1
|
Lu K, Yan X, Wei L, Huang B, Jiang Y, Weng Z, Wang L, He X, Wang Q. Molecular characterization of the SP3a gene, a negative regulator of viral infection in the orange-spotted grouper, Epinephelus coioides. Gene 2024; 928:148809. [PMID: 39089532 DOI: 10.1016/j.gene.2024.148809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
SP3 (specificity protein 3) is a transcription factor characterized by three conserved Cys2His2 zinc finger motifs that exert a transregulatory effect by binding to GC boxes, either upregulating or downregulating multiple genes or by co-regulating gene expression in coordination with other proteins. SP3 potentially regulates a series of processes, such as the cell cycle, growth, metabolic pathways, and apoptosis, and plays an important role in antiviral effect. The function of sp3 in fish is poorly understood. In this study, the Sp3a open reading frame was cloned from the orange-spotted grouper, Epinephelus coioides. The full-length open reading frame of Sp3a was 2034 bp, encoding 677 amino acids, with a predicted molecular weight of 72.34 kDa and an isoelectric point of 5.05. Phylogenetically, Sp3a in Epinephelus coioides was the most closely related to Sp3a in the Malabar grouper, Epinephelus malabaricus. RT-qPCR revealed ubiquitous expression of Sp3a in all examined grouper tissues, with no significant differences in expression levels among tissues. A eukaryotic expression vector, pEGFP-Sp3a, was constructed and transfected into grouper spleen (GS) cells. Subcellular localization of Sp3a was observed using an inverted fluorescence microscope. When Spa3 was overexpressed in GS cells, the expression of orange-spotted grouper nerve necrosis virus (RGNNV) genes (CP and RdRp) decreased significantly, indicating that Sp3a significantly inhibited RGNNV replication. siRNA inhibition of Sp3a accelerated the intracellular replication of RGNNV, implying the antiviral effect of Sp3a. Conclusively, our findings contribute to further research on the antiviral capabilities of Sp3a in grouper and other fish. Therefore, our research has potential implications on the development of the aquaculture industry.
Collapse
Affiliation(s)
- Keyu Lu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xu Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Liyun Wei
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Buci Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ziyang Weng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Longxin Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xuehong He
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou 511457, Guangzhou, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China.
| |
Collapse
|
2
|
Moreno E, Ciordia S, Fátima SM, Jiménez D, Martínez-Sanz J, Vizcarra P, Ron R, Sánchez-Conde M, Bargiela R, Sanchez-Carrillo S, Moreno S, Corrales F, Ferrer M, Serrano-Villar S. Proteomic snapshot of saliva samples predicts new pathways implicated in SARS-CoV-2 pathogenesis. Clin Proteomics 2024; 21:37. [PMID: 38778280 PMCID: PMC11112864 DOI: 10.1186/s12014-024-09482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Information on the microbiome's human pathways and active members that can affect SARS-CoV-2 susceptibility and pathogenesis in the salivary proteome is very scarce. Here, we studied a unique collection of samples harvested from April to June 2020 from unvaccinated patients. METHODS We compared 10 infected and hospitalized patients with severe (n = 5) and moderate (n = 5) coronavirus disease (COVID-19) with 10 uninfected individuals, including non-COVID-19 but susceptible individuals (n = 5) and non-COVID-19 and nonsusceptible healthcare workers with repeated high-risk exposures (n = 5). RESULTS By performing high-throughput proteomic profiling in saliva samples, we detected 226 unique differentially expressed (DE) human proteins between groups (q-value ≤ 0.05) out of 3376 unambiguously identified proteins (false discovery rate ≤ 1%). Major differences were observed between the non-COVID-19 and nonsusceptible groups. Bioinformatics analysis of DE proteins revealed human proteomic signatures related to inflammatory responses, central cellular processes, and antiviral activity associated with the saliva of SARS-CoV-2-infected patients (p-value ≤ 0.0004). Discriminatory biomarker signatures from human saliva include cystatins, protective molecules present in the oral cavity, calprotectins, involved in cell cycle progression, and histones, related to nucleosome functions. The expression levels of two human proteins related to protein transport in the cytoplasm, DYNC1 (p-value, 0.0021) and MAPRE1 (p-value, 0.047), correlated with angiotensin-converting enzyme 2 (ACE2) plasma activity. Finally, the proteomes of microorganisms present in the saliva samples showed 4 main microbial functional features related to ribosome functioning that were overrepresented in the infected group. CONCLUSION Our study explores potential candidates involved in pathways implicated in SARS-CoV-2 susceptibility, although further studies in larger cohorts will be necessary.
Collapse
Affiliation(s)
- Elena Moreno
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain.
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Santos Milhano Fátima
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Daniel Jiménez
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
| | - Javier Martínez-Sanz
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Vizcarra
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Raquel Ron
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Matilde Sánchez-Conde
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Rafael Bargiela
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Sergio Sanchez-Carrillo
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049, Madrid, Spain
- Centro de Biologia Molecular Severo Ochoa (CBM), CSIC-UAM, 28049, Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Facultad de Medicina, Universidad de Alcalá de Henares, 28801, Alcalá de Henares, Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB), CSIC, 28049, Madrid, Spain
| | - Manuel Ferrer
- Instituto de Catalisis y Petroleoquimica (ICP), CSIC, 28049, Madrid, Spain
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Facultad de Medicina, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9.100, 28034, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, 28029, Madrid, Spain
| |
Collapse
|
3
|
Khalil MI, Che X, Sung P, Sommer MH, Hay J, Arvin AM. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication. Virology 2016; 492:82-91. [PMID: 26914506 DOI: 10.1016/j.virol.2016.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/30/2016] [Accepted: 02/14/2016] [Indexed: 12/29/2022]
Abstract
VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This study mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States; Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt.
| | - Xibing Che
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| | - Phillip Sung
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| | - Marvin H Sommer
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| | - John Hay
- Department of Microbiology and Immunology, School of Medicine and Biomedical Science, University at Buffalo, Buffalo, NY, United States
| | - Ann M Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Khalil MI, Ruyechan WT, Hay J, Arvin A. Differential effects of Sp cellular transcription factors on viral promoter activation by varicella-zoster virus (VZV) IE62 protein. Virology 2015; 485:47-57. [PMID: 26207799 PMCID: PMC4619144 DOI: 10.1016/j.virol.2015.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/08/2015] [Accepted: 06/25/2015] [Indexed: 12/12/2022]
Abstract
The immediate early (IE) 62 protein is the major varicella-zoster virus (VZV) regulatory factor. Analysis of the VZV genome revealed 40 predicted GC-rich boxes within 36 promoters. We examined effects of ectopic expression of Sp1-Sp4 on IE62- mediated transactivation of three viral promoters. Ectopic expression of Sp3 and Sp4 enhanced IE62 activation of ORF3 and gI promoters while Sp3 reduced IE62 activation of ORF28/29 promoter and VZV DNA replication. Sp2 reduced IE62 transactivation of gI while Sp1 had no significant influence on IE62 activation with any of these viral promoters. Electrophoretic mobility shift assays (EMSA) confirmed binding of Sp1 and Sp3 but not Sp2 and Sp4 to the gI promoter. Sp1-4 bound to IE62 and amino acids 238-258 of IE62 were important for the interaction with Sp3 and Sp4 as well as Sp1. This work shows that Sp family members have differential effects on IE62-mediated transactivation in a promoter-dependent manner.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States; Department of Molecular Biology, National Research Center EL-Buhouth St., Dokki, Cairo, Egypt.
| | - William T Ruyechan
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, United States
| | - John Hay
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, United States
| | - Ann Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci 2015; 35:7332-48. [PMID: 25972164 DOI: 10.1523/jneurosci.2174-14.2015] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Na(+)-Ca(2+) exchanger 1 (NCX1) is reduced in stroke by the RE1-silencing transcription factor (REST), whereas it is increased in ischemic brain preconditioning (PC) by hypoxia-inducible factor 1 (HIF-1). Because ncx1 brain promoter (ncx1-Br) has five putative consensus sequences, named Sp1A-E, for the specificity protein (Sp) family of transcription factors (Sp1-4), we investigated the role of this family in regulating ncx1 transcription in rat cortical neurons. Here we found that Sp1 is a transcriptional activator, whereas Sp3 is a transcriptional repressor of ncx1, and that both bind ncx1-Br in a sequence-specific manner, modulating ncx1 transcription through the Sp1 sites C-E. Furthermore, by transient middle cerebral artery occlusion (tMCAO) in rats, the transcriptional repressors Sp3 and REST colocalized with the two histone-deacetylases (HDACs) HDAC1 and HDAC2 on the ncx1-Br, with a consequent hypoacetylation. Contrarily, in PC+tMCAO the transcriptional activators Sp1 and HIF-1 colocalized with histone acetyltransferase p300 on ncx1-Br with a consequent hyperacetylation. In addition, in neurons silenced with siRNA of NCX1 and subjected to oxygen and glucose deprivation (OGD) (3 h) plus reoxygenation (RX) (24 h), the neuroprotection of Class I HDAC inhibitor MS-275 was counteracted, whereas in neurons overexpressing NCX1 and subjected to ischemic preconditioning (PC+OGD/RX), the neurotoxic effect of p300 inhibitor C646 was prevented. Collectively, these results demonstrate that NCX1 expression is regulated by the Sp3/REST/HDAC1/HDAC2 complex in tMCAO and by the Sp1/HIF-1/p300 complex in PC+tMCAO and that epigenetic intervention, by modulating the acetylation of ncx1-Br, may be a strategy for the development of innovative therapeutic intervention in stroke.
Collapse
|
6
|
Khalil MI, Sommer MH, Hay J, Ruyechan WT, Arvin AM. Varicella-zoster virus (VZV) origin of DNA replication oriS influences origin-dependent DNA replication and flanking gene transcription. Virology 2015; 481:179-86. [PMID: 25795313 PMCID: PMC4437856 DOI: 10.1016/j.virol.2015.02.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/11/2014] [Accepted: 02/23/2015] [Indexed: 11/30/2022]
Abstract
The VZV genome has two origins of DNA replication (oriS), each of which consists of an AT-rich sequence and three origin binding protein (OBP) sites called Box A, C and B. In these experiments, the mutation in the core sequence CGC of the Box A and C not only inhibited DNA replication but also inhibited both ORF62 and ORF63 expression in reporter gene assays. In contrast the Box B mutation did not influence DNA replication or flanking gene transcription. These results suggest that efficient DNA replication enhances ORF62 and ORF63 transcription. Recombinant viruses carrying these mutations in both sites and one with a deletion of the whole oriS were constructed. Surprisingly, the recombinant virus lacking both copies of oriS retained the capacity to replicate in melanoma and HELF cells suggesting that VZV has another origin of DNA replication.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States; Department of Molecular Biology, National Research Centre, El-Buhouth Street, Dokki, Cairo, Egypt.
| | - Marvin H Sommer
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| | - John Hay
- Department of Microbiology and Immunology and The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, United States
| | - William T Ruyechan
- Department of Microbiology and Immunology and The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, United States
| | - Ann M Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
7
|
Khalil MI, Sommer M, Arvin A, Hay J, Ruyechan WT. Cellular transcription factor YY1 mediates the varicella-zoster virus (VZV) IE62 transcriptional activation. Virology 2014; 449:244-53. [PMID: 24418559 DOI: 10.1016/j.virol.2013.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/19/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022]
Abstract
Several cellular transcription factors have been shown to be involved in IE62-mediated activation. The YY1 cellular transcription factor has activating and repressive effects on gene transcription. Analysis of the VZV genome revealed 19 postulated YY1 binding sites located within putative promoters of 16 VZV genes. Electrophoretic mobility shift assays (EMSA) confirmed the binding of YY1 to ORF10, ORF28/29 and gI promoters and the mutation of these binding sites inhibited YY1 binding and the promoter activation by IE62 alone or following VZV infection. Mutation of the ORF28/29 YY1 site in the VZV genome displayed insignificant influence on virus growth in melanoma cells; but it inhibited the virus replication significantly at day 5 and 6 post infection in HELF cells. This work suggests a novel role for the cellular factor YY1 in VZV replication through the mediation of IE62 activation of viral gene expression.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States; Department of Molecular Biology, National Research Center, Dokki, Cairo, Egypt.
| | - Marvin Sommer
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Ann Arvin
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - John Hay
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, United States
| | - William T Ruyechan
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
8
|
Khalil MI, Sommer M, Arvin A, Hay J, Ruyechan WT. Regulation of the varicella-zoster virus ORF3 promoter by cellular and viral factors. Virology 2013; 440:171-81. [PMID: 23523134 DOI: 10.1016/j.virol.2013.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/20/2013] [Accepted: 02/24/2013] [Indexed: 11/18/2022]
Abstract
The varicella zoster virus (VZV) immediate early 62 protein (IE62) activates most if not all identified promoters of VZV genes and also some minimum model promoters that contain only a TATA box element. Analysis of the DNA elements that function in IE62 activation of the VZV ORF3 promoter revealed that the 100 nucleotides before the translation start site of the ORF3 gene contains the promoter elements. This promoter lacks any functional TATA box element. Cellular transcription factors Sp1, Sp3 and YY1 bind to the promoter, and mutation of their binding sites inhibited ORF3 gene expression. VZV regulatory proteins, IE63 and ORF29, ORF61 and ORF10 proteins inhibited IE62-mediated activation of this promoter. Mutation of the Sp1/Sp3 binding site in the VZV genome did not alter VZV replication kinetics. This work suggests that Sp family proteins contribute to the activation of VZV promoters by IE62 in the absence of functional TATA box.
Collapse
Affiliation(s)
- Mohamed I Khalil
- Departments of Pediatrics and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | | | | | | | | |
Collapse
|
9
|
An Sp1/Sp3 site in the downstream region of varicella-zoster virus (VZV) oriS influences origin-dependent DNA replication and flanking gene transcription and is important for VZV replication in vitro and in human skin. J Virol 2012; 86:13070-80. [PMID: 22933283 DOI: 10.1128/jvi.01538-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution and orientation of origin-binding protein (OBP) sites are the main architectural contrasts between varicella-zoster virus (VZV) and herpes simplex virus (HSV) origins of DNA replication (oriS). One important difference is the absence of a downstream OBP site in VZV, raising the possibility that an alternative cis element may replace its function. Our previous work established that Sp1, Sp3, and YY1 bind to specific sites within the downstream region of VZV oriS; we hypothesize that one or both of these sites may be the alternative cis element(s). Here, we show that the mutation of the Sp1/Sp3 site decreases DNA replication and transcription from the adjacent ORF62 and ORF63 promoters following superinfection with VZV. In contrast, in the absence of DNA replication or in transfection experiments with ORF62, only ORF63 transcription is affected. YY1 site mutations had no significant effect on either process. Recombinant viruses containing these mutations were then constructed. The Sp1/Sp3 site mutant exhibited a significant decrease in virus growth in MeWo cells and in human skin xenografts, while the YY1 site mutant virus grew as well as the wild type in MeWo cells, even showing a late increase in VZV replication in skin xenografts following infection. These results suggest that the Sp1/Sp3 site plays an important role in both VZV origin-dependent DNA replication and ORF62 and ORF63 transcription and that, in contrast to HSV, these events are linked during virus replication.
Collapse
|
10
|
Chai KH, McLoughlin DM, Chan TF, Chan HYE, Lau KF. Genomic organization and promoter cloning of the human X11α gene APBA1. DNA Cell Biol 2011; 31:651-9. [PMID: 22136355 DOI: 10.1089/dna.2011.1447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
X11α is a brain specific multi-modular protein that interacts with the Alzheimer's disease amyloid precursor protein (APP). Aggregation of amyloid-β peptide (Aβ), an APP cleavage product, is believed to be central to the pathogenesis of Alzheimer's disease. Recently, overexpression of X11α has been shown to reduce Aβ generation and to ameliorate memory deficit in a transgenic mouse model of Alzheimer's disease. Therefore, manipulating the expression level of X11α may provide a novel route for the treatment of Alzheimer's disease. Human X11α is encoded by the gene APBA1. As evidence suggests that X11α expression can be regulated at transcription level, we have determined the gene structure and cloned the promoter of APBA1. APBA1 spans over 244 kb on chromosome 9 and is composed of 13 exons and has multiple transcription start sites. A putative APBA1 promoter has been identified upstream of exon 1 and functional analysis revealed that this is highly active in neurons. By deletion analysis, the minimal promoter was found to be located between -224 and +14, a GC-rich region that contains a functional Sp3 binding site. In neurons, overexpression of Sp3 stimulates the APBA1 promoter while an Sp3 inhibitor suppresses the promoter activity. Moreover, inhibition of Sp3 reduces endogenous X11α expression and promotes the generation of Aβ. Our findings reveal that Sp3 play an essential role in APBA1 transcription.
Collapse
Affiliation(s)
- Ka-Ho Chai
- Biochemistry Program, School Life Sciences, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong SAR
| | | | | | | | | |
Collapse
|
11
|
A sequence within the varicella-zoster virus (VZV) OriS is a negative regulator of DNA replication and is bound by a protein complex containing the VZV ORF29 protein. J Virol 2011; 85:12188-200. [PMID: 21937644 DOI: 10.1128/jvi.05501-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The architecture of the varicella-zoster virus (VZV) origin of DNA replication (OriS) differs significantly from that of the herpes simplex virus (HSV) DNA replication origin. Novel aspects of the VZV OriS include a GA-rich region, three binding sites for the VZV origin-binding protein (OBP) all on the same strand and oriented in the same direction, and a partial OBP binding site of unknown function. We have designated this partial binding site Box D and have investigated the role it plays in DNA replication and flanking gene expression. This has been done with a model system using a replication-competent plasmid containing OriS and a replication- and transcription-competent dual-luciferase reporter plasmid containing both the OriS and the intergenic region between VZV open reading frames (ORFs) 62 and 63. We have found that (i) Box D is a negative regulator of DNA replication independent of flanking gene expression, (ii) the mutation of Box D results in a decrease in flanking gene expression, thus a sequence within the VZV OriS affects transcription, which is in contrast to results reported for HSV-1, (iii) there is a specific Box D complex formed with infected cell extracts in electrophoretic mobility shift assay experiments, (iv) supershift assays show that this complex contains the VZV ORF29 single-strand DNA-binding protein, and (v) the formation of this complex is dependent on the presence of CGC motifs in Box D and its downstream flanking region. These findings show that the VZV ORF29 protein, while required for DNA replication, also plays a novel role in the suppression of that process.
Collapse
|
12
|
Riveros C, Mellor D, Gandhi KS, McKay FC, Cox MB, Berretta R, Vaezpour SY, Inostroza-Ponta M, Broadley SA, Heard RN, Vucic S, Stewart GJ, Williams DW, Scott RJ, Lechner-Scott J, Booth DR, Moscato P. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis. PLoS One 2010; 5:e14176. [PMID: 21152067 PMCID: PMC2995726 DOI: 10.1371/journal.pone.0014176] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 10/20/2010] [Indexed: 12/03/2022] Open
Abstract
Background Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. Methodology/Principal Findings We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5). Conclusions/Significance Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.
Collapse
Affiliation(s)
- Carlos Riveros
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Drew Mellor
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- School of Computer Science and Software Engineering, The University of Western Australia, Crawley, Australia
| | - Kaushal S. Gandhi
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Fiona C. McKay
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Mathew B. Cox
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - S. Yahya Vaezpour
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mario Inostroza-Ponta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Simon A. Broadley
- School of Medicine, Griffith University, Brisbane, Australia
- Department of Neurology, Gold Coast Hospital, Southport, Australia
| | - Robert N. Heard
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Stephen Vucic
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Graeme J. Stewart
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | | | - Rodney J. Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Jeanette Lechner-Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - David R. Booth
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, St Lucia, Australia
- * E-mail:
| | | |
Collapse
|
13
|
Abstract
Varicella zoster virus (VZV) is the causative agent of chickenpox and shingles. During productive infection the complete VZV proteome consisting of some 68 unique gene products is expressed through interaction of a small number of viral transcriptional activators with the general transcription apparatus of the host cell. Recent work has shown that the major viral transactivator, commonly designated the IE62 protein, interacts with the human Mediator of transcription. This interaction requires direct contact between the MED25 subunit of Mediator and the acidic N-terminal transactivation domain of IE62. A second cellular factor, host cell factor-1, has been shown to be the common element in two mechanisms of activation of the promoter driving expression of the gene encoding IE62. Finally, the ubiquitous cellular transcription factors Sp1, Sp3, and YY1 have been shown to interact with sequences near the VZV origin of DNA replication and in the case of Sp1/Sp3 to influence replication efficiency.
Collapse
|
14
|
Yu HT, Chan WWL, Chai KH, Lee CWC, Chang RCC, Yu MS, McLoughlin DM, Miller CCJ, Lau KF. Transcriptional regulation of human FE65, a ligand of Alzheimer's disease amyloid precursor protein, by Sp1. J Cell Biochem 2010; 109:782-93. [PMID: 20091743 DOI: 10.1002/jcb.22457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
FE65 is a neuronal-enriched adaptor protein that binds to the Alzheimer's disease amyloid precursor protein (APP). FE65 forms a transcriptionally active complex with the APP intracellular domain (AICD). The precise gene targets for this complex are unclear but several Alzheimer's disease-linked genes have been proposed. Additionally, evidence suggests that FE65 influences APP metabolism. The mechanism by which FE65 expression is regulated is as yet unknown. To gain insight into the regulatory mechanism, we cloned a 1.6 kb fragment upstream of the human FE65 gene and found that it possesses particularly strong promoter activity in neurones. To delineate essential regions in the human FE65 promoter, a series of deletion mutants were generated. The minimal FE65 promoter was located between -100 and +5, which contains a functional Sp1 site. Overexpression of the transcription factor Sp1 potentiates the FE65 promoter activity. Conversely, suppression of the FE65 promoter was observed in cells either treated with an Sp1 inhibitor or in which Sp1 was knocked down. Furthermore, reduced levels of Sp1 resulted in downregulation of endogenous FE65 mRNA and protein. These findings reveal that Sp1 plays a crucial role in transcriptional control of the human FE65 gene.
Collapse
Affiliation(s)
- Hoi-Tin Yu
- Department of Biochemistry (Science), The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rennekamp AJ, Lieberman PM. Initiation of lytic DNA replication in Epstein-Barr virus: search for a common family mechanism. Future Virol 2010; 5:65-83. [PMID: 22468146 PMCID: PMC3314400 DOI: 10.2217/fvl.09.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herpesviruses are a complex family of dsDNA viruses that are a major cause of human disease. All family members share highly related viral replication proteins, such as DNA polymerase, ssDNA-binding proteins and processivity factors. Consequently, it is generally thought that lytic replication occurs through a common and conserved mechanism. However, considerable evidence indicates that proteins controlling initiation of DNA replication vary greatly among the herepesvirus subfamilies. In this article, we focus on some of the known mechanisms that regulate Epstein-Barr virus lytic-cycle replication, and compare this to other herpesvirus family members. Our reading of the literature leads us to conclude that diverse viral mechanisms generate a common nucleoprotein prereplication structure that can be recognized by a highly conserved family of viral replication enzymes.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA and The University of Pennsylvania, Biomedical Graduate Program in Cell & Molecular Biology, The School of Medicine, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9523, Fax: +1 251 898 0663,
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9491, Fax: +1 215 898 0663,
| |
Collapse
|