1
|
Karpathiou G, Mobarki M, Musawi S, Papoudou-Bai A, Péoc'h M. Coilin Is Not Expressed by Immunohistochemistry in Hodgkin and Diffuse Large B-cell Lymphomas. Appl Immunohistochem Mol Morphol 2025:00129039-990000000-00223. [PMID: 40256852 DOI: 10.1097/pai.0000000000001259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/10/2025] [Indexed: 04/22/2025]
Abstract
Coilin is the signature protein of Cajal bodies (CBs), membrane-less organelles probably acting as sites for post-transcriptional RNA modification. Recent data suggest that coilin may be a regulator of the NF-kB activity, and Hodgkin lymphomas are hallmarks of neoplasms with NF-kB dysregulation. To the best of our knowledge, the immunohistochemical expression of coilin has been never investigated in Hodgkin lymphomas. We herein examined, by immunohistochemistry, full tissue sections of 58 classical Hodgkin lymphomas diagnosed in 31 male and 27 female patients and found that none of the cases expressed coilin. We compared these findings with Coilin expression in diffuse large B-cell lymphomas (DLBCL), where the marker was also negative. This finding represents the first data on coilin in lymphomas and prompts further studies to explore this downregulation.
Collapse
Affiliation(s)
- Georgia Karpathiou
- Pathology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| | | | - Shaqraa Musawi
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Michel Péoc'h
- Pathology Department, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
2
|
Murray-Nerger LA, Lozano C, Burton EM, Liao Y, Ungerleider NA, Guo R, Gewurz BE. The nucleic acid binding protein SFPQ represses EBV lytic reactivation by promoting histone H1 expression. Nat Commun 2024; 15:4156. [PMID: 38755141 PMCID: PMC11099029 DOI: 10.1038/s41467-024-48333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Epstein-Barr virus (EBV) uses a biphasic lifecycle of latency and lytic reactivation to infect >95% of adults worldwide. Despite its central role in EBV persistence and oncogenesis, much remains unknown about how EBV latency is maintained. We used a human genome-wide CRISPR/Cas9 screen to identify that the nuclear protein SFPQ was critical for latency. SFPQ supported expression of linker histone H1, which stabilizes nucleosomes and regulates nuclear architecture, but has not been previously implicated in EBV gene regulation. H1 occupied latent EBV genomes, including the immediate early gene BZLF1 promoter. Upon reactivation, SFPQ was sequestered into sub-nuclear puncta, and EBV genomic H1 occupancy diminished. Enforced H1 expression blocked EBV reactivation upon SFPQ knockout, confirming it as necessary downstream of SFPQ. SFPQ knockout triggered reactivation of EBV in B and epithelial cells, as well as of Kaposi's sarcoma-associated herpesvirus in B cells, suggesting a conserved gamma-herpesvirus role. These findings highlight SFPQ as a major regulator of H1 expression and EBV latency.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Clarisel Lozano
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Eric M Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Yifei Liao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Program in Virology, Boston, MA, 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University, Medford, MA, 02155, USA
| | - Benjamin E Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Program in Virology, Boston, MA, 02115, USA.
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
3
|
Mostaghimi T, Bahadoran E, Bakht M, Taheri S, Sadeghi H, Babaei A. Role of lncRNAs in Helicobacter pylori and Epstein-Barr virus associated gastric cancers. Life Sci 2024; 336:122316. [PMID: 38035995 DOI: 10.1016/j.lfs.2023.122316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Helicobacter pylori infection is a risk factor for the development of gastric cancer (GC), and the role of co-infection with viruses, such as Epstein-Barr virus, in carcinogenesis cannot be ignored. Furthermore, it is now known that genetic factors such as long non-coding RNAs (lncRNAs) are involved in many diseases, including GC. On the other side, they can also be used as therapeutic goals. Modified lncRNAs can cause aberrant expression of genes encoding proximal proteins, which are essential for the development of carcinoma. In this review, we present the most recent studies on lncRNAs in GC, concentrating on their roles in H. pylori and EBV infections, and discuss some of the molecular mechanisms of these GC-related pathogens. There was also a discussion of the research gaps and future perspectives.
Collapse
Affiliation(s)
- Talieh Mostaghimi
- Department of Medical Microbiology and Biotechnology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Mehdi Bakht
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Shiva Taheri
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Hamid Sadeghi
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran.
| |
Collapse
|
4
|
Kulkarni V, Jayakumar S, Mohan M, Kulkarni S. Aid or Antagonize: Nuclear Long Noncoding RNAs Regulate Host Responses and Outcomes of Viral Infections. Cells 2023; 12:987. [PMID: 37048060 PMCID: PMC10093752 DOI: 10.3390/cells12070987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts measuring >200 bp in length and devoid of protein-coding potential. LncRNAs exceed the number of protein-coding mRNAs and regulate cellular, developmental, and immune pathways through diverse molecular mechanisms. In recent years, lncRNAs have emerged as epigenetic regulators with prominent roles in health and disease. Many lncRNAs, either host or virus-encoded, have been implicated in critical cellular defense processes, such as cytokine and antiviral gene expression, the regulation of cell signaling pathways, and the activation of transcription factors. In addition, cellular and viral lncRNAs regulate virus gene expression. Viral infections and associated immune responses alter the expression of host lncRNAs regulating immune responses, host metabolism, and viral replication. The influence of lncRNAs on the pathogenesis and outcomes of viral infections is being widely explored because virus-induced lncRNAs can serve as diagnostic and therapeutic targets. Future studies should focus on thoroughly characterizing lncRNA expressions in virus-infected primary cells, investigating their role in disease prognosis, and developing biologically relevant animal or organoid models to determine their suitability for specific therapeutic targeting. Many cellular and viral lncRNAs localize in the nucleus and epigenetically modulate viral transcription, latency, and host responses to infection. In this review, we provide an overview of the role of nuclear lncRNAs in the pathogenesis and outcomes of viral infections, such as the Influenza A virus, Sendai Virus, Respiratory Syncytial Virus, Hepatitis C virus, Human Immunodeficiency Virus, and Herpes Simplex Virus. We also address significant advances and barriers in characterizing lncRNA function and explore the potential of lncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Viraj Kulkarni
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA;
| | - Sahana Jayakumar
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Mahesh Mohan
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| | - Smita Kulkarni
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (S.J.); (M.M.)
| |
Collapse
|
5
|
Mann JT, Riley BA, Baker SF. All differential on the splicing front: Host alternative splicing alters the landscape of virus-host conflict. Semin Cell Dev Biol 2023; 146:40-56. [PMID: 36737258 DOI: 10.1016/j.semcdb.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Alternative RNA splicing is a co-transcriptional process that richly increases proteome diversity, and is dynamically regulated based on cell species, lineage, and activation state. Virus infection in vertebrate hosts results in rapid host transcriptome-wide changes, and regulation of alternative splicing can direct a combinatorial effect on the host transcriptome. There has been a recent increase in genome-wide studies evaluating host alternative splicing during viral infection, which integrates well with prior knowledge on viral interactions with host splicing proteins. A critical challenge remains in linking how these individual events direct global changes, and whether alternative splicing is an overall favorable pathway for fending off or supporting viral infection. Here, we introduce the process of alternative splicing, discuss how to analyze splice regulation, and detail studies on genome-wide and splice factor changes during viral infection. We seek to highlight where the field can focus on moving forward, and how incorporation of a virus-host co-evolutionary perspective can benefit this burgeoning subject.
Collapse
Affiliation(s)
- Joshua T Mann
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Brent A Riley
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Steven F Baker
- Infectious Disease Program, Lovelace Biomedical Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
6
|
Functional Implications of Epstein-Barr Virus Lytic Genes in Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235780. [PMID: 36497262 PMCID: PMC9740547 DOI: 10.3390/cancers14235780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with a diverse range of tumors of both lymphoid and epithelial origin. Similar to other herpesviruses, EBV displays a bipartite life cycle consisting of latent and lytic phases. Current dogma indicates that the latent genes are key drivers in the pathogenesis of EBV-associated cancers, while the lytic genes are primarily responsible for viral transmission. In recent years, evidence has emerged to show that the EBV lytic phase also plays an important role in EBV tumorigenesis, and the expression of EBV lytic genes is frequently detected in tumor tissues and cell lines. The advent of next generation sequencing has allowed the comprehensive profiling of EBV gene expression, and this has revealed the consistent expression of several lytic genes across various types of EBV-associated cancers. In this review, we provide an overview of the functional implications of EBV lytic gene expression to the oncogenic process and discuss possible avenues for future investigations.
Collapse
|
7
|
Replication Compartments-The Great Survival Strategy for Epstein-Barr Virus Lytic Replication. Microorganisms 2022; 10:microorganisms10050896. [PMID: 35630341 PMCID: PMC9144946 DOI: 10.3390/microorganisms10050896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
Abstract
During Epstein–Barr virus (EBV) lytic replication, viral DNA synthesis is carried out in viral replication factories called replication compartments (RCs), which are located at discrete sites in the nucleus. Viral proteins constituting the viral replication machinery are accumulated in the RCs to amplify viral genomes. Newly synthesized viral DNA is stored in a subdomain of the RC termed the BMRF1-core, matured by host factors, and finally packed into assembled viral capsids. Late (L) genes are transcribed from DNA stored in the BMRF1-core through a process that is mainly dependent on the viral pre-initiation complex (vPIC). RC formation is a well-regulated system and strongly advantageous for EBV survival because of the following aspects: (1) RCs enable the spatial separation of newly synthesized viral DNA from the cellular chromosome for protection and maturation of viral DNA; (2) EBV-coded proteins and their interaction partners are recruited to RCs, which enhances the interactions among viral proteins, cellular proteins, and viral DNA; (3) the formation of RCs benefits continuous replication, leading to L gene transcription; and (4) DNA storage and maturation leads to efficient progeny viral production. Here, we review the state of knowledge of this important viral structure and discuss its roles in EBV survival.
Collapse
|
8
|
Huang Y, Guo X, Zhang J, Li J, Xu M, Wang Q, Liu Z, Ma Y, Qi Y, Ruan Q. Human cytomegalovirus RNA2.7 inhibits RNA polymerase II (Pol II) Serine-2 phosphorylation by reducing the interaction between Pol II and phosphorylated cyclin-dependent kinase 9 (pCDK9). Virol Sin 2022; 37:358-369. [PMID: 35537980 PMCID: PMC9243627 DOI: 10.1016/j.virs.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen belongs to betaherpesvirus subfamily. RNA2.7 is a highly conserved long non-coding RNA accounting for more than 20% of total viral transcripts. In our study, functions of HCMV RNA2.7 were investigated by comparison of host cellular transcriptomes between cells infected with HCMV clinical strain and RNA2.7 deleted mutant. It was demonstrated that RNA polymerase II (Pol II)-dependent host gene transcriptions were significantly activated when RNA2.7 was removed during infection. A 145 nt-in-length motif within RNA2.7 was identified to inhibit the phosphorylation of Pol II Serine-2 (Pol II S2) by reducing the interaction between Pol II and phosphorylated cyclin-dependent kinase 9 (pCDK9). Due to the loss of Pol II S2 phosphorylation, cellular DNA pre-replication complex (pre-RC) factors, including Cdt1 and Cdc6, were significantly decreased, which prevented more cells from entering into S phase and facilitated viral DNA replication. Our results provide new insights of HCMV RNA2.7 functions in regulation of host cellular transcription. HCMV RNA2.7 inhibits the phosphorylation of Pol II Serine-2. RNA2.7 reduces the interactions between Pol II and pCDK9. RNA2.7 regulates cell cycle by preventing cells from entering into S phase.
Collapse
Affiliation(s)
- Yujing Huang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guo
- Department of Pediatrics, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110033, China
| | - Jing Zhang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jianming Li
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Mingyi Xu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qing Wang
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhongyang Liu
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yanping Ma
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ying Qi
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qiang Ruan
- Virology Laboratory, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China; Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
9
|
Liu Y, Hu Z, Zhang Y, Wang C. Long non-coding RNAs in Epstein-Barr virus-related cancer. Cancer Cell Int 2021; 21:278. [PMID: 34034760 PMCID: PMC8144696 DOI: 10.1186/s12935-021-01986-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Epstein Barr-virus (EBV) is related to several cancers. Long non-coding RNAs (lncRNAs) act by regulating target genes and are involved in tumourigenesis. However, the role of lncRNAs in EBV-associated cancers is rarely reported. Understanding the role and mechanism of lncRNAs in EBV-associated cancers may contribute to diagnosis, prognosis and clinical therapy in the future. EBV encodes not only miRNAs, but also BART lncRNAs during latency and the BHLF1 lncRNA during both the latent and lytic phases. These lncRNAs can be targeted regulate inflammation, invasion, and migration and thus tumourigenesis. The products of EBV also directly and indirectly regulate host lncRNAs, including LINC00312, NORAD CYTOR, SHNG8, SHNG5, MINCR, lncRNA-BC200, LINC00672, MALATI1, LINC00982, LINC02067, IGFBP7-AS1, LOC100505716, LOC100128494, NAG7 and RP4-794H19.1, to facilitate tumourigenesis using different mechanisms. Additionally, lncRNAs have been previously validated to interact with microRNAs (miRNAs), and lncRNAs and miRNAs mutually suppress each other. The EBV-miR-BART6-3p/LOC553103/STMN1 axis inhibits EBV-associated tumour cell proliferation. Additionally, H. pylori-EBV co-infection promotes inflammatory lesions and results in EMT. HPV-EBV co-infection inhibits the transition from latency to lytic replication. KSHV-EBV co-infection aggravates tumourigenesis in huNSG mice. COVID-19-EBV co-infection may activate the immune system to destroy a tumour, although this situation is rare and the mechanism requires further confirmation. Hopefully, this information will shed some light on tumour therapy strategies tumourigenesis. Additionally, this strategy benefits for infected patients by preventing latency to lytic replication. Understanding the role and expression of lnRNAs in these two phases of EBV is critical to control the transition from latency to the lytic replication phase. This review presents differential expressed lncRNAs in EBV-associated cancers and provides resources to aid in developing superior strategies for clinical therapy.
Collapse
Affiliation(s)
- Yitong Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhizhong Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yang Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Chengkun Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Tang Y, He X. Long non-coding RNAs in nasopharyngeal carcinoma: biological functions and clinical applications. Mol Cell Biochem 2021; 476:3537-3550. [PMID: 33999333 DOI: 10.1007/s11010-021-04176-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck malignancies. It has obvious ethnic and regional specificity. Long non-coding RNAs (LncRNAs) are a class of non-protein coding RNA molecules. Emerging research shows that lncRNAs play a key role in tumor development, prognosis, and treatment. With the deepening of sequence analysis, a large number of functional LncRNAs have been found in NPC, which interact with coding genes, miRNAs, and proteins to form a complex regulatory network. However, the specific role and mechanism of abnormally expressed lncRNAs in the pathogenesis of NPC is not fully understood. This article briefly introduced the concept, classification, and functional mechanism of lncRNAs and reviewed their biological functions and their clinical applications in NPC. Specifically, we described lncRNAs related to the occurrence, growth, invasion, metastasis, angiogenesis, and cancer stem cells of NPC; discussed lncRNAs related to Epstein-Barr virus infection; and summarized the role of lncRNAs in NPC treatment resistance. We have also sorted out lncRNAs related to Chinese medicine treatment. We believe that with the deepening of lncRNAs research, tumor-specific lncRNAs may become a new target for the treatment and a biomarker for predicting prognosis.
Collapse
Affiliation(s)
- Yao Tang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China
| | - Xiusheng He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, 421001, Hunan Province, China.
| |
Collapse
|
11
|
Torres K, Landeros N, Wichmann IA, Polakovicova I, Aguayo F, Corvalan AH. EBV miR-BARTs and human lncRNAs: Shifting the balance in competing endogenous RNA networks in EBV-associated gastric cancer. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166049. [PMID: 33401001 DOI: 10.1016/j.bbadis.2020.166049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) contribute to the regulation of gene expression. By acting as competing endogenous RNA (ceRNA), long non-coding RNAs (lncRNAs) hijack microRNAs (miRNAs) and inhibit their ability to bind their coding targets. Viral miRNAs can compete with and target the same transcripts as human miRNAs, shifting the balance in networks associated with multiple cellular processes and diseases. Epstein-Barr virus (EBV) is an example of how a subset of viral coding RNA and non-coding RNAs can cause deregulation of human transcripts and contribute to the development of EBV-associated malignancies. EBV non-coding transforming genes include lncRNAs (i.e circular RNAs), and small ncRNAs (i.e. miRNAs). Among the latter, most ongoing research has focused on miR-BARTs whereas target many genes associated with apoptosis and epithelial-mesenchymal transition, in EBV-associated gastric cancer (GC). In this review, we propose to include the interactions between EBV ncRNAs human transcripts in the hypothesis known as "competitive viral and host RNAs". These interactions may shift the balance in biological pathways such as apoptosis and epithelial-mesenchymal transition in EBV-associated gastric cancer.
Collapse
Affiliation(s)
- Keila Torres
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Landeros
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio A Wichmann
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iva Polakovicova
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Aguayo
- Advanced Center for Chronic Diseases, Universidad de Chile, Santiago, Chile; Virology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro H Corvalan
- Advanced Center for Chronic Diseases, Pontificia Universidad Católica de Chile, Santiago, Chile; UC Center for Investigational Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile; Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Wang H, Liu W, Luo B. The roles of miRNAs and lncRNAs in Epstein-Barr virus associated epithelial cell tumors. Virus Res 2020; 291:198217. [PMID: 33137402 DOI: 10.1016/j.virusres.2020.198217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection is highly prevalent in the population and is known to be associated with a variety of human tumors, such as nasopharyngeal carcinoma, gastric cancer, and lymphoma; however, the mechanisms of EBV carcinogenesis remain unclear. Recent studies have revealed that many non-coding RNAs participate in the regulation of proliferation, migration, invasion, and other processes in EBV-associated tumor, and the interaction between ncRNAs and the potential target genes has gradually become a research hotspot. Therefore, here, we discuss the expression and roles of ncRNAs in EBV-associated epithelial tumors.
Collapse
Affiliation(s)
- Hanqing Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Shandong, 266021, China.
| |
Collapse
|
13
|
Razin SV, Gavrilov AA, Iarovaia OV. Modification of Nuclear Compartments and the 3D Genome in the Course of a Viral Infection. Acta Naturae 2020; 12:34-46. [PMID: 33456976 PMCID: PMC7800604 DOI: 10.32607/actanaturae.11041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
The review addresses the question of how the structural and functional compartmentalization of the cell nucleus and the 3D organization of the cellular genome are modified during the infection of cells with various viruses. Particular attention is paid to the role of the introduced changes in the implementation of the viral strategy to evade the antiviral defense systems and provide conditions for viral replication. The discussion focuses on viruses replicating in the cell nucleus. Cytoplasmic viruses are mentioned in cases when a significant reorganization of the nuclear compartments or the 3D genome structure occurs during an infection with these viruses.
Collapse
Affiliation(s)
- S. V. Razin
- Institute of Gene Biology Russian Academy of Sciences
| | | | | |
Collapse
|
14
|
The BHLF1 Locus of Epstein-Barr Virus Contributes to Viral Latency and B-Cell Immortalization. J Virol 2020; 94:JVI.01215-20. [PMID: 32581094 DOI: 10.1128/jvi.01215-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) BHLF1 gene encodes an abundant linear and several circular RNAs believed to perform noncoding functions during virus replication, although an open reading frame (ORF) is retained among an unknown percentage of EBV isolates. Evidence suggests that BHLF1 is also transcribed during latent infection, which prompted us to investigate the contribution of this locus to latency. Analysis of transcripts transiting BHLF1 revealed that its transcription is widespread among B-cell lines supporting the latency I or III program of EBV protein expression and is more complex than originally presumed. EBV-negative Burkitt lymphoma cell lines infected with either wild-type or two different BHLF1 mutant EBVs were initially indistinguishable in supporting latency III. However, cells infected with BHLF1 - virus ultimately transitioned to the more restrictive latency I program, whereas cells infected with wild-type virus either sustained latency III or transitioned more slowly to latency I. Upon infection of primary B cells, which require latency III for growth in vitro, both BHLF1 - viruses exhibited variably reduced immortalization potential relative to the wild-type virus. Finally, in transfection experiments, efficient protein expression from an intact BHLF1 ORF required the EBV posttranscriptional regulator protein SM, whose expression is limited to the replicative cycle. Thus, one way in which BHLF1 may contribute to latency is through a mechanism, possibly mediated or regulated by a long noncoding RNA, that supports latency III critical for the establishment of EBV latency and lifelong persistence within its host, whereas any retained protein-dependent function of BHLF1 may be restricted to the replication cycle.IMPORTANCE Epstein-Barr virus (EBV) has significant oncogenic potential that is linked to its latent infection of B lymphocytes, during which virus replication is not supported. The establishment of latent infection, which is lifelong and can precede tumor development by years, requires the concerted actions of nearly a dozen EBV proteins and numerous small non-protein-coding RNAs. Elucidating how these EBV products contribute to latency is crucial for understanding EBV's role in specific malignancies and, ultimately, for clinical intervention. Historically, EBV genes that contribute to virus replication have been excluded from consideration of a role in latency, primarily because of the general incompatibility between virus production and cell survival. However, here, we provide evidence that the genetic locus containing one such gene, BHLF1, indeed contributes to key aspects of EBV latency, including its ability to promote the continuous growth of B lymphocytes, thus providing significant new insight into EBV biology and oncogenic potential.
Collapse
|
15
|
Kong X, Wei G, Chen N, Zhao S, Shen Y, Zhang J, Li Y, Zeng X, Wu X. Dynamic chromatin accessibility profiling reveals changes in host genome organization in response to baculovirus infection. PLoS Pathog 2020; 16:e1008633. [PMID: 32511266 PMCID: PMC7326278 DOI: 10.1371/journal.ppat.1008633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/30/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
DNA viruses can hijack and manipulate the host chromatin state to facilitate their infection. Multiple lines of evidences reveal that DNA virus infection results in the host chromatin relocation, yet there is little known about the effects of viral infection on the architecture of host chromatin. Here, a combination of epigenomic, transcriptomic and biochemical assays were conducted to investigate the temporal dynamics of chromatin accessibility in response to Bombyx mori nucleopolyhedrovirus (BmNPV) infection. The high-quality ATAC-seq data indicated that progressive chromatin remodeling took place following BmNPV infection. Viral infection resulted in a more open chromatin architecture, along with the marginalization of host genome and nucleosome disassembly. Moreover, our results revealed that chromatin accessibility in uninfected cells was regulated by euchromatic modifications, whereas the viral-induced highly accessible chromatin regions were originally associated with facultative heterochromatic modification. Overall, our findings illustrate for the first time the organization and accessibility of host chromatin in BmNPV-infected cells, which lay the foundation for future studies on epigenomic regulation mediated by DNA viruses. As a well-studied arthropod-specific double-stranded DNA virus, Bombyx mori nucleopolyhedrovirus (BmNPV) is a representative member of baculoviruses. BmNPV infection results in significant host chromatin marginalization, which has also been found in most DNA viruses. However, the effects of baculovirus infection on the organization and accessibility of host chromatin are poorly understood. Here, by using ATAC-seq, we show that DNA virus BmNPV infection gradually remodels the accessibility of host chromatin. ATAC-seq data reveal that the marginalized host chromatin is a more accessible architecture along with the depletion of multi-nucleosome depositions. Moreover, our findings suggest the increased accessibility regions are regulated by the facultative heterochromatic modification. Overall, we provide a novel understanding of molecular mechanisms by which baculovirus and DNA viruses alter the organization of host chromatin in epigenomic regulation.
Collapse
Affiliation(s)
- Xiangshuo Kong
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | - Nan Chen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Shudi Zhao
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yunwang Shen
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jianjia Zhang
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yang Li
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaoqun Zeng
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiaofeng Wu
- Institute of Sericulture and Apiculture, College of Animal Science, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
16
|
Zhang J, Li X, Hu J, Cao P, Yan Q, Zhang S, Dang W, Lu J. Long noncoding RNAs involvement in Epstein-Barr virus infection and tumorigenesis. Virol J 2020; 17:51. [PMID: 32272952 PMCID: PMC7146903 DOI: 10.1186/s12985-020-01308-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/27/2020] [Indexed: 02/08/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous γ-herpesvirus related to various types of cancers, including epithelial nasopharyngeal carcinoma, gastric carcinoma, and lymphoma. Long noncoding RNAs (lncRNAs) are expressed extensively in mammalian cells and play crucial roles in regulating various cellular processes and multiple cancers. Cellular lncRNAs can be differentially expressed induced by EBV infection. The dysregulated lncRNAs probably modulate the host immune response and other biological functions. At present, lncRNAs have been found to be significantly increased or decreased in EBV-infected cells, exosomes and EBV-associated cancers, suggesting their potential function and clinical application as biomarkers. In addition, EBV-encoded lncRNAs, BART and BHLF1 lncRNAs, may play roles in the viral oncogenesis. Analysis of the specific lncRNAs involved in interactions with the EBV machinery will provide information on their potential mechanism of action during multiple steps of EBV tumorigenesis. Here, we review the current knowledge regarding EBV-related lncRNAs and their possible roles in the pathogenesis of EBV-associated cancers.
Collapse
Affiliation(s)
- Jing Zhang
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Xiaohan Li
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Jingjin Hu
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Pengfei Cao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Qijia Yan
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Siwei Zhang
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Wei Dang
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Jianhong Lu
- NHC Key Laboratory of Carcinogenesis, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, China.
| |
Collapse
|
17
|
Tai-Schmiedel J, Karniely S, Lau B, Ezra A, Eliyahu E, Nachshon A, Kerr K, Suárez N, Schwartz M, Davison AJ, Stern-Ginossar N. Human cytomegalovirus long noncoding RNA4.9 regulates viral DNA replication. PLoS Pathog 2020; 16:e1008390. [PMID: 32294138 PMCID: PMC7185721 DOI: 10.1371/journal.ppat.1008390] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/27/2020] [Accepted: 02/07/2020] [Indexed: 01/25/2023] Open
Abstract
Viruses are known for their extremely compact genomes composed almost entirely of protein-coding genes. Nonetheless, four long noncoding RNAs (lncRNAs) are encoded by human cytomegalovirus (HCMV). Although these RNAs accumulate to high levels during lytic infection, their functions remain largely unknown. Here, we show that HCMV-encoded lncRNA4.9 localizes to the viral nuclear replication compartment, and that its depletion restricts viral DNA replication and viral growth. RNA4.9 is transcribed from the HCMV origin of replication (oriLyt) and forms an RNA-DNA hybrid (R-loop) through its G+C-rich 5' end, which may be important for the initiation of viral DNA replication. Furthermore, targeting the RNA4.9 promoter with CRISPR-Cas9 or genetic relocalization of oriLyt leads to reduced levels of the viral single-stranded DNA-binding protein (ssDBP), suggesting that the levels of ssDBP are coupled to the oriLyt activity. We further identified a similar, oriLyt-embedded, G+C-rich lncRNA in murine cytomegalovirus (MCMV). These results indicate that HCMV RNA4.9 plays an important role in regulating viral DNA replication, that the levels of ssDBP are coupled to the oriLyt activity, and that these regulatory features may be conserved among betaherpesviruses.
Collapse
Affiliation(s)
- Julie Tai-Schmiedel
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | | | - Betty Lau
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Adi Ezra
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Erez Eliyahu
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Aharon Nachshon
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Nicolás Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Michal Schwartz
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Noam Stern-Ginossar
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| |
Collapse
|
18
|
Boudreault S, Roy P, Lemay G, Bisaillon M. Viral modulation of cellular RNA alternative splicing: A new key player in virus-host interactions? WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1543. [PMID: 31034770 PMCID: PMC6767064 DOI: 10.1002/wrna.1543] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/26/2022]
Abstract
Upon viral infection, a tug of war is triggered between host cells and viruses to maintain/gain control of vital cellular functions, the result of which will ultimately dictate the fate of the host cell. Among these essential cellular functions, alternative splicing (AS) is an important RNA maturation step that allows exons, or parts of exons, and introns to be retained in mature transcripts, thereby expanding proteome diversity and function. AS is widespread in higher eukaryotes, as it is estimated that nearly all genes in humans are alternatively spliced. Recent evidence has shown that upon infection by numerous viruses, the AS landscape of host‐cells is affected. In this review, we summarize recent advances in our understanding of how virus infection impacts the AS of cellular transcripts. We also present various molecular mechanisms allowing viruses to modulate cellular AS. Finally, the functional consequences of these changes in the RNA splicing signatures during virus–host interactions are discussed. This article is categorized under:RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing
Collapse
Affiliation(s)
- Simon Boudreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Patricia Roy
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guy Lemay
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Martin Bisaillon
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|