1
|
Vigano S, Bobisse S, Coukos G, Perreau M, Harari A. Cancer and HIV-1 Infection: Patterns of Chronic Antigen Exposure. Front Immunol 2020; 11:1350. [PMID: 32714330 PMCID: PMC7344140 DOI: 10.3389/fimmu.2020.01350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022] Open
Abstract
The main role of the human immune system is to eliminate cells presenting foreign antigens and abnormal patterns, while maintaining self-tolerance. However, when facing highly variable pathogens or antigens very similar to self-antigens, this system can fail in completely eliminating the anomalies, leading to the establishment of chronic pathologies. Prototypical examples of immune system defeat are cancer and Human Immunodeficiency Virus-1 (HIV-1) infection. In both conditions, the immune system is persistently exposed to antigens leading to systemic inflammation, lack of generation of long-term memory and exhaustion of effector cells. This triggers a negative feedback loop where effector cells are unable to resolve the pathology and cannot be replaced due to the lack of a pool of undifferentiated, self-renewing memory T cells. In addition, in an attempt to reduce tissue damage due to chronic inflammation, antigen presenting cells and myeloid components of the immune system activate systemic regulatory and tolerogenic programs. Beside these homologies shared between cancer and HIV-1 infection, the immune system can be shaped differently depending on the type and distribution of the eliciting antigens with ultimate consequences at the phenotypic and functional level of immune exhaustion. T cell differentiation, functionality, cytotoxic potential and proliferation reserve, immune-cell polarization, upregulation of negative regulators (immune checkpoint molecules) are indeed directly linked to the quantitative and qualitative differences in priming and recalling conditions. Better understanding of distinct mechanisms and functional consequences underlying disease-specific immune cell dysfunction will contribute to further improve and personalize immunotherapy. In the present review, we describe relevant players of immune cell exhaustion in cancer and HIV-1 infection, and enumerate the best-defined hallmarks of T cell dysfunction. Moreover, we highlight shared and divergent aspects of T cell exhaustion and T cell activation to the best of current knowledge.
Collapse
Affiliation(s)
- Selena Vigano
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Macatangay BJC, Gandhi RT, Jones RB, Mcmahon DK, Lalama CM, Bosch RJ, Cyktor JC, Thomas AS, Borowski L, Riddler SA, Hogg E, Stevenson E, Eron JJ, Mellors JW, Rinaldo CR. T cells with high PD-1 expression are associated with lower HIV-specific immune responses despite long-term antiretroviral therapy. AIDS 2020; 34:15-24. [PMID: 31634201 PMCID: PMC7313719 DOI: 10.1097/qad.0000000000002406] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We evaluated frequencies of T cells with high PD-1 expression (PD-1) before and after long-term effective antiretroviral therapy (ART), and determined if frequencies on-ART correlated positively with measures of HIV persistence and negatively with HIV-specific responses. METHODS We enrolled individuals who started ART during chronic infection and had durable suppression of viremia for at least 4 years (N = 99). We assessed PD-1 T-cell frequencies at timepoints pre-ART and on-ART using flow cytometry, and evaluated how frequencies on-ART are associated with measures of HIV persistence, HIV-specific immune responses, and immune activation levels. RESULTS Pre-ART, PD-1 CD4 T cells correlated positively with viremia and negatively with CD4 T-cell count. At year 1 on-ART, %PD-1 CD4 T cells decreased but then remained stable at 4 and 6-15 years on-ART, whereas %PD-1 CD8 T cells on-ART remained similar to pre-ART. PD-1 CD4 T cells correlated positively with HIV DNA pre-ART and on-ART, and with CD4 T-cell activation on-ART. PD-1 CD4 T cells negatively correlated with HIV Gag-specific and Env-specific T-cell responses but not with CMV-specific or EBV-specific responses. PD-1 CD8 T cells trended towards a negative correlation with responses to Gag and Env, but not to CMV and EBV. CONCLUSION PD-1 T cells persist in blood despite prolonged suppression on ART, correlate with HIV DNA levels, and are associated with lower HIV-specific T-cell responses but not CMV-specific or EBV-specific responses, suggesting that these cells are HIV-specific. The findings support evaluating PD-1 blockade strategies for their effect on HIV persistence and HIV-specific immunity.
Collapse
Affiliation(s)
- Bernard J C Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts Division of Infectious Diseases, Weill Cornell Medicine, New York, New York Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts Department of Infectious Diseases and Microbiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania Social & Scientific Systems, Inc., Silver Spring, Maryland Department of Medicine, University of North Carolina, Chapel Hill, North Carolina Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
McBrien JB, Kumar NA, Silvestri G. Mechanisms of CD8 + T cell-mediated suppression of HIV/SIV replication. Eur J Immunol 2018; 48:898-914. [PMID: 29427516 DOI: 10.1002/eji.201747172] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
In this article, we summarize the role of CD8+ T cells during natural and antiretroviral therapy (ART)-treated HIV and SIV infections, discuss the mechanisms responsible for their suppressive activity, and review the rationale for CD8+ T cell-based HIV cure strategies. Evidence suggests that CD8+ T cells are involved in the control of virus replication during HIV and SIV infections. During early HIV infection, the cytolytic activity of CD8+ T cells is responsible for control of viremia. However, it has been proposed that CD8+ T cells also use non-cytolytic mechanisms to control SIV infection. More recently, CD8+ T cells were shown to be required to fully suppress virus production in ART-treated SIV-infected macaques, suggesting that CD8+ T cells are involved in the control of virus transcription in latently infected cells that persist under ART. A better understanding of the complex antiviral activities of CD8+ T cells during HIV/SIV infection will pave the way for immune interventions aimed at harnessing these functions to target the HIV reservoir.
Collapse
Affiliation(s)
- Julia Bergild McBrien
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Nitasha A Kumar
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| |
Collapse
|
4
|
CHOMONT N, OKOYE AA, FAVRE D, TRAUTMANN L. Wake me up before you go: a strategy to reduce the latent HIV reservoir. AIDS 2018; 32:293-298. [PMID: 29135580 PMCID: PMC5758429 DOI: 10.1097/qad.0000000000001695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the quest to eliminate or reduce the HIV reservoir, shock and kill strategies require the combined administration of a latency reversing agent (LRA) to reactivate the latent reservoir and an intervention to boost effector functions to clear this reservoir. Both parts of this strategy are quite inefficient when LRAs are administered to HIV-infected individuals on suppressive ART for several years, possibly due to low levels of induced antigen expression, negative impact of LRAs on clearance mechanisms, and very low number of effective cytotoxic T cells (CTLs). Here we provide rationale for an approach that would require only the administration of an LRA at the time of ART initiation to significantly reduce the HIV reservoir. The advantage of this strategy is an efficient reactivation of the latent HIV reservoir when high numbers of HIV-specific CD8+ T cells are present. This strategy may also potentiate more effective CTL responses and the establishment of a longer period of immune surveillance. This “window of opportunity” has been validated in silico , can be tested in preclinical non-human primate (NHP) models and translated rapidly in the clinic.
Collapse
Affiliation(s)
- Nicolas CHOMONT
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
- Department of microbiology, infectiology and immunology, Faculty of Medicine. Université de Montréal, Montreal, Quebec, Canada
| | - Afam A. OKOYE
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - David FAVRE
- GlaxoSmithKline, Durham, North Carolina, USA
| | - Lydie TRAUTMANN
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| |
Collapse
|
5
|
|
6
|
Abstract
Emergent responses of the immune system result from the integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for the systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the National Institute of Allergy and Infectious Disease (NIAID) workshop 'Complex Systems Science, Modeling and Immunity' and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling, and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies.
Collapse
|
7
|
Sriram U, Haldar B, Cenna JM, Gofman L, Potula R. Methamphetamine mediates immune dysregulation in a murine model of chronic viral infection. Front Microbiol 2015; 6:793. [PMID: 26322025 PMCID: PMC4531300 DOI: 10.3389/fmicb.2015.00793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/21/2015] [Indexed: 02/03/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that not only affects the brain and cognitive functions but also greatly impacts the host immune system, rendering the body susceptible to infections and exacerbating the severity of disease. Although there is gathering evidence about METH abuse and increased incidence of HIV and other viral infections, not much is known about the effects on the immune system in a chronic viral infection setting. We have used the lymphocytic choriomeningitis virus (LCMV) chronic mouse model of viral infection in a chronic METH environment and demonstrate that METH significantly increases CD3 marker on splenocytes and programmed death-1 (PD-1) expression on T cells, a cell surface signaling molecule known to inhibit T cell function and cause exhaustion in a lymphoid organ. Many of these METH effects were more pronounced during early stage of infection, which are gradually attenuated during later stages of infection. An essential cytokine for T-lymphocyte homeostasis, Interleukin-2 (IL-2) in serum was prominently reduced in METH-exposed infected mice. In addition, the serum pro-inflammatory (TNF, IL12 p70, IL1β, IL-6, and KC-GRO) and Th2 (IL-2, IL-10, and IL-4) cytokine profiles were also altered in the presence of METH. Interestingly CXCR3, an inflammatory chemokine receptor, showed significant increase in the METH treated LCMV infected mice. Similarly, compared to only infected mice, epidermal growth factor receptor (EGFR) in METH exposed LCMV infected mice were up regulated. Collectively, our data suggest that METH alters systemic, peripheral immune responses and modulates key markers on T cells involved in pathogenesis of chronic viral infection.
Collapse
Affiliation(s)
- Uma Sriram
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Bijayesh Haldar
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Jonathan M Cenna
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Larisa Gofman
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA ; Center for Substance Abuse Research, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To describe the recent data on the role of coinhibitory receptors, such as PD-1, Tim-3, CD160, as mediators of the 'exhaustion' of virus-specific CD8 T cells in chronic infections and particularly in HIV. RECENT FINDINGS Exhaustion of chronic virus-specific CD8 T cells is a dynamic process characterized by altered differentiation, impaired function, and compromised proliferation/survival profile of these cells. This process is mediated by coinhibitory receptors expressed on the surface of virus-specific CD8 T cells and an orchestrated function of centrally connected pathways. Coexpression of several coinhibitory receptors characterizes severely exhausted virus-specific CD8 T cells. Several studies suggest a synergistic action, instead of a redundant role, of the different receptors. In-vivo manipulation of the coinhibitory network can rejuvenate exhausted virus-specific CD8 T cell responses and constrain replication of chronic viruses, including HIV. SUMMARY Revealing the molecular basis of virus-specific CD8 T cell exhaustion in chronic infections is critical for the understanding of the disease pathogenesis and the designing of novel vaccines aiming to enhance the cytolytic arm of the immune system. This is of particular interest for the development of immunotherapies in the context of a functional cure for HIV.
Collapse
|
9
|
Abstract
Dynamic tuning of cellular responsiveness as a result of repeated stimuli improves the ability of cells to distinguish physiologically meaningful signals from each other and from noise. In particular, lymphocyte activation thresholds are subject to tuning, which contributes to maintaining tolerance to self-antigens and persisting foreign antigens, averting autoimmunity and immune pathogenesis, but allowing responses to strong, structured perturbations that are typically associated with acute infection. Such tuning is also implicated in conferring flexibility to positive selection in the thymus, in controlling the magnitude of the immune response, and in generating memory cells. Additional functional properties are dynamically and differentially tuned in parallel via subthreshold contact interactions between developing or mature lymphocytes and self-antigen-presenting cells. These interactions facilitate and regulate lymphocyte viability, maintain their functional integrity, and influence their responses to foreign antigens and accessory signals, qualitatively and quantitatively. Bidirectional tuning of T cells and antigen-presenting cells leads to the definition of homeostatic set points, thus maximizing clonal diversity.
Collapse
Affiliation(s)
- Zvi Grossman
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| | | |
Collapse
|
10
|
Kløverpris HN, McGregor R, McLaren JE, Ladell K, Stryhn A, Koofhethile C, Brener J, Chen F, Riddell L, Graziano L, Klenerman P, Leslie A, Buus S, Price DA, Goulder P. Programmed death-1 expression on HIV-1-specific CD8+ T cells is shaped by epitope specificity, T-cell receptor clonotype usage and antigen load. AIDS 2014; 28:2007-21. [PMID: 24906112 PMCID: PMC4166042 DOI: 10.1097/qad.0000000000000362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Although CD8+ T cells play a critical role in the control of HIV-1 infection,their antiviral efficacy can be limited by antigenic variation and immune exhaustion.The latter phenomenon is characterized by the upregulation of multiple inhibitory receptors, such as programmed death-1 (PD-1), CD244 and lymphocyte activation gene-3 (LAG-3), which modulate the functional capabilities of CD8+ T cells. DESIGN AND METHODS Here, we used an array of different human leukocyte antigen(HLA)-B*15:03 and HLA-B*42:01 tetramers to characterize inhibitory receptor expression as a function of differentiation on HIV-1-specific CD8+ T-cell populations(n = 128) spanning 11 different epitope targets. RESULTS Expression levels of PD-1, but not CD244 or LAG-3, varied substantially across epitope specificities both within and between individuals. Differential expression of PD-1 on T-cell receptor (TCR) clonotypes within individual HIV-1-specific CD8+ T-cell populations was also apparent, independent of clonal dominance hierarchies. Positive correlations were detected between PD-1 expression and plasma viral load, which were reinforced by stratification for epitope sequence stability and dictated by effector memory CD8+ T cells. CONCLUSION Collectively, these data suggest that PD-1 expression on HIV-1-specific CD8+ T cells tracks antigen load at the level of epitope specificity and TCR clonotype usage. These findings are important because they provide evidence that PD-1 expression levels are influenced by peptide/HLA class I antigen exposure.
Collapse
Affiliation(s)
- Henrik N. Kløverpris
- Department of Paediatrics, University of Oxford, Peter Medawar Building, Oxford
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, K-RITH, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Reuben McGregor
- Department of Paediatrics, University of Oxford, Peter Medawar Building, Oxford
| | - James E. McLaren
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Kristin Ladell
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
| | - Anette Stryhn
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | | | - Jacqui Brener
- Department of Paediatrics, University of Oxford, Peter Medawar Building, Oxford
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northamptonshire Healthcare National Health Service Trust, Northampton General Hospital, Cliftonville, Northampton
| | - Luzzi Graziano
- Department of Sexual Health, Wycombe Hospital, High Wycombe, Buckinghamshire
| | - Paul Klenerman
- The Peter Medawar Building for Pathogen Research and NIHR Biomedical Research Centre, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, K-RITH, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Søren Buus
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen N, Denmark
| | - David A. Price
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- David A. Price and Philip Goulder contributed equally to this study
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Peter Medawar Building, Oxford
- David A. Price and Philip Goulder contributed equally to this study
| |
Collapse
|