DNA repair machinery. Previous studies have identified a handful of host DNA repair factors involved in cccDNA formation through hypothesis-driven research with some help from RNAi screening and/or biochemistry approaches. To enrich the landscape of tools for discovering host factors responsible for rcDNA-to-cccDNA conversion, we developed an rcDNA immunoprecipitation paired mass spectrometry assay, which allowed us to pull down nuclear rcDNA in its transitional state to cccDNA and observe the associated host factors. From this assay we discovered a novel relationship between the UV-DDB complex and cccDNA formation, hence, providing a proof-of-concept for a more direct discovery of novel HBV DNA-host interactions that can be exploited to develop new cccDNA-targeting antivirals.
Collapse
|
9
|
Yang L, Chen W, Li L, Xiao Y, Fan S, Zhang Q, Xia T, Li M, Hong Y, Zhao T, Li Q, Liu WH, Xiao N. Ddb1 Is Essential for the Expansion of CD4 + Helper T Cells by Regulating Cell Cycle Progression and Cell Death. Front Immunol 2021; 12:722273. [PMID: 34526995 PMCID: PMC8435776 DOI: 10.3389/fimmu.2021.722273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Follicular helper T (TFH) cells are specialized CD4+ helper T cells that provide help to B cells in humoral immunity. However, the molecular mechanism underlying generation of TFH cells is incompletely understood. Here, we reported that Damage-specific DNA binding protein 1 (Ddb1) was required for expansion of CD4+ helper T cells including TFH and Th1 cells, germinal center response, and antibody response to acute viral infection. Ddb1 deficiency in activated CD4+ T cells resulted in cell cycle arrest at G2-M phase and increased cell death, due to accumulation of DNA damage and hyperactivation of ATM/ATR-Chk1 signaling. Moreover, mice with deletion of both Cul4a and Cul4b in activated CD4+ T cells phenocopied Ddb1-deficient mice, suggesting that E3 ligase-dependent function of Ddb1 was crucial for genome maintenance and helper T-cell generation. Therefore, our results indicate that Ddb1 is an essential positive regulator in the expansion of CD4+ helper T cells.
Collapse
Affiliation(s)
- Lingtao Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yueyue Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shilin Fan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Quan Zhang
- School of Medicine, Xiamen University, Xiamen, China
| | - Tian Xia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Mengjie Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tongjin Zhao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiyuan Li
- School of Medicine, Xiamen University, Xiamen, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Yuan H, Zhao L, Yuan Y, Yun H, Zheng W, Geng Y, Yang G, Wang Y, Zhao M, Zhang X. HBx represses WDR77 to enhance HBV replication by DDB1-mediated WDR77 degradation in the liver. Am J Cancer Res 2021; 11:8362-8378. [PMID: 34373747 PMCID: PMC8343998 DOI: 10.7150/thno.57531] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: Hepatitis B x protein (HBx) is required to initiate and maintain the replication of hepatitis B virus (HBV). Protein arginine methyltransferases 5 (PRMT5) negatively regulates HBV transcription. WD repeat domain 77 protein (WDR77) greatly enhances the methyltransferase activity of PRMT5. However, the role of WDR77 in the modulation of cccDNA transcription and HBV replication is poorly understood. In this study, we investigated the mechanism by which HBx modulated HBV replication involving WDR77 in the liver. Methods: A human liver-chimeric mouse model was established. Immunohistochemistry (IHC) staining, Western blot analysis, Southern blot analysis, Northern blot analysis, immunofluorescence assays, ELISA, RT-qPCR, CoIP assays, and ChIP assays were performed in human liver-chimeric mouse model, primary human hepatocytes (PHHs), HepG2-NTCP, dHepaRG and HepG2 cell lines. Results: HBV infection and HBx expression remarkably reduced the protein levels of WDR77 in human liver-chimeric mice and HepG2-NTCP cells. WDR77 restricted cccDNA transcription and HBV replication in PHHs and HepG2-NTCP cells. Mechanically, WDR77 enhanced PRMT5-triggered symmetric dimethylation of arginine 3 on H4 (H4R3me2s) on the cccDNA minichromosome to control cccDNA transcription. HBx drove the cellular DDB1-containing E3 ubiquitin ligase to degrade WDR77 through recruiting WDR77, leading to the disability of methyltransferase activity of PRMT5. Thus, HBx promoted HBV replication by driving a positive feedback loop of HBx-DDB1/WDR77/PRMT5/H4R3me2s/cccDNA/HBV/HBx in the liver. Conclusions: HBx attenuates the WDR77-mediated HBV repression by driving DDB1-induced WDR77 degradation in the liver. Our finding provides new insights into the mechanism by which HBx enhances HBV replication in the liver.
Collapse
|
11
|
Song H, Xu F, Pang X, Xiao Q, Wei Q, Lei B, Li X, Fan X, Tan G. STAT3-Dependent Gene TRIM5γ Interacts With HBx Through a Zinc Binding Site on the BBox Domain. Front Microbiol 2021; 12:663534. [PMID: 34276596 PMCID: PMC8283784 DOI: 10.3389/fmicb.2021.663534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/11/2021] [Indexed: 12/05/2022] Open
Abstract
Owing to its broad-spectrum antivirus activities, interferon (IFN) is an important alternative agent for use in the treatment of hepatitis B virus (HBV)-infected patients; however, the mechanism involved in the inhibition of HBV infection and replication by IFN remains unclear. We previously reported that the induction of TRIM5γ is important in the IFN treatment of HBV patients as it promotes the degradation of the HBx protein, while the manner in which TRIM5γ is induced by IFN and how TRIM5γ interacts with HBx remain unestablished until date. Our present findings confirmed the TRIM5γ-HBx-DDB1 interactions in the HBV-infected Primary human hepatocytes (PHH), and we further found that STAT3, and not STAT1, was responsible for the induction of TRIM5γ upon IFN stimulation and that the zinc binding site His123 on the BBOX domain was a decisive site in the interaction between TRIM5γ BBOX and HBx. In addition, based on the BBOX domain, we detected a 7-amino acid peptide with the potential of promoting HBx degradation and inhibiting HBV replication. On the other hand, we noted that the TRIM5γ expression was inhibited by HBV in chronically HBV infected patients. Thus, our study identified the crucial role of STAT3 in the induction of TRIM5γ, as well as proposed a 7-amino acid, small peptide as a potential candidate for the development of therapeutic agents targeting HBx.
Collapse
Affiliation(s)
- Hongxiao Song
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fengchao Xu
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaoli Pang
- Department of Pediatric Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Qingfei Xiao
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Qi Wei
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Bingxin Lei
- Department of Anesthesia, The First Hospital of Jilin University, Changchun, China
| | - Xiaolu Li
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xixi Fan
- Department of Clinical Specialty of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Guangyun Tan
- Department of Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Raina A, Sahu PK, Laskar RA, Rajora N, Sao R, Khan S, Ganai RA. Mechanisms of Genome Maintenance in Plants: Playing It Safe With Breaks and Bumps. Front Genet 2021; 12:675686. [PMID: 34239541 PMCID: PMC8258418 DOI: 10.3389/fgene.2021.675686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Maintenance of genomic integrity is critical for the perpetuation of all forms of life including humans. Living organisms are constantly exposed to stress from internal metabolic processes and external environmental sources causing damage to the DNA, thereby promoting genomic instability. To counter the deleterious effects of genomic instability, organisms have evolved general and specific DNA damage repair (DDR) pathways that act either independently or mutually to repair the DNA damage. The mechanisms by which various DNA repair pathways are activated have been fairly investigated in model organisms including bacteria, fungi, and mammals; however, very little is known regarding how plants sense and repair DNA damage. Plants being sessile are innately exposed to a wide range of DNA-damaging agents both from biotic and abiotic sources such as ultraviolet rays or metabolic by-products. To escape their harmful effects, plants also harbor highly conserved DDR pathways that share several components with the DDR machinery of other organisms. Maintenance of genomic integrity is key for plant survival due to lack of reserve germline as the derivation of the new plant occurs from the meristem. Untowardly, the accumulation of mutations in the meristem will result in a wide range of genetic abnormalities in new plants affecting plant growth development and crop yield. In this review, we will discuss various DNA repair pathways in plants and describe how the deficiency of each repair pathway affects plant growth and development.
Collapse
Affiliation(s)
- Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Botany Section, Women’s College, Aligarh Muslim University, Aligarh, India
| | - Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | | | - Nitika Rajora
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Agriculture University, Raipur, India
| | - Samiullah Khan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Rais A. Ganai
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, India
| |
Collapse
|
13
|
Javanmard D, Karbalaie Niya MH, Khalafkhany D, Najafi M, Ziaee M, Babaei MR, Kiani SJ, Esghaei M, Jazayeri SM, Panahi M, Safarnezhad Tameshkel F, Mehrabi M, Monavari SH, Bokharaei-Salim F. Downregulation of GSK3β and Upregulation of URG7 in Hepatitis B-Related Hepatocellular Carcinoma. HEPATITIS MONTHLY 2020; 20. [DOI: 10.5812/hepatmon.100899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/14/2020] [Accepted: 08/17/2020] [Indexed: 08/30/2023]
Abstract
: Hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC). The exact molecular contributors to the development of HBV-related HCC are not yet completely understood. Recent studies demonstrated that the deregulation of the Wnt pathway is highly associated with the development of HCC. Besides, HBV is known to have roles in the deregulation of this pathway. The present study evaluated the molecular aspects of the Wnt pathway in HBV-related HCC in liver tissue samples. Viral characterization was done by identifying the HBx mutations and the assessment of intrahepatic viral load. The expression of Wnt pathway genes was assessed using real-time PCR and methylation-specific PCR. The intrahepatic viral load was significantly higher in tumor samples than in normal tissues (P = 0.0008). Aberrant expression was observed in Wnt-1, Wnt-7a, FZD2, FZD7, β-catenin, URG7, c-Myc, SFRP5, and GSK3β, among which Wnt1, FZD2, SFRP5, Gsk3β, and URG7 were associated with HBV. HBx mutations at positions I88, L116, and I127 + F132 were associated with the decreased expression of GSK3β and overexpression of URG7 and Wnt1. Alterations in the expression level of β-catenin, as well as some mutants of HBx, were correlated with the level of c-Myc. HBV-related HCC seems to be mostly coordinated with epigenetic behaviors of HBx, such a multi-functional peptide with suppressing/trans-activating functions.
Collapse
|
14
|
Wang Z, Wang W, Wang L. Epigenetic regulation of covalently closed circular DNA minichromosome in hepatitis B virus infection. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00112-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
15
|
Srinivas N, Rachakonda S, Kumar R. Telomeres and Telomere Length: A General Overview. Cancers (Basel) 2020; 12:E558. [PMID: 32121056 PMCID: PMC7139734 DOI: 10.3390/cancers12030558] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Telomeres are highly conserved tandem nucleotide repeats that include proximal double-stranded and distal single-stranded regions that in complex with shelterin proteins afford protection at chromosomal ends to maintain genomic integrity. Due to the inherent limitations of DNA replication and telomerase suppression in most somatic cells, telomeres undergo age-dependent incremental attrition. Short or dysfunctional telomeres are recognized as DNA double-stranded breaks, triggering cells to undergo replicative senescence. Telomere shortening, therefore, acts as a counting mechanism that drives replicative senescence by limiting the mitotic potential of cells. Telomere length, a complex hereditary trait, is associated with aging and age-related diseases. Epidemiological data, in general, support an association with varying magnitudes between constitutive telomere length and several disorders, including cancers. Telomere attrition is also influenced by oxidative damage and replicative stress caused by genetic, epigenetic, and environmental factors. Several single nucleotide polymorphisms at different loci, identified through genome-wide association studies, influence inter-individual variation in telomere length. In addition to genetic factors, environmental factors also influence telomere length during growth and development. Telomeres hold potential as biomarkers that reflect the genetic predisposition together with the impact of environmental conditions and as targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | | | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Im Neunheimer Feld 580, 69120 Heidelberg, Germany; (N.S.); (S.R.)
| |
Collapse
|
16
|
Martinez MG, Testoni B, Zoulim F. Biological basis for functional cure of chronic hepatitis B. J Viral Hepat 2019; 26:786-794. [PMID: 30803126 DOI: 10.1111/jvh.13090] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B (CHB) infection affects over 250 millon people worldwide and 800000 are expected to die yearly due to the development of hepatocellular carcinoma (HCC). Current antiviral therapies include nucleoside analogs (NAs) that target the viral retrotranscriptase inhibiting de novo viral production. Pegylated interferon (Peg-IFN) is also effective in reducing the viral DNA load in serum. However, both treatments remain limited to control the infection, aiming for viral suppression and improving the quality of life of the infected patients. Complete cure is not possible due to the presence of the stable DNA intermediate covalently closed circular DNA (cccDNA). Attempts to achieve a functional cure are thus ongoing and novel targets and molecules, together with different combination therapies are currently in the pipeline for early clinical trials. In this review we discuss novel treatments both targeting directly and indirectly cccDNA. As we gain knowledge in the Hepatitis B virus (HBV) transcriptional control, and newer technologies emerge that could potentially allow the destruction of cccDNA, exciting new possibilities for curative therapies are discussed.
Collapse
Affiliation(s)
- Maria G Martinez
- Cancer Research Center of Lyon (CRCL), Lyon, France.,INSERM U1052, Lyon, France
| | - Barbara Testoni
- Cancer Research Center of Lyon (CRCL), Lyon, France.,INSERM U1052, Lyon, France
| | - Fabien Zoulim
- Cancer Research Center of Lyon (CRCL), Lyon, France.,INSERM U1052, Lyon, France.,Hospices Civils de Lyon (HCL), Lyon, France.,University of Lyon, UMR_S1052, UCBL, Lyon, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
17
|
Dezhbord M, Lee S, Kim W, Seong BL, Ryu WS. Characterization of the molecular events of covalently closed circular DNA synthesis in de novo Hepatitis B virus infection of human hepatoma cells. Antiviral Res 2019; 163:11-18. [PMID: 30639437 DOI: 10.1016/j.antiviral.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 12/27/2022]
Abstract
Despite the utmost importance of cccDNA in HBV biology, the mechanism by which cccDNA synthesis is regulated is not completely understood. Here we explored HepG2-NTCP cell line and performed a time-course HBV infection experiment (up to 30 days) to follow the conversion of the input viral DNA into cccDNA. We found that a protein-free RC DNA (PF-RC DNA) become detectable as early as 12 h post infection (hpi) prior to the detection of cccDNA, which become evident only at 2-3 dpi. Intriguingly, the PF-RC DNA detected at 12 hpi was abundantly located in the cytoplasm, implicating that the protein-removal from the input viral DNA takes place in the cytoplasm, perhaps inside the nucleocapsid. Notably, during the early time points of HBV infection, the PF-RC DNA accumulated at significantly higher levels and appeared in a peak followed by a plateau at late time points with dramatically lower levels, implicating the presence of two distinct populations of the PF-RC DNA. Importantly, the PF-RC DNA at earlier peak is entecavir (ETV)-resistant, whereas the PF-RC DNA at posterior days is ETV-sensitive. An interpretation is that the PF-RC DNA at earlier peak represents "input viral DNA" derived from HBV inoculum, whereas the PF-RC DNA at late time points represents the de novo product of the viral reverse transcription. The existence of two populations of the PF-RC DNA having a distinct kinetic profile and ETV-sensitivity implicated that intracellular amplification via the viral reverse transcription greatly contributes to the maintenance of cccDNA pool during HBV infection. As such, we concluded that the cccDNA level is stably maintained by continuing replenishment of cccDNA primarily through intracellular amplification in the HepG2-NTCP cell line.
Collapse
Affiliation(s)
- Mehrangiz Dezhbord
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Sooyoung Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Woohyun Kim
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea.
| | - Wang-Shick Ryu
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
18
|
Landsberg CD, Megger DA, Hotter D, Rückborn MU, Eilbrecht M, Rashidi-Alavijeh J, Howe S, Heinrichs S, Sauter D, Sitek B, Le-Trilling VTK, Trilling M. A Mass Spectrometry-Based Profiling of Interactomes of Viral DDB1- and Cullin Ubiquitin Ligase-Binding Proteins Reveals NF-κB Inhibitory Activity of the HIV-2-Encoded Vpx. Front Immunol 2018; 9:2978. [PMID: 30619335 PMCID: PMC6305766 DOI: 10.3389/fimmu.2018.02978] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022] Open
Abstract
Viruses and hosts are situated in a molecular arms race. To avoid morbidity and mortality, hosts evolved antiviral restriction factors. These restriction factors exert selection pressure on the viruses and drive viral evolution toward increasingly efficient immune antagonists. Numerous viruses exploit cellular DNA damage-binding protein 1 (DDB1)-containing Cullin RocA ubiquitin ligases (CRLs) to induce the ubiquitination and subsequent proteasomal degradation of antiviral factors expressed by their hosts. To establish a comprehensive understanding of the underlying protein interaction networks, we performed immuno-affinity precipitations for a panel of DDB1-interacting proteins derived from viruses such as mouse cytomegalovirus (MCMV, Murid herpesvirus [MuHV] 1), rat cytomegalovirus Maastricht MuHV2, rat cytomegalovirus English MuHV8, human cytomegalovirus (HCMV), hepatitis B virus (HBV), and human immunodeficiency virus (HIV). Cellular interaction partners were identified and quantified by mass spectrometry (MS) and validated by classical biochemistry. The comparative approach enabled us to separate unspecific interactions from specific binding partners and revealed remarkable differences in the strength of interaction with DDB1. Our analysis confirmed several previously described interactions like the interaction of the MCMV-encoded interferon antagonist pM27 with STAT2. We extended known interactions to paralogous proteins like the interaction of the HBV-encoded HBx with different Spindlin proteins and documented interactions for the first time, which explain functional data like the interaction of the HIV-2-encoded Vpr with Bax. Additionally, several novel interactions were identified, such as the association of the HIV-2-encoded Vpx with the transcription factor RelA (also called p65). For the latter interaction, we documented a functional relevance in antagonizing NF-κB-driven gene expression. The mutation of the DDB1 binding interface of Vpx significantly impaired NF-κB inhibition, indicating that Vpx counteracts NF-κB signaling by a DDB1- and CRL-dependent mechanism. In summary, our findings improve the understanding of how viral pathogens hijack cellular DDB1 and CRLs to ensure efficient replication despite the expression of host restriction factors.
Collapse
Affiliation(s)
- Christine D Landsberg
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dominik A Megger
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Medical Proteome-Center, Ruhr-University Bochum, Bochum, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Meike U Rückborn
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mareike Eilbrecht
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jassin Rashidi-Alavijeh
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Howe
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Barbara Sitek
- Medical Proteome-Center, Ruhr-University Bochum, Bochum, Germany
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
19
|
Yang F. Post-translational Modification Control of HBV Biological Processes. Front Microbiol 2018; 9:2661. [PMID: 30443247 PMCID: PMC6222169 DOI: 10.3389/fmicb.2018.02661] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus infection remains a global healthy issue that needs to be urgently solved. Novel strategies for anti-viral therapy are based on exploring the effective diagnostic markers and therapeutic targets of diseases caused by hepatitis B virus (HBV) infection. It is well-established that not only viral proteins themselves but also key factors from the host control the biological processes associated with HBV, including replication, transcription, packaging, and secretion. Protein post-translational modifications (PTMs), such as phosphorylation, acetylation, methylation, and ubiquitination, have been shown to control protein activity, regulate protein stability, promote protein interactions and alter protein subcellular localization, leading to the modulation of crucial signaling pathways and affected cellular processes. This review focuses on the functions and effects of diverse PTMs in regulating important processes in the HBV life cycle. The potential roles of PTMs in the pathogenesis of HBV-associated liver diseases are also discussed.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
HBx-elevated SIRT2 promotes HBV replication and hepatocarcinogenesis. Biochem Biophys Res Commun 2018; 496:904-910. [PMID: 29366781 DOI: 10.1016/j.bbrc.2018.01.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/09/2018] [Accepted: 01/19/2018] [Indexed: 12/27/2022]
Abstract
Sirtuin 2 (SIRT2) is a class III histone deacetylase that has been implicated to promote HCC development. However, the functional role of SIRT2 in HBV is still unclear. In this study, we found that HBV could upregulate SIRT2 expression. Additionally, HBx could activate SIRT2 promoter to upregulate the mRNA and protein level of SIRT2. Furthermore, we found that SIRT2 could facilitate HBV transcription and replication. Finally, we demonstrated that upregulation of SIRT2 by HBx promoted hepatocarcinogenesis. In summary, our findings revealed a novel function of SIRT2 in HBV and HBV-mediated HCC. First, SIRT2 could promote HBV replication. And then HBx-elevated SIRT2 could enhance the transformation of HBV-mediated HCC. Those findings highlight the potential role of SIRT2 in HBV and HBV-mediated HCC by interaction with HBx.
Collapse
|
21
|
Revill P, Locarnini S. Antiviral strategies to eliminate hepatitis B virus covalently closed circular DNA (cccDNA). Curr Opin Pharmacol 2016; 30:144-150. [DOI: 10.1016/j.coph.2016.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/23/2016] [Accepted: 08/28/2016] [Indexed: 02/08/2023]
|