1
|
Bhatia T, Sharma S. Drug Repurposing: Insights into Current Advances and Future Applications. Curr Med Chem 2025; 32:468-510. [PMID: 37946344 DOI: 10.2174/0109298673266470231023110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
Drug development is a complex and expensive process that involves extensive research and testing before a new drug can be approved for use. This has led to a limited availability of potential therapeutics for many diseases. Despite significant advances in biomedical science, the process of drug development remains a bottleneck, as all hypotheses must be tested through experiments and observations, which can be timeconsuming and costly. To address this challenge, drug repurposing has emerged as an innovative strategy for finding new uses for existing medications that go beyond their original intended use. This approach has the potential to speed up the drug development process and reduce costs, making it an attractive option for pharmaceutical companies and researchers alike. It involves the identification of existing drugs or compounds that have the potential to be used for the treatment of a different disease or condition. This can be done through a variety of approaches, including screening existing drugs against new disease targets, investigating the biological mechanisms of existing drugs, and analyzing data from clinical trials and electronic health records. Additionally, repurposing drugs can lead to the identification of new therapeutic targets and mechanisms of action, which can enhance our understanding of disease biology and lead to the development of more effective treatments. Overall, drug repurposing is an exciting and promising area of research that has the potential to revolutionize the drug development process and improve the lives of millions of people around the world. The present review provides insights on types of interaction, approaches, availability of databases, applications and limitations of drug repurposing.
Collapse
Affiliation(s)
- Trisha Bhatia
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| | - Shweta Sharma
- School of Pharmacy, National Forensic Sciences University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
2
|
Lo SY, Lai MJ, Yang CH, Li HC. Unveiling the Connection: Viral Infections and Genes in dNTP Metabolism. Viruses 2024; 16:1412. [PMID: 39339888 PMCID: PMC11437409 DOI: 10.3390/v16091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Deoxynucleoside triphosphates (dNTPs) are crucial for the replication and maintenance of genomic information within cells. The balance of the dNTP pool involves several cellular enzymes, including dihydrofolate reductase (DHFR), ribonucleotide reductase (RNR), and SAM and HD domain-containing protein 1 (SAMHD1), among others. DHFR is vital for the de novo synthesis of purines and deoxythymidine monophosphate, which are necessary for DNA synthesis. SAMHD1, a ubiquitously expressed deoxynucleotide triphosphohydrolase, converts dNTPs into deoxynucleosides and inorganic triphosphates. This process counteracts the de novo dNTP synthesis primarily carried out by RNR and cellular deoxynucleoside kinases, which are most active during the S phase of the cell cycle. The intracellular levels of dNTPs can influence various viral infections. This review provides a concise summary of the interactions between different viruses and the genes involved in dNTP metabolism.
Collapse
Affiliation(s)
- Shih-Yen Lo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
| | - Chee-Hing Yang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan
- Department of Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hui-Chun Li
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
3
|
Kumar N, Acharya V. Machine intelligence-guided selection of optimized inhibitor for human immunodeficiency virus (HIV) from natural products. Comput Biol Med 2023; 153:106525. [PMID: 36603433 DOI: 10.1016/j.compbiomed.2022.106525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/28/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
The human immunodeficiency virus (HIV) connects to the cluster of differentiation (CD4) and any of the entry co-receptors (CCR5 and CXCR4); followed by unloading the viral genome, reverse transcriptase, and integrase enzymes within the host cell. The co-receptors facilitate the entry of virus and vital enzymes, leading to replication and pre-maturation of viral particles within the host. The protease enzyme transforms the immature viral vesicles into the mature virion. The pivotal role of co-receptors and enzymes in homeostasis and growth makes the crucial target for anti-HIV drug discovery, and the availability of X-ray crystal structures is an asset. Here, we used the machine intelligence-driven framework (A-HIOT) to identify and optimize target-based potential hit molecules for five significant protein targets from the ZINC15 database (natural products dataset). Following validation with dynamic motion behavior analysis and molecular dynamics simulation, the optimized hits were evaluated using in silico ADMET filtration. Furthermore, three molecules were screened, optimized, and validated: ZINC00005328058 for CCR5 and protease, ZINC000254014855 for CXCR4 and integrase, and ZINC000000538471 for reverse transcriptase. In clinical trials, the ZINC000254014855 and ZINC000254014855 were passed in primary screens for vif-HIV-1, and we reported the specific receptor as well as interactions. As a result, the validated molecules may be investigated further in experimental studies targeting specific receptors in order to design and synergize an anti-HIV regimen.
Collapse
Affiliation(s)
- Neeraj Kumar
- Functional Genomics and Complex System Lab, HiCHiCoB, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, HiCHiCoB, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Xie D, He S, Han L, Wu L, Huang H, Tao H, Zhou P, Shi X, Bai H, Bo X. Systematic optimization of host-directed therapeutic targets and preclinical validation of repositioned antiviral drugs. Brief Bioinform 2022; 23:bbac047. [PMID: 35238349 PMCID: PMC9116211 DOI: 10.1093/bib/bbac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
Abstract
Inhibition of host protein functions using established drugs produces a promising antiviral effect with excellent safety profiles, decreased incidence of resistant variants and favorable balance of costs and risks. Genomic methods have produced a large number of robust host factors, providing candidates for identification of antiviral drug targets. However, there is a lack of global perspectives and systematic prioritization of known virus-targeted host proteins (VTHPs) and drug targets. There is also a need for host-directed repositioned antivirals. Here, we integrated 6140 VTHPs and grouped viral infection modes from a new perspective of enriched pathways of VTHPs. Clarifying the superiority of nonessential membrane and hub VTHPs as potential ideal targets for repositioned antivirals, we proposed 543 candidate VTHPs. We then presented a large-scale drug-virus network (DVN) based on matching these VTHPs and drug targets. We predicted possible indications for 703 approved drugs against 35 viruses and explored their potential as broad-spectrum antivirals. In vitro and in vivo tests validated the efficacy of bosutinib, maraviroc and dextromethorphan against human herpesvirus 1 (HHV-1), hepatitis B virus (HBV) and influenza A virus (IAV). Their drug synergy with clinically used antivirals was evaluated and confirmed. The results proved that low-dose dextromethorphan is better than high-dose in both single and combined treatments. This study provides a comprehensive landscape and optimization strategy for druggable VTHPs, constructing an innovative and potent pipeline to discover novel antiviral host proteins and repositioned drugs, which may facilitate their delivery to clinical application in translational medicine to combat fatal and spreading viral infections.
Collapse
Affiliation(s)
- Dafei Xie
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Song He
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Lu Han
- Beijing Institute of Pharmacology and Toxicology, Beijing, China, 100850
| | - Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China, 300072
| | - Hai Huang
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Huan Tao
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Pingkun Zhou
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| | - Xunlong Shi
- Department of Biological Medicines, School of Pharmacy, Fudan University, Shanghai, China, 201203
| | - Hui Bai
- BioMap (Beijing) Intelligence Technology Limited, Beijing, China, 100005
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, China, 100850
| |
Collapse
|
5
|
Hadj Hassine I, Ben M’hadheb M, Menéndez-Arias L. Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity. Viruses 2022; 14:841. [PMID: 35458571 PMCID: PMC9024455 DOI: 10.3390/v14040841] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/11/2022] Open
Abstract
In RNA viruses, a small increase in their mutation rates can be sufficient to exceed their threshold of viability. Lethal mutagenesis is a therapeutic strategy based on the use of mutagens, driving viral populations to extinction. Extinction catastrophe can be experimentally induced by promutagenic nucleosides in cell culture models. The loss of HIV infectivity has been observed after passage in 5-hydroxydeoxycytidine or 5,6-dihydro-5-aza-2'-deoxycytidine while producing a two-fold increase in the viral mutation frequency. Among approved nucleoside analogs, experiments with polioviruses and other RNA viruses suggested that ribavirin can be mutagenic, although its mechanism of action is not clear. Favipiravir and molnupiravir exert an antiviral effect through lethal mutagenesis. Both drugs are broad-spectrum antiviral agents active against RNA viruses. Favipiravir incorporates into viral RNA, affecting the G→A and C→U transition rates. Molnupiravir (a prodrug of β-d-N4-hydroxycytidine) has been recently approved for the treatment of SARS-CoV-2 infection. Its triphosphate derivative can be incorporated into viral RNA and extended by the coronavirus RNA polymerase. Incorrect base pairing and inefficient extension by the polymerase promote mutagenesis by increasing the G→A and C→U transition frequencies. Despite having remarkable antiviral action and resilience to drug resistance, carcinogenic risks and genotoxicity are important concerns limiting their extended use in antiviral therapy.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Manel Ben M’hadheb
- Unité de Recherche UR17ES30 “Génomique, Biotechnologie et Stratégies Antivirales”, Institut Supérieur de Biotechnologie, Université de Monastir, Monastir 5000, Tunisia; (I.H.H.); (M.B.M.)
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid), 28049 Madrid, Spain
| |
Collapse
|
6
|
A Novel Cognition of Decitabine: Insights into Immunomodulation and Antiviral Effects. Molecules 2022; 27:molecules27061973. [PMID: 35335337 PMCID: PMC8950928 DOI: 10.3390/molecules27061973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
DNA methylation, as one of the major means of epigenesis change, makes a large difference in the spatial structure of chromatin, transposable element activity and, fundamentally, gene transcription. It has been confirmed that DNA methylation is closely related to innate immune responses. Decitabine, the most efficient available DNA methyltransferase inhibitor, has demonstrated exhilarating immune activation and antiviral effects on multiple viruses, including HIV, HBV, HCV, HPV and EHV1. This review considers the role of decitabine in regulating innate immune responses and antiviral ability. Understanding the complex transcriptional and immune regulation of decitabine could help to identify and validate therapeutic methods to reduce pathogen infection-associated morbidity, especially virus infection-induced morbidity and mortality.
Collapse
|
7
|
Rahman S, Das AK. Integrated Multi-omics, Virtual Screening and Molecular Docking Analysis of Methicillin-Resistant Staphylococcus aureus USA300 for the Identification of Potential Therapeutic Targets: An In-Silico Approach. Int J Pept Res Ther 2021; 27:2735-2755. [PMID: 34548853 PMCID: PMC8446483 DOI: 10.1007/s10989-021-10287-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus infection is a leading cause of mortality and morbidity in community, hospital and live-stock sectors, especially with the widespread emergence of methicillin-resistant S. aureus (MRSA) strains. To identify new drug molecules to treat MRSA patients, we have undertaken to search essential proteins that are indispensable for their survival but non-homologous to human host proteins. The current study utilizes a subtractive genome and proteome approach to screen the possible therapeutic targets against S. aureus USA300. Bacterial essential genes are obtained from the DEG database and are compared to avoid cross-reactivity with human host genes. In silico analysis shows 198 proteins that may be considered as therapeutic candidates. Depending on their sub-cellular localization, proteins are grouped as either vaccine or drug targets or both. Extracellular proteins such as cell division proteins (Q2FZ91, Q2FZ95), penicillin-binding proteins (Q2FZ94, Q2FYI0) of the bacterial cell wall, phosphoglucomutase (Q2FE11) and lipoteichoic acid synthase (Q2FIS2) are considered as vaccine targets, and their epitopes have been mapped. Altogether, 53 drug targets are identified, which have shown similarity with the drug targets available in the DrugBank database. Predicted drug targets belong to the common metabolic pathways of MRSA, such as fatty acid biosynthesis, folate biosynthesis, peptidoglycan biosynthesis, ribosome, etc. Protein-protein interaction analysis emphasizing peptidoglycan biosynthesis reveals the connection between penicillin-binding proteins, mur-family proteins and FemXAB proteins. In this study, staphylococcal FemA protein (P0A0A5) is subjected to structure-based virtual screening for the drug repurposing approach. There are 20 residues missing in the crystal structure of FemA, and 12 of these residues are located at the catalytic site. The missing residues are modelled, and stereochemistry is checked. FDA approved drugs available in the DrugBank database have been used in virtual screening with FemA in search of potential repurposed molecules. This approach provides us with 10 drugs that may be used in the treatment of methicillin-resistant staphylococcal mediated diseases. AutoDock 4.2 is used for in silico screening and shows a comparable inhibition constant (Ki) for all 10 FDA-approved drugs towards FemA. Most of these drugs are used in the treatment of various cancers, migraines and leukaemia. Protein-drug interaction analysis shows that the drugs mostly interact with hydrophobic residues of FemA. Moreover, Tyr328 and Lys383 contribute largely to hydrogen bondings during interactions. All interacting amino acids that bind to the drugs are part of the active site cavity of FemA. Supplementary Information The online version contains supplementary material available at 10.1007/s10989-021-10287-9.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
8
|
Distinct Antiretroviral Mechanisms Elicited by a Viral Mutagen. J Mol Biol 2021; 433:167111. [PMID: 34153286 DOI: 10.1016/j.jmb.2021.167111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
5-aza-cytidine (5-aza-C) has been shown to be a potent human immunodeficiency virus type 1 (HIV-1) mutagen that induces G-to-C hypermutagenesis by incorporation of the reduced form (i.e., 5-aza-dC, 5-aza-dCTP). Evidence to date suggests that this lethal mutagenesis is the primary antiretroviral mechanism for 5-aza-C. To investigate the breadth of application of 5-aza-C as an antiretroviral mutagen, we have conducted a comparative, parallel analysis of the antiviral mechanism of 5-aza-C between HIV-1 and gammaretroviruses - i.e., murine leukemia virus (MuLV) and feline leukemia virus (FeLV). Intriguingly, in contrast to the hallmark G-to-C hypermutagenesis observed with HIV-1, MuLV and FeLV did not reveal the presence of a significant increase in mutational burden, particularly that of G-to-C transversion mutations. The effect of 5-aza-dCTP on DNA synthesis revealed that while HIV-1 RT was not inhibited by 5-aza-dCTP even at 100 µM, 5-aza-dCTP was incorporated and significantly inhibited MuLV RT, generating pause sites and reducing the fully extended product. 5-aza-dCTP was found to be incorporated into DNA by MuLV RT or HIV-1 RT, but only acted as a non-obligate chain terminator for MuLV RT. This biochemical data provides an independent line of experimental evidence in support of the conclusion that HIV-1 and MuLV have distinct primary mechanisms of antiretroviral action with 5-aza-C. Taken together, our data provides striking evidence that an antiretroviral mutagen can have strong potency via distinct mechanisms of action among closely related viruses, unlinking antiviral activity from antiviral mechanism of action.
Collapse
|
9
|
Taguchi YH, Turki T. Application of Tensor Decomposition to Gene Expression of Infection of Mouse Hepatitis Virus Can Identify Critical Human Genes and Efffective Drugs for SARS-CoV-2 Infection. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2021; 15:746-758. [PMID: 34812273 PMCID: PMC8545047 DOI: 10.1109/jstsp.2021.3061251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/06/2020] [Accepted: 02/18/2021] [Indexed: 01/19/2023]
Abstract
To better understand the genes with altered expression caused by infection with the novel coronavirus strain SARS-CoV-2 causing COVID-19 infectious disease, a tensor decomposition (TD)-based unsupervised feature extraction (FE) approach was applied to a gene expression profile dataset of the mouse liver and spleen with experimental infection of mouse hepatitis virus, which is regarded as a suitable model of human coronavirus infection. TD-based unsupervised FE selected 134 altered genes, which were enriched in protein-protein interactions with orf1ab, polyprotein, and 3C-like protease that are well known to play critical roles in coronavirus infection, suggesting that these 134 genes can represent the coronavirus infectious process. We then selected compounds targeting the expression of the 134 selected genes based on a public domain database. The identified drug compounds were mainly related to known antiviral drugs, several of which were also included in those previously screened with an in silico method to identify candidate drugs for treating COVID-19.
Collapse
Affiliation(s)
- Y-H. Taguchi
- Department of PhysicsChuo UniversityTokyo112-8551Japan
| | - Turki Turki
- Department of Computer ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
10
|
Batalha PN, Forezi LSM, Lima CGS, Pauli FP, Boechat FCS, de Souza MCBV, Cunha AC, Ferreira VF, da Silva FDC. Drug repurposing for the treatment of COVID-19: Pharmacological aspects and synthetic approaches. Bioorg Chem 2021; 106:104488. [PMID: 33261844 PMCID: PMC7676325 DOI: 10.1016/j.bioorg.2020.104488] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, a new variant of SARS-CoV emerged, the so-called acute severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus causes the new coronavirus disease (COVID-19) and has been plaguing the world owing to its unprecedented spread efficiency, which has resulted in a huge death toll. In this sense, the repositioning of approved drugs is the fastest way to an effective response to a pandemic outbreak of this scale. Considering these facts, in this review we provide a comprehensive and critical discussion on the chemical aspects surrounding the drugs currently being studied as candidates for COVID-19 therapy. We intend to provide the general chemical community with an overview on the synthetic/biosynthetic pathways related to such molecules, as well as their mechanisms of action against the evaluated viruses and some insights on the pharmacological interactions involved in each case. Overall, the review aims to present the chemical aspects of the main bioactive molecules being considered to be repositioned for effective treatment of COVID-19 in all phases, from the mildest to the most severe.
Collapse
Affiliation(s)
- Pedro N Batalha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil.
| | - Luana S M Forezi
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Carolina G S Lima
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Fernanda P Pauli
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Fernanda C S Boechat
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Maria Cecília B V de Souza
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Anna C Cunha
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Tecnologia Farmacêutica, CEP 24241-000 Niterói, RJ, Brazil.
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Departamento de Química Orgânica, Instituto de Química, Campus do Valonguinho, CEP 24020-150 Niterói, RJ, Brazil.
| |
Collapse
|
11
|
Wnuk M, Slipek P, Dziedzic M, Lewinska A. The Roles of Host 5-Methylcytosine RNA Methyltransferases during Viral Infections. Int J Mol Sci 2020; 21:E8176. [PMID: 33142933 PMCID: PMC7663479 DOI: 10.3390/ijms21218176] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic 5-methylcytosine RNA methyltransferases catalyze the transfer of a methyl group to the fifth carbon of a cytosine base in RNA sequences to produce 5-methylcytosine (m5C). m5C RNA methyltransferases play a crucial role in the maintenance of functionality and stability of RNA. Viruses have developed a number of strategies to suppress host innate immunity and ensure efficient transcription and translation for the replication of new virions. One such viral strategy is to use host m5C RNA methyltransferases to modify viral RNA and thus to affect antiviral host responses. Here, we summarize the latest findings concerning the roles of m5C RNA methyltransferases, namely, NOL1/NOP2/SUN domain (NSUN) proteins and DNA methyltransferase 2/tRNA methyltransferase 1 (DNMT2/TRDMT1) during viral infections. Moreover, the use of m5C RNA methyltransferase inhibitors as an antiviral therapy is discussed.
Collapse
Affiliation(s)
- Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland; (P.S.); (M.D.)
| | | | | | - Anna Lewinska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland; (P.S.); (M.D.)
| |
Collapse
|
12
|
Nath J, Paul R, Ghosh SK, Paul J, Singha B, Debnath N. Drug repurposing and relabeling for cancer therapy: Emerging benzimidazole antihelminthics with potent anticancer effects. Life Sci 2020; 258:118189. [DOI: 10.1016/j.lfs.2020.118189] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023]
|
13
|
Low ZY, Farouk IA, Lal SK. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses 2020; 12:E1058. [PMID: 32972027 PMCID: PMC7551028 DOI: 10.3390/v12091058] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/02/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Traditionally, drug discovery utilises a de novo design approach, which requires high cost and many years of drug development before it reaches the market. Novel drug development does not always account for orphan diseases, which have low demand and hence low-profit margins for drug developers. Recently, drug repositioning has gained recognition as an alternative approach that explores new avenues for pre-existing commercially approved or rejected drugs to treat diseases aside from the intended ones. Drug repositioning results in lower overall developmental expenses and risk assessments, as the efficacy and safety of the original drug have already been well accessed and approved by regulatory authorities. The greatest advantage of drug repositioning is that it breathes new life into the novel, rare, orphan, and resistant diseases, such as Cushing's syndrome, HIV infection, and pandemic outbreaks such as COVID-19. Repositioning existing drugs such as Hydroxychloroquine, Remdesivir, Ivermectin and Baricitinib shows good potential for COVID-19 treatment. This can crucially aid in resolving outbreaks in urgent times of need. This review discusses the past success in drug repositioning, the current technological advancement in the field, drug repositioning for personalised medicine and the ongoing research on newly emerging drugs under consideration for the COVID-19 treatment.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (Z.Y.L.); (I.A.F.)
| | - Isra Ahmad Farouk
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (Z.Y.L.); (I.A.F.)
| | - Sunil Kumar Lal
- School of Science, Monash University, Bandar Sunway, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia; (Z.Y.L.); (I.A.F.)
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
14
|
Mattio LM, Catinella G, Pinto A, Dallavalle S. Natural and nature-inspired stilbenoids as antiviral agents. Eur J Med Chem 2020; 202:112541. [PMID: 32652408 PMCID: PMC7335248 DOI: 10.1016/j.ejmech.2020.112541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Viruses continue to be a major threat to human health. In the last century, pandemics occurred and resulted in significant mortality and morbidity. Natural products have been largely screened as source of inspiration for new antiviral agents. Within the huge class of plant secondary metabolites, resveratrol-derived stilbenoids present a wide structural diversity and mediate a great number of biological responses relevant for human health. However, whilst the antiviral activity of resveratrol has been extensively studied, little is known about the efficacy of its monomeric and oligomeric derivatives. The purpose of this review is to provide an overview of the achievements in this field, with particular emphasis on the source, chemical structures and the mechanism of action of resveratrol-derived stilbenoids against the most challenging viruses. The collected results highlight the therapeutic versatility of stilbene-containing compounds and provide a prospective insight into their potential development as antiviral agents.
Collapse
Affiliation(s)
- Luce M Mattio
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Giorgia Catinella
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy.
| |
Collapse
|
15
|
Shin Y, Park CM, Kim HG, Kim DE, Choi MS, Kim JA, Choi BS, Yoon CH. Identification of Aristolactam Derivatives That Act as Inhibitors of Human Immunodeficiency Virus Type 1 Infection and Replication by Targeting Tat-Mediated Viral Transcription. Virol Sin 2020; 36:254-263. [PMID: 32779073 DOI: 10.1007/s12250-020-00274-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/28/2020] [Indexed: 11/26/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), efforts to develop new classes of antiviral agents have been hampered by the emergence of drug resistance. Dibenzo-indole-bearing aristolactams are compounds that have been isolated from various plants species and which show several clinically relevant effects, including anti-inflammatory, antiplatelet, and anti-mycobacterial actions. However, the effect of these compounds on human immunodeficiency virus type 1 (HIV-1) infection has not yet been studied. In this study, we discovered an aristolactam derivative bearing dibenzo[cd,f]indol-4(5H)-one that had a potent anti-HIV-1 effect. A structure-activity relationship (SAR) study using nine synthetic derivatives of aristolactam identified the differing effects of residue substitutions on the inhibition of HIV-1 infection and cell viability. Among the compounds tested, 1,2,8,9-tetramethoxy-5-(2-(piperidin-1-yl)ethyl)-dibenzo[cd,f]indol-4(5H)-one (Compound 2) exhibited the most potent activity by inhibiting HIV-1 infection with a half-maximal inhibitory concentration (IC50) of 1.03 μmol/L and a half-maximal cytotoxic concentration (CC50) of 16.91 μmol/L (selectivity index, 16.45). The inhibitory effect of the compounds on HIV-1 infection was linked to inhibition of the viral replication cycle. Mode-of-action studies showed that the aristolactam derivatives did not affect reverse transcription or integration; instead, they specifically inhibited Tat-mediated viral transcription. Taken together, these findings show that several aristolactam derivatives impaired HIV-1 infection by inhibiting the activity of Tat-mediated viral transcription, and suggest that these derivatives could be antiviral drug candidates.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-gu, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Hong Gi Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Dong-Eun Kim
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-gu, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Min Suk Choi
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jeong-Ah Kim
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-gu, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Byeong-Sun Choi
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-gu, Cheongju-si, Chungbuk, 28159, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Heungdeok-gu, Cheongju-si, Chungbuk, 28159, Republic of Korea.
| |
Collapse
|
16
|
Liu AC, Patel K, Vunikili RD, Johnson KW, Abdu F, Belman SK, Glicksberg BS, Tandale P, Fontanez R, Mathew OK, Kasarskis A, Mukherjee P, Subramanian L, Dudley JT, Shameer K. Sepsis in the era of data-driven medicine: personalizing risks, diagnoses, treatments and prognoses. Brief Bioinform 2020; 21:1182-1195. [PMID: 31190075 PMCID: PMC8179509 DOI: 10.1093/bib/bbz059] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a series of clinical syndromes caused by the immunological response to infection. The clinical evidence for sepsis could typically attribute to bacterial infection or bacterial endotoxins, but infections due to viruses, fungi or parasites could also lead to sepsis. Regardless of the etiology, rapid clinical deterioration, prolonged stay in intensive care units and high risk for mortality correlate with the incidence of sepsis. Despite its prevalence and morbidity, improvement in sepsis outcomes has remained limited. In this comprehensive review, we summarize the current landscape of risk estimation, diagnosis, treatment and prognosis strategies in the setting of sepsis and discuss future challenges. We argue that the advent of modern technologies such as in-depth molecular profiling, biomedical big data and machine intelligence methods will augment the treatment and prevention of sepsis. The volume, variety, veracity and velocity of heterogeneous data generated as part of healthcare delivery and recent advances in biotechnology-driven therapeutics and companion diagnostics may provide a new wave of approaches to identify the most at-risk sepsis patients and reduce the symptom burden in patients within shorter turnaround times. Developing novel therapies by leveraging modern drug discovery strategies including computational drug repositioning, cell and gene-therapy, clustered regularly interspaced short palindromic repeats -based genetic editing systems, immunotherapy, microbiome restoration, nanomaterial-based therapy and phage therapy may help to develop treatments to target sepsis. We also provide empirical evidence for potential new sepsis targets including FER and STARD3NL. Implementing data-driven methods that use real-time collection and analysis of clinical variables to trace, track and treat sepsis-related adverse outcomes will be key. Understanding the root and route of sepsis and its comorbid conditions that complicate treatment outcomes and lead to organ dysfunction may help to facilitate identification of most at-risk patients and prevent further deterioration. To conclude, leveraging the advances in precision medicine, biomedical data science and translational bioinformatics approaches may help to develop better strategies to diagnose and treat sepsis in the next decade.
Collapse
Affiliation(s)
- Andrew C Liu
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Donald and Barbara School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, USA
| | - Krishna Patel
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Donald and Barbara School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, NY, USA
| | - Ramya Dhatri Vunikili
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Kipp W Johnson
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
| | - Fahad Abdu
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Stonybrook University, 100 Nicolls Rd, Stony Brook, NY, USA
| | - Shivani Kamath Belman
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Pratyush Tandale
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- School of Biotechnology and Bioinformatics, D Y Patil University, Navi Mumbai, India
| | - Roberto Fontanez
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
| | | | - Andrew Kasarskis
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
| | | | | | - Joel T Dudley
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
| | - Khader Shameer
- Department of Information Services, Northwell Health, New Hyde Park, NY, USA
- Center for Research Informatics and Innovation, Northwell Health, New Hyde Park, NY, USA
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, NY, USA
| |
Collapse
|
17
|
Corona A, Ballana E, Distinto S, Rogolino D, Del Vecchio C, Carcelli M, Badia R, Riveira-Muñoz E, Esposito F, Parolin C, Esté JA, Grandi N, Tramontano E. Targeting HIV-1 RNase H: N'-(2-Hydroxy-benzylidene)-3,4,5-Trihydroxybenzoylhydrazone as Selective Inhibitor Active against NNRTIs-Resistant Variants. Viruses 2020; 12:v12070729. [PMID: 32640577 PMCID: PMC7412550 DOI: 10.3390/v12070729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
HIV-1 infection requires life-long treatment and with 2.1 million new infections/year, faces the challenge of an increased rate of transmitted drug-resistant mutations. Therefore, a constant and timely effort is needed to identify new HIV-1 inhibitors active against drug-resistant variants. The ribonuclease H (RNase H) activity of HIV-1 reverse transcriptase (RT) is a very promising target, but to date, still lacks an efficient inhibitor. Here, we characterize the mode of action of N’-(2-hydroxy-benzylidene)-3,4,5-trihydroxybenzoylhydrazone (compound 13), an N-acylhydrazone derivative that inhibited viral replication (EC50 = 10 µM), while retaining full potency against the NNRTI-resistant double mutant K103N-Y181C virus. Time-of-addition and biochemical assays showed that compound 13 targeted the reverse-transcription step in cell-based assays and inhibited the RT-associated RNase H function, being >20-fold less potent against the RT polymerase activity. Docking calculations revealed that compound 13 binds within the RNase H domain in a position different from other selective RNase H inhibitors; site-directed mutagenesis studies revealed interactions with conserved amino acid within the RNase H domain, suggesting that compound 13 can be taken as starting point to generate a new series of more potent RNase H selective inhibitors active against circulating drug-resistant variants.
Collapse
Affiliation(s)
- Angela Corona
- Department of Life and Environmental Sciences University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.D.); (F.E.); (N.G.); (E.T.)
- Correspondence: ; Tel.: +39-070-6754530
| | - Ester Ballana
- AIDS Research Institute—IrsiCaixa, 08916 Badalona, Spain; (E.B.); (R.B.); (E.R.-M.); (J.A.E.)
| | - Simona Distinto
- Department of Life and Environmental Sciences University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.D.); (F.E.); (N.G.); (E.T.)
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (D.R.); (M.C.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (C.P.)
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (D.R.); (M.C.)
| | - Roger Badia
- AIDS Research Institute—IrsiCaixa, 08916 Badalona, Spain; (E.B.); (R.B.); (E.R.-M.); (J.A.E.)
| | - Eva Riveira-Muñoz
- AIDS Research Institute—IrsiCaixa, 08916 Badalona, Spain; (E.B.); (R.B.); (E.R.-M.); (J.A.E.)
| | - Francesca Esposito
- Department of Life and Environmental Sciences University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.D.); (F.E.); (N.G.); (E.T.)
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (C.P.)
| | - José A. Esté
- AIDS Research Institute—IrsiCaixa, 08916 Badalona, Spain; (E.B.); (R.B.); (E.R.-M.); (J.A.E.)
- CienciaTraducida, 08391 Barcelona, Spain
| | - Nicole Grandi
- Department of Life and Environmental Sciences University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.D.); (F.E.); (N.G.); (E.T.)
| | - Enzo Tramontano
- Department of Life and Environmental Sciences University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (S.D.); (F.E.); (N.G.); (E.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
18
|
Chan YH, Teo TH, Torres-Ruesta A, Hartimath SV, Chee RSL, Khanapur S, Yong FF, Ramasamy B, Cheng P, Rajarethinam R, Robins EG, Goggi JL, Lum FM, Carissimo G, Rénia L, Ng LFP. Longitudinal [18F]FB-IL-2 PET Imaging to Assess the Immunopathogenicity of O'nyong-nyong Virus Infection. Front Immunol 2020; 11:894. [PMID: 32477364 PMCID: PMC7235449 DOI: 10.3389/fimmu.2020.00894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
O'nyong-nyong virus (ONNV) is an arthritogenic alphavirus that caused two large epidemics in 1959 and 1996, affecting millions of people in Africa. More recently, sero-surveillance of healthy blood donors conducted in 2019 revealed high rates of unreported ONNV infection in Uganda. Due to similar clinical symptoms with other endemic mosquito-borne pathogens in the region, including chikungunya virus, dengue virus and malaria, ONNV infections are often un- or misdiagnosed. Elucidating the immunopathogenic factors of this re-emerging arbovirus is critical with the expanding geographic distribution of competent vectors. This study reports the establishment of an immune competent C57BL6/J mouse model to mechanistically characterize ONNV infection and assess potential treatment efficacy. This mouse model successfully recapitulated arthralgia and viremia profiles seen in ONNV patients. Furthermore, longitudinal in-vivo PET imaging with [18F]FB-IL-2 (CD25+CD4+ binding probe) and histopathological assessment in this model demonstrated the pathogenic role of CD4+ T cells in driving joint pathology. Concordantly, in vivo CD4+ T cell depletion, or suppression with fingolimod, an FDA-approved immunomodulating drug, abrogated CD4+ T cell-mediated disease. This study demonstrates the importance of this immune competent ONNV model for future studies on factors influencing disease pathogenesis, which could shape the discovery of novel therapeutic strategies for arthritogenic alphaviruses.
Collapse
Affiliation(s)
- Yi-Hao Chan
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore
| | - Anthony Torres-Ruesta
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siddesh V Hartimath
- Singapore Bioimaging Consortium, ASTAR, Helios, Biopolis, Singapore, Singapore
| | - Rhonda Sin-Ling Chee
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore
| | | | - Fui Fong Yong
- Singapore Bioimaging Consortium, ASTAR, Helios, Biopolis, Singapore, Singapore
| | | | - Peter Cheng
- Singapore Bioimaging Consortium, ASTAR, Helios, Biopolis, Singapore, Singapore
| | - Ravisankar Rajarethinam
- Advanced Molecular Pathology Laboratory, Institute of Molecular and Cell Biology, ASTAR, Proteos, Biopolis, Singapore, Singapore
| | - Edward G Robins
- Singapore Bioimaging Consortium, ASTAR, Helios, Biopolis, Singapore, Singapore.,Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Julian L Goggi
- Singapore Bioimaging Consortium, ASTAR, Helios, Biopolis, Singapore, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore
| | - Guillaume Carissimo
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Immunos, Biopolis, Singapore, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
19
|
Medina-Moreno S, Zapata JC, Cottrell ML, Le NM, Tao S, Bryant J, Sausville E, Schinazi RF, Kashuba AD, Redfield RR, Heredia A. Disparate effects of cytotoxic chemotherapy on the antiviral activity of antiretroviral therapy: implications for treatments of HIV-infected cancer patients. Antivir Ther 2020; 24:177-186. [PMID: 30574873 DOI: 10.3851/imp3285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer is a leading cause of death in HIV-infected patients in the era of combination antiretroviral therapy (cART). Yet, there are no specific guidelines for the combined use of cART and chemotherapy in HIV-infected cancer patients. The cellular enzyme thymidylate synthase (TS) catalyses the conversion of dUMP to TMP, which is converted to TDP and ultimately to TTP, a building block in DNA synthesis. TS inhibitors are recommended in some cancers, particularly non-small cell lung cancer (NSCLC). Because TS inhibitors modulate intracellular concentrations of endogenous 2'-deoxynucleotides, we hypothesized that TS inhibitors could impact the anti-HIV activity of nucleoside analogue reverse transcriptase inhibitors (NRTIs). METHODS We evaluated gemcitabine and pemetrexed, two approved TS inhibitors, on the anti-HIV activities of NRTIs in infectivity assays using peripheral blood mononuclear cells (PBMCs) and in humanized mice. RESULTS Gemcitabine enhanced the anti-HIV activities of tenofovir, abacavir and emtricitabine (FTC) in PBMCs. In contrast, pemetrexed had no effect on tenofovir, enhanced abacavir and, unexpectedly, decreased FTC and lamivudine (3TC) activities. Pemetrexed inhibitory effects on FTC and 3TC may be due to lower concentrations of active metabolites (FTCtp and 3TCtp) relative to their competing endogenous nucleotide (dCTP), as shown by decreases in FTCtp/dCTP ratios. Gemcitabine enhanced tenofovir while pemetrexed abrogated FTC antiviral activity in humanized mice. CONCLUSIONS Chemotherapy with TS inhibitors can have opposing effects on cART, potentially impacting control of HIV and thereby development of viral resistance and size of the reservoir in HIV-infected cancer patients. Combinations of cART and chemotherapy should be carefully selected.
Collapse
Affiliation(s)
- Sandra Medina-Moreno
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Juan C Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mackenzie L Cottrell
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Nhut M Le
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sijia Tao
- Department of Pediatrics, Center for AIDS Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward Sausville
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raymond F Schinazi
- Department of Pediatrics, Center for AIDS Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Angela Dm Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA
| | - Robert R Redfield
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
20
|
Shin Y, Kim HG, Park CM, Choi MS, Kim DE, Choi BS, Kim K, Yoon CH. Identification of novel compounds against Tat-mediated human immunodeficiency virus-1 transcription by high-throughput functional screening assay. Biochem Biophys Res Commun 2019; 523:368-374. [PMID: 31866007 DOI: 10.1016/j.bbrc.2019.12.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Trans-activator (Tat)-mediated human immunodeficiency virus type 1 (HIV-1) transcription is essential for the replication of HIV-1 and is considered a potent therapeutic target for HIV-1 inhibition. In this study, the Library of Pharmacologically Active Compounds (LOPAC1280) was screened using our dual-reporter screening system for repositioning as Tat-inhibitory compounds. Consequently, two compounds were found to be potent, with low cytotoxicity. Of these two compounds, Roscovitine (CYC202) is already known to be a Tat inhibitor, while gemcitabine has been newly identified as an inhibitor of Tat-mediated transcription linked to viral production and replication. In an additional screening using the ribonucleoside analogues of gemcitabine, two analogues (2'-C-methylcytidine and 3-deazauridine) showed a specific Tat-inhibitory effect linked to their anti-HIV-1 activity. Interestingly, these compounds did not affect Tat protein directly, while the mechanism underlying their inhibition of Tat-mediated transcription was linked to pyrimidine biosynthesis, rather than to alteration of the dNTP pool, influenced by the inhibition of ribonucleotide reductase. Taken together, the proposed functional screening system is a useful tool for the identification of inhibitors of Tat-mediated HIV-1 transcription from among a large number of compounds, and the inhibitory effect of HIV-1 transcription by gemcitabine and its analogues may suggest a strategy for developing a new class of therapeutic anti-HIV drugs.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Hong Gi Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Min Suk Choi
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Dong-Eun Kim
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Byeong-Sun Choi
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Kisoon Kim
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Viral Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Chungbuk, Republic of Korea.
| |
Collapse
|
21
|
Pastuch-Gawołek G, Gillner D, Król E, Walczak K, Wandzik I. Selected nucleos(t)ide-based prescribed drugs and their multi-target activity. Eur J Pharmacol 2019; 865:172747. [PMID: 31634460 PMCID: PMC7173238 DOI: 10.1016/j.ejphar.2019.172747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Nucleos(t)ide analogues play pivotal roles as antiviral, cytotoxic or immunosuppressive agents. Here, we review recent reports of nucleoside analogues that exhibit broad-spectrum activity towards multiple life-threatening RNA and DNA viruses. We also present a discussion about nucleoside antimetabolites-approved antineoplastic agents-that have recently been shown to have antiviral and/or antibacterial activity. The approved drugs and drug combinations, as well as recently identified candidates for investigation and/or experimentation, are discussed. Several examples of repurposed drugs that have already been approved for use are presented. This strategy can be crucial for the first-line treatment of acute infections or coinfections and for the management of drug-resistant strains.
Collapse
Affiliation(s)
- Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Danuta Gillner
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Ewelina Król
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Krzysztof Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland.
| |
Collapse
|
22
|
McDaniel YZ, Patterson SE, Mansky LM. Distinct dual antiviral mechanism that enhances hepatitis B virus mutagenesis and reduces viral DNA synthesis. Antiviral Res 2019; 170:104540. [PMID: 31247245 PMCID: PMC8191393 DOI: 10.1016/j.antiviral.2019.104540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Reverse transcriptase (RT) is an essential enzyme for the replication of retroviruses and hepadnaviruses. Current therapies do not eliminate the intracellular viral replication intermediate termed covalently closed circular (ccc) DNA, which has enhanced interest in hepatitis B virus (HBV) reverse transcription and cccDNA formation. The HBV cccDNA is generated as a plasmid-like episome in the host cell nucleus from the protein-linked relaxed circular (rc) DNA genome in incoming virions during HBV replication. The creation of the cccDNA via conversion from rcDNA remains not fully understood. Here, we sought to investigate whether viral mutagens can effect HBV replication. In particular, we investigated whether nucleoside analogs that act as viral mutagens with retroviruses could impact hepadnaviral DNA synthesis. We observed that a viral mutagen (e.g., 5-aza-2'-deoxycytidine, 5-aza-dC or 5-azacytidine, 5-aza-C) severely diminished the ability of a HBV vector to express a reporter gene following virus transfer and infection of target cells. As predicted, the treatment of 5-aza-dC or 5-aza-C elevated the HBV rcDNA mutation frequency, primarily by increasing the frequency of G-to-C transversion mutations. A reduction in rcDNA synthesis was also observed. Intriguingly, the cccDNA nick/gap region transcription was diminished by 5-aza-dC, but did not enhance viral mutagenesis. Taken together, our results demonstrate that viral mutagens can impact HBV reverse transcription, and propose a model in which viral mutagens can induce mutagenesis during rcDNA formation and diminish viral DNA synthesis during both rcDNA formation and the conversion of rcDNA to cccDNA.
Collapse
Affiliation(s)
- Yumeng Z McDaniel
- Veterinary Medicine Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Steven E Patterson
- Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Center for Drug Design, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Veterinary Medicine Graduate Program, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Institute for Molecular Virology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Division of Basic Sciences, University of Minnesota School of Dentistry, Minneapolis, MN, 55455, USA; Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Department of Microbiology & Immunology, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA; Center for Drug Design, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA.
| |
Collapse
|
23
|
Hennessy C, O'Connell S, Egan LJ, McKernan DP. Inhibition of anti-viral responses in intestinal epithelial cells by epigenetic modifying drugs is mediated by a reduction in viral pattern recognition receptor expression and activity. Immunopharmacol Immunotoxicol 2019; 41:527-537. [PMID: 31505962 DOI: 10.1080/08923973.2019.1661430] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022]
Abstract
Background: Pattern recognition receptors form an essential part of the host defenses against pathogens, in particular in the intestinal epithelium. However, despite their importance relatively little is understood about the regulation of their expression. Increasing evidence suggesting that epigenetic mechanisms such as DNA methylation and histone acetylation have substantial effects on gene expression and regulation. Epigenetic modifying drugs are now used to treat certain cancers but not a lot is known about their effects on the innate immune system. Thus, we set out to examine the role of such drugs in the expression and function of Toll-like receptors. Methods: Using the HCT116 epithelial cell line, we determined the effects of genetic knockout of the DNA methyltransferases enzymes (DNMTs), as well as pharmacological inhibition of the DNMTs and histone deacetylase complexes (HDACs) on TLR responses to their ligands. Results: Our initial results showed that anti-viral responses were affected by changes in the epigenome, with TLR3 responses showing the most dramatic differences. We determined that inhibition of methylation and acetylation inhibited poly I:C induced increases in signaling protein phosphorylation, as well as increases in cytokine mRNA expression and release. We also observed that treatment with epigenetic modifying drugs were leading to large increases in IRF8 expression, a protein that is a known negative regulator of TLR3. When we overexpressed IRF8 in our WT cells we noticed inhibition of poly I:C responses. Conclusion: This research highlighted the potential immunoregulatory role of epigenetic modifying drugs specifically in response to viral stimulation.
Collapse
Affiliation(s)
- Conor Hennessy
- Pharmacology & Therapeutics, School of Medicine, National University of Ireland , Galway , Ireland
| | - Sarah O'Connell
- Pharmacology & Therapeutics, School of Medicine, National University of Ireland , Galway , Ireland
| | - Laurence J Egan
- Pharmacology & Therapeutics, School of Medicine, National University of Ireland , Galway , Ireland
| | - Declan P McKernan
- Pharmacology & Therapeutics, School of Medicine, National University of Ireland , Galway , Ireland
| |
Collapse
|
24
|
Koh C, Dubey P, Han MAT, Walter PJ, Garraffo HM, Surana P, Southall NT, Borochov N, Uprichard SL, Cotler SJ, Etzion O, Heller T, Dahari H, Liang TJ. A randomized, proof-of-concept clinical trial on repurposing chlorcyclizine for the treatment of chronic hepatitis C. Antiviral Res 2019; 163:149-155. [PMID: 30711416 DOI: 10.1016/j.antiviral.2019.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Chlorcyclizine HCl (CCZ) is a piperazine-class antihistamine with anti-hepatitis C virus (HCV) activity in vitro and in vivo. In a first-in-humans study for HCV, we evaluated the antiviral effects and safety of CCZ±ribavirin (RBV), characterized pharmacokinetic (PK) and viral kinetic (VK) patterns, and provide insights into CCZs mode of action against HCV. METHODS Chronic HCV patients were randomized to CCZ (75 mg twice daily) or CCZ+weight-based RBV (1000/1200 mg daily) for 28 days. Therapy started with a loading dose of CCZ 150 mg ± RBV. Serial assessments of safety, liver tests, PK and VK markers were obtained. RESULTS 24 HCV patients were treated; 54% male, median age 56 years, median HCV RNA 6.30 log IU/ml, without baseline differences between groups. At the end of therapy, subjects treated with CCZ monotherapy did not show any significant or sustained reduction in viremia (p = 0.69), whereas 7/12 (58%) subjects treated with CCZ+RBV had a >3-fold decline in HCV RNA. Subjects who responded demonstrated monophasic (n = 2), biphasic (n = 2) and triphasic (n = 3) VK responses. Contrary to historical RBV monotherapy response, CCZ+RBV demonstrated a continued viral decline suggesting a possible synergistic effect of CCZ+RBV. Mathematical modeling predicts a median effectiveness of CCZ+RBV in blocking viral production (ε) of 59% (Interquartile range, IQR: 50%) and blocking infection (η) of 78% (IQR: 23%). Adverse events (AEs) were mild-moderate without treatment discontinuations for AEs. CONCLUSIONS In this human pilot study, CCZ demonstrated some anti-HCV effects, mostly in combination with RBV. More potent CCZ derivatives with optimal PK features may be more suitable for future therapeutic development. ClinicalTrials.gov number: NCT02118012.
Collapse
Affiliation(s)
- Christopher Koh
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Preeti Dubey
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Loyola University Medical Center, Maywood, IL, USA
| | - Ma Ai Thanda Han
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Walter
- Clinical Mass Spectrometry Core, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - H Martin Garraffo
- Clinical Mass Spectrometry Core, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pallavi Surana
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Noel T Southall
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Nathaniel Borochov
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Loyola University Medical Center, Maywood, IL, USA
| | - Susan L Uprichard
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Loyola University Medical Center, Maywood, IL, USA
| | - Scott J Cotler
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Loyola University Medical Center, Maywood, IL, USA
| | - Ohad Etzion
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theo Heller
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Harel Dahari
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Loyola University Medical Center, Maywood, IL, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Malakar S, Sreelatha L, Dechtawewat T, Noisakran S, Yenchitsomanus PT, Chu JJH, Limjindaporn T. Drug repurposing of quinine as antiviral against dengue virus infection. Virus Res 2018; 255:171-178. [PMID: 30055216 DOI: 10.1016/j.virusres.2018.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/03/2018] [Accepted: 07/24/2018] [Indexed: 01/01/2023]
Abstract
Dengue virus (DENV) disease outbreaks continue to develop across the globe with significant associated mortality and economic burden, yet no treatment has been approved to combat this virus. In an attempt to identify novel drug candidates as therapeutics for DENV infection, we evaluated four US Food and Drug Administration (FDA) approved drugs including aminolevullic acid, azelaic acid, mitoxantrone hydrochloride, and quinine sulfate, and tested their ability to inhibit DENV replication using focus-forming unit assay to quantify virus production. Of the four investigated compounds, quinine was found to have the most pronounced anti-DENV activity. Quinine inhibited DENV production of DENV by about 80% compared to untreated controls, while the other three drugs decreased virus production by only about 50%. Moreover, quinine inhibited DENV production of all four serotypes of DENV. Reduction in virus production was documented in three different cell lines of human origin. Quinine significantly inhibited DENV replication by reducing DENV RNA and viral protein synthesis in a dose-dependent manner. In addition, quinine ameliorated expression of genes related to innate immune response. These findings suggest the efficacy of quinine for stimulating antiviral genes to reduce DENV replication. The antiviral activity of quinine observed in this study may have applicability in the development of new drug therapies against DENV.
Collapse
Affiliation(s)
- Shilu Malakar
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Liji Sreelatha
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Graduate Program in Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyaporn Dechtawewat
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sansanee Noisakran
- Medical Biotechnology Unit, National Cancer Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Thawornchai Limjindaporn
- Siriraj Center of Research Excellence for Molecular Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
26
|
Pezo V, Hassan C, Louis D, Sargueil B, Herdewijn P, Marlière P. Metabolic Recruitment and Directed Evolution of Nucleoside Triphosphate Uptake in Escherichia coli. ACS Synth Biol 2018; 7:1565-1572. [PMID: 29746092 DOI: 10.1021/acssynbio.8b00048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design and elaboration of a selection protocol for importing a canonical substrate of DNA polymerase, thymidine triphosphate (dTTP) in Escherichia coli. Bacterial strains whose growth depend on dTTP uptake, through the action of an algal plastid transporter expressed from a synthetic gene inserted in the chromosome, were constructed and shown to withstand the simultaneous loss of thymidylate synthase and thymidine kinase. Such thyA tdk dual deletant strains provide an experimental model of tight nutritional containment for preventing dissemination of microbial GMOs. Our strains transported the four canonical dNTPs, in the following order of preference: dCTP > dATP ≥ dGTP > dTTP. Prolonged cultivation under limitation of exogenous dTTP led to the enhancement of dNTP transport by adaptive evolution. We investigated the uptake of dCTP analogues with altered sugar or nucleobase moieties, which were found to cause a loss of cell viability and an increase of mutant frequency, respectively. E. coli strains equipped with nucleoside triphosphate transporters should be instrumental for evolving organisms whose DNA genome is morphed chemically by fully substituting its canonical nucleotide components.
Collapse
Affiliation(s)
- Valérie Pezo
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
| | | | | | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l’Observatoire, 75006 Paris, France
| | - Piet Herdewijn
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
| | - Philippe Marlière
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
- TESSSI, 81 rue Réaumur, 75002 Paris, France
| |
Collapse
|
27
|
Shin JS, Jung E, Kim M, Baric RS, Go YY. Saracatinib Inhibits Middle East Respiratory Syndrome-Coronavirus Replication In Vitro. Viruses 2018; 10:v10060283. [PMID: 29795047 PMCID: PMC6024778 DOI: 10.3390/v10060283] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022] Open
Abstract
The Middle East respiratory syndrome-coronavirus (MERS-CoV), first identified in Saudi Arabia, is an emerging zoonotic pathogen that causes severe acute respiratory illness in humans with a high fatality rate. Since its emergence, MERS-CoV continues to spread to countries outside of the Arabian Peninsula and gives rise to sporadic human infections following the entry of infected individuals to other countries, which can precipitate outbreaks similar to the one that occurred in South Korea in 2015. Current therapeutics against MERS-CoV infection have primarily been adapted from previous drugs used for the treatment of severe acute respiratory syndrome. In search of new potential drug candidates, we screened a library composed of 2334 clinically approved drugs and pharmacologically active compounds. The drug saracatinib, a potent inhibitor of Src-family of tyrosine kinases (SFK), was identified as an inhibitor of MERS-CoV replication in vitro. Our results suggest that saracatinib potently inhibits MERS-CoV at the early stages of the viral life cycle in Huh-7 cells, possibly through the suppression of SFK signaling pathways. Furthermore, saracatinib exhibited a synergistic effect with gemcitabine, an anticancer drug with antiviral activity against several RNA viruses. These data indicate that saracatinib alone or in combination with gemcitabine can provide a new therapeutic option for the treatment of MERS-CoV infection.
Collapse
Affiliation(s)
- Jin Soo Shin
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Eunhye Jung
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
| | - Meehyein Kim
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Korea.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Yun Young Go
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Korea.
| |
Collapse
|
28
|
Gemcitabine and Nucleos(t)ide Synthesis Inhibitors Are Broad-Spectrum Antiviral Drugs that Activate Innate Immunity. Viruses 2018; 10:v10040211. [PMID: 29677162 PMCID: PMC5923505 DOI: 10.3390/v10040211] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/26/2022] Open
Abstract
Nucleoside analogs have been frequently identified as antiviral agents. In recent years, gemcitabine, a cytidine analog in clinical use for the treatment of many solid tumors, was also shown to have antiviral activity against a broad range of viruses. Nucleoside analogs generally interfere with cellular nucleos(t)ide synthesis pathways, resulting in the depletion or imbalance of (d)NTP pools. Intriguingly, a few recent reports have shown that some nucleoside analogs, including gemcitabine, activated innate immunity, inducing the expression of interferon-stimulated genes, through nucleos(t)ide synthesis inhibition. The precise crosstalk between these two independent processes remains to be determined. Nonetheless, we summarize the current knowledge of nucleos(t)ide synthesis inhibition-related innate immunity and propose it as a newly emerging antiviral mechanism of nucleoside analogs.
Collapse
|
29
|
Díaz-Martínez L, Brichette-Mieg I, Pineño-Ramos A, Domínguez-Huerta G, Grande-Pérez A. Lethal mutagenesis of an RNA plant virus via lethal defection. Sci Rep 2018; 8:1444. [PMID: 29362502 PMCID: PMC5780445 DOI: 10.1038/s41598-018-19829-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Lethal mutagenesis is an antiviral therapy that relies on increasing the viral mutation rate with mutagenic nucleoside or base analogues. Currently, the molecular mechanisms that lead to virus extinction through enhanced mutagenesis are not fully understood. Increasing experimental evidence supports the lethal defection model of lethal mutagenesis of RNA viruses, where replication-competent-defectors drive infective virus towards extinction. Here, we address lethal mutagenesis in vivo using 5-fluorouracil (5-FU) during the establishment of tobacco mosaic virus (TMV) systemic infections in N. tabacum. The results show that 5-FU decreased the infectivity of TMV without affecting its viral load. Analysis of molecular clones spanning two genomic regions showed an increase of the FU-related base transitions A → G and U → C. Although the mutation frequency or the number of mutations per molecule did not increase, the complexity of the mutant spectra and the distribution of the mutations were altered. Overall, our results suggest that 5-FU antiviral effect on TMV is associated with the perturbation of the mutation-selection balance in the genomic region of the RNA-dependent RNA polymerase (RdRp). Our work supports the lethal defection model for lethal mutagenesis in vivo in a plant RNA virus and opens the way to study lethal mutagens in plant-virus systems.
Collapse
Affiliation(s)
- Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Isabel Brichette-Mieg
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Axier Pineño-Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
| | - Guillermo Domínguez-Huerta
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental "La Mayora", 29750, Algarrobo-Costa, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, 29071, Málaga, Spain.
| |
Collapse
|
30
|
Tian X, Xin M, Luo J, Jiang Z. Using the Ranking-Based KNN Approach for Drug Repositioning Based on Multiple Information. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42291-6_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
31
|
Rawson JMO, Roth ME, Xie J, Daly MB, Clouser CL, Landman SR, Reilly CS, Bonnac L, Kim B, Patterson SE, Mansky LM. Synergistic reduction of HIV-1 infectivity by 5-azacytidine and inhibitors of ribonucleotide reductase. Bioorg Med Chem 2016; 24:2410-2422. [PMID: 27117260 DOI: 10.1016/j.bmc.2016.03.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/18/2016] [Accepted: 03/27/2016] [Indexed: 11/29/2022]
Abstract
Although many compounds have been approved for the treatment of human immunodeficiency type-1 (HIV-1) infection, additional anti-HIV-1 drugs (particularly those belonging to new drug classes) are still needed due to issues such as long-term drug-associated toxicities, transmission of drug-resistant variants, and development of multi-class resistance. Lethal mutagenesis represents an antiviral strategy that has not yet been clinically translated for HIV-1 and is based on the use of small molecules to induce excessive levels of deleterious mutations within the viral genome. Here, we show that 5-azacytidine (5-aza-C), a ribonucleoside analog that induces the lethal mutagenesis of HIV-1, and multiple inhibitors of the enzyme ribonucleotide reductase (RNR) interact in a synergistic fashion to more effectively reduce the infectivity of HIV-1. In these drug combinations, RNR inhibitors failed to significantly inhibit the conversion of 5-aza-C to 5-aza-2'-deoxycytidine, suggesting that 5-aza-C acts primarily as a deoxyribonucleoside even in the presence of RNR inhibitors. The mechanism of antiviral synergy was further investigated for the combination of 5-aza-C and one specific RNR inhibitor, resveratrol, as this combination improved the selectivity index of 5-aza-C to the greatest extent. Antiviral synergy was found to be primarily due to the reduced accumulation of reverse transcription products rather than the enhancement of viral mutagenesis. To our knowledge, these observations represent the first demonstration of antiretroviral synergy between a ribonucleoside analog and RNR inhibitors, and encourage the development of additional ribonucleoside analogs and RNR inhibitors with improved antiretroviral activity.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | - Megan E Roth
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Michele B Daly
- Emory Center for AIDS Research, Emory University, 1518 Clifton Road NE, Suite 8050, Atlanta, GA 30322, USA
| | - Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota, 4-192 Keller Hall, 200 Union Street SE, Minneapolis, MN 55455, USA
| | - Cavan S Reilly
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Division of Biostatistics, School of Public Health, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Laurent Bonnac
- Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Baek Kim
- Emory Center for AIDS Research, Emory University, 1518 Clifton Road NE, Suite 8050, Atlanta, GA 30322, USA
| | - Steven E Patterson
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, 515 Delaware Street SE, Minneapolis, MN 55455, USA; Department of Microbiology and Immunology, Medical School, University of Minnesota, 689 23rd Avenue SE, Minneapolis, MN 55455, USA; Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA; Center for Drug Design, Academic Health Center, University of Minnesota, 516 Delaware Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
Argaw T, Colon-Moran W, Wilson C. Susceptibility of porcine endogenous retrovirus to anti-retroviral inhibitors. Xenotransplantation 2016; 23:151-8. [PMID: 27028725 DOI: 10.1111/xen.12230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Porcine endogenous retrovirus (PERV) is an endogenous retrovirus that poses a risk of iatrogenic transmission in the context of pig-to-human xenotransplantation. The lack of a means to control PERV infection in the context of pig-to-human xenotransplantation is a major concern in the field. In this study, we set out to evaluate the ability of currently licensed anti-HIV drugs, and other types of anti-retroviral compounds, to inhibit PERV infection in vitro. METHODS We used target cells stably expressing one of the known PERV viral receptors, an infectious molecular clone, PERV-A 14/220, and at least one drug from each class of anti-retroviral inhibitors as well as off-label drugs shown to have anti-viral activities. The susceptibility of PERV-A 14/220 LacZ to the anti-retroviral drugs was determined from infected cells by histochemical staining. RESULTS We extend the results of previous studies by showing that, in addition to raltegravir, dolutegravir is found to have a potent inhibitory activity against PERV replication (IC50 8.634 ±0.336 and IC50 3.06 ± 0.844 nM, respectively). The anti-HIV drug zidovudine (AZT) showed considerable anti-PERV activity with IC50 of 1.923 ±0.691 μM as well. CONCLUSIONS The study results indicate that some of the licensed anti-retroviral drugs may be useful for controlling PERV infection. However, the efficacy at nanomolar concentrations put forward integrase inhibitors as a drug that has the potential to be useful in the event that xenotransplantation recipients have evidence of PERV transmission and replication.
Collapse
Affiliation(s)
- Takele Argaw
- Gene Transfer and Immunogenicity Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Winston Colon-Moran
- Gene Transfer and Immunogenicity Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| | - Carolyn Wilson
- Gene Transfer and Immunogenicity Branch, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration (FDA), Silver Spring, MD, USA
| |
Collapse
|
33
|
5-Azacytidine Enhances the Mutagenesis of HIV-1 by Reduction to 5-Aza-2'-Deoxycytidine. Antimicrob Agents Chemother 2016; 60:2318-25. [PMID: 26833151 DOI: 10.1128/aac.03084-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
5-Azacytidine (5-aza-C) is a ribonucleoside analog that induces the lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1) by causing predominantly G-to-C transversions during reverse transcription. 5-Aza-C could potentially act primarily as a ribonucleotide (5-aza-CTP) or as a deoxyribonucleotide (5-aza-2'-deoxycytidine triphosphate [5-aza-dCTP]) during reverse transcription. In order to determine the primary form of 5-aza-C that is active against HIV-1, Illumina sequencing was performed using proviral DNA from cells treated with 5-aza-C or 5-aza-dC. 5-Aza-C and 5-aza-dC were found to induce highly similar patterns of mutation in HIV-1 in terms of the types of mutations observed, the magnitudes of effects, and the distributions of mutations at individual sequence positions. Further, 5-aza-dCTP was detected by liquid chromatography-tandem mass spectrometry in cells treated with 5-aza-C, demonstrating that 5-aza-C was a substrate for ribonucleotide reductase. Notably, levels of 5-aza-dCTP were similar in cells treated with equivalent effective concentrations of 5-aza-C or 5-aza-dC. Lastly, HIV-1 reverse transcriptase was found to incorporate 5-aza-CTPin vitroat least 10,000-fold less efficiently than 5-aza-dCTP. Taken together, these data support the model that 5-aza-C enhances the mutagenesis of HIV-1 primarily after reduction to 5-aza-dC, which can then be incorporated during reverse transcription and lead to G-to-C hypermutation. These findings may have important implications for the design of new ribonucleoside analogs directed against retroviruses.
Collapse
|
34
|
Daly MB, Roth ME, Bonnac L, Maldonado JO, Xie J, Clouser CL, Patterson SE, Kim B, Mansky LM. Dual anti-HIV mechanism of clofarabine. Retrovirology 2016; 13:20. [PMID: 27009333 PMCID: PMC4806454 DOI: 10.1186/s12977-016-0254-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND HIV-1 replication kinetics inherently depends on the availability of cellular dNTPs for viral DNA synthesis. In activated CD4(+) T cells and other rapidly dividing cells, the concentrations of dNTPs are high and HIV-1 reverse transcription occurs in an efficient manner. In contrast, nondividing cells such as macrophages have lower dNTP pools, which restricts efficient reverse transcription. Clofarabine is an FDA approved ribonucleotide reductase inhibitor, which has shown potent antiretroviral activity in transformed cell lines. Here, we explore the potency, toxicity and mechanism of action of clofarabine in the human primary HIV-1 target cells: activated CD4(+) T cells and macrophages. RESULTS Clofarabine is a potent HIV-1 inhibitor in both activated CD4(+) T cells and macrophages. Due to its minimal toxicity in macrophages, clofarabine displays a selectivity index over 300 in this nondividing cell type. The anti-HIV-1 activity of clofarabine correlated with a significant decrease in both cellular dNTP levels and viral DNA synthesis. Additionally, we observed that clofarabine triphosphate was directly incorporated into DNA by HIV-1 reverse transcriptase and blocked processive DNA synthesis, particularly at the low dNTP levels found in macrophages. CONCLUSIONS Taken together, these data provide strong mechanistic evidence that clofarabine is a dual action inhibitor of HIV-1 replication that both limits dNTP substrates for viral DNA synthesis and directly inhibits the DNA polymerase activity of HIV-1 reverse transcriptase.
Collapse
Affiliation(s)
- Michele B Daly
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, 1760 Haygood Dr., Atlanta, GA, 30322, USA
| | - Megan E Roth
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA.,Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Laurent Bonnac
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - José O Maldonado
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA.,Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jiashu Xie
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA
| | - Steven E Patterson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Baek Kim
- Center for Drug Discovery, Department of Pediatrics, Emory Center for AIDS Research, Emory University, Children's Healthcare of Atlanta, 1760 Haygood Dr., Atlanta, GA, 30322, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St SE, Minneapolis, MN, 55455, USA. .,Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA. .,Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, 55455, USA. .,Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
35
|
He S, Lin B, Chu V, Hu Z, Hu X, Xiao J, Wang AQ, Schweitzer CJ, Li Q, Imamura M, Hiraga N, Southall N, Ferrer M, Zheng W, Chayama K, Marugan JJ, Liang TJ. Repurposing of the antihistamine chlorcyclizine and related compounds for treatment of hepatitis C virus infection. Sci Transl Med 2016; 7:282ra49. [PMID: 25855495 DOI: 10.1126/scitranslmed.3010286] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatitis C virus (HCV) infection affects an estimated 185 million people worldwide, with chronic infection often leading to liver cirrhosis and hepatocellular carcinoma. Although HCV is curable, there is an unmet need for the development of effective and affordable treatment options. Through a cell-based high-throughput screen, we identified chlorcyclizine HCl (CCZ), an over-the-counter drug for allergy symptoms, as a potent inhibitor of HCV infection. CCZ inhibited HCV infection in human hepatoma cells and primary human hepatocytes. The mode of action of CCZ is mediated by inhibiting an early stage of HCV infection, probably targeting viral entry into host cells. The in vitro antiviral effect of CCZ was synergistic with other anti-HCV drugs, including ribavirin, interferon-α, telaprevir, boceprevir, sofosbuvir, daclatasvir, and cyclosporin A, without significant cytotoxicity, suggesting its potential in combination therapy of hepatitis C. In the mouse pharmacokinetic model, CCZ showed preferential liver distribution. In chimeric mice engrafted with primary human hepatocytes, CCZ significantly inhibited infection of HCV genotypes 1b and 2a, without evidence of emergence of drug resistance, during 4 and 6 weeks of treatment, respectively. With its established clinical safety profile as an allergy medication, affordability, and a simple chemical structure for optimization, CCZ represents a promising candidate for drug repurposing and further development as an effective and accessible agent for treatment of HCV infection.
Collapse
Affiliation(s)
- Shanshan He
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Billy Lin
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Virginia Chu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Jingbo Xiao
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Amy Q Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Cameron J Schweitzer
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qisheng Li
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michio Imamura
- Department of Medicine and Molecular Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 730-0053, Japan
| | - Nobuhiko Hiraga
- Department of Medicine and Molecular Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 730-0053, Japan
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Marc Ferrer
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Kazuaki Chayama
- Department of Medicine and Molecular Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima 730-0053, Japan
| | - Juan J Marugan
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Rawson JMO, Clouser CL, Mansky LM. Rapid Determination of HIV-1 Mutant Frequencies and Mutation Spectra Using an mCherry/EGFP Dual-Reporter Viral Vector. Methods Mol Biol 2016; 1354:71-88. [PMID: 26714706 DOI: 10.1007/978-1-4939-3046-3_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The high mutation rate of human immunodeficiency virus type-1 (HIV-1) has been a pivotal factor in its evolutionary success as a human pathogen, driving the emergence of drug resistance, immune system escape, and invasion of distinct anatomical compartments. Extensive research has focused on understanding how various cellular and viral factors alter the rates and types of mutations produced during viral replication. Here, we describe a single-cycle dual-reporter vector assay that relies upon the detection of mutations that eliminate either expression of mCherry or enhanced green fluorescent protein (EGFP). The reporter-based method can be used to efficiently quantify changes in mutant frequencies and mutation spectra that arise due to a variety of factors, including viral mutagens, drug resistance mutations, cellular physiology, and APOBEC3 proteins.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Microbiology, University of Minnesota, Graduate Program, Mayo Mail Code 196, 1460 Mayo Building, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
37
|
Kang H, Kim C, Kim DE, Song JH, Choi M, Choi K, Kang M, Lee K, Kim HS, Shin JS, Kim J, Han SB, Lee MY, Lee SU, Lee CK, Kim M, Ko HJ, van Kuppeveld FJM, Cho S. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses. Antiviral Res 2015; 124:1-10. [PMID: 26526589 DOI: 10.1016/j.antiviral.2015.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/25/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022]
Abstract
Enteroviruses are major causative agents of various human diseases, and some of them are currently considered to be an enormous threat to public health. However, no effective therapy is currently available for the treatment of these infections. We identified gemcitabine, a nucleoside-analog drug used for cancer treatment, from a screen of bioactive chemicals as a novel inhibitor of coxsackievirus B3 (CVB3) and enterovirus 71 (EV71). Gemcitabine potently inhibited the proliferation of CVB3 and EV71, as well as the replication of CVB3 and EV71 replicons, in cells with a low micromolar IC50 (1-5 μM). Its strong inhibitory effect was also observed in cells infected with human rhinoviruses, demonstrating broad-spectrum antiviral effects on enteroviruses. Mechanistically, an extensive analysis excluded the involvement of 2C, 3A, IRES-dependent translation, and also that of polyprotein processing in the antiviral effects of gemcitabine. Importantly, gemcitabine in combination with ribavirin, an antiviral drug currently being used against a few RNA viruses, exhibited a synergistic antiviral effect on the replication of CVB3 and EV71 replicons. Consequently, our results clearly demonstrate a new indication for gemcitabine as an effective broad-spectrum inhibitor of enteroviruses and strongly suggest a new therapeutic strategy using gemcitabine alone or in combination with ribavirin for the treatment of various diseases associated with enterovirus infection.
Collapse
Affiliation(s)
- Hyunju Kang
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Chonsaeng Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Dong-eun Kim
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Jae-Hyoung Song
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Miri Choi
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Kwangman Choi
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; Department of Medical Science, Soonchunhyang University, Asan, South Korea
| | - Mingu Kang
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea
| | - Kyungjin Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hae Soo Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Jin Soo Shin
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Janghwan Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | - Mi-Young Lee
- Department of Medical Science, Soonchunhyang University, Asan, South Korea
| | - Su Ui Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea
| | - Chong-Kyo Lee
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Meehyein Kim
- Virus Research and Testing Center, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Frank J M van Kuppeveld
- Section of Virology, Department Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sungchan Cho
- Incurable Diseases Therapeutics Research Center, Korea Research Institute of Bioscience & Biotechnology, Cheongju, South Korea; Department of Biomolecular Science, Korea University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
38
|
Lack of mutational hot spots during decitabine-mediated HIV-1 mutagenesis. Antimicrob Agents Chemother 2015; 59:6834-43. [PMID: 26282416 DOI: 10.1128/aac.01644-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/10/2015] [Indexed: 01/01/2023] Open
Abstract
Decitabine has previously been shown to induce lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1). However, the factors that determine the susceptibilities of individual sequence positions in HIV-1 to decitabine have not yet been defined. To investigate this, we performed Illumina high-throughput sequencing of multiple amplicons prepared from proviral DNA that was recovered from decitabine-treated cells infected with HIV-1. We found that decitabine induced an ≈4.1-fold increase in the total mutation frequency of HIV-1, primarily due to a striking ≈155-fold increase in the G-to-C transversion frequency. Intriguingly, decitabine also led to an ≈29-fold increase in the C-to-G transversion frequency. G-to-C frequencies varied substantially (up to ≈80-fold) depending upon sequence position, but surprisingly, mutational hot spots (defined as upper outliers within the mutation frequency distribution) were not observed. We further found that every single guanine position examined was significantly susceptible to the mutagenic effects of decitabine. Taken together, these observations demonstrate for the first time that decitabine-mediated HIV-1 mutagenesis is promiscuous and occurs in the absence of a clear bias for mutational hot spots. These data imply that decitabine-mediated G-to-C mutagenesis is a highly effective antiviral mechanism for extinguishing HIV-1 infectivity.
Collapse
|
39
|
Tarnowski M, Tkacz M, Czerewaty M, Poniewierska-Baran A, Grymuła K, Ratajczak MZ. 5‑Azacytidine inhibits human rhabdomyosarcoma cell growth by downregulating insulin‑like growth factor 2 expression and reactivating the H19 gene product miR‑675, which negatively affects insulin‑like growth factors and insulin signaling. Int J Oncol 2015; 46:2241-2250. [PMID: 25707431 DOI: 10.3892/ijo.2015.2906] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor 2 (IGF2) and 1 (IGF1) and insulin (INS) promote proliferation of rhabdomyosarcoma (RMS) cells by interacting with the insulin-like growth factor 1 receptor (IGF1R) and the insulin receptor (INSR). Loss of imprinting (LOI) by DNA hypermethylation at the differentially methylated region (DMR) for the IGF2‑H19 locus is commonly observed in RMS cells and results in an increase in the expression of proliferation-promoting IGF2 and downregulation of proliferation-inhibiting non-coding H19 miRNAs. One of these miRNAs, miR‑675, has been reported in murine cells to be a negative regulator of IGF1R expression. To better address the role of IGF2 and 1, as well as INS signaling in the pathogenesis of RMS and the involvement of LOI at the IGF2‑H19 locus, we employed the DNA demethylating agent 5‑azacytidine (AzaC). We observed that AzaC‑mediated demethylation of the DMR at the IGF2‑H19 locus resulted in downregulation of IGF2 and an increase in the expression of H19. This epigenetic change resulted in a decrease in RMS proliferation due to downregulation of IGF2 and, IGF1R expression in an miR‑675‑dependent manner. Interestingly, we observed that miR‑675 not only inhibited the expression of IGF1R in a similar manner in human and murine cells, but we also observed its negative effect on the expression of the INSR. These results confirm the crucial role of LOI at the IGF2‑H19 DMR in the pathogenesis of RMS and are relevant to the development of new treatment strategies.
Collapse
Affiliation(s)
- Maciej Tarnowski
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Michał Czerewaty
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | | | - Katarzyna Grymuła
- Department of Physiology Pomeranian Medical University, Szczecin, Poland
| | - Mariusz Z Ratajczak
- Stem Cell Biology Program at the James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| |
Collapse
|
40
|
Boso G, Somia NV. Characterization of resistance to rhabdovirus and retrovirus infection in a human myeloid cell line. PLoS One 2015; 10:e0121455. [PMID: 25811758 PMCID: PMC4374779 DOI: 10.1371/journal.pone.0121455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 02/13/2015] [Indexed: 11/30/2022] Open
Abstract
Viruses interact with various permissive and restrictive factors in host cells throughout their replication cycle. Cell lines that are non-permissive to viral infection have been particularly useful in discovering host cell proteins involved in viral life cycles. Here we describe the characterization of a human myeloid leukemia cell line, KG-1, that is resistant to infection by retroviruses and a Rhabdovirus. We show that KG-1 cells are resistant to infection by Vesicular Stomatits Virus as well as VSV Glycoprotein (VSVG) pseudotyped retroviruses due to a defect in binding. Moreover our results indicate that entry by xenotropic retroviral envelope glycoprotein RD114 is impaired in KG-1 cells. Finally we characterize a post- entry block in the early phase of the retroviral life cycle in KG-1 cells that renders the cell line refractory to infection. This cell line will have utility in discovering proteins involved in infection by VSV and HIV-1.
Collapse
Affiliation(s)
- Guney Boso
- Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nikunj V. Somia
- Dept. of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
41
|
Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A. Antiviral drug discovery: broad-spectrum drugs from nature. Nat Prod Rep 2015; 32:29-48. [PMID: 25315648 DOI: 10.1039/c4np00085d] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to April 2014. The development of drugs with broad-spectrum antiviral activities is a long pursued goal in drug discovery. It has been shown that blocking co-opted host-factors abrogates the replication of many viruses, yet the development of such host-targeting drugs has been met with scepticism mainly due to toxicity issues and poor translation to in vivo models. With the advent of new and more powerful screening assays and prediction tools, the idea of a drug that can efficiently treat a wide range of viral infections by blocking specific host functions has re-bloomed. Here we critically review the state-of-the-art in broad-spectrum antiviral drug discovery. We discuss putative targets and treatment strategies, with particular focus on natural products as promising starting points for antiviral lead development.
Collapse
Affiliation(s)
- J P Martinez
- Infection Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
42
|
Cleves AE, Jain AN. Chemical and protein structural basis for biological crosstalk between PPARα and COX enzymes. J Comput Aided Mol Des 2015; 29:101-12. [PMID: 25428568 PMCID: PMC4298667 DOI: 10.1007/s10822-014-9815-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/15/2014] [Indexed: 02/04/2023]
Abstract
We have previously validated a probabilistic framework that combined computational approaches for predicting the biological activities of small molecule drugs. Molecule comparison methods included molecular structural similarity metrics and similarity computed from lexical analysis of text in drug package inserts. Here we present an analysis of novel drug/target predictions, focusing on those that were not obvious based on known pharmacological crosstalk. Considering those cases where the predicted target was an enzyme with known 3D structure allowed incorporation of information from molecular docking and protein binding pocket similarity in addition to ligand-based comparisons. Taken together, the combination of orthogonal information sources led to investigation of a surprising predicted relationship between a transcription factor and an enzyme, specifically, PPARα and the cyclooxygenase enzymes. These predictions were confirmed by direct biochemical experiments which validate the approach and show for the first time that PPARα agonists are cyclooxygenase inhibitors.
Collapse
Affiliation(s)
- Ann E. Cleves
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA USA
| | - Ajay N. Jain
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA USA
| |
Collapse
|
43
|
Clouser CL, Bonnac L, Mansky LM, Patterson SE. Characterization of permeability, stability and anti-HIV-1 activity of decitabine and gemcitabine divalerate prodrugs. Antivir Chem Chemother 2014; 23:223-30. [PMID: 23994876 DOI: 10.3851/imp2682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2013] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Over 25 drugs have been approved for the treatment of HIV-1 replication. All but one of these drugs is delivered as an oral medication. Previous studies have demonstrated that two drugs, decitabine and gemcitabine, have potent anti-HIV-1 activities and can work together in synergy to reduce HIV-1 infectivity via lethal mutagenesis. For their current indications, decitabine and gemcitabine are delivered intravenously. METHODS As an initial step towards the clinical translation of these drugs for the treatment of HIV-1 infection, we synthesized decitabine and gemcitabine prodrugs in order to increase drug permeability, which has generally been shown to correlate with increased bioavailability in vivo. In the present study we investigated the permeability, stability and anti-HIV-1 activity of decitabine and gemcitabine prodrugs and selected the divalerate esters of each as candidates for further investigation. RESULTS Our results provide the first demonstration of divalerate prodrugs of decitabine and gemcitabine that are readily permeable, stable and possess anti-HIV-1 activity. CONCLUSIONS These observations predict improved oral availability of decitabine and gemcitabine, and warrant further study of their ability to reduce HIV-1 infectivity in vivo.
Collapse
Affiliation(s)
- Christine L Clouser
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | |
Collapse
|
44
|
Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014; 6:4095-139. [PMID: 25341668 PMCID: PMC4213579 DOI: 10.3390/v6104095] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
45
|
Palbociclib, a selective inhibitor of cyclin-dependent kinase4/6, blocks HIV-1 reverse transcription through the control of sterile α motif and HD domain-containing protein-1 (SAMHD1) activity. AIDS 2014; 28:2213-22. [PMID: 25036183 DOI: 10.1097/qad.0000000000000399] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Sterile α motif and HD domain-containing protein-1 (SAMHD1) inhibits HIV-1 reverse transcription by decreasing the pool of intracellular deoxynucleotides. SAMHD1 is controlled by cyclin-dependent kinase (CDK)-mediated phosphorylation. However, the exact mechanism of SAMHD1 regulation in primary cells is unclear. We explore the effect of palbociclib, a CDK6 inhibitor, in HIV-1 replication. METHODS Human primary monocytes were differentiated into macrophages with monocyte-colony stimulating factor and CD4 T lymphocytes stimulated with phytohaemagglutinin (PHA)/interleukin-2. Cells were treated with palbociclib and then infected with a Green fluorescent protein-expressing HIV-1 or R5 HIV-1 BaL. Viral DNA was measured by quantitative PCR and infection assessed by flow cytometry. Deoxynucleotide triphosphate (dNTP) content was determined using a polymerase-based method. RESULTS Pan-CDK inhibitors AT7519, roscovitine and purvalanol A reduced SAMHD1 phosphorylation. HIV-1 replication was blocked by AT7519 (66.4 ± 3.8%; n = 4), roscovitine (47.3 ± 3.9%; n = 4) and purvalanol A (55.7 ± 15.7%; n = 4) at subtoxic concentrations. Palbociclib, a potent and selective CDK6 inhibitor, blocked SAMHD1 phosphorylation, intracellular dNTP levels, HIV-1 reverse transcription and HIV-1 replication in primary macrophages and CD4 T lymphocytes. Notably, treatment of macrophages with palbociclib led to reduced CDK2 activation, measured as the phosphorylation of the T-loop at the Thr160. The antiviral effect was lost when SAMHD1 was degraded by Vpx, providing further evidence for a role of SAMHD1 in mediating the antiretroviral effect. CONCLUSIONS Our results indicate that SAMHD1-mediated HIV-1 restriction is controlled by CDK as previously suggested but point to a preferential role for CDK2 and CDK6 as mediators of SAMHD1 activation. Our study provides a new signaling pathway susceptible for the development of new therapeutic approaches against HIV-1 infection.
Collapse
|
46
|
Rawson JMO, Mansky LM. Retroviral vectors for analysis of viral mutagenesis and recombination. Viruses 2014; 6:3612-42. [PMID: 25254386 PMCID: PMC4189041 DOI: 10.3390/v6093612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 12/29/2022] Open
Abstract
Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota, Moos Tower 18-242, 515 Delaware St SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
47
|
Beach LB, Rawson JM, Kim B, Patterson SE, Mansky LM. Novel inhibitors of human immunodeficiency virus type 2 infectivity. J Gen Virol 2014; 95:2778-2783. [PMID: 25103850 DOI: 10.1099/vir.0.069864-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) infects about two million people worldwide. HIV-2 has fewer treatment options than HIV-1, yet may evolve drug resistance more quickly. We have analysed several novel drugs for anti-HIV-2 activity. It was observed that 5-azacytidine, clofarabine, gemcitabine and resveratrol have potent anti-HIV-2 activity. The EC50 values for 5-azacytidine, clofarabine and resveratrol were found to be significantly lower with HIV-2 than with HIV-1. A time-of-addition assay was used to analyse the ability of these drugs to interfere with HIV-2 replication. Reverse transcription was the likely target for antiretroviral activity. Taken together, several novel drugs have been discovered to have activity against HIV-2. Based upon their known activities, these drugs may elicit enhanced HIV-2 mutagenesis and therefore be useful for inducing HIV-2 lethal mutagenesis. In addition, the data are consistent with HIV-2 reverse transcriptase being more sensitive than HIV-1 reverse transcriptase to dNTP pool alterations.
Collapse
Affiliation(s)
- Lauren B Beach
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan M Rawson
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Steven E Patterson
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Louis M Mansky
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455, USA.,Molecular, Cellular, Developmental Biology & Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.,Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Microbiology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
48
|
Tautomerism provides a molecular explanation for the mutagenic properties of the anti-HIV nucleoside 5-aza-5,6-dihydro-2'-deoxycytidine. Proc Natl Acad Sci U S A 2014; 111:E3252-9. [PMID: 25071207 DOI: 10.1073/pnas.1405635111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Viral lethal mutagenesis is a strategy whereby the innate immune system or mutagenic pool nucleotides increase the error rate of viral replication above the error catastrophe limit. Lethal mutagenesis has been proposed as a mechanism for several antiviral compounds, including the drug candidate 5-aza-5,6-dihydro-2'-deoxycytidine (KP1212), which causes A-to-G and G-to-A mutations in the HIV genome, both in tissue culture and in HIV positive patients undergoing KP1212 monotherapy. This work explored the molecular mechanism(s) underlying the mutagenicity of KP1212, and specifically whether tautomerism, a previously proposed hypothesis, could explain the biological consequences of this nucleoside analog. Establishing tautomerism of nucleic acid bases under physiological conditions has been challenging because of the lack of sensitive methods. This study investigated tautomerism using an array of spectroscopic, theoretical, and chemical biology approaches. Variable temperature NMR and 2D infrared spectroscopic methods demonstrated that KP1212 existed as a broad ensemble of interconverting tautomers, among which enolic forms dominated. The mutagenic properties of KP1212 were determined empirically by in vitro and in vivo replication of a single-stranded vector containing a single KP1212. It was found that KP1212 paired with both A (10%) and G (90%), which is in accord with clinical observations. Moreover, this mutation frequency is sufficient for pushing a viral population over its error catastrophe limit, as observed before in cell culture studies. Finally, a model is proposed that correlates the mutagenicity of KP1212 with its tautomeric distribution in solution.
Collapse
|
49
|
Zinc finger endonuclease targeting PSIP1 inhibits HIV-1 integration. Antimicrob Agents Chemother 2014; 58:4318-27. [PMID: 24820090 DOI: 10.1128/aac.02690-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome editing using zinc finger nucleases (ZFNs) has been successfully applied to disrupt CCR5 or CXCR4 host factors and inhibit viral entry and infection. Gene therapy using ZFNs to modify the PSIP1 gene, which encodes the lens epithelium-derived growth factor (LEDGF) protein, might restrain an early step of the viral replication cycle at the integration level. ZFNs targeting the PSIP1 gene (ZFNLEDGF) were designed to specifically recognize the sequence after the integrase binding domain (IBD) of the LEDGF/p75 protein. ZFNLEDGF successfully recognized the target region of the PSIP1 gene in TZM-bl cells by heteroduplex formation and DNA sequence analysis. Gene editing induced a frameshift of the coding region and resulted in the abolishment of LEDGF expression at the mRNA and protein levels. Functional assays revealed that infection with the HIV-1 R5 BaL or X4 NL4-3 viral strains was impaired in LEDGF/p75 knockout cells regardless of entry tropism due to a blockade in HIV-1 proviral integration into the host genome. However, residual infection was detected in the LEDGF knockout cells. Indeed, LEDGF knockout restriction was overcome at a high multiplicity of infection, suggesting alternative mechanisms for HIV-1 genome integration rather than through LEDGF/p75. However, the observed residual integration was sensitive to the integrase inhibitor raltegravir. These results demonstrate that the described ZFNLEDGF effectively targets the PSIP1 gene, which is involved in the early steps of the viral replication cycle; thus, ZFNLEDGF may become a potential antiviral agent for restricting HIV-1 integration. Moreover, LEDGF knockout cells represent a potent tool for elucidating the role of HIV integration cofactors in virus replication.
Collapse
|
50
|
Rawson JM, Heineman RH, Beach LB, Martin JL, Schnettler EK, Dapp MJ, Patterson SE, Mansky LM. 5,6-Dihydro-5-aza-2'-deoxycytidine potentiates the anti-HIV-1 activity of ribonucleotide reductase inhibitors. Bioorg Med Chem 2013; 21:7222-8. [PMID: 24120088 PMCID: PMC3930610 DOI: 10.1016/j.bmc.2013.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/01/2013] [Accepted: 08/10/2013] [Indexed: 10/26/2022]
Abstract
The nucleoside analog 5,6-dihydro-5-aza-2'-deoxycytidine (KP-1212) has been investigated as a first-in-class lethal mutagen of human immunodeficiency virus type-1 (HIV-1). Since a prodrug monotherapy did not reduce viral loads in Phase II clinical trials, we tested if ribonucleotide reductase inhibitors (RNRIs) combined with KP-1212 would improve antiviral activity. KP-1212 potentiated the activity of gemcitabine and resveratrol and simultaneously increased the viral mutant frequency. G-to-C mutations predominated with the KP-1212-resveratrol combination. These observations represent the first demonstration of a mild anti-HIV-1 mutagen potentiating the antiretroviral activity of RNRIs and encourage the clinical translation of enhanced viral mutagenesis in treating HIV-1 infection.
Collapse
Affiliation(s)
- Jonathan M. Rawson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Richard H. Heineman
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- MinnCResT Program, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lauren B. Beach
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jessica L. Martin
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Pharmacology Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erica K. Schnettler
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Pharmacology Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael J. Dapp
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Pharmacology Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven E. Patterson
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
- Pharmacology Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- MinnCResT Program, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
- Molecular, Cellular, Developmental Biology & Genetics Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
- Pharmacology Graduate Program, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|