1
|
Riquier S, Carthy S, Hughes GM, Touzalin F, Haerty W, Huang Z, Teeling EC. RNA-Seq analysis reveals the long noncoding RNAs associated with immunity in wild Myotis myotis bats. BMC Genomics 2025; 26:345. [PMID: 40188093 PMCID: PMC11972528 DOI: 10.1186/s12864-025-11485-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Bats possess a uniquely adapted immune system that enables them to live with viral infections without the expected maladies. The molecular basis and regulation of bats' immune response is still not fully understood. Long non-coding RNAs (lncRNAs) represent an emerging class of molecules with critical regulatory roles in multiple biological processes, including immunity. We hypothesise that lncRNA-based regulation in bats may enable them to limit disease and live with viral pathogens. RESULTS We developed a lncRNA prediction pipeline to annotate the long non-coding transcriptome across multiple bat tissues and at the population level. Characterisation of our lncRNA dataset based on 100 blood transcriptomes from wild Myotis myotis bats revealed lower and more tissue-specific expression compared with coding genes, reduced GC content and shorter length distributions, consistent with lncRNA profiles observed in other species. Using WGCNA network analyses and gene ontology, we identified two mRNA-lncRNA co-expression modules in Myotis myotis associated with distinct immune response: one linked to T-cell activation and vial processes, and the other to inflammation. From these immune-related lncRNAs, we selected four candidates with high translational potential for regulating viral infections and inflammation. These include a newly identified lncRNA, BatLnc1, with potential antiviral functions; the M. myotis ortholog of TUG1, implicated in viral-host interactions; and well-known lncRNAs MALAT1 and NEAT1, recognised for their roles in inflammatory regulation. CONCLUSIONS We conducted the first ab initio prediction of lncRNAs in a non-model bat species, the wild-caught M. myotis. Our network analysis revealed significant variation in immune status among a subset of individuals, potentially due to pathogenic conditions. From these variations, we identified lncRNAs most likely associated with immune response in bats. This initial exploration lays the groundwork for future experimental validations of lncRNA functions, offering promising insights into their role in bat immunity.
Collapse
Affiliation(s)
- Sebastien Riquier
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Samuel Carthy
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Frederic Touzalin
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
- School of Biodiversity, One Health & Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, UK
| | - Wilfried Haerty
- Earlham Institute, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
2
|
Jacquet S, Pontier D, Etienne L. [The diversification of the protein kinase R contributes to the specificity of bat-virus interactions]. C R Biol 2025; 348:35-41. [PMID: 39998383 DOI: 10.5802/crbiol.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 02/26/2025]
Abstract
Several bat species asymptomatically harbor certain viruses that are highly pathogenic in other mammals. The underlying mechanisms involve an evolutionary balance between tolerance and immune resistance to viral infections. However, how bats innate immunity has evolved in response to viruses remains to be elucidated. Here, we review the evolution of the protein kinase R (PKR) in bats, a major antiviral protein of vertebrate innate antiviral defense. Our recent results indicate that PKR has evolved under selective pressure and has undergone genomic duplications in bats, in contrast to all mammals studied, which possess only a single copy of the gene. The genetic changes in bat PKR are probably partly the result of genetic conflicts with ancient pathogenic poxviruses, shaping a bat-specific host–virus interface. Furthermore, the duplicated PKRs in Myotis species enable them to collectively escape viruses and enhance their viral control. These results suggest that viral adaptations of PKR contribute to the specificity of modern interactions between viruses and bats, and may explain unique antiviral mechanisms in bats.
Collapse
|
3
|
Levinger R, Tussia-Cohen D, Friedman S, Lender Y, Nissan Y, Fraimovitch E, Gavriel Y, Tearle JLE, Kolodziejczyk AA, Moon KM, Gomes T, Kunowska N, Weinberg M, Donati G, Foster LJ, James KR, Yovel Y, Hagai T. Single-cell and Spatial Transcriptomics Illuminate Bat Immunity and Barrier Tissue Evolution. Mol Biol Evol 2025; 42:msaf017. [PMID: 39836373 PMCID: PMC11817796 DOI: 10.1093/molbev/msaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Bats have adapted to pathogens through diverse mechanisms, including increased resistance-rapid pathogen elimination, and tolerance-limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology), several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that the elevated basal expression of innate immune genes may lead to increased resistance to infection. Here, we test whether such transcriptional patterns occur in Egyptian fruit bat tissues through single-cell and spatial transcriptomics of gut, lung, and blood cells, comparing gene expression between bat, mouse, and human. Despite numerous recent loss and expansion events of interferons in the bat genome, interferon expression and induction are remarkably similar to that of mouse. In contrast, central complement system genes are highly and uniquely expressed in key regions in bat lung and gut epithelium, unlike in human and mouse. Interestingly, the unique expression of these genes in the bat gut is strongest in the crypt, where developmental expression programs are highly conserved. The complement system genes also evolve rapidly in their coding sequences across the bat lineage. Finally, the bat complement system displays strong hemolytic activity. Together, these results indicate a distinctive transcriptional divergence of the complement system, which may be linked to bat resistance, and highlight the intricate evolutionary landscape of bat immunity.
Collapse
Affiliation(s)
- Roy Levinger
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Tussia-Cohen
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sivan Friedman
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yan Lender
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yomiran Nissan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Evgeny Fraimovitch
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuval Gavriel
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jacqueline L E Tearle
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | | | - Kyung-Mee Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, BC, Canada
| | - Tomás Gomes
- Fundação GIMM - Gulbenkian Institute for Molecular Medicine, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Natalia Kunowska
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Maya Weinberg
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, BC, Canada
| | - Kylie R James
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Yossi Yovel
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
4
|
Abidi S, Elhazaz Fernandez A, Seehase N, Hanisch L, Karlas A, Sandig V, Jordan I. Expression of an Efficient Selection Marker Out of a Duplicated Site in the ITRs of a Modified Vaccinia Virus Ankara (MVA). Vaccines (Basel) 2024; 12:1377. [PMID: 39772039 PMCID: PMC11680203 DOI: 10.3390/vaccines12121377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Poxviruses are large DNA viruses that replicate in the host cytoplasm without a nuclear phase. As vaccine vectors, they can package and express large recombinant cassettes from different positions of their genomic core region. We present a comparison between wildtype modified vaccinia Ankara (MVA) and isolate CR19, which has significantly expanded inverted terminal repeats (ITRs). With this expansion, a site in wildtype MVA, called deletion site (DS) IV, has been duplicated at both ends of the genome and now occupies an almost central position in the newly formed ITRs. Methods: We inserted various reporter genes into this site and found that the ITRs can be used for transgene expression. However, ITRs are genomic structures that can rapidly adapt to selective pressure through transient duplication and contraction. To test the potential utility of insertions into viral telomers, we inserted a factor from the cellular innate immune system that interferes with viral replication as an example of a difficult transgene. Results: A site almost in the centre of the ITRs can be used for transgene expression, and both sides are mirrored into identical copies. The example of a challenging transgene, tetherin, proved to be surprisingly efficient in selecting candidate vectors against the large background of parental viruses. Conclusions: Insertion of transgenes into ITRs automatically doubles the gene doses. The functionalisation of viruses with tetherin may accelerate the identification and generation of recombinant vectors for personalised medicine and pandemic preparedness.
Collapse
Affiliation(s)
- Sirine Abidi
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Aurora Elhazaz Fernandez
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
- Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Nicole Seehase
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
- Tentamus Pharma & Med Deutschland GmbH, 76149 Karlsruhe, Germany
| | - Lina Hanisch
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Alexander Karlas
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Volker Sandig
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| | - Ingo Jordan
- ProBioGen AG, 13086 Berlin, Germany; (S.A.); (A.E.F.); (N.S.); (A.K.); (V.S.)
| |
Collapse
|
5
|
Vazquez JM, Lauterbur ME, Mottaghinia S, Bucci M, Fraser D, Gray-Sandoval G, Gaucherand L, Haidar ZR, Han M, Kohler W, Lama TM, Le Corf A, Loyer C, Maesen S, McMillan D, Li S, Lo J, Rey C, Capel SLR, Singer M, Slocum K, Thomas W, Tyburec JD, Villa S, Miller R, Buchalski M, Vazquez-Medina JP, Pfeffer S, Etienne L, Enard D, Sudmant PH. Extensive longevity and DNA virus-driven adaptation in nearctic Myotis bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617725. [PMID: 39416019 PMCID: PMC11482938 DOI: 10.1101/2024.10.10.617725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The genus Myotis is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of Myotis. Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats. We find that Myotis bats have some of the most significant variation in cancer risk across mammals and demonstrate a unique DNA damage response in primary cells of the long-lived M. lucifugus. We also find evidence of abundant adaptation in response to DNA viruses - but not RNA viruses - in Myotis and other bats in sharp contrast with other mammals, potentially contributing to the role of bats as reservoirs of zoonoses. Together, our results demonstrate how genomics and primary cells derived from diverse taxa uncover the molecular bases of extreme adaptations in non-model organisms.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- These authors contributed equally
| | - M. Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Current affiliation: Department of Biology, University of Vermont, Burlington, VT USA
- These authors contributed equally
| | - Saba Mottaghinia
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Melanie Bucci
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Devaughn Fraser
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | | | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Zeinab R Haidar
- Department of Biology, California State Polytechnic University, Humboldt, Arcata, CA USA
- Current affiliation: Western EcoSystems Technology Inc, Cheyenne, WY USA
| | - Melissa Han
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - William Kohler
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Tanya M. Lama
- Department of Biological Sciences, Smith College, Northampton, MA USA
| | - Amandine Le Corf
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Sarah Maesen
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Dakota McMillan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Department of Science and Biotechnology, Berkeley City College, Berkeley, CA USA
| | - Stacy Li
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Johnathan Lo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Carine Rey
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Samantha LR Capel
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | - Michael Singer
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - William Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook NY USA
| | | | - Sarah Villa
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | - Richard Miller
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Michael Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
- Senior author
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Senior author
- These authors contributed equally
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
6
|
Zhao L, Yuan J, Wang G, Jing H, Huang C, Xu L, Xu X, Sun T, Chen W, Mao X, Li G. Chromosome-level genome and population genomics of the intermediate horseshoe bat ( Rhinolophus affinis) reveal the molecular basis of virus tolerance in Rhinolophus and echolocation call frequency variation. Zool Res 2024; 45:1147-1160. [PMID: 39257377 PMCID: PMC11491789 DOI: 10.24272/j.issn.2095-8137.2024.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 09/12/2024] Open
Abstract
Horseshoe bats (genus Rhinolophus, family Rhinolophidae) represent an important group within chiropteran phylogeny due to their distinctive traits, including constant high-frequency echolocation, rapid karyotype evolution, and unique immune system. Advances in evolutionary biology, supported by high-quality reference genomes and comprehensive whole-genome data, have significantly enhanced our understanding of species origins, speciation mechanisms, adaptive evolutionary processes, and phenotypic diversity. However, genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data, with only a single published genome of R. ferrumequinum currently available. In this study, we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat ( R. affinis). Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae. Notably, we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway, DNA repair, and apoptosis, which displayed signs of rapid evolution. In addition, we observed an expansion of the major histocompatibility complex class II (MHC-II) region and a higher copy number of the HLA- DQB2 gene in horseshoe bats compared to other chiropteran species. Based on whole-genome resequencing and population genomic analyses, we identified multiple candidate loci (e.g., GLI3) associated with variations in echolocation call frequency across R. affinis subspecies. This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research.
Collapse
Affiliation(s)
- Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C.I.C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Guiqiang Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Haohao Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ting Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou, Guangdong 510070, China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China. E-mail:
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
- Guangzhou Zoo, Guangzhou, Guangdong 510070, China. E-mail:
| |
Collapse
|
7
|
Liu Q, Liu Z, Wang H, Yao X. Different species of Chiroptera: Immune cells and molecules. J Med Virol 2024; 96:e29772. [PMID: 38949201 DOI: 10.1002/jmv.29772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The distinct composition and immune response characteristics of bats' innate and adaptive immune systems, which enable them to serve as host of numerous serious zoonotic viruses without falling ill, differ substantially from those of other mammals, it have garnered significant attention. In this article, we offer a systematic review of the names, attributes, and functions of innate and adaptive immune cells & molecules across different bat species. This includes descriptions of the differences shown by research between 71 bat species in 10 families, as well as comparisons between bats and other mammals. Studies of the immune cells & molecules of different bat species are necessary to understand the unique antiviral immunity of bats. By providing comprehensive information on these unique immune responses, it is hoped that new insights will be provided for the study of co-evolutionary dynamics between viruses and the bat immune system, as well as human antiviral immunity.
Collapse
Affiliation(s)
- Qinlu Liu
- Department of Immunology, Center of Immuno-molecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zegang Liu
- Department of Immunology, Center of Immuno-molecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Huifang Wang
- Department of Immunology, Center of Immuno-molecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immuno-molecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
8
|
Apoorva, Singh SK. A tale of endurance: bats, viruses and immune dynamics. Future Microbiol 2024; 19:841-856. [PMID: 38648093 PMCID: PMC11382704 DOI: 10.2217/fmb-2023-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/09/2024] [Indexed: 04/25/2024] Open
Abstract
The emergence of highly zoonotic viral infections has propelled bat research forward. The viral outbreaks including Hendra virus, Nipah virus, Marburg virus, Ebola virus, Rabies virus, Middle East respiratory syndrome coronavirus, SARS-CoV and the latest SARS-CoV-2 have been epidemiologically linked to various bat species. Bats possess unique immunological characteristics that allow them to serve as a potential viral reservoir. Bats are also known to protect themselves against viruses and maintain their immunity. Therefore, there is a need for in-depth understanding into bat-virus biology to unravel the major factors contributing to the coexistence and spread of viruses.
Collapse
Affiliation(s)
- Apoorva
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sunit Kumar Singh
- Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
- Dr. B R Ambedkar Center for Biomedical Research, University of Delhi (North Campus), New Delhi, 110007, India
| |
Collapse
|
9
|
Jhelum H, Papatsiros V, Papakonstantinou G, Krabben L, Kaufer B, Denner J. Screening for Viruses in Indigenous Greek Black Pigs. Microorganisms 2024; 12:315. [PMID: 38399719 PMCID: PMC10893322 DOI: 10.3390/microorganisms12020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The successful advancement of xenotransplantation has led to the development of highly sensitive detection systems for the screening of potentially zoonotic viruses in donor pigs and preventing their transmission to the recipient. To validate these methods, genetically modified pigs generated for xenotransplantation, numerous minipigs and other pig breeds have been tested, thereby increasing our knowledge concerning the pig virome and the distribution of pig viruses. Of particular importance are the porcine cytomegalovirus, a porcine roseolovirus (PCMV/PRV) and the hepatitis E virus genotype 3 (HEV3). PCMV/PRV has been shown to reduce the survival time of pig transplants in non-human primates and was also transmitted in the first pig heart transplantation to a human patient. The main aim of this study was to determine the sensitivities of our methods to detect PCMV/PRV, HEV3, porcine lymphotropic herpesvirus-1 (PLHV-1), PLHV-2, PLHV-3, porcine circovirus 2 (PCV2), PCV3, PCV4 and porcine parvovirus 1 (PPV1) and to apply the methods to screen indigenous Greek black pigs. The high number of viruses found in these animals allowed for the evaluation of numerous detection methods. Since porcine endogenous retroviruses (PERVs) type A and B are integrated in the genome of all pigs, but PERV-C is not, the animals were screened for PERV-C and PERV-A/C. Our detection methods were sensitive and detected PCMV/PRV, PLHV-1, PLHV-1, PLHV-3, PVC3 and PERV-C in most animals. PPV1, HEV3, PCV4 and PERV-A/C were not detected. These data are of great interest since the animals are healthy and resistant to diseases.
Collapse
Affiliation(s)
- Hina Jhelum
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (L.K.); (B.K.)
| | - Vasileios Papatsiros
- Faculty of Veterinary Medicine, Clinic of Medicine (Farm Animal Medicine), University of Thessaly, 43100 Karditsa, Greece; (V.P.); (G.P.)
| | - Georgios Papakonstantinou
- Faculty of Veterinary Medicine, Clinic of Medicine (Farm Animal Medicine), University of Thessaly, 43100 Karditsa, Greece; (V.P.); (G.P.)
| | - Ludwig Krabben
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (L.K.); (B.K.)
| | - Benedikt Kaufer
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (L.K.); (B.K.)
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (L.K.); (B.K.)
| |
Collapse
|
10
|
Krchlíková V, Lotke R, Haußmann I, Reinišová M, Kučerová D, Pecnová Ľ, Ungrová L, Hejnar J, Sauter D, Elleder D. Independent loss events of a functional tetherin gene in galliform birds. J Virol 2023; 97:e0080323. [PMID: 37712707 PMCID: PMC10617486 DOI: 10.1128/jvi.00803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/19/2023] [Indexed: 09/16/2023] Open
Abstract
IMPORTANCE Birds represent important hosts for numerous viruses, including zoonotic viruses and pathogens with the potential to cause major economic losses to the poultry industry. Viral replication and transmission can be inhibited or blocked by the action of antiviral restriction factors (RFs) encoded by the host. One well-characterized RF is tetherin, a protein that directly blocks the release of newly formed viral particles from infected cells. Here, we describe the evolutionary loss of a functional tetherin gene in two galliform birds, turkey (Meleagris gallopavo) and Mikado pheasant (Syrmaticus mikado). Moreover, we demonstrate that the structurally related protein TMCC(aT) exerts antiviral activity in several birds, albeit by a mechanism different from that of tetherin. The evolutionary scenario described here represents the first documented loss-of-tetherin cases in vertebrates.
Collapse
Affiliation(s)
- Veronika Krchlíková
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rishikesh Lotke
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Isabell Haußmann
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Markéta Reinišová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dana Kučerová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ľubomíra Pecnová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Ungrová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Hejnar
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Daniel Elleder
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Schoen A, Hölzer M, Müller MA, Wallerang KB, Drosten C, Marz M, Lamp B, Weber F. Functional comparisons of the virus sensor RIG-I from humans, the microbat Myotis daubentonii, and the megabat Rousettus aegyptiacus, and their response to SARS-CoV-2 infection. J Virol 2023; 97:e0020523. [PMID: 37728614 PMCID: PMC10653997 DOI: 10.1128/jvi.00205-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/09/2023] [Indexed: 09/21/2023] Open
Abstract
IMPORTANCE A common hypothesis holds that bats (order Chiroptera) are outstanding reservoirs for zoonotic viruses because of a special antiviral interferon (IFN) system. However, functional studies about key components of the bat IFN system are rare. RIG-I is a cellular sensor for viral RNA signatures that activates the antiviral signaling chain to induce IFN. We cloned and functionally characterized RIG-I genes from two species of the suborders Yangochiroptera and Yinpterochiroptera. The bat RIG-Is were conserved in their sequence and domain organization, and similar to human RIG-I in (i) mediating virus- and IFN-activated gene expression, (ii) antiviral signaling, (iii) temperature dependence, and (iv) recognition of RNA ligands. Moreover, RIG-I of Rousettus aegyptiacus (suborder Yinpterochiroptera) and of humans were found to recognize SARS-CoV-2 infection. Thus, members of both bat suborders encode RIG-Is that are comparable to their human counterpart. The ability of bats to harbor zoonotic viruses therefore seems due to other features.
Collapse
Affiliation(s)
- Andreas Schoen
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Martin Hölzer
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- European Virus Bioinformatics Center, Jena, Germany
| | - Marcel A. Müller
- German Centre for Infection Research (DZIF), Partner Sites Giessen and Charité, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kai B. Wallerang
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Christian Drosten
- European Virus Bioinformatics Center, Jena, Germany
- German Centre for Infection Research (DZIF), Partner Sites Giessen and Charité, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
- European Virus Bioinformatics Center, Jena, Germany
| | - Benjamin Lamp
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
| | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, Giessen, Germany
- European Virus Bioinformatics Center, Jena, Germany
- German Centre for Infection Research (DZIF), Partner Sites Giessen and Charité, Berlin, Germany
| |
Collapse
|
12
|
Müller M, Sauter D. The more the merrier? Gene duplications in the coevolution of primate lentiviruses with their hosts. Curr Opin Virol 2023; 62:101350. [PMID: 37651832 DOI: 10.1016/j.coviro.2023.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 09/02/2023]
Abstract
Gene duplications are a major source of genetic diversity and evolutionary innovation. Newly formed, duplicated genes can provide a selection advantage in constantly changing environments. One such example is the arms race of HIV and related lentiviruses with innate immune responses of their hosts. In recent years, it has become clear that both sides have benefited from multiple gene duplications. For example, amplifications of antiretroviral factors such as apolipoprotein-B mRNA-editing enzyme catalytic polypeptide-3 (APOBEC3), interferon-induced transmembrane protein (IFITM), and tripartite motif-containing (TRIM) proteins have expanded the repertoire of cell-intrinsic defense mechanisms and increased the barriers to retroviral replication and cross-species transmission. Conversely, recent studies have also shed light on how duplications of accessory lentiviral genes and Long terminal repeat (LTR) elements can provide a selection advantage in the coevolution with antiviral host proteins.
Collapse
Affiliation(s)
- Martin Müller
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Elfriede-Aulhorn-Straße 6, 72076 Tübingen, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Elfriede-Aulhorn-Straße 6, 72076 Tübingen, Germany.
| |
Collapse
|
13
|
Burke B, Rocha SM, Zhan S, Eckley M, Reasoner C, Addetia A, Lewis J, Fagre A, Charley PA, Richt JA, Weiss SR, Tjalkens RB, Veesler D, Aboellail T, Schountz T. Regulatory T cell-like response to SARS-CoV-2 in Jamaican fruit bats (Artibeus jamaicensis) transduced with human ACE2. PLoS Pathog 2023; 19:e1011728. [PMID: 37856551 PMCID: PMC10617724 DOI: 10.1371/journal.ppat.1011728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 10/31/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Insectivorous Old World horseshoe bats (Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats (Rousettus aegyptiacus) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats (Eptesicus fuscus) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats (Artibeus jamaicensis) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4+ helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-β, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptible to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease.
Collapse
Affiliation(s)
- Bradly Burke
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Savannah M. Rocha
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shijun Zhan
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Miles Eckley
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Clara Reasoner
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Juliette Lewis
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Anna Fagre
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Phillida A. Charley
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Juergen A. Richt
- Diagnostic Medicine/Pathobiology, Center of Excellence for Emerging and Zoonotic Animal Diseases, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ronald B. Tjalkens
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Tawfik Aboellail
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
14
|
Pereira PDC, Diniz DG, da Costa ER, Magalhães NGDM, da Silva ADJF, Leite JGS, Almeida NIP, Cunha KDN, de Melo MAD, Vasconcelos PFDC, Diniz JAP, Brites D, Anthony DC, Diniz CWP, Guerreiro-Diniz C. Genes, inflammatory response, tolerance, and resistance to virus infections in migratory birds, bats, and rodents. Front Immunol 2023; 14:1239572. [PMID: 37711609 PMCID: PMC10497949 DOI: 10.3389/fimmu.2023.1239572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Normally, the host immunological response to viral infection is coordinated to restore homeostasis and protect the individual from possible tissue damage. The two major approaches are adopted by the host to deal with the pathogen: resistance or tolerance. The nature of the responses often differs between species and between individuals of the same species. Resistance includes innate and adaptive immune responses to control virus replication. Disease tolerance relies on the immune response allowing the coexistence of infections in the host with minimal or no clinical signs, while maintaining sufficient viral replication for transmission. Here, we compared the virome of bats, rodents and migratory birds and the molecular mechanisms underlying symptomatic and asymptomatic disease progression. We also explore the influence of the host physiology and environmental influences on RNA virus expression and how it impacts on the whole brain transcriptome of seemingly healthy semipalmated sandpiper (Calidris pusilla) and spotted sandpiper (Actitis macularius). Three time points throughout the year were selected to understand the importance of longitudinal surveys in the characterization of the virome. We finally revisited evidence that upstream and downstream regulation of the inflammatory response is, respectively, associated with resistance and tolerance to viral infections.
Collapse
Affiliation(s)
- Patrick Douglas Corrêa Pereira
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Daniel Guerreiro Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Emanuel Ramos da Costa
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Nara Gyzely de Morais Magalhães
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Anderson de Jesus Falcão da Silva
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Jéssica Gizele Sousa Leite
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Natan Ibraim Pires Almeida
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Kelle de Nazaré Cunha
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Mauro André Damasceno de Melo
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| | - Pedro Fernando da Costa Vasconcelos
- Centro de Ciências Biológicas e da Saúde, Universidade do Estado do Pará, Belém, Pará, Brazil
- Seção de Arbovirologia e Febres Hemorrágicas, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - José Antonio Picanço Diniz
- Seção de Hepatologia, Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Pará, Brazil
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Clive Anthony
- Department of Pharmacology, Laboratory of Experimental Neuropathology, University of Oxford, Oxford, United Kingdom
| | - Cristovam Wanderley Picanço Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Investigações em Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Cristovam Guerreiro-Diniz
- Ciência e Tecnologia do Pará, Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Bragança, Pará, Brazil
| |
Collapse
|
15
|
Zhang D, Irving AT. Antiviral effects of interferon-stimulated genes in bats. Front Cell Infect Microbiol 2023; 13:1224532. [PMID: 37661999 PMCID: PMC10472940 DOI: 10.3389/fcimb.2023.1224532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023] Open
Abstract
The interferon pathway is the first line of defense in viral infection in all mammals, and its induction stimulates broad expression of interferon-stimulated genes (ISGs). In mice and also humans, the antiviral function of ISGs has been extensively studied. As an important viral reservoir in nature, bats can coexist with a variety of pathogenic viruses without overt signs of disease, yet only limited data are available for the role of ISGs in bats. There are multiple species of bats and work has begun deciphering the differences and similarities between ISG function of human/mouse and different bat species. This review summarizes the current knowledge of conserved and bat-specific-ISGs and their known antiviral effector functions.
Collapse
Affiliation(s)
- Dan Zhang
- Zhejiang University-University of Edinburgh Institute, Haining, China
| | - Aaron T. Irving
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Centre for Infection, Immunity & Cancer, Zhejiang University-University of Edinburgh Institute, Haining, China
- BIMET - Biomedical and Health Translational Research Centre of Zhejiang Province, China
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Schneor L, Kaltenbach S, Friedman S, Tussia-Cohen D, Nissan Y, Shuler G, Fraimovitch E, Kolodziejczyk AA, Weinberg M, Donati G, Teeling EC, Yovel Y, Hagai T. Comparison of antiviral responses in two bat species reveals conserved and divergent innate immune pathways. iScience 2023; 26:107435. [PMID: 37575178 PMCID: PMC10415932 DOI: 10.1016/j.isci.2023.107435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/28/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Bats host a range of disease-causing viruses without displaying clinical symptoms. The mechanisms behind this are a continuous source of interest. Here, we studied the antiviral response in the Egyptian fruit bat and Kuhl's pipistrelle, representing two subordinal clades. We profiled the antiviral response in fibroblasts using RNA sequencing and compared bat with primate and rodent responses. Both bats upregulate similar genes; however, a subset of these genes is transcriptionally divergent between them. These divergent genes also evolve rapidly in sequence, have specific promoter architectures, and are associated with programs underlying tolerance and resistance. Finally, we characterized antiviral genes that expanded in bats, with duplicates diverging in sequence and expression. Our study reveals a largely conserved antiviral program across bats and points to a set of genes that rapidly evolve through multiple mechanisms. These can contribute to bat adaptation to viral infection and provide directions to understanding the mechanisms behind it.
Collapse
Affiliation(s)
- Lilach Schneor
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Stefan Kaltenbach
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sivan Friedman
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dafna Tussia-Cohen
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yomiran Nissan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gal Shuler
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Evgeny Fraimovitch
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Maya Weinberg
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
- Molecular Biotechnology Center, University of Turin, Torino, Italy
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Yossi Yovel
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tzachi Hagai
- Shmunis School of Biomedicine and Cancer Research, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Ohkura S, Horie M, Shimizu M, Nakagawa S, Osanai H, Miyagawa Y, Morita R. Characterization of Megabat-Favored, CA-Dependent Susceptibility to Retrovirus Infection. J Virol 2023; 97:e0180322. [PMID: 36779757 PMCID: PMC10062173 DOI: 10.1128/jvi.01803-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/21/2022] [Indexed: 02/14/2023] Open
Abstract
The isolation of the Koala retrovirus-like virus from Australian megabats and the identification of endogenous retroviruses in the bat genome have raised questions on bat susceptibility to retroviruses in general. To answer this, we studied the susceptibility of 12 cell lines from 11 bat species to four well-studied retroviruses (human and simian immunodeficiency viruses [HIV and SIV] and murine leukemia viruses [B- and N-MLV]). Systematic comparison of retroviral susceptibility among bats revealed that megabat cell lines were overall less susceptible to the four retroviruses than microbat cell lines, particularly to HIV-1 infection, whereas lineage-specific differences were observed for MLV susceptibility. Quantitative PCR of reverse transcription (RT) products, infection in heterokaryon cells, and point mutation analysis of the capsid (CA) revealed that (i) HIV-1 and MLV replication were blocked at the nuclear transport of the pre-integration complexes and before and/or during RT, respectively, and (ii) the observed lineage-specific restriction can be attributed to a dominant cellular factor constrained by specific positions in CA. Investigation of bat homologs of the three previously reported post-entry restriction factors constrained by the same residues in CA, tripartite motif-protein 5α (TRIM5α), myxovirus resistance 2/B (Mx2/MxB), and carboxy terminus-truncated cleavage and polyadenylation factor 6 (CPSF6-358), demonstrated poor anti-HIV-1 activity in megabat cells, whereas megabat TRIM5α restricted MLV infection, suggesting that the major known CA-dependent restriction factors were not dominant in the observed lineage-specific susceptibility to HIV-1 in bat cells. Therefore, HIV-1 susceptibility of megabat cells may be determined in a manner distinct from that of primate cells. IMPORTANCE Recent studies have demonstrated the circulation of gammaretroviruses among megabats in Australia and the bats' resistance to HIV-1 infection; however, the origins of these viruses in megabats and the contribution of bats to retrovirus spread to other mammalian species remains unclear. To determine the intrinsic susceptibility of bat cells to HIV-1 infection, we investigated 12 cell lines isolated from 11 bat species. We report that lineage-specific retrovirus restriction in the bat cell lines can be attributed to CA-dependent factors. However, in the megabat cell lines examined, factors known to bind capsid and block infection in primate cell culture, including homologs of TRIM5α, Mx2/MxB, and CPSF6, failed to exhibit significant anti-HIV-1 activities. These results suggested that the HIV-1 susceptibility of megabat cells occurs in a manner distinct from that of primate cells, where cellular factors, other than major known CA-dependent restriction factors, with lineage-specific functions could recognize retroviral proteins in megabats.
Collapse
Affiliation(s)
- Sadayuki Ohkura
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Masayuki Horie
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Haruka Osanai
- Department of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yoshitaka Miyagawa
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
18
|
Burke B, Rocha SM, Zhan S, Eckley M, Reasoner C, Addetia A, Lewis J, Fagre A, Charley P, Richt JA, Weiss SR, Tjalkens RB, Veesler D, Aboellail T, Schountz T. Regulatory T Cell-like Response to SARS-CoV-2 in Jamaican Fruit Bats ( Artibeus jamaicensis ) Transduced with Human ACE2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528205. [PMID: 36824814 PMCID: PMC9949052 DOI: 10.1101/2023.02.13.528205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Insectivorous Old World horseshoe bats ( Rhinolophus spp.) are the likely source of the ancestral SARS-CoV-2 prior to its spillover into humans and causing the COVID-19 pandemic. Natural coronavirus infections of bats appear to be principally confined to the intestines, suggesting fecal-oral transmission; however, little is known about the biology of SARS-related coronaviruses in bats. Previous experimental challenges of Egyptian fruit bats ( Rousettus aegyptiacus ) resulted in limited infection restricted to the respiratory tract, whereas insectivorous North American big brown bats ( Eptesicus fuscus ) showed no evidence of infection. In the present study, we challenged Jamaican fruit bats ( Artibeus jamaicensis ) with SARS-CoV-2 to determine their susceptibility. Infection was confined to the intestine for only a few days with prominent viral nucleocapsid antigen in epithelial cells, and mononuclear cells of the lamina propria and Peyer's patches, but with no evidence of infection of other tissues; none of the bats showed visible signs of disease or seroconverted. Expression levels of ACE2 were low in the lungs, which may account for the lack of pulmonary infection. Bats were then intranasally inoculated with a replication-defective adenovirus encoding human ACE2 and 5 days later challenged with SARS-CoV-2. Viral antigen was prominent in lungs for up to 14 days, with loss of pulmonary cellularity during this time; however, the bats did not exhibit weight loss or visible signs of disease. From day 7, bats had low to moderate IgG antibody titers to spike protein by ELISA, and one bat on day 10 had low-titer neutralizing antibodies. CD4 + helper T cells became activated upon ex vivo recall stimulation with SARS-CoV-2 nucleocapsid peptide library and exhibited elevated mRNA expression of the regulatory T cell cytokines interleukin-10 and transforming growth factor-β, which may have limited inflammatory pathology. Collectively, these data show that Jamaican fruit bats are poorly susceptibility to SARS-CoV-2 but that expression of human ACE2 in their lungs leads to robust infection and an adaptive immune response with low-titer antibodies and a regulatory T cell-like response that may explain the lack of prominent inflammation in the lungs. This model will allow for insight of how SARS-CoV-2 infects bats and how bat innate and adaptive immune responses engage the virus without overt clinical disease. Author Summary Bats are reservoir hosts of many viruses that infect humans, yet little is known about how they host these viruses, principally because of a lack of relevant and susceptible bat experimental infection models. Although SARS-CoV-2 originated in bats, no robust infection models of bats have been established. We determined that Jamaican fruit bats are poorly susceptible to SARS-CoV-2; however, their lungs can be transduced with human ACE2, which renders them susceptible to SARS-CoV-2. Despite robust infection of the lungs and diminishment of pulmonary cellularity, the bats showed no overt signs of disease and cleared the infection after two weeks. Despite clearance of infection, only low-titer antibody responses occurred and only a single bat made neutralizing antibody. Assessment of the CD4 + helper T cell response showed that activated cells expressed the regulatory T cell cytokines IL-10 and TGFβ that may have tempered pulmonary inflammation.
Collapse
|
19
|
Xu L, Ou J, Hu X, Zheng Y, Ye S, Zhong L, Lai Z, Cai S, Lu G, Li S. Identification of Two Isoforms of Canine Tetherin in Domestic Dogs and Characterization of Their Antiviral Activity against Canine Influenza Virus. Viruses 2023; 15:v15020393. [PMID: 36851607 PMCID: PMC9961845 DOI: 10.3390/v15020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Canine influenza virus (CIV) significantly threatens the canine population and public health. Tetherin, an innate immune factor, plays an important role in the defense against pathogen invasion and has been discovered to restrict the release of various enveloped viruses. Two isoforms of canine tetherin (tetherin-X1 and tetherin-X2) were identified in peripheral blood leukocytes of mixed-breed dogs using reverse transcription polymerase chain reaction (RT-PCR). Amino acid alignment revealed that relative to full-length tetherin (tetherin-X1) and truncated canine tetherin (tetherin-X2) exhibited deletion of 34 amino acids. The deletion occurred at the C-terminus of the coiled-coiled ectodomain and the N-terminus of the glycosylphosphatidylinositol (GPI)-anchor domain. Tetherin-X2 was localized subcellularly at the cell membrane, which was consistent with the localization of tetherin-X1. In addition, canine tetherin-X1 and tetherin-X2 restricted the release of H3N2 CIV. However, canine tetherin-X1 had higher antiviral activity than canine tetherin-X2, indicating that the C-terminus of the coiled-coiled ectodomain and the N-terminus of the GPI-anchor domain of canine tetherin (containing the amino acids deleted in tetherin-X2) are critical for its ability to restrict H3N2 CIV release. This study provides insights for understanding the key functional domains of tetherin that restrict CIV release.
Collapse
Affiliation(s)
- Liang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Jiajun Ou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Xuerui Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Yanhong Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Lintao Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Zhiying Lai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Siqi Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Gang Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
- Correspondence: (G.L.); (S.L.)
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
- Correspondence: (G.L.); (S.L.)
| |
Collapse
|